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Abstract

The structure of social networks strongly affects how different phenomena spread in
human society, from the transmission of information to the propagation of contagious
diseases. It is well-known that heterogeneous connectivity strongly favors spread, but a
precise characterization of the redundancy present in social networks and its effect on
the robustness of transmission is still lacking. This gap is addressed by the metric
backbone, a weight- and connectivity-preserving subgraph that is sufficient to compute
all shortest paths of weighted graphs. This subgraph is obtained via
algebraically-principled axioms and does not require statistical sampling based on
null-models. We show that the metric backbones of nine contact networks obtained
from proximity sensors in a variety of social contexts are generally very small, 49% of
the original graph for one and ranging from about 6% to 20% for the others. This
reflects a surprising amount of redundancy and reveals that shortest paths on these
networks are very robust to random attacks and failures. We also show that the metric
backbone preserves the full distribution of shortest paths of the original contact
networks—which must include the shortest inter- and intra-community distances that
define any community structure—and is a primary subgraph for epidemic transmission
based on pure diffusion processes. This suggests that the organization of social contact
networks is based on large amounts of shortest-path redundancy which shapes epidemic
spread in human populations. Thus, the metric backbone is an important subgraph
with regard to epidemic spread, the robustness of social networks, and any
communication dynamics that depend on complex network shortest paths.

Author summary

It is through social networks that contagious diseases spread in human populations, as
best illustrated by the current pandemic and efforts to contain it. Measuring such
networks from human contact data typically results in noisy and dense graphs that need
to be simplified for effective analysis, without removal of their essential features. Thus,
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the identification of a primary subgraph that maintains the social interaction structure
and likely transmission pathways is of relevance for studying epidemic spreading
phenomena as well as devising intervention strategies to hinder spread. Here we propose
and study the metric backbone as an optimal subgraph for sparsification of social
contact networks in the study of simple spreading dynamics. We demonstrate that it is
a unique, algebraically-principled network subgraph that preserves all shortest paths.
We also discover that nine contact networks obtained from proximity sensors in a
variety of social contexts contain large amounts of redundant interactions that can be
removed with very little impact on community structure and epidemic spread. This
reveals that epidemic spread on social networks is very robust to random interaction
removal. However, extraction of the metric backbone subgraph reveals which
interventions—strategic removal of specific social interactions—are likely to result in
maximum impediment to epidemic spread.

1 Introduction 1

As the current COVID-19 pandemic illustrates, our social lives and overall public health 2

depend heavily on interactions that scale from the molecular networks of minute 3

pathogens to the complex socio-technical networks of our transportation, health, 4

economy, ecology, and governance systems. Many insights into the organization of such 5

systems come from advances in network science based on the study of patterns of 6

connectivity (network structure), and one of the fields in which network science has led 7

to the most concrete advances is the epidemiology of infectious diseases [1]. In disease 8

propagation, the structure of the contact network plays a crucial role, and networks with 9

heterogeneous connectivity strongly favor spread [2]. Much remains to be understood, 10

however, about how the structure of complex networks affects their dynamics and 11

robustness [1, 3, 4]. For instance, the collection of social behavior data from social media 12

and mobile devices allows us to map the structure of social interaction to understand 13

health and disease in an unprecedented manner [5, 6]. Yet, much remains to be 14

understood about the dynamics of transmission on these networks for us to be able to 15

predict and control specific biomedical phenomena, such as epidemics, affecting society. 16

Weighted graphs, where every edge is enriched with a positive real number, are often 17

used to capture distance or proximity associations between linked nodes within a set of 18

node variables. This type of network is very useful to infer social dynamics in real-world 19

settings and often used in epidemiology to model disease spread and evaluate disease 20

containment policies at various scales [1, 7–9]. Here we address the link between 21

structure and dynamics by focusing on important patterns of redundancy in social 22

networks modeled as weighted graphs. 23

Redundancy is considered a primary factor in the evolvability of complex 24

systems [10], and recent characterizations of the phenomenon have shown it greatly 25

contributes to their dynamics, controlability, and robustness [11–13]. A full 26

understanding of the interplay between network structure and dynamics requires a 27

study of multivariate dynamics [12] and its redundancy [14]. Often, however, we do not 28

possess enough time-resolved data or computational power to precisely characterize the 29

multivariate dynamics of large networks. In these cases, network structure is very useful 30

for understanding the dynamics of spread and communication phenomena, which can be 31

inferred from the shortest paths and community structure among the variables. We 32

know complex networks generally contain substantial connectivity redundancy whereby 33

all shortest paths can be computed from the smaller subgraph of the recently 34

introduced metric backbone (known in general for any measure of path length as the 35

distance backbone) [13]. 36

Weighted graphs inferred from real-world data can be large and dense, and thus, 37
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cumbersome to manipulate [15]. To overcome this problem, several sparsification 38

methods have been proposed to extract network backbones by removing weak, 39

non-significant, or redundant edges. Methods that remove edges based on a distance (or 40

strength) threshold tend to disrupt global network connectivity by altering the 41

distribution of shortest paths and possibly creating disconnected components 42

(islands) [16]. Indeed, even very weak edges may be very important for computing 43

shortest paths [17] and maintaining multiscale organization (including community 44

structure) in complex networks [18]. Other methods to extract backbones are based on 45

comparison with an expected connectivity distribution (i.e., a null model) [15, 18–22] or 46

certain network properties (e.g., degree, betweenness, and effective 47

resistance) [23, 24]—sometimes altering retained edge weights to conform to desired 48

network properties [24]. All methods, ultimately, remove edges (and potentially nodes) 49

based on thresholding edge weights (retaining only the edges with a proximity weight 50

larger than a given value) or comparing to a null-model distribution. Thus, in either 51

case there is an arbitrary parameter that tunes the removal of edges (and nodes). 52

In contrast, the metric backbone is a parameter-free, algebraically-principled method 53

to obtain a unique (not estimated) subgraph with unaltered weights that fully preserves 54

the shortest paths of the original graph [13]. This means no shortest path is affected by 55

reduction of the original graph to its metric backbone. In particular, even the distance 56

between nodes directly linked by a removed edge is not affected as the shortest path 57

between these nodes is then an indirect path via other nodes (edges not on the 58

backbone break the triangle inequality; see [13] for details). 59

The metric backbone is typically a subgraph much smaller than the original network 60

across domains ranging from topical spaces of large document corpora [25–27] to the 61

brain connectome and functional networks [13, 28–30]. For instance, the metric 62

backbone of a knowledge graph of more than 3 million concepts extracted from 63

Wikipedia and used for automated fact-checking [31] contains only 2% of the original 64

edges but is sufficient to compute all shortest-paths of the original graph [13]. The 65

small relative size of the metric backbone reveals that network shortest-path robustness 66

to attacks and failures likely stems from surprisingly vast amounts of redundancy [13]. 67

Importantly, other backbone methods end up removing edges that are not redundant 68

for shortest paths. Even the disparity filter backbone [18], which has been proposed to 69

preserve the multiscale structure of complex networks, alters the distribution of shortest 70

paths, overall connectivity, and can remove nodes [13]. For instance, the disparity filter 71

backbone of an air traffic network of over 1000 U.S. airports is composed of 24% of the 72

original edges, but it alters the shortest path distribution and removes 23% of all 73

nodes [18] (using ↵ = 0.2, which is the p-value threshold for the null model-derived 74

normalized-edge-weight distribution; For ↵ = 0.05, the disparity filter backbone is 75

composed of 17% of the original edges but also removes 34% of the original nodes [18]). 76

In contrast, the metric backbone of the same airport traffic network is much smaller, 77

composed of 16% of the original edges, and keeps all node variables with the same 78

connectivity and shortest path length distribution [13]. Moreover, the metric backbone 79

is parameter free (see Section 2) while the disparity filter backbone depends on a 80

significance level parameter in comparison to a null model distribution to remove edges. 81

Given the desirable properties of the metric backbone, here we use it to better 82

understand how (shortest-path) redundancy shapes the dynamics of epidemic 83

transmission in human populations. We present the metric backbones of nine networks 84

obtained by measuring the contacts between pairs of individuals (using wearable 85

sensors) in a variety of social settings [32–34]. Such networks are relevant in behavioral 86

studies [35] and as input to data-driven numerical simulations of epidemic 87

spread [9, 34, 36]. We already know that the metric backbone preserves all shortest 88

paths in these networks and removes edges truly redundant for this purpose [13]. Here 89
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we show that in contact networks from various social contexts, the metric backbones: 90

(a) are much smaller than the original networks, revealing a social organization with 91

much redundancy in connectivity, (b) preserve community structure with all its intra- 92

and inter-community shortest paths, and (c) are primary subgraphs for simple 93

transmission dynamics, revealing that diffusion processes on social contact networks are 94

largely driven by, or canalized via, the metric backbone of the latter. In addition to this 95

novel characterization of the organization of social contact networks, and the role of 96

such organization in transmission dynamics, we discuss how this knowledge is relevant 97

for devising intervention strategies to disrupt spreading phenomena on social networks. 98

2 The metric backbone of contact networks 99

Social contact networks are built by recording with whom individuals meet and, when 100

possible, for how long. The data we consider (see Section 4) describe close proximity 101

events in populations with a finite temporal resolution, i.e., in successive time windows 102

of approximately 20 seconds [32–34,37]. These data can be represented as graphs, 103

R(X), in which each node xi 2 X represents a person in a population X, and an edge 104

exists between two nodes if the corresponding individuals have been in close contact at 105

least once. The number of time windows in which individuals xi and xj were in close 106

proximity is denoted by an entry rij in the graph adjacency matrix. The diagonal 107

entries of this matrix, rii, denote the total number of time windows in which individual 108

xi was in a close social interaction with any other individual in the population X: 109

rii =
P

xj2X:j 6=i rij . A normalized transformation of this data, used to quantify the 110

strength of association between individuals, can be obtained via the Jaccard 111

measure [38, 39]: 112

pij =
rij

rii + rjj � rij
, 8xi, xj 2 X, (1)

where pij 2 [0, 1] denotes a proximity between two individuals, with pij = 0 for 113

individuals xi and xj that have no contact, and pij = 1 when they are in contact in 114

every time window measured; naturally, pii = 1. The proximity graph, P (X), can be 115

produced by measures other than Jaccard’s as long as the proximity strength is 116

symmetrical and proportional to the intensity of the interaction [27]. Two additional 117

forms of normalizing interactions are described in SM, Section A in S1 Text. 118

Because computing shortest paths requires a measure of length, rather than 119

proximity, we also compute distance graphs D(X) obtained via the nonlinear map ': 120

dij = '(pij) =
1

pij
� 1 =

rii + rjj � 2rij
rij

, 8xi, xj 2 X, (2)

where the resulting distance weights are symmetrical and inversely proportional to the 121

intensity of social interaction, with dij = +1 for individuals xi and xj who have no 122

contact, dij = 0 when they are always in contact, and dii = 0. Other maps are possible, 123

but without loss of generality ' in eq 2 is the simplest nonlinear isomorphism possible 124

between proximity and distance graphs [27]. 125

The metric backbone [13] of a distance graph D(X) is defined as its invariant 126

subgraph B(X) in the computation of the graph’s metric closure D
T (X). The metric 127

closure is the graph obtained after computing the shortest paths between all pairs of 128

nodes of the distance graph and replacing the original distance edges dij with the length 129

of the shortest path between xi and xj . Length is computed by summing the edge 130

weights in the (shortest) path via � indirect (non-repeating) nodes, where � is no larger 131

than the diameter of the graph, thus, dTij = `ij = dik1 + dk1k2 + . . .+ dk�j . The edge 132
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weights of the metric backbone graph are given by: 133

bij =

(
dij , if dij = d

T
ij

+1, if dij > d
T
ij

, 8xi, xj 2 X, (3)

where bij = +1 means that there is no direct edge between xi and xj in the distance 134

backbone graph. The metric closure is one of infinite possible distance closures that are 135

isomorphic to transitive closures in generalized probabilistic or fuzzy metric spaces. In 136

this case, the topological space is defined by the algebraic structure ([0,+1],min,+), 137

where ([0,+1],min) and ([0,+1],+) are monoids that enforce shortest paths with 138

lengths computed by summing edge weights. There are many other ways to compute 139

length besides summing edges [27] that lead to many other meaningful distance 140

backbones [13]. However, the metric closure, or the All Pairs Shortest Paths (APSP) 141

problem, with computational complexity in the range O(|X|
3) [27, 40], is the most 142

common in network science and typically computed via Dijkstra’s algorithm [41]. 143

The edge weights of D(X) that do not change after computation of the metric 144

closure D
T (X) are called metric because they obey the triangle inequality : 145

dij  d
T
ik + d

T
kj , 8xi, xj , xk 2 X. (4)

The edge weights that become smaller with the metric closure break the triangle 146

inequality in D(X) and are not included on the backbone. When an edge dij of D(X) 147

breaks the triangle inequality, it means that the length of at least one indirect path 148

between xi and xj is shorter than the direct distance: `ij = d
T
ij < dij . These are known 149

as semi-metric edges [25] and do not contribute to any shortest path [27]. Thus, metric 150

edges alone define the backbone and are sufficient to compute the closure, as shown 151

in [13]. Notice that this construction is based on edge, not path, properties. If every 152

edge on equivalent shortest paths between nodes xi and xj happen to be metric, they 153

all remain in the metric backbone, along with the possible paths they may form. This 154

means that several alternative paths of the same length can exist between any two 155

nodes in the backbone, which is quite distinct from path-based graph reductions such as 156

Minimum Spanning Trees [13]. 157

The proportion of semi-metric edges is, therefore, the proportion of edges in graph 158

D(X) that are not necessary to compute shortest-paths. This measure of edge 159

redundancy is given by: 160

�(D) =
|{dij : dij > d

T
ij}|

|{dij}|
, 8xi, xj 2 X : i > j. (5)

Similarly, the proportion of metric edges in graph D(X) is the relative size of its metric 161

backbone B(X): 162

⌧(D) =
|{dij : dij = d

T
ij}|

|{dij}|
=

|{bij}|

|{dij}|
, 8xi, xj 2 X : i > j. (6)

It follows that ⌧ = 1� �. Because distance graphs are symmetric (dij = dji) and edges 163

are nondirected, in Eqs 5 and 6 we count each edge only once and do not tally reflexive 164

edges, dii. This means we tally only the lower diagonal entries of the adjacency matrix: 165

dij : i > j. 166

The metric closure, computation of all pairs shortest paths (APSP), induces a 167

topological distortion [27] of the original graph obtained from the multivariate 168

associations observed in the social contact data, whereby semi-metric edges are made to 169

conform to the triangle inequality, Eq 4. However, only the semi-metric edges get 170

distorted; the metric edges and the metric backbone they compose remain invariant in 171
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the APSP. Therefore, � also denotes the proportion of edges topologically distorted by 172

the metric closure, whereas ⌧ denotes the proportion of edges topologically invariant 173

under the metric closure. A measure of semi-metric edge distortion between nodes xi 174

and xj is then obtained via the ratio of the direct distance over the shortest indirect 175

path length.: 176

sij =
dij

d
T
ij

, 8xi, xj 2 X : i 6= j. (7)

If an edge dij is metric, sij = 1, meaning there is no distortion. If an edge dij is 177

semi-metric, sij > 1, meaning there is distortion; the larger the value over 1, the more 178

the edge breaks the triangle inequality, and thus, the more distorted it is in the metric 179

closure. While semi-metric edges are redundant for shortest paths and have null 180

betweenness centrality, their distortion (the distribution of s) varies widely. This in turn 181

affects the robustness of shortest paths to edge removals [13] (see Fig 5 and Section 3.2). 182

It is important to note that the nonlinear map ' (Eq 2) has been shown to establish 183

an isomorphism between proximity graphs P (X) (Eq 1) and distance graphs D(X) 184

(Eq 2) [27]. Therefore, the distance backbone B(X) exists as a subgraph of both D(X) 185

and P (X), with all associated properties and formulae (Eq 3 - Eq 7). Strictly, the 186

distance backbone of a proximity graph, T (X), is known as a transitive backbone (a 187

kind of transitive reduction) [13], and is the counterpart of B(X) in proximity space via 188

isomorphism ': tij = '
�1(bij) = 1/(bij + 1). In other words, tij = pij if there is a finite 189

edge weight between xi and xj in B(X), and 0 otherwise. For simplicity, hereafter we 190

refer to the distance backbone as B(X) but use its distance (bij) or proximity (tij) edge 191

weights depending on the edge interpretation one needs, which we indicate throughout; 192

e.g. distance weights are used for computing shortest paths (using the Dijkstra 193

algorithm), and proximity weights are used as transition probabilities in epidemic 194

spread experiments or as connection strengths in community detection. 195

3 Results 196

We have computed the metric backbone for nine different contact networks from a 197

variety of social contexts, from an elementary school in Utah (USA) to an art exhibit in 198

Dublin (Ireland). As shown in Table 1, these networks vary widely in the number of 199

nodes and edges, yet the metric backbone typically comprises a small proportion of 200

edges. 201

Table 1. Distance graphs (D) of the social contact networks analyzed, with respective references. |X|:
number of nodes; (|di>j |): number of finite distance edges; ⌧(D) relative size of the metric backbone; �(D):
edge redundancy. Values of ⌧ , and � are shown as percentages (%). For the Exhibit networks, values of |X|,
(|di>j |), ⌧ and � denote the mean ± standard deviation of the networks computed for each of the 69 days for
which data were gathered. See Section 4.1 for additional details and a description of the networks.

Network (D) Location Social context |X| |di>j | ⌧(D) �(D)
Fr-Ho [42] Lyon, France Hospital 75 1,139 19.05 80.95
It-SC [43] Turin, Italy Scientific Conference 113 2,196 14.03 85.97
Ir-Ex [43] Dublin, Ireland Exhibit 159±63 645±468 48.44±9.27. 51.56±9.27.
Fr-Wo [44] Paris, France Workplace 232 4,274 17.43 82.57
Fr-PS [45] Lyon, France Primary School 242 8,317 9.5 90.5
Fr-HS [46] Marseille, France High School 327 5,818 10.36 89.64
US-ES [34] Utah, USA Elementary School 339 16,546 6.82 93.18
US-MS [34] Utah, USA Middle School 591 56,867 6.19 93.81
US-HS [33] USA High School 788 118,291 7.84 92.16
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Our metric backbone analysis is exemplified by the contact network collected by the 202

SocioPatterns collaboration [37] over a period of 4 days in 2013 in a High School 203

(Fr-HS) in Marseilles, France [46]. A similar analysis of all other networks is provided in 204

Supplemental Materials (SM). The Fr-HS contact network was built from 188,508 205

contact records among |X| = 327 students enrolled in distinct préparatoires classes, 206

which are designed for college-bound students in the last two years of their high school 207

studies. This student body had been largely separated from other high school students 208

(i.e., different building and lunch), forming an almost closed population with few 209

contacts with the outside world, at least during school days. Nine classes were organized 210

in four different specializations: “MP” focus on mathematics and physics (3 classes), 211

“PC” on physics and chemistry (2 classes), “PSI” on engineering (1 class), and “BIO” on 212

biology (3 classes). The total student participation in the study was 86.3% [46]. 213

The original contact network and its metric backbone have been obtained for the 214

Fr-HS data via Eqs 1 to 3 in Section 2 and are depicted in Fig 1, with other processing 215

details described in Section 4.1. 216

3.1 Metric backbone and community structure 217

As shown in Table 1, the Fr-HS metric backbone comprises only ⌧ ⇡ 10% of the edges of 218

the original network. Interestingly, in addition to preserving all shortest paths by 219

design [13], the metric backbone also preserves and highlights the community structure 220

of the original social network. This is clearly seen in Fig 1A-C when we compare its 221

center (B) and right (C) panels. For the metric backbone depicted in Fig 1B the nodes 222

are placed according to the computation of the ForceAtlas2 algorithm [47] (in 223

Gephi [48]) using all the almost six thousand edges (Table 1) of the original network 224

(shown in Fig 1A). In contrast, in Fig 1C the nodes are placed after recomputing the 225

same algorithm using only the 603 edges of the backbone subgraph. It is clear that the 226

community structure remains largely unaltered with respect to the Fig 1B panel. 227

Similar results have been observed for all other networks in Table 1 (see Section C in 228

S1 Text), with the interesting exception of the American high school (US-HS) contact 229

network. In this case, the original graph is devoid of any obvious social structure. After 230

edge removal, however, four distinct communities that likely correspond to the four 231

grades typical of American high school education can clearly be seen (see Fig 1D-F). For 232

this larger network (|X| = 788), removing the � ⇡ 92% of edges that are redundant for 233

shortest paths reveals a clearer community structure. Moreover, while the metric 234

backbone subgraph is comprised of only ⌧ ⇡ 8% of the edges, it preserves all the original 235

shortest paths, be them inter- or intra-community. Therefore, the metric backbone must 236

preserve the multiscale distance structure (or topology) of complex networks. 237

It is useful to quantify how well the metric backbone preserves or highlights the 238

social organization of contact networks beyond visual inspection. Indeed, while visual 239

representation of networks is an important part of social network analysis, especially for 240

small- or mid-size networks, it becomes increasingly difficult as the number of nodes 241

and edges grows. Therefore, we have developed and used a set of measures to compare 242

the community structure of each metric backbone subgraph with its original graph (see 243

Section 4.2 for details). Because all measures support the same conclusions, in Table 2 244

we present results only for the bidirectional similarity measure, yAB , as defined by Eq 8 245

(Section 4.2), applied to the Fr-HS social contact network. Results for all measures and 246

all other networks are provided in Section C in S1 Text. 247

The Fr-HS dataset includes m = 9 classes in the metadata (see Fig 1A-C), while the 248

Louvain community detection algorithm [49] identifies m = 10 communities in the 249

original graph—which has an additional very small community splitting from one of the 250

MP classes, as shown in Fig 2A. In other words, the community structure of the original 251

graph obtained from all the measured social contact data, as captured by Louvain, is 252
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Fig 1. French high school (Fr-HS) and American high school (US-HS)
contact networks (A-C) French high school (Fr-HS) contact network of |X| = 327
students. Colors represent the four student specializations: “MP” in blue, “PC” in
green, “PSI” in orange, and “BIO” in red; lighter or darker colors separate the distinct
classes within each specialization. (D-F) American high school (US-HS) contact
network of |X| = 788 students, staff, and teachers. Colors represent students in blue,
teachers in red, and staff in orange. Other (unspecified) individuals are shown in green.
No student class metadata is available. (A, D) Original networks with node layout
computed by ForceAtlas2 algorithm [47], using all proximity weights, P (X). (B, E)
Metric backbone subgraphs rendered with the same node layout as in the respective
networks in (A) and (D). (C, F) Metric backbone subgraphs with node layout
recomputed by ForceAtlas2 using only backbone (proximity) weights. Plotted with
Gephi [48].

very similar to the metalabel communities. Indeed, yAB = 0.88 measures a high amount 253

of bidirectional similarity between the two module partitions—the larger the value of 254

yAB 2 [0, 1], the more similar the community structure between the two graphs defined 255

on the same set of nodes, see Section 4.2. This confirms that most social contacts of 256

students occur within their assigned classes, with only few students who interact more 257

with students from other classes/modules—though almost always within the same 258

specializations, as shown in Fig 2A. 259

However, we do not have access to a “gold standard,” such as an independent survey 260

of the observed cohorts, corresponding to the “true” community structure of the contact 261

networks we analyze. We only have access to either the metalabels provided in the data 262

(e.g., the classes each student of the Fr-HS network is enrolled in), or the social 263

organization uncovered by community detection algorithms, such as the Louvain 264

algorithm applied to the original network. It is important to note that neither is 265
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Table 2. SocioPatterns Fr-HS contact network and its community structure
detected by the Louvain algorithm [49] for the original (proximity) network
and several of its subgraphs. Top rows (m) show the number of distinct metalabels
and the number of communities detected, while bottom rows show the bidirectional
modularity similarity, yAB (Eq 8 in Section 4.2). Columns show values for original
graph, metric backbone subgraph, and same-size threshold and random subgraphs.
Mean and standard deviation shown for 100 random subgraphs.

Original Metric Threshold Random

m
Metalabels 9 - - -
Louvain 10 17 27 47.19±3.79

yAB
Metalabels 0.88 0.68 0.55 0.38±0.02
Original - 0.74 0.61 0.37±0.02

guaranteed to perfectly characterize the true social organization. While the metalabels 266

denote organizational roles (e.g., classes and professions), individuals may contact 267

members of other (metalabel) groups more than those within their own group due to 268

personal relationships outside of their organizational roles. Additionally, the original 269

network may contain spurious contact edges, especially if the sensor parameters defining 270

when a contact is detected do not correspond to close proximity, or if contacts with very 271

short duration are registered. The social organization of the original network as 272

captured by community detection algorithms may thus be confounded by many contact 273

edges that do not in reality denote a strong social link. Indeed, the US-HS network 274

discussed above is one such case, as shown in Fig 1D-F. Therefore, to provide evidence 275

that the metric backbone presents a good compromise between preserving a 276

substantially correct picture of the organization of contact networks while implementing 277

sizeable and effective network sparsification, we compare its community structure with 278

same-size subgraphs obtained by thresholding or randomly removing edges— see 279

Section 4.3 for details on their generation. Note that we do not compare community 280

structure to other backbone methods, such as the disparity filter backbone [18], because 281

they can remove nodes (see Section 1), which would result in a different universe X to 282

partition into communities. Additionally, distance backbones such as the metric 283

backbone are parameter-free, so we compare its community structure to threshold and 284

random graphs obtained by removing exactly the same number of edges as removed in 285

forming the metric backbone (�(D).|di>j |) in a parameter-free manner. A comparison 286

and discussion of the advantages of distance backbones in regard to alternative 287

backbone subgraphs is already available [13]. 288

In the case of the Fr-HS network, it is clear from Table 2 that the metric backbone 289

preserves the community structure of the original graph found by the Louvain 290

community detection algorithm, as well as that of its metalabel partition, better than 291

the same-size threshold and random subgraphs. The measure of bidirectional 292

modularity similarity of the metric backbone (yAB = 0.74), with only about 10% of the 293

edges, shows that it preserves the Louvain-community structure of the original graph 294

much better than the same-size threshold subgraph (yAB = 0.61) and than a sample of 295

100 same-size random subgraphs (yAB = 0.37± .02). The difference can also be 296

visualized as in Fig 2, where, by comparing the right-hand side of panels B, C and D, it 297

is clear that the metric backbone breaks into fewer modules (m = 17, panel B) than do 298

the threshold (m = 27, panel C) and random (m = 47.19± 3.79, panel D) subgraphs. In 299

the case of the threshold graph this is likely due to deletion of (weak) bridges within 300

and between modules that are nonetheless required to preserve shortest paths [13]. It is 301

also clear that random deletion not only breaks community structure more, it also 302

mixes up the social organization, with students from different specializations being 303

grouped together in small modules more than as observed with the metric backbone or 304
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A

C D

B

Fig 2. Community structure comparison for the French high school (Fr-HS)
dataset using Sankey plots. (A) Comparison of metalabels—student attribution to
their classes—with modules detected on the original graph. (B) Comparison of the
modules detected on the original graph with those detected on its metric backbone
subgraph. (C) Comparison of the modules detected on the original graph with those
detected on the threshold subgraph of same size as the metric backbone. (D)
Comparison of the modules detected on the original graph with those detected on a
random subgraph of the same size as the metric backbone. Metalabel module colors
assigned to student specialization and classes as in Fig 1A-C. Modules computed using
the Louvain algorithm [49].

threshold subgraph. While there is some variation across different social networks, as 305

detailed in SM, the metric backbone typically preserves the community structure of the 306

original graph better than same-size threshold and random backbones for the various 307

similarity measures defined in Section 4.2. 308

A similar behavior occurs with the metalabel partition, which is also better captured 309

by the metric backbone (yAB = 0.68) than the same-size threshold subgraph 310

(yAB = 0.55) and the sample of 100 same-size random subgraphs (yAB = 0.38± .02). 311

However, as mentioned above, it is not clear that metalabel partitions capture the true 312

social organization, especially in several of the networks analyzed in SI where 313

metalabels are not always expected to form social contact modules in the observed 314

contexts (e.g., teachers in classroom settings or in-patients in a hospital). Still, in school 315

settings like that of the Fr-HS network, it is clear that threshold and random subgraphs 316

break the metalabel partition into many more Louvain-communities than does the 317
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metric backbone, and the random subgraphs mix the metalabel partition much more. 318

Interestingly, with the French Primary School network (Fr-PS) we observe that the 319

Louvain-communities of the metric backbone can be closer to the metalabel partition 320

than the Louvain-communities of the original graph (see Section C.1 in S1 Text), which 321

suggests that the metric backbone can in some cases filter out noisy or redundant 322

contact data, as was also observed in the US-HS network (Fig 1D-F). 323

In addition to the various measures of module similarity and Louvain-communities, 324

we have additionally used the Infomap community detection algorithm [50] and 325

stochastic block models (SBM) [51] to study the ability of the metric backbone to 326

preserve the community structure of original networks (including their metalabels) in 327

comparison to same-size threshold and random subgraphs. For the analyzed social 328

contact networks Infomap leads to a much more granular community structure, 329

typically breaking it into many small modules. Indeed, the SBM simulations show that 330

Infomap is not able to recognize well the known original communities of full networks 331

when connectivity is relatively low, even prior to any sparsification (see Section B in S1 332

Text, especially Table C). Thus, even though the results generally support the same 333

conclusions drawn with Louvain-communities, we include the Infomap results only in 334

the SM, for the SBM simulations (Section B in S1 Text) and for every network studied 335

(Section C in S1 Text). 336

We used SBM to generate ensembles of artificial networks for which we can control 337

how much group metalabels match the underlying community structure—something we 338

cannot control in the real-world contact networks as discussed above. The simulations 339

consider two distinct scenarios for low and high connectivity, as well as modules with 340

and without hierarchical structure. First, for both low and high connectivity, the metric 341

backbone preserves well the community structure of the original network (see Section B 342

in S1 Text for details). Even in the most adverse scenario of low connectivity, this can 343

be clearly observed by inspecting the adjacency matrix and the network visualization in 344

Fig 3. In particular, it is clear that the backbone preserves the original community 345

structure when its subgraph is independently plotted with the same force layout 346

algorithm as the original, full network. Furthermore, the community structure detected 347

on the metric backbone subgraphs is systematically more similar to the one detected on 348

the full generated networks than the community structures of threshold and random 349

subgraphs of the same size. This is the case for both the high and low connectivity 350

SBM, for Louvain and Infomap community structure detection methods, and across 351

most measures of modularity similarity (see Tables B and C in S1 Text). 352

Altogether, the analyses of community detection, module similarity measures, 353

visualization, and SBM simulations support the assertion that the metric backbone 354

presents a good compromise between preserving a substantially correct picture of the 355

organization of contact networks while implementing sizeable and effective network 356

sparsification. 357

3.2 Epidemic spreading on the metric backbone 358

Networks are the supporting structure of various types of dynamical processes, ranging 359

from the synchronization of oscillators to the spread of information or infectious 360

diseases [2]. How these processes are altered when they occur on a subgraph, with 361

respect to how they would unfold on the whole network, is a natural question when 362

devising a filtering strategy that retains only a subgraph of the original network [24, 53]. 363

We thus explore this issue in the case of the metric backbone. 364

As many processes are based on diffusion phenomena, we focus on simple and 365

paradigmatic contagion processes typically used to simulate the spread of infectious 366

diseases in a population. Moreover, because our focus is on how a spreading process 367

occurring on a whole network differs from that on the metric backbone (i.e., we are not 368
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E

D

C

BA

Fig 3. Synthetic network with connectivity generated by a Stochastic Block Model (SBM) and edge
weights sampled from the SocioPatterns French Primary School (Fr-PS) contact network. (A). Synthetic
module sizes. (B). SBM generator matrix for low connectivity case. Note the hierarchical structure of modules C and D. (C).
The adjacency matrix of the original graph and the metric backbone. (D). Force layout visualization of the original
(proximity) graph as computed by the NetworkX python package [52]. Node positioning obtained after 100 iterations. (E).
Force layout visualization of the metric backbone subgraph. Node positioning seeded from the original graph (panel C) and
obtained after 100 iterations. See Sections A and 4 in S1 Text for details about synthetic network generation.

interested in recovering dynamics) we consider the simplest such model, the 369

Susceptible-Infected (SI) model. In this model, each node can be in only one of two 370

states: S (susceptible) or I (infected and infectious). A susceptible node, xj , in contact 371

with an infectious one, xi, along an edge of (proximity) weight pij can become infectious 372

at rate �.pij , i.e., with probability �.pij .dt in each time interval dt. In this section we 373

use proximity weights since the infection probability increases with 374

proximity—equivalently, it decreases with the isomorphic distance since 375

pij = 1/(dij + 1) and the distance backbone, as shown in section 2, exists equally in 376

distance graphs and their isomorphic proximity graphs. Note further that, on a static 377

network, � is simply a global parameter that sets the timescale, so the results are 378

independent from its value as shown below. Once infected, nodes remain in that state. 379

Each simulation starts with an infectious seed node chosen at random and ends 380

when no further contagion event is possible (either because all nodes are in state I or 381

because the remaining S nodes have no link with the infectious nodes). In order to 382

characterise the spread, we do not focus on the final size (number of nodes reached by 383

the spread, which is always close to the total number of nodes as they do not recover) 384

but rather on the velocity of the spread [54]. More specifically, we compute the time 385

needed by the process to reach either half of the nodes (t1/2) or all the nodes 386

(t1) [54–57], both on the original network and on its metric backbone subgraph, using 387

their proximity weights in the SI spreading process. 388

In addition to comparing spreading times on the original network with those using 389

the metric backbone, as in the Section 3.1 analysis, we also consider two baselines: 390
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Fig 4. Normalized time to infection using the metric backbone, threshold,
or random subgraphs of the French High School (Fr-HS) network. The
horizontal axis denotes �, a parameter to sweep the proportion of edges of the original
network that are included in the subgraphs analyzed. When � = 0% (leftmost value on
axis) we have the metric backbone subgraph, or threshold and random subgraphs with
the same number of edges as the metric backbone (i.e. |{bij}| = ⌧(D).|{dij}|, per Eq.
(6)). As � increases, edges from the original network that are not on the backbone or
same-size threshold and random subgraphs, are progressively added until the original
network itself is reached at � = 100% (see text for more details). (Left) Time for half of
the population to be infected, t1/2, normalized by the results obtained using the entire

original network, tD(X)
1/2 . (Right) Time for all nodes in the network to be infected, t1,

normalized by the results obtained using the entire original network, tD(X)
1 Spreading

times for every curve are averaged over nr = 10 runs of the SI model starting from a
random seed node and 100 network realizations obtained via random edge removals for
each value of �. The green and blue bars, quantified against the right vertical axis in
each panel, denote the fraction of networks in threshold and random baseline ensembles
that are connected for a given �. Disconnected networks are discarded to compute the
spreading times. For the simulations shown, the spreading parameter was set as
� = 0.9/pmax where pmax is the largest proximity weight of the original network.

subgraphs obtained either by thresholding the weights or by randomly removing edges 391

As noted in Section 3.1, we do not compare to other backbone methods because they can 392

remove nodes in addition to edges, change the original weights, or introduce parameters 393

that would complicate the transmission study pursued. A discussion of the advantages 394

of distance backbones in regard to alternative backbone subgraphs is available [13]. 395

For a fair comparison among metric backbone, threshold, and random subgraphs, we 396

need to contrast the various subgraphs using the same number of edges. However, in 397

many cases the threshold and random subgraphs are composed of several disconnected 398

components though they have the same number of edges as the metric backbone, as 399

only the metric backbone guarantees that connectivity and shortest path distribution 400

are preserved [13]. Therefore, we have devised the following procedure: starting from 401

the whole network, we remove a fraction of the semi-metric edges randomly in order to 402

obtain a subgraph composed of (i) the metric backbone (ii) plus a percentage � of 403

semi-metric edges (similar to the procedure in [53]). 404

For this study, for every network in Table 1, we have performed nr = 10 runs of the 405

SI model starting from a random node seed and computed t1/2 and t1 averaged over 406

these runs and over 100 network realizations of the set of randomly selected semi-metric 407

edges that are not removed. Thus, for each value of �, 1000 simulations are computed. 408

We then built threshold and random subgraphs with exactly the same number of edges 409
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as the metric backbone, and we performed exactly the same procedure in each case to 410

obtain a series of intermediate subgraphs between the original graph and the final 411

threshold or random subgraphs of the same size as the metric backbone, i.e., we 412

randomly removed a fraction 1� � of the edges of the original graph that did not 413

belong to the threshold or to the random subgraph, respectively. 414

Fig 4 depicts t1/2 and t1, normalized by their values computed on the original graph, 415

as a function of � in the case of the French High School (Fr-HS) network. The 416

rightmost point corresponds to the whole original network, D(X), and the leftmost to 417

the metric backbone, B(X), or same-size threshold and random subgraphs. The 418

simulation results for the metric backbone are depicted by the red circle, full line. The 419

corresponding results for same-size threshold and random subgraphs are depicted by the 420

blue triangle, dash-dotted and green triangle, dotted lines, respectively. In all cases, as 421

edges are removed from the original network, the time to infection or half-infection 422

increases as fewer paths are available to transmit the disease: any filtering method leads 423

to an overestimation of infection times. However, it is quite clear that the infection on 424

the metric backbone propagates faster and remains much closer to the infection times 425

observed for the full original network than the infection times observed on the baseline 426

subgraphs. This is especially striking for the time to full infection t1, but also observed 427

for time to half infection t1/2: the ratio between the times measured on the original 428

network and on the metric backbone reaches ⇡ 1.6 for t1 and ⇡ 2.3 for t1/2, but much 429

larger ratios are reached with the other two baseline subgraphs. Similar results are 430

observed for every network in Table 1, as detailed in SM. Note that we report results for 431

a given value of �, since it only fixes a global timescale for the spread. Indeed, we have 432

verified that the normalized times reported do not depend on �. We show in the Fig H 433

in S1 Text the non-normalized infection times for another value of �. 434

Another noteworthy observation ensues from the simulations conducted on all 435

networks. As � was decreased we frequently obtained disconnected threshold and 436

random subgraphs, for which t1 is by definition infinite as not all nodes could be 437

reached, and t1/2 is finite only if the seed node existed in a connected component that 438

contained at least half of the nodes. The fraction of connected networks for both 439

baselines is indicated by blue and green bars in Fig 4. This fraction becomes rather 440

small well before we reach the size of the metric backbone (� = 0). Indeed, for � = 20%, 441

only 5% and 20% of connected networks exist in the threshold and random baseline 442

ensembles, respectively. Naturally, the values of t1 and t1/2 shown are only computed 443

for connected networks, thus simulations for subgraphs of the same size as the metric 444

backbone (|B(X)|) were not possible for both threshold and random baseline ensembles; 445

in the case of the threshold baseline, even subgraphs with � = 10% were not connected. 446

This means that we cannot find threshold and random subgraphs of the same size as the 447

metric backbone that can sustain propagation to the whole (or even half) of the original 448

network. In contrast, time to full (or half) infection is always finite in the case of the 449

backbone—and any intermediate case between it and the full network as � varies—as it 450

preserves the connectivity (and shortest-path distribution) of the original network. 451

Altogether the SI simulations on every network in Table 1 show that the metric 452

backbone is a primary subgraph for simple transmission dynamics. Furthermore, 453

considering that the threshold subgraph is built by removing the weaker edges (low 454

proximity or large distance), it follows that there are weak links in the metric backbone 455

that are removed from the network in the threshold subgraph but which are essential for 456

transmission. These weak edges are potentially good candidates for interventions aiming 457

at reducing transmission while minimizing reduction of social contact. 458
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Discussion 459

It is only in weighted graphs—where weights discriminate and characterize the degree of 460

association between nodes as proximity or its isomorphic distance—that the concept of 461

metric backbone is meaningful because the backbone of non-weighted (regular) graphs is 462

the graph itself. In weighted graphs the metric backbone (and its generalized distance 463

backbone [13]) is a very useful construct because, unlike other graph reduction 464

techniques, the backbone graph B(X) is guaranteed to preserve all bridges, original 465

weight values, connectivity, and distribution of shortest paths of the original graph 466

D(X), and is defined in a non-parametric manner from simple algebraic principles. 467

Thus, the metric backbone of a distance graph is unique, typically small, and provides a 468

principled graph reduction technique that does not alter edge weights while preserving 469

all shortest paths. 470

We have analyzed the metric backbones of nine contact networks collected in a 471

variety of social settings and recorded based on the interactions between pairs of 472

individuals via wearable sensors. It was already known that the metric backbone, by 473

design, preserves network connectivity and all shortest paths after removal of all 474

redundant edges for that purpose [13]. Here we have shown that the metric backbones 475

of social contact networks are also much smaller than their associated original networks 476

(large redundancy in shortest-path calculation), as previously observed in biological, 477

technological, and knowledge networks [13]. Built-in redundancy is a hallmark of 478

complex systems, allowing them natural protection against perturbations [58,59]. In the 479

social networks analyzed here, the small backbones reveal this in that their distribution 480

of shortest paths is very robust to random removal of edges. Specifically, the proportion 481

of semi-metric edges (�) ranges from 52 to 94%, with eight of the nine networks 482

observing � > 80% redundancy. This means that all shortest paths can be computed in 483

these eight networks with fewer than ⌧ = 20% of the edges. Indeed, five networks have 484

metric backbones composed of ⌧  10% of their original edges (see Table 1). This 485

suggests that the organization of social contact networks is based on large amounts of 486

shortest-path redundancy. 487

The only network that has a fairly large metric backbone (� = 48± 9%) pertains to 488

a context where we do not expect a typical social organization: an exhibit in the Dublin 489

Science Gallery (Ir-Ex). In a museum setting, most visitors pass by alone or in small 490

disconnected groups, thus a large fraction of (weak) edges are required to preserve 491

shortest-path connectivity. Indeed, as shown in Fig 5, the distribution of semi-metric 492

distortion reveals a social organization of almost random encounters. The values of 493

semi-metric distortion are quite low (s̃ij ⇡ 2) with a small variation range (see also 494

Fig S in S1 Text). This means that the distance graph is very close to being entirely 495

metric, as previously observed in random fluctuation phenomena that occurs in an 496

physical (Euclidean) space [13]. In such cases, the backbone is expected to comprise 497

50% of the graph, but the (near 50%) semi-metric edges are almost all very close to 498

metric (low distortion). 499

Because shortest paths reveal the strength of social connectedness and the likelihood 500

of transmission phenomena on these networks, we have focused on analyzing how both 501

are captured by the metric backbone. Community structure refers to the identification 502

of subsets of nodes that are more connected among themselves, than to nodes in other 503

subsets. In weighted graphs, this means subsets of nodes that are nearer one another 504

while farther away from other subsets) Since the distance backbone preserves all 505

shortest paths (isomorphically in both proximity or distance graphs, as discussed in 506

Section 2), it must preserve all intra- and inter-community shortest distances between 507

every pair of nodes. This is an important theoretical result about the metric backbone 508

regarding community structure which we also explored experimentally. Indeed, the 509

metric backbone clearly helps in the identification and visualization of the social 510
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Fig 5. Distribution of semi-metric edge distortion for contact networks.
Box plots of the distributions of semi-metric distortion for semi-metric edges (sij > 1)
for all contact networks in Table 1. White bars and black circles denote the median and
mean values, respectively. Actual distributions are shown in SM.

community structure of the network, especially when the original graph is too dense to 511

be visually inspected (e.g., Fig 1D-F). More importantly, our results show that in 512

comparison to same-size threshold and random subgraphs, the metric backbone (of 513

real-World social contact networks and simulated stochastic block models) best 514

preserves community structure (Section 3.1) and is a primary subgraph for simple 515

transmission dynamics (Section 3.2). This suggests that community structure is 516

particularly robust to semi-metric edge removal, and that the observed large amount of 517

shortest-path redundancy shapes epidemic spread in human populations. 518

Thresholding is often used to decrease the number of edges in densely connected 519

networks. The common assumption is that edges with small proximity (large distance) 520

weights are spurious or simply noise. However, as we show here in all networks studied, 521

the set of weak edges includes those that do in fact contribute to the computation of 522

shortest paths and preserve connectivity and are, thus, important to keep communities 523

connected and sustain spreading phenomena. Thresholding a network can isolate 524

communities, creating disconnected components where dynamical processes, such as 525

epidemic spread, cannot be sustained. Indeed, our epidemic spread simulations on the 526

nine social networks (Section 3.2) show that threshold or random subgraphs much larger 527

than the metric backbone frequently lead to disconnected graphs, but the metric 528

backbone preserves connectivity and shortest paths. The importance of weak edges has 529

long been explored in social networks [17]. Our analysis, thus, suggests that weak edges 530

on the metric backbone are potentially good candidates for interventions that aim at 531

reducing transmission while minimizing reduction of social contact in communities. 532

It is worth also considering the role of semi-metric edges, those not on the backbone 533

(Section 3.2), as their properties show that the distance backbone methodology is not 534

exclusively a network reduction technique. While all (semi-metric) edges with sij > 1 535

have null betweenness centrality, the distribution of semi-metric edge distortion (7) 536

typically varies widely, often spanning many scales [13]. Indeed, the distribution of sij is 537

informative about the robustness of shortest-paths on a given network. If there are 538

many semi-metric edges with low values of s, then the removal of metric edges from the 539

backbone is likely to have a small effect on the distribution of shortest-paths because 540

alternative paths with low distortion are likely to exist. In contrast, if there are high 541

values of s, removing some edges on the backbone is likely to result in a large disruption 542

of the shortest-path distribution. Thus, while the size of the backbone captures how 543

robust the distribution of shortest paths is to a random attack on the whole network, 544
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the distribution of s captures how robust the backbone itself is to attack. 545

This knowledge is relevant when devising intervention strategies to disrupt spreading 546

phenomena on social networks. If the backbone is robust, with low central tendency of s 547

and a more homogeneous distribution, then removing edges from it (hindering specific 548

social connections) will have little impact on shortest paths; this is the case of the 549

Exhibit (Ir-Ex) and Workspace (Fr-Wo) networks as shown in Fig 5 (see also Figs P 550

and S in S1 Text). If, on the other hand, the distribution of s is heterogeneous with a 551

large central tendency and variation, then targeting specific edges on the backbone 552

would result in a large disruption to shortest paths. The latter is the case of all school 553

contact networks we have analyzed, especially the French (Fr-HS) and US (US-HS) high 554

school networks as shown in Fig 5 (see also SI for s distributions of all school networks). 555

For instance, the median semi-metric distortion of the US-HS network is s̃ij ⇡ 30. This 556

means that 50% of the (semi-metric) edges not on the backbone break the triangle 557

inequality by a factor of at least 30. In other words, they refer to social distances that 558

are at least 30 times shorter via indirect paths on the backbone. Thus, deleting edges 559

from this backbone is likely to result in a very large impact on the distribution of 560

shortest paths. Because the backbone is typically very small (for the US-HS 561

⌧(D) = 7.84%), such intervention strategies are easier to design on it than on the whole 562

network, which reveals the importance of targeting the backbone in containing epidemic 563

spread. 564

The work here presented describes the first application of metric backbones to study 565

epidemic spread on social contact networks. As an initial study, it is limited in scope 566

and can certainly be expanded. For instance, we present results for nine real-World 567

networks and ensembles of synthetic networks. Furthermore, we studied only simple SI 568

spreading dynamics. Understanding the role of shortest-path redundancy in epidemic 569

contact networks will certainly benefit from studying additional networks, especially 570

with more clearly understood and independently measured community structure, as well 571

as more complex spreading models, all of which we leave for future work. Additionally, 572

we have studied social contact networks statically and left considering attack 573

interventions to the network or backbone for future work. Another assumption inherent 574

in the work is that shortest paths—computed as the summation of edge weights along 575

the path—are important. To address that assumption, we intend to include other 576

distance backbones in upcoming studies. Indeed, the metric backbone generalizes to any 577

measure of path length [13], not just the summation of distance edges as in the 578

standard shortest paths of the metric backbone. Thus, other distance backbones based 579

on ultra-metric, euclidean, and diffusion distances are likely to be relevant for both 580

understanding the organization of and more complex transmission phenomena on social 581

networks, resulting in novel strategies for analysis and mitigation of epidemic spread. 582

4 Methods 583

4.1 Datasets and network computation 584

The datasets range in date from 2009 to 2015 and were collected from a number of 585

different social environments, such an elementary school [34], a primary school [45], two 586

high schools [33, 46], a hospital ward [42], a workplace [44], a scientific conference [43], 587

and a museum exhibit [43]. The data were collected using proximity sensors worn by 588

individuals. Most of the resulting datasets provide a contact record data file, where 589

each row consists of the anonymized IDs of individuals and the time that they met 590

someone, with a time resolution of approximately 20 seconds. Some datasets also 591

contain additional metadata. For instance, in the primary school, class and type (i.e., 592

student or teacher) are provided for each contact ID. Details for each dataset and their 593
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analysis are provided Section C in S1 Text. 594

4.2 Module similarity between Backbone and Original 595

Network 596

Several measures are available to quantify how much the metric backbone is able to 597

preserve the social organization captured by the original network and to compare the 598

value with the social organization captured by null model subgraphs obtained by 599

removing the same number of edges. Given two distance graphs A(X) and B(X) 600

defined on the same set of nodes X from contact or proximity data as described in 601

Section 2, we consider the partitions of X to be the community structure of each graph. 602

Specifically, graph A(X) is partitioned into a set of mA nonempty modules Ai, and 603

graph B(X) is partitioned into a set of mB nonempty modules Bj . We consider strict 604

partitions such that [mA
i=1Ai ⌘ X, Ak \Al ⌘ ; 8k 6= l, and Ai 6= ; 8i 2 {1...mA}. 605

Naturally, i = 1, . . . ,mA and j = 1, . . . ,mB , with mA,mB 2 N. 606

The module partitions we consider are either the metalabels of the original networks 607

or the communities found by the Louvain algorithm [49] of a target distance graph. 608

The goal is then to compare how similar the module partition of a distance graph is to 609

the partition of its backbone—or threshold or random subgraph of the same size. 610

We consider various measures for computing similarity between modularity 611

partitions of the same set of nodes, which is an old problem in classification [60]. A 612

straightforward way to obtain a value that captures bidirectional similarity of 613

modularity between two distance graphs is to use a normalized measure based on the 614

Jaccard proximity [38] between all pairs of modules with one from each distance graph: 615

yAB =

mAX

i

mBX

j

P (Ai, Bj)

p
mA ·mB

where P (Ai, Bj) =
|Ai \Bj |

|Ai [Bj |
. (8)

This measures how similar partitions {A1 · · ·AmA} and {B1 · · ·BmB} of X are to each 616

other and varies in the unit interval (yAB 2 [0, 1]). The larger the value, the more 617

similar the partitions. 618

We also consider a directional similarity based on the Jaccard proximity to compare 619

each module in a partition to its most similar counterpart in the other partition (JA!B) 620

and vice-versa (JB!A) as follows: 621

JA!B =

mAX

i

mB
max

j
P (Ai, Bj)

mA
, JB!A =

mBX

j

mA
max

i
P (Ai, Bj)

mB
. (9)

These dual measures also vary in the unit interval (JA!B , JB!A 2 [0, 1]). The larger 622

the value of JA!B the more each module in partition {A1 · · ·AmA} has a similar 623

counterpart module in partition {B1 · · ·BmB}, and vice versa for JB!A. 624

A measure of modularity dispersion, intuitively, yields a comparison opposite to 625

those provided in Eqs 8 and 9: 626

hA!B =

mAX

k

H(Ai)

mA · log2(mB)
hB!A =

mBX

l

H(Bj)

mB · log2(mA)
. (10)

H(Ai) and H(Bj) denote the Shannon entropy of probability distributions associated 627

with the dispersion of each module of one partition into all modules of the other 628

partition: 629
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Ai =
�
S(Ai, B1), . . . , S(Ai, BmB )

 
and Bj =

�
S(Bj , A1), . . . , S(Bj , AmA)

 
.

S(Ai, Bj) denotes the subsethood [61,62] of module Ai in module Bj , and S(Bj , Ai) 630

denotes the subsethood of module Bj in module Ai: 631

S(Ai, Bj) =
|Ai \Bj |

|Ai|
and S(Bj , Ai) =

|Ai \Bj |

|Bj |
.

Typically S(Ai, Bj) 6= S(Bj , Ai). Thus, hA!B 2 [0, 1] captures how much the modules 632

of partition {A1 · · ·AmA} are on average dispersed into the modules of partition 633

{B1 · · ·BmB}, and hB!A 2 [0, 1] the other way around. The smaller the values are, the 634

more the community structure of one network is preserved in the other. 635

For comparison, in addition to the measures in formulae 8 to 10, we also compute 636

the CluSim [63, 64] measure of modularity similarity, which considers module 637

“nestedness,” and the Adjusted Rand Index [60]. All computed measures are shown in 638

the respective dataset details in Section C in S1 Text. 639

4.3 Threshold and random subgraph generation procedure 640

We compared the metric backbone to both a threshold and a random subgraph, both of 641

equal size of that obtained with the metric backbone. More specifically, to generate a 642

thresholded subgraph from any network we studied here, we rank and remove the 643

weakest edges (i.e., edges with low proximity or large distance) of the original graph 644

until we reach the same number of edges as in the metric backbone. Similarly, to 645

generate a random subgraph, we simply remove edges at random from the original 646

graph until we reach the same number of edges as in the metric backbone. 647

4.4 Synthetic network generation for stochastic block models 648

Our synthetic network has 160 nodes and 4 modules (A, B, C, and D), each containing 649

40 nodes each. The underlying connectivity of the network is given by a predefined 650

Stochastic Block Model (SBM) [51], which takes the size of each module and a module 651

probability matrix that defines the likelihood of nodes in a module to connect to nodes 652

in the other modules. Our module probability matrix has a higher intra-module 653

connection and, in addition, modules C and D have a hierarchical connectivity structure 654

(see Fig 3). Edge weights (i.e., their proximity value, pij , or their isomorphic distance, 655

dij) are sampled from a real contact network, the SocioPatterns French Primary School 656

(Fr-PS; details in Section C.1). Importantly, edges are sampled taking into consideration 657

if they connect two nodes belonging the same class or across different classes in the 658

Fr-PS. This provide us a realistic differentiation between within module and across 659

module connectivity weights. The adjacency matrix of both the original graph and its 660

metric backbone can be seen in Fig 3D. Community detection algorithms and 661

modularity measures are the same as with the contact networks (see Section 4.2). 662

Importantly, to estimate deviations all synthetic network results are based on 10 663

realizations. Additional 100 iterations were used to compute results for the random 664

subgraphs described in Section 4.3. Additional generation details, and a ‘high’ 665

intra-module connectivity synthetic network are described in Section B. 666
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