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Hyperbolic geometry and real moduli
of five points on the line

Olivier de Gaay Fortman, January 9, 2023

1 Introduction

Let X ∼= A6
R be the affine space parametrizing homogeneous degree 5 polynomials

F ∈ R[x, y]. Let the variety X0 ⊂ X parametrize polynomials with distinct roots, and
Xs ⊂ X polynomials with roots of multiplicity at most two (i.e. stable in the sense of
geometric invariant theory). The principal goal of this paper is to study the moduli
space of stable real binary quintics

Ms(R) := GL2(R) \Xs(R) ⊃ GL2(R) \X0(R) =:M0(R).

If Ps ⊂ P1(C)5 is the set 5-tuples (x1, . . . , x5) such that no three xi ∈ P1(C) coincide
(c.f. [MS72]), and P0 ⊂ Ps the subset of 5-tuples whose coordinates are distinct, then

M0(R) ∼= PGL2(R) \ (P0/S5)(R) and Ms(R) ∼= PGL2(R) \ (Ps/S5)(R).

In other words,M0(R) is the space of subsets S ⊂ P1(C) of cardinality |S| = 5 stable
under complex conjugation modulo real projective transformations, and inMs(R) one
or two pairs of points are allowed to collapse. For i = 0, 1, 2, we define Mi to be the
connected component of M0(R) parametrizing Gal(C/R)-stable subsets S ⊂ P1(C)
with 2i complex and 5− 2i real points.

There is a natural period map that defines an isomorphism of analytic spaces

Ms(C) = GL2(C) \Xs(C)
∼−→ PΓ \ CH2

for a certain arithmetic ball quotient PΓ\CH2 (see Theorem 2.10), and strictly stable
quintics correspond to points in a hyperplane arrangement H ⊂ CH2 (see Proposition
2.11). By investigating the equivariance of this period map with respect to suitable
anti-holomorphic involutions αi : CH2 → CH2, we obtain the following real analogue:

Theorem 1.1. For each i ∈ {0, 1, 2}, the period map induces an isomorphism of real
analytic orbifolds

Mi
∼= PΓi \

(
RH2 −Hi

)
. (1)

Here RH2 is the real hyperbolic plane, Hi a union of geodesic subspaces in RH2 and
PΓi an arithmetic lattice in PO(2, 1). Moreover, the PΓi are projective orthogonal
groups attached to explicit quadratic forms over Z[ζ5 + ζ−1

5 ], see Equation (28).
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In particular, Theorem 1.1 endows each component Mi ⊂ M0(R) with a hyperbolic
metric. Since one can deform the topological type of a Gal(C/R)-stable five-element
subset of P1(C) by allowing two points to collide, the compactification Ms(R) ⊃
M0(R) is connected. One may wonder whether the metrics on the components Mi

extend to a metric on the whole ofMs(R). If so, what does the resulting space look
like at the boundary? Our main result answers these questions in the following way.

Theorem 1.2. There is a complete hyperbolic metric on Ms(R) restricting to the
metrics on Mi induced by (1). Let M R denote the resulting metric space, and define

Γ3,5,10 = 〈α1, α2, α3|α2
i = (α1α2)3 = (α1α3)5 = (α2α3)10 = 1〉. (2)

Then there exist open embeddings PΓi \ (RH2 −Hi) ↪→ Γ3,5,10 \RH2 and an isometry

M R ∼= Γ3,5,10 \ RH2 (3)

extending the orbifold isomorphisms (1) in Theorem 1.1. In particular, M R is isomet-
ric to the hyperbolic triangle ∆3,5,10 of angles π/3, π/5, π/10, see Figure 1 below.

Figure 1: M R as the hyperbolic triangle ∆3,5,10 ⊂ RH2. Here λ = ζ5 +ζ−1
5 and ω = ζ3.
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Equivariant period maps arise often in real algebraic geometry as a method to obtain
real uniformization of the connected components of the moduli space of smooth vari-
eties. For instance, this works for abelian varieties [GH81], algebraic curves [SS89], K3
surfaces [Nik79] and quartic curves [HR18]. Only recently, Allcock, Carlson and Toledo
have shown that in the cases of cubic surfaces [ACT10] and binary sextics [ACT06;
ACT07], the real ball quotient components can be glued along the hyperplane arrange-
ment in order to uniformize the moduli space of real stable varieties. Binary quintics
provide the first new example of this phenomenon.

Remarks 1.3. 1. The lattice Γ3,5,10 ⊂ PO(2, 1) is non-arithmetic, see [Tak77].

2. The isometry (3) in Theorem 1.2 seems to provide M R with a hyperbolic orbifold
structure. The proof of Theorem 1.2 actually goes in the other direction: we use the
theory of glueing real hyperbolic orbifolds developed in [GF23] to show that the pieces
on the right hand side of (1) into a complete real hyperbolic orbifold PΓR\RH2. After
that, we prove that the period maps (1) glue into an isomorphism M R ∼= PΓR \RH2,
and finally, to finish the proof of Theorem 1.2, we show that PΓR ∼= Γ3,5,10.

3. The topological spaceMs(R) underlies two orbifold structures: the natural orbifold
structure of GL2(R)\Xs(R) and the structure on M R induced by (3). These structures
only differ at one point ofMs(R), which is the point (∞, i, i,−i,−i) (see Figure 1).

4. Important ingredients in the proof of Theorem 1.2 are [GF23, Theorem 3.1] and
the fact that H ⊂ CH2 is an orthogonal arrangement in the sense of [ACT02a]. The
latter holds by [GF23, Theorem 4.12 & Proposition 4.14]. Another implication of the
orthogonality of H ⊂ CH2 is that neither π1 (P0/S5) nor πorb

1 (MC) is a lattice in any
Lie group with finitely many connected components, see [ACT02a, Theorem 1.2].

1.1 Acknowledgements. This project was carried out during my PhD at the ENS
in Paris. I thank my advisor Olivier Benoist for his great guidance and support.
Moreover, I thank Romain Branchereau, Samuel Bronstein, Nicolas Tholozan and
Frans Oort for useful discussions, and I thank Nicolas Bergeron for pointing me to
Takeuchi’s paper on hyperbolic triangle groups which led to Remark 1.3.1. This project
has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 754362.

2 Moduli of complex binary quintics

Recall from the introduction that X ∼= A6
R is the real affine space of homogeneous

degree 5 polynomials F ∈ R[x, y], X0 the subvariety of polynomials with distinct
roots, and Xs ⊂ X the subvariety of polynomials with roots of multiplicity at most
two, i.e. non-zero polynomials whose class in the associated projective space is stable
in the sense of geometric invariant theory [MFK94] for the action of SL2,R on it.
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Notation 2.1. Let K be the cyclotomic field Q(ζ), with ζ = ζ5 = e2πi/5 ∈ C. The
ring of integers OK of K is Z[ζ] [Neu99, Chapter I, Proposition 10.2]. Let µK ⊂ O∗K
be the group of finite units in OK . Thus, µK is cyclic of order ten, generated by −ζ.

The goal of Section 2 is to prove that there exists a hermitian OK-lattice Λ of rank
three, such that, if Γ = Aut(Λ), G(C) = GL2(C)/D, and H ⊂ CHn is the hyperplane
arrangement defined by the norm one vectors in Λ, then there is an isomorphism of
complex analytic spacesMs(C) = G(C)\Xs(C) ∼= PΓ\CH2 restricting to an orbifold
isomorphismM0(C) = G(C) \X0(C) ∼= PΓ \ (CH2 −H ).

2.1 The Jacobian of a quintic cover of the projective line. We begin with:

Lemma 2.2. Let Z ⊂ P1
C be a smooth quintic hypersurface. Let P2

C ⊃ C → P1
C be the

quintic cover of P1 ramified along Z. Then C has the following refined Hodge numbers:

h1,0(C)ζ = 3, h1,0(C)ζ2 = 2, h1,0(C)ζ3 = 1, h1,0(C)ζ4 = 0

h0,1(C)ζ = 0, h0,1(C)ζ2 = 1, h0,1(C)ζ3 = 2, h0,1(C)ζ4 = 3.

Proof. This follows from the Hurwitz-Chevalley-Weil formula, see [MO13, Proposition
5.9]. Alternatively, see [CT99, Section 5].

Fix a point F0 ∈ X0(C) and let

C = {z5 = F0(x, y)} ⊂ P2
C (4)

be the corresponding cyclic cover of P1
C. Let(

A = J(C) = Pic0(C), λ : A→ Â, ι : OK = Z[ζ]→ End(A)
)

be the Jacobian of C, viewed as a principally polarized abelian variety of dimension
six equipped with an OK-action compatible with the polarization, see [GF23, Con-
ditions 4.5]. Write Λ = H1(A(C),Z). We have Λ ⊗Z C = H−1,0 ⊕ H0,−1, the Hodge
decomposition of Λ⊗Z C. Define a CM-type Ψ ⊂ Hom(K,C) as follows:

τi : K → C, τ1(ζ) = ζ3, τ2(ζ) = ζ4; Ψ = {τ1, τ2} . (5)

Since H−1,0 = Lie(A) = H1(C,OC) = H0,1(C), Lemma 2.2 implies that

dimC H−1,0
τ1

= 2, dimC H−1,0
τ1σ

= 1, dimC H−1,0
τ2

= 3, dimC H−1,0
τ2σ

= 0. (6)

Define η = 5/(ζ−ζ−1). Then DK = (η), see [GF23, Proposition 4.14]. Let E : Λ×Λ→
Z be the alternating form corresponding to the polarization λ of the abelian variety
A. For a ∈ OK and x, y ∈ Λ, we have E(ι(a)x, y) = E(x, ι(aσ)y). Define

T : Λ× Λ→ D−1
K , T (x, y) =

1

5

4∑
j=0

ζjE
(
x, ι(ζ)jy

)
.
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By [GF23, Example 4.2.2], this is the skew-hermitian form corresponding to E via
[GF23, Lemma 4.1]. We obtain a hermitian form on the free OK-module Λ as follows:

h : Λ× Λ→ OK , h(x, y) = ηT (x, y) = (ζ − ζ−1)−1

4∑
j=0

ζjE
(
x, ι(ζ)jy

)
. (7)

By Lemma [GF23, Lemma 4.1], the hermitian lattice (Λ, h) is unimodular, because
(Λ, E) is unimodular. For each embedding ϕ : K → C, the restriction of the hermitian
form ϕ(η) · EC(x, ȳ) on ΛC to (ΛC)ϕ ⊂ ΛC coincides with hϕ by [GF23, Lemma 4.3].
Since =(τi(ζ − ζ−1)) < 0 for i = 1, 2, the signature of hτi on Vi = Λ⊗OK ,τi C is

sign(hτi) =

{
(h−1,0

τ1
, h0,−1

τ1
) = (2, 1) for i = 1, and

(h−1,0
τ2

, h0,−1
τ2

) = (3, 0) for i = 2.
(8)

2.2 The monodromy representation. Consider the real algebraic variety X0 intro-
duced in Section 1. Let D ⊂ GL2(C) be the group D = {ζ i · I2} ⊂ GL2(C) of scalar
matrices ζ i · I2, where I2 ∈ GL2(C) is the identity matrix of rank two, and define

G(C) = GL2(C)/D. (9)

The group G(C) acts from the left on X0(C) in the following way: if F (x, y) ∈ C[x, y]
is a binary quintic, we may view F as a function C2 → C, and define g · F = F (g−1)
for g ∈ G(C). This gives a canonical isomorphism of complex analytic orbifolds

M0(C) = G(C) \X0(C),

whereM0 is the moduli stack of smooth binary quintics.
Consider two families

π : C → X0 and φ : J → X0

defined as follows. We define π as the universal family of cyclic covers C → P1 ramified
along a smooth binary quintic {F = 0} ⊂ P1. We let φ be the relative Jacobian of
π. By Section 2.1, φ is an abelian scheme of relative dimension six over X0, with
OK-action of signature {(2, 1), (3, 0)} with respect to Ψ = {τ1, τ2}.

Let V = R1π∗Z be the local system of hermitian OK-modules underlying the
abelian scheme J/X0. Attached to V, we have a representation

ρ′ : π1(X0(C), F0)→ Γ = AutOK (Λ, h),

whose composition with the quotient map Γ→ PΓ = Γ/µK defines a homomorphism

ρ : π1(X0(C), F0)→ PΓ. (10)

We shall see that ρ is surjective, see Corollary 2.4 below.
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2.3 Marked binary quintics. For F ∈ X0(C), define ZF as the hypersurface

ZF = {F = 0} ⊂ P1
C.

A marking of F is a ring isomorphism m : H0(ZF (C),Z)
∼−→ Z5. To give a marking

is to give a labelling of the points p ∈ ZF (C). Let N0 be the space of marked binary
quintics (F,m); this is a manifold, equipped with a holomorphic map

N0 → X0(C). (11)

Let ψ : Z → X0(C) be the universal complex binary quintic, and consider the local
system H = ψ∗Z of stalk HF = H0(ZF (C),Z) for F ∈ X0(C). Then H corresponds to
a monodromy representation

τ : π1(X0(C), F0)→ S5. (12)

It can be shown that τ is surjective using the results of [Bea86]. This implies that (11)
is covering space, i.e. that N0 is connected.

By choosing a marking m0 : H0(ZF0(C),Z) ∼= Z5 lying over our base point F0 ∈
X0(C) we obtain an embedding π1 (N0,m0) ↪→ π1(X0(C), F0) whose composition with
the map ρ in (10) defines a homomorphism

µ : π1(N0,m0)→ PΓ. (13)

Define θ = ζ − ζ−1 and consider the three-dimensional F5 vector space Λ/θΛ and the
quadratic space W := (Λ/θΛ, q) , where q is the quadratic form obtained by reducing
h modulo θΛ. Define two groups Γθ and PΓθ as follows:

Γθ = Ker (Γ→ Aut(W )) , PΓθ = Ker (PΓ→ PAut(W )) ⊂ PU(2, 1).

Remark that the composition N0 → X0(C) → Xs(C) admits an essentially unique
completion Ns → Xs(C), see [Fox57] or [DM86, §8]. Here Ns a manifold and Ns →
Xs(C) is a ramified covering space.

Proposition 2.3. The image of µ in (13) is the group PΓθ, and the induced homo-
morphism π1(X0(C), F0)/π1 (N0,m0) = S5 → PΓ/PΓθ is an isomorphism. In other
words, we obtain the following commutative diagram with exact rows:

0 // π1(N0,m0)

µ
����

// π1(X0(C), F0)

ρ

��

τ // S5

∼γ
��

// 0

0 // PΓθ // PΓ // PAut(W ) // 0.

(14)

Proof. Consider the quotient

Q = G(C) \ N0 = PGL2(C) \ P0,

where P0 ⊂ P1(C)5 is the subvariety of distinct five-tupes, see Section 1. Let 0 ∈ Q
be the image of m0 ∈ N0. In [DM86], Deligne and Mostow define a hermitian space
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bundle BQ → Q over Q whose fiber over 0 ∈ Q is CH2. Writing V1 = Λ⊗OK ,τ1 C, this
gives a monodromy representation

π1(Q, 0)→ PU(V1, h
τ1) ∼= PU(2, 1)

whose image we denote by ΓDM. Kondō has shown that in fact, ΓDM = PΓθ [Kon07,
Theorem 7.1]. Since N0 → Q is a covering space (the action of G(C) on N0 being free)
we have an embedding π1(N0,m0) ↪→ π1(Q, 0) whose composition with π1(Q, 0) →
PU(2, 1) is the map µ : π1(N0,m0)→ PΓ ⊂ PU(2, 1).

To prove that the image of µ is PΓθ, it suffices to give a section of the map N0 → Q.
Indeed, such a section induces a retraction of π1(N0,m0) ↪→ π1(Q, 0), so that the
images of these two groups in PU(2, 1) are the same. Observe that if ∆ ⊂ P1(C)5 is
the union of all hyperplanes {xi = xj} ⊂ P1(C)5 for i 6= j, then

Q = PGL2(C) \ P0 = PGL2(C) \
(
P1(C)5 −∆

)
∼= {(u1, u2) ∈ C2 : ui 6= 0, 1 and u1 6= u2}.

The section Q→ N0 may then be defined by sending (u1, u2) to the binary quintic

F (x, y) = x(x− y)y(x− u1 · y)(x− u2 · y) ∈ X0(C),

marked by the labelling of its roots {[0 : 1], [1 : 1], [1 : 0], [u1 : 1], [u2 : 1]} ⊂ P1(C).
It remains to prove that the homomorphism γ : S5 → PΓ/PΓθ appearing on the

right in (14) is an isomorphism. We use Theorem 4.1, proven by Shimura in [Shi64],
which says that

(Λ, h) ∼=

(
O3
K , diag

(
1−
√

5

2
, 1, 1

))
.

It follows that PΓ/PΓθ = PAut(W ) ∼= PO3(F5) ∼= S5. Next, consider the manifold
Ns. Remark that S5 embeds into Aut(G(C) \ Ns). Moreover, there is a natural
isomorpism

p : G(C) \ Ns ∼= PΓθ \ CH2 (see [DM86; Kon07]).

Compare also Equation (16) below. The two compositions

S5 ⊂ Aut(G(C) \ Ns) ∼= Aut(PΓθ \ CH2) and S5 → PΓ/PΓθ ⊂ Aut(PΓθ \ CH2)

agree, because of the equivariance of p with respect to γ. Thus, γ is injective.

Corollary 2.4. The monodromy representation ρ in (10) is surjective.

2.4 Framed binary quintics. By a framing of a point F ∈ X0(C) we mean a projective
equivalence class [f ], where

f : VF = H1(CF (C),Z)→ Λ

is an OK-linear isometry: two such isometries are in the same class if and only if
they differ by an element in µK . Let F0 be the collection of all framings of all points
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x ∈ X0(C). The set F0 is naturally a complex manifold, by arguments similar to those
used in [ACT02b]. Note that Corollary 2.4 implies that F0 is connected, hence

F0 → X0(C) (15)

is a covering, with Galois group PΓ.

Lemma 2.5. The spaces PΓθ\F0 and N0 are isomorphic as covering spaces of X0(C).
In particular, there is a covering map F0 → N0 with Galois group PΓθ.

Proof. We have PΓ/PΓθ ∼= S5 as quotients of PΓ, see Proposition 2.3.

Lemma 2.6. ∆ := Xs(C)−X0(C) is an irreducible normal crossings divisor of Xs(C).

Proof. The proof is similar to the proof of Proposition 6.7 in [Bea09].

Lemma 2.7. The local monodromy transformations of F0 → X0(C) around every
x ∈ ∆ are of finite order. More precisely, if x ∈ ∆ lies on the intersection of k local
components of ∆, then the local monodromy group around x is isomorphic to (Z/10)k.

Proof. See [DM86, Proposition 9.2] or [CT99, Proposition 6.1] for the generic case,
i.e. when a quintic Z = {F = 0} ⊂ P1

C aquires only one node. In this case, the local
equation of the singularity is x2 = 0, hence the curve CF acquires a singularity of
the form y5 + x2 = 0. If the quintic acquires two nodes, then CF acquires two such
singularities; the vanishing cohomology splits as an orthogonal direct sum, hence the
local monodromy transformations commute.

In the following corollary, we let D = {z ∈ C | |z| < 1} denote the open unit disc, and
D∗ = D − {0} the punctured open unit disc.

Corollary 2.8. There is an essentially unique branched cover π : Fs → Xs(C), with
Fs a complex manifold, such that for any x ∈ ∆, any open x ∈ U ⊂ Xs(C) with
U ∼= Dk ×D6−k and U ∩X0(C) ∼= (D∗)k ×D6−k, and any connected component U ′ of
π−1(U) ⊂ Fs, there is an isomorphism U ′ ∼= Dk ×D6−k such that the composition

Dk ×D6−k ∼= U ′ → U ∼= D6 is the map (z1, . . . , z6) 7→ (z10
1 , . . . , z

10
k , zk+1, . . . , z6).

Proof. See [Bea09, Lemma 7.2]. See also [Fox57] and [DM86, Section 8].

The group G(C) = GL2(C)/D (see (9)) acts on F0 over its action on X0. Explicitly,
if g ∈ G(C) and if ([φ], φ : VF

∼= Λ) is a framing of F ∈ X0(C), then

([φ ◦ g∗], φ ◦ g∗ : Vg·F → Λ)

is a framing of g · F ∈ X0(C). This is a left action. The group PΓ also acts on F0

from the left, and the actions of PΓ and G(C) on F0 commute. By functoriality of
the Fox completion, the action of G(C) on F0 extends to an action of G(C) on Fs.

Lemma 2.9. The group G(C) = GL2(C)/D acts freely on Fs.
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Proof. The functoriality of the Fox completion gives an action of G(C) on Ns such
that, by Lemma 2.5, there is a G(C)-equivariant commutative diagram

PΓθ \ Fs ∼ //

))

Ns
ww

Xs(C).

In particular, it suffices to show that G(C) acts freely on Ns. Note that N0 admits a
natural Gm-covering map N0 → P0 where P0 ⊂ P1(C)5 is the space of distinct ordered
five-tuples in P1(C) introduced in Section 1. Consequently, there is a Gm-quotient
map Ns → Ps, where Ps is the space of stable ordered five-tuples, and this map is
equivariant for the homomorphism GL2(C)→ PGL2(C).

Let g ∈ GL2(C) and x ∈ Ns such that gx = x. It is clear that PGL2(C) acts freely
on Ps. Therefore, g = λ ∈ C∗. Let F ∈ Xs(C) be the image of x ∈ Ns; then

gF (x, y) = F (g−1(x, y)) = F (λ−1x, λ−1y) = λ−5F (x, y).

The equality gF = F implies that λ5 = 1 ∈ C, from which we conclude that λ ∈ 〈ζ〉.
Therefore, [g] = [id] ∈ G(C) = GL2(C)/D.

2.5 Complex uniformization. Consider the hermitian space V1 = Λ⊗OK ,τ1C and define
CH2 to be the space of negative lines in V1. Using [GF23, Proposition 4.7] we see that
the abelian scheme J → X0 induces a G(C)-equivariant morphism P : F0 → CH2.
Explicitly, if (F, [f ]) ∈ F0 is the framing [f : H1(CF (C),Z)

∼−→ Λ] of the binary quintic
F ∈ X0(C), and AF is the Jacobian of the curve CF , then

P : F0 → CH2, P (F, [f ]) = f
(
H0,−1(AF )τ1

)
= f

(
H1,0(CF )ζ3

)
∈ CH2. (16)

The map P is holomorphic, and descends to a morphism of complex analytic spaces

M0(C) = G(C) \X0(C)→ PΓ \ CH2.

By Riemann extension, (16) extends to a G(C)-equivariant holomorphic map

P : Fs → CH2. (17)

Theorem 2.10 (Deligne–Mostow). The period map (17) induces an isomorphism of
complex manifolds

Mf
s (C) := G(C) \ Fs ∼= CH2. (18)

Taking PΓ-quotients gives an isomorphism of complex analytic spaces

Ms(C) = G(C) \Xs(C) ∼= PΓ \ CH2. (19)
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Proof. In [DM86], Deligne and Mostow define Q̃ → Q to be the covering space cor-
responding to the monodromy representation π1(Q, 0) → PU(2, 1); since the image
of this homomomorphism is PΓθ (see the proof of Proposition 2.3), it follows that
G(C) \ F0

∼= Q̃ as covering spaces of Q. Consequently, if Q̃st is the Fox completion of
the spread

Q̃→ Q→ Qst := G(C) \ Ns = PGL2(C) \ Ps,

then there is an isomorphism G(C) \ Fs ∼= Q̃st of branched covering spaces of Qst. We
obtain commutative diagrams, where the lower right morphism uses (14):

G(C) \ Fs ∼ //

��

Q̃st

��

// CH2

��

G(C) \ Ns ∼ //

��

Qst //

��

PΓθ \ CH2

��

G(C) \Xs(C) ∼ // Qst/S5
// PΓ \ CH2.

The map Q̃st → CH2 is an isomorphism by [DM86, (3.11)]. Therefore, we are done if
the composition G(C) \ F0 → Q̃ → CH2 agrees with the period map P of Equation
(16). This follows from [DM86, (2.23) and (12.9)].

Proposition 2.11. The isomorphism (19) induces an isomorphism of complex analytic
spaces

M0(C) = G(C) \X0(C) ∼= PΓ \
(
CH2 −H

)
.

Proof. We have P(F0) ⊂ CH2−H by [GF23, Proposition 4.10], because the Jacobian
of a smooth curve cannot contain an abelian subvariety whose induced polarization
is principal. Therefore, we have P−1

(H ) ⊂ Fs − F0. Since Fs is irreducible (it is
smooth by Corollary 2.8 and connected by Corollary 2.4), the analytic space P−1

(H )
is a divisor. Since Fs −F0 is also a divisor by Corollary 2.8, we have

P−1
(H ) = Fs −F0

and we are done.
Alternatively, let H0,5 be the moduli space of degree 5 covers of P1 ramified along

five distinct marked points [HM98, §2.G]. The period map

H0,5(C)→ PΓ \ CH2,

that sends the moduli point of a curve C → P1 to the moduli point of the Z[ζ]-linear
Jacobian J(C), extends to the stable compactification H0,5(C) ⊃ H0,5(C) because the
curves in the limit are of compact type. Since the divisor H ⊂ CH2 parametrizes
abelian varieties that are products of lower dimensional ones by [GF23, Proposition
4.10], the image of the boundary is exactly PΓ \H .
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3 Moduli of real binary quintics

Having understood the period map for complex binary quintics, we turn to the period
map for real binary quintics in Section 3.

3.1 The period map for stable real binary quintics. Define κ as the anti-holomorphic
involution

κ : X0(C)→ X0(C), F (x, y) =
∑
i+j=5

aijx
iyj 7→ F (x, y) =

∑
i+j=5

aijx
iyj.

Let A be the set of anti-unitary involutions α : Λ → Λ. Define PA = µK \ A and
CA = PΓ \ PA , c.f. [GF23, Section 2.1]. For each α ∈ PA , there is a natural
anti-holomorphic involution α : F0 → F0 such that the following diagram commutes:

F0

��

α // F0

��

X0(C) κ // X0(C).

It is defined as follows. Consider a framed binary quintic (F, [f ]) ∈ F0, where f : VF →
Λ is an OK-linear isometry. Let CF → P1

C be the quintic cover defined by a smooth
binary quintic F ∈ X0(C). Complex conjugation conj : P2(C) → P2(C) induces an
anti-holomorphic map

σF : CF (C)→ Cκ(F )(C).

Consider the pull-back σ∗F : Vκ(F ) → VF of σ. The composition

Vκ(F )

σ∗
F−→ VF

f−→ Λ
α−→ Λ

induces a framing of κ(F ) ∈ X0(C), and we define

α(F, [f ]) := (κ(F ), [α ◦ f ◦ σ∗F ]) ∈ F0.

Although we have chosen a representative α ∈ A of the class α ∈ PA , the element
α(F, [f ]) ∈ F0 does not depend on this choice.

Consider the covering map F0 → X0(C) introduced in (3), and define

F0(R) =
⊔

α∈PA

Fα0 ⊂ F0 (20)

as the preimage of X0(R) in the space F0. To see why the union on the left hand side
of (20) is disjoint, observe that

Fα0 =
{

(F, [f ]) ∈ F0 : κ(F ) = F and [f ◦ σ∗F ◦ f−1] = α
}
.

Thus, for α, β ∈ PA and (F, [f ]) ∈ Fα0 ∩ F
β
0 , we have α = [f ◦ σ ◦ f−1] = β.

11



Lemma 3.1. The anti-holomorphic involution α : F0 → F0 defined by α ∈ PA makes
the period map P : F0 → CH2 equivariant for the G(C)-actions on both sides.

Proof. Indeed, if conj : C → C is complex conjugation, then for any F ∈ X0(C), the
induced map

σ∗F ⊗ conj : Vκ(F ) ⊗Z C→ VF ⊗Z C
is anti-linear, preserves the Hodge decompositions [Sil89, Chapter I, Lemma 2.4] as
well as the eigenspace decompositions.

We obtain a real period map

PR : F0(R)
∐

α∈PA Fα0 //
∐

α∈PA RH2
α Ỹ . (21)

Define G(R) = GL2(R). The map (21) is constant on G(R)-orbits, since the same is
true for the complex period map P : F0 → CH2.

By abuse of notation, we write RH2
α −H = RH2

α − (H ∩ RH2
α) for α ∈ PA .

Proposition 3.2. The real period map (21) descends to a PΓ-equivariant diffeomor-
phism

M0(R)f := G(R) \ F0(R) ∼=
∐
α∈PA

RH2
α −H . (22)

By PΓ-equivariance, the map (22) induces an isomorphism of real-analytic orbifolds

PR : M0(R) = G(R) \X0(R) ∼=
∐
α∈CA

PΓα \
(
RH2

α −H
)
. (23)

Proof. This follows from [ACT10, proof of Theorem 3.3 ]. It is crucial that the actions
of G and PΓ on F0 commute and are free, which is the case, see Corollary 2.9.

3.2 The period map for smooth real binary quintics. Our next goal will be to prove
the real analogue of the isomorphisms (18) and (19) in Theorem 2.10.

Consider the CM-type Ψ = {τ1, τ2} defined in (5), the hermitian OK-lattice (Λ, h)
defined in (7), and the following sets [GF23, Section 2.1]:

H =
{
Hr ⊂ CH2 | r ∈ R

}
, and H =

⋃
H∈H

H ⊂ CH2.

Here, R ⊂ Λ is the set of short roots, i.e. the set of r ∈ Λ with h(r, r) = 1 (see [GF23,
Section 2.1]).

Lemma 3.3. The hyperplane arrangement H ⊂ CH2 satisfies Condition 2.4 in
[GF23], that is: any two distinct H1, H2 ∈ H either meet orthogonally, or not at all.

Proof. Consider Conditions 4.11 in [GF23]. Condition 4.11.1 in loc. cit. holds because
K does not contain proper CM-subfields. By Proposition [GF23, Proposition 4.14],
we have that Condition 4.11.2 is satisfied. By Equation (8), Condition 4.11.3 holds.
Thus, by [GF23, Theorem 4.12], we obtain the desired result.
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Definition 3.4. 1. For k = 1, 2, define ∆k ⊂ ∆ = Xs(C)−X0(C) to be the locus of
stable binary quintics with exactly k nodes. Define ∆̃ = Fs − F0, and let ∆̃k ⊂ ∆̃ be
the inverse image of ∆k in ∆̃ under the map ∆̃→ ∆.

2. For k = 1, 2, define Hk ⊂H as the set Hk = {x ∈ CH2 : |H(x)| = k}. Thus, this
is the locus of points in H where exactly k hyperplanes meet.

Lemma 3.5. 1. The period map P of (17) satisfies P(∆̃k) ⊂Hk.

2. Let f ∈ ∆̃k and x = P(f) ∈ CH2. Then P induces a group isomorphism PΓf ∼=
G(x), where G(x) ∼= (Z/10)k is as in [GF23, Definition 2.6].

The naturality of the Fox completion implies that for α ∈ PA , the anti-holomorphic
involution α : F0 → F0 extends to an anti-holomorphic involution α : Fs → Fs.

Lemma 3.6. For every α ∈ PA , the restriction of P : Fs → CH2 to Fαs defines a
diffeomorphism G(R) \ Fαs ∼= RH2

α.

Proof. See [ACT10, Lemma 11.3]. It is essential that G acts freely on Fs, which holds
by Corollary 2.9.

We arrive at the main theorem of Section 3. Consider the map π : Fs → Xs(C) (see
Corollary 2.8) and define

Fs(R) =
⋃

α∈PA

Fαs = π−1 (Xs(R)) .

This is not a manifold because of the ramification of π, but a union of embedded
submanifolds.

Theorem 3.7. There is a smooth map

PR :
∐
α∈PA

Fαs →
∐
α∈PA

RH2
α = Ỹ (24)

that extends the real period map (21). The map (24) induces the following commutative
diagram of topological spaces, in which PR and PR are homeomorphisms:

∐
α∈PA Fαs

PR //

��

Ỹ =
∐

α∈PA RH2
α

��

Fs(R)
PR //

��

Y

Ms(R)f

��

G(R) \ Fs(R)
PR
∼

//

��

Y

��

Ms(R) G(R) \Xs(R)
PR
∼

// PΓ \ Y.
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Proof. The existence of PR follows from the compatibility between P and the involu-
tions α ∈ PA . We first show that the composition∐

α∈PA

Fαs
PR−→ Ỹ

p−→ Y

factors through Fs(R). Two elements fα and gβ ∈
∐

α∈PA Fαs have the same image in
Fs(R) if and only if f = g ∈ Fαs ∩Fβs , in which case x := P(f) = P(g) ∈ RH2

α ∩RH2
β.

We need to show that xα ∼ xβ ∈ Ỹ . Note that αβ ∈ PΓf ∼= (Z/10)k, and P induces
an isomorphism PΓf ∼= G(x) by Lemma 3.5. Hence αβ ∈ G(x) so that xα ∼ xβ.

Let us prove the G(R)-equivariance of PR. Suppose that f ∈ Fαs , g ∈ Fβs such that
a · f = g ∈ Fs(R) for some a ∈ G(R). Then x := P(f) = P(g) ∈ CH2, so we need to
show that αβ ∈ G(x). The actions of G(C) and PΓ on CH2 commute, and the same
holds for the actions of G(R) and PΓ′ on FR

s , where PΓ′ is as in [GF23, Section 2.1].
It follows that α(g) = α(a · f) = a ·α(f) = a · f = g, hence g ∈ Fαs ∩Fβs . This implies
in turn that αβ(g) = g, hence αβ ∈ PΓg ∼= G(x), so that indeed, xα ∼ xβ.

To prove that PR is injective, let again fα, gβ ∈
∐

α∈PA Fαs and suppose that these
elements have the same image in Y . This implies that x := P(f) = P(g) ∈ RH2

α∩RH2
β,

and that β = φ ◦ α for some φ ∈ G(x). We have φ ∈ G(x) ∼= PΓf (Lemma 3.5) hence

β(f) = φ (α(f)) = φ(f) = f. (25)

Therefore f, g ∈ Fβs ; since P(f) = P(g), it follows from Lemma 3.6 that there exists
a ∈ G(R) such that a · f = g. This proves injectivity of PR, as desired.

The surjectivity of PR : G(R)\Fs(R)→ Y is straightforward, using the surjectivity
of PR, which follows from Lemma 3.6.

Finally, we claim that PR is open. Let U ⊂ G(R) \ FR
s be open. Let V be the

preimage of U in
∐

α∈PA Fαs . Then V = P−1

R (p−1 (PR(U))), and hence

PR (V ) = p−1 (PR(U)) .

The map PR is open, being the coproduct of the maps Fαs → RH2
α, which are open

since they have surjective differential at each point. Thus PR(U) is open in Y .

Corollary 3.8. There is a lattice PΓR ⊂ PO(2, 1), an inclusion of orbifolds∐
α∈CA

PΓα \
(
RH2

α −H
)
↪→ PΓR \ RH2, (26)

and a homeomorphism

Ms(R) = G(R) \Xs(R) ∼= PΓR \ RH2 (27)

such that (27) restricts to (23) with respect to (26).

Proof. This follows directly from [GF23, Theorem 3.1] and Theorem 3.7 above.

Remark 3.9. The proof of Theorem 3.7 also shows thatMs(R) is homeomorphic to
the glued space PΓ\Y (see [GF23, Definition 2.17]) ifMs is the stack of cubic surfaces
or of binary sextics. This strategy to uniformize the real moduli space differs from
the one used in [ACT10; ACT06; ACT07], since we first glue together the real ball
quotients, and then prove that our real moduli space is homeomorphic to the result.
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3.3 Automorphism groups of stable real binary quintics. Before we can finish the
proof of Theorem 1.2, we need to understand the orbifold structure of Ms(R), and
how this structure differs from the orbifold structure of the glued space PΓ \ Y . In
this Section 3.3 we start by analyzing the orbifold structure of Ms(R), by listing its
stabilizer groups. There is a canonical orbifold isomorphismMs(R) = G(R)\Xs(R) =
(Ps/S5)(R). Therefore, to list those groups occurring as automorphism group of a
binary quintic is to list those x = [α1, . . . , α5] ∈ (Ps/S5)(R) whose stabilizer PGL2(R)x
is non-trivial, and calculate PGL2(R)x in these cases. This will be our next goal.

Proposition 3.10. All stabilizer groups PGL2(R)x ⊂ PGL2(R) for x ∈ (Ps/S5)(R)
are among Z/2, D3, D5. For n ∈ {3, 5}, there is a unique PGL2(R)-orbit in (Ps/S5)(R)
of points x with stabilizer Dn.

Proof. We have an injection (Ps/S5)(R) ↪→ Ps/S5 which is equivariant for the em-
bedding PGL2(R) ↪→ PGL2(C). In particular, PGL2(R)x ⊂ PGL2(C)x for every
x ∈ (Ps/S5)(R). The groups PGL2(C)x for points x ∈ P0/S5 are calculated in [WX17,
Theorem 22], and each such a group is isomorphic to either Z/2, D3,Z/4 or D5. None
of these groups have subgroups isomorphic to D2 = Z/2 o Z/2 or D4 = Z/2 o Z/4.

Define an involution
ν := (z 7→ 1/z) ∈ PGL2(R).

The proof of Proposition 3.10 will follow from the following four lemmas.

Lemma 3.11. Let τ ∈ PGL2(R). Consider a subset S = {x, y, z} ⊂ P1(C) stabilized
by complex conjugation, such that τ(x) = x, τ(y) = z and τ(z) = y. There is a
transformation g ∈ PGL2(R) that maps S to either {−1, 0,∞} or {−1, i,−i}, and
that satisfies gτg−1 = ν = (z 7→ 1/z) ∈ PGL2(R). In particular, τ 2 = id.

Proof. Indeed, two transformations g, h ∈ PGL2(C) that satisfy g(xi) = h(xi) for three
different points x1, x2, x3 ∈ P1(C) are necessarily equal.

Lemma 3.12. There is no φ ∈ PGL2(R) of order four that stabilizes a point x ∈
(Ps/S5)(R).

Proof. By [Bea10, Theorem 4.2], all subgroups G ⊂ PGL2(R) that are isomorphic to
Z/4 are conjugate to each other. Since the transformation I : z 7→ (z − 1)/(z + 1) is
of order four, it gives a representative GI = 〈I〉 of this conjugacy class. Assume that
there exists x and φ as in the lemma. To get a contradiction, we may assume that
φ = I. It is easily shown that I cannot fix any point x ∈ (Ps/S5)(R).

Define
ρ ∈ PGL2(R), ρ(z) =

−1

z + 1
.

Lemma 3.13. Let x = (x1, . . . , x5) ∈ (Ps/S5)(R). Suppose that φ(x) = x for some
φ ∈ PGL2(R) of order three. There is a transformation g ∈ PGL2(R) mapping x
to (−1,∞, 0, ω, ω2) with ω a primitive third root of unity. The stabilizer of x to the
subgroup of PGL2(R) generated by ρ and ν. In particular, we have PGL2(R)x ∼= D3.
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Proof. By Lemma 3.11, there are elements x1, x2, x3 which form an orbit under φ.
Since complex conjugation preserves this orbit, one element in it is real; since g is
defined over R, they are all real. Let g ∈ PGL2(R) such that g(x1) = −1, g(x2) =∞
and g(x3) = 0. Define κ = gφg−1. Then κ3 = id, and κ preserves {−1,∞, 0} and sends
−1 to ∞ and ∞ to 0. Consequently, κ(0) = −1, and it follows that κ = ρ. Hence x is
equivalent to an element of the form (−1,∞, 0, α, β) with β = ᾱ and α2+α+1 = 0.

Recall that ζ5 = e2iπ/5 ∈ C and define

λ = ζ5 + ζ−1
5 ∈ R, γ ∈ PGL2(R) with γ(z) =

(λ+ 1)z − 1

z + 1
for z ∈ P1(C).

Lemma 3.14. Let x = (x1, . . . , x5) ∈ (Ps/S5)(R). Suppose x is stabilized by a sub-
group of PGL2(R) of order five. There is a transformation g ∈ PGL2(R) mapping x to
z = (0,−1,∞, λ+1, λ) and identifying the stabilizer of x with the subgroup of PGL2(R)
generated by γ and ν. In particular, the stabilizer PGL2(R)x of x is isomorphic to D5.

Proof. Let φ ∈ PGL2(R)x be an element of order five. Using Lemma 3.11 one shows
that the xi are pairwise distinct, and we may assume that xi = φi−1(x1) for i =
2, . . . , 5. Since there is one real xi and φ is defined over R, all xi are real. Note that
z = {0,−1,∞, λ+ 1, λ} is the orbit of 0 under γ : z 7→ ((λ + 1)z − 1)/(z + 1). The
reflection ν : z 7→ 1/z preserves z as well: we have λ+ 1 = −(ζ2

5 + ζ−2
5 ) = −λ2 + 2, so

that λ(λ+ 1) = 1. So we have PGL2(R)z ∼= D5. By [WX17, Theorem 22], the point z
with stabilizer PGL2(R)z is equivalent under PGL2(C) to the point (1, ζ, ζ2, ζ3, ζ4) with
stabilizer 〈x 7→ ζx, x 7→ 1/x〉. Thus, there exists g ∈ PGL2(C) such that g(x1) = 0,
g(x2) = −1, g(x3) =∞, g(x4) = λ+ 1 and g(x5) = λ, and such that gPGL2(R)xg

−1 =
PGL2(R)z. Since all xi and zi ∈ z are real, we see that ḡ(xi) = zi for every i, hence g
and ḡ coincide on more than two points, which implies that g = ḡ ∈ PGL2(R).

Proposition 3.10 follows.

3.4 Binary quintics with automorphism group of order two. The goal of Section
3.4 is to prove that there are no cone points in the orbifold PGL2(R) \ (Ps/S5)(R),
i.e. orbifold points whose stabilizer group is Z/n for some n ≥ 2 acting on the orbifold
chart by rotations. By Proposition 3.10, this fact will follow from the following:

Proposition 3.15. Let x = (x1, . . . , x5) ∈ (Ps/S5)(R) such that PGL2(R)x = 〈τ〉 has
order two. There is a PGL2(R)x-stable open neighborhood U ⊂ (Ps/S5)(R) of x such
that PGL2(R)x \ U →Ms(R) is injective, and a homeomorphism φ : (U, x) → (B, 0)
for 0 ∈ B ⊂ R2 an open ball, such that φ identifies PGL2(R)x with Z/2 acting on B
by reflections in a line through 0.

Proof. Using Lemma 3.11, one checks that the only possibilities for the element x =
(x1, . . . , x5) ∈ (Ps/S5)(R) are (−1, 0,∞, β, β−1), (−1, i,−i, β, β−1), (−1,−1, β, 0,∞),
(−1,−1, β, i,−i), (0, 0,∞,∞,−1) and (−1, i, i,−i,−i).
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3.5 Comparing the orbifold structures. Consider the moduli space Ms(R) of real
stable binary quintics.

Definition 3.16. Let M R be the hyperbolic orbifold withMs(R) as underlying space,
whose orbifold structure is induced by the homeomorphism (27) in Corollary 3.8 and
the natural orbifold structure of PΓR \ RH2.

There are two orbifold structures on the spaceMs(R): the natural orbifold structure
of Ms(R), see [GF22, Proposition 2.12] (i.e. the orbifold structure of the quotient
G(R) \Xs(R)), and the orbifold structure M R introduced in Definition 3.16.

Proposition 3.17. 1. The orbifold structures of Ms(R) and M R differ only at the
moduli point x0 ∈Ms(R) attached to the five-tuple (∞, i, i,−i,−i).

2. The stabilizer group of Ms(R) at the point x0 is isomorphic to Z/2, whereas the
stabilizer group of M R at x0 is isomorphic to the dihedral group D10 of order twenty.

3. The orbifold M R has no cone points and three corner reflectors, whose orders are
π/3, π/5 and π/10.

Proof. The statements can be deduced from [GF23, Proposition 3.14]. The notation
of that proposition is as follows: for f ∈ Y ∼= G(R) \ Fs(R) (see Theorem 3.7) the
group Af ⊂ PΓ is the stabilizer of f ∈ K. Moreover, if f̃ ∈ Fs(R) represents f and if
F = [f̃ ] ∈ Xs(R) has k = 2a+ b nodes, then the image x ∈ CH2 has k = 2a+ b nodes
in the sense of [GF23, Definition 2.6].

If F has no nodes (k = 0), then G(x) is trivial by [GF23, Proposition 3.14.1] and
GF = Af = Γf . If F has only real nodes, then Bf = G(x) hence GF = Af/G(x) =
Af/Bf = Γf .

Suppose that a = 1 and b = 0: the equation F defines a pair of complex conjugate
nodes. In other words, the zero set of F defines a 5-tuple α = (α1, . . . , α5) ∈ P1(C),
well-defined up to the PGL2(R) × S5 action on P1(C), where α1 ∈ P1(R) and α3 =
ᾱ2 = α5 = ᾱ4 ∈ P1(C) \ P1(R). So we may write α = (β, α, ᾱ, α, ᾱ) with β ∈ P1(R)
and α ∈ P1(C) \ P1(R). There is a unique T ∈ PGL2(R) such that T (β) = ∞ and
T (α) = i. But this gives T (x) = (∞, i,−i, i,−i) hence F is unique up to isomorphism.

As for the stabilizer GF = Af/G(x), we have G(x) ∼= (Z/10)2. Since there are no
real nodes, Bf is trivial. By [GF23, Proposition 3.14.3], the set Kf is the union of ten
copies of B2(R) meeting along a common point B0(R). In fact, in the local coordinates
(t1, t2) around f , the αj : B2(C) → B2(C) are defined as (t1, t2) 7→ (t̄2ζ

j, t̄1ζ
j), for

j ∈ Z/10, and so the fixed points sets are given by RH2
j = {t2 = t̄1ζ

j} ⊂ B2(C).
The subgroup E ⊂ G(x) that stabilizes RH2

j is the cyclic group of order ten
generated by the transformations (t1, t2) 7→ (ζt1, ζ

−1t2). There is only one non-trivial
transformation T ∈ PGL2(R) that fixes ∞ and sends the subset {i,−i} ⊂ P1(C) to
itself, and T is of order five. Hence GF = Z/2 so that we have an exact sequence
0 → Z/10 → Γf → Z/2 → 0. This splits since GF is a subgroup of Γf . We are done
by Propositions 3.10 and 3.15.
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3.6 The real moduli space as a hyperbolic triangle. The goal of Section 3.6 is to
show that M R (see Definition 3.16) is isomorphic, as hyperbolic orbifolds, to the trian-
gle ∆3,5,10 in the real hyperbolic plane RH2 with angles π/3, π/5 and π/10. The results
in the above Sections 3.3, 3.4 and 3.5 give the orbifold singularities of M R together
with their stabilizer groups. In order to determine the hyperbolic orbifold structure of
M R, we also need to know the underlying topological spaceMs(R) of M R. The first
observation is thatMs(R) is compact. Indeed, it is classical that the topological space
Ms(C) = G(C) \ Xs(C), parametrizing complex stable binary quintics, is compact.
This follows from the fact that it is homeomorphic to M0,5(C)/S5, and the stack of
stable five-pointed curves M0,5 is proper [Knu83], or from the fact that it is homeo-
morphic to a compact ball quotient [Shi64]. Moreover, the mapMs(R) →Ms(C) is
proper, which proves the compactness ofMs(R).

The second observation is thatMs(R) is connected, since Xs(R) is obtained from
the euclidean space {F ∈ R[x, y] : F homogeneous and deg(F ) = 5} by removing a
subspace of codimension at least two. We can prove more:

Lemma 3.18. The moduli spaceMs(R) of real stable binary quintics is homeomorphic
to a closed disc D ⊂ R2.

Proof. The idea is to show that the following holds:

1. For each i ∈ {0, 1, 2}, the embedding Mi ↪→ M i ⊂ Ms(R) of the connected
component Mi ofM0(R) into its closure inMs(R) is homeomorphic to the embedding
D ↪→ D of the open unit disc into the closed unit disc in R2.

2. We haveMs(R) = M 0∪M 1∪M 2, and this glueing corresponds up to homeomor-
phism to the glueing of three closed discs Di ⊂ R2 as in Figure 1.

To prove this, one considers the moduli spaces of real smooth (resp. stable) genus zero
curves with five real marked points [Knu83], as well as twists of this space. Define
two anti-holomorphic involutions σi : P1(C)5 → P1(C)5 by σ1(x1, x2, x3, x4, x5) =
(x̄1, x̄2, x̄3, x̄5, x̄4), and σ(x1, x2, x3, x4, x5) = (x̄1, x̄3, x̄2, x̄5, x̄4). Then define

P 1
0 (R) = P σ1

0 , P 1
s (R) = P1(C)σ1 , P 2

0 (R) = P σ2
0 , P 2

s (R) = P1(C)σ2 .

It is clear that M0 = PGL2(R) \ P0(R)/S5. Similarly, we have:

M1 = PGL2(R) \ P 1
0 (R)/S3 ×S2 and M2 = PGL2(R) \ P 2

0 (R)/S2 ×S2.

Moreover, we have M 0 = PGL2(R) \ Ps(R)/S5. We define

M 1 = PGL2(R) \ P 1
s (R)/S3 ×S2, and M 2 = PGL2(R) \ P 2

s (R)/S2 ×S2.

Each M i is homeomorphic to a closed disc in R2. Moreover, the natural maps M i →
Ms(R) are closed embeddings of topological spaces, and one can check that the images
glue to formMs(R) in the prescribed way. We leave the details to the reader.
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Proof of Theorem 1.2. To any closed two-dimensional orbifold O one can associate a
set of natural numbers SO = {n1, . . . , nk;m1, . . . ,ml} by letting k be the number of
cone points of XO, l the number of corner reflectors, ni the order of the i-th cone point
and 2mj the order of the j-th corner reflector. A closed two-dimensional orbifold O
is determined, up to orbifold-structure preserving homeomorphism, by its underlying
space XO and the set SO [Thu80]. By Lemma 3.18, M R is homeomorphic to a closed
disc in R2. By Proposition 3.17, M R has no cone points and three corner reflectors
whose orders are π/3, π/5 and π/10. This implies M R and ∆3,5,10 are isomorphic
as topological orbifolds. Consequently, the orbifold fundamental group of M R is ab-
stractly isomorphic to the group Γ3,5,10 defined in (2).

Let φ : Γ3,5,10 ↪→ PSL2(R) be any embedding such that X := φ (Γ3,5,10) \ RH2 is a
hyperbolic orbifold; we claim that there is a fundamental domain ∆ for X isometric
to ∆3,5,10. Consider the generator a ∈ Γ3,5,10. Since φ(a)2 = 1, there exists a geodesic
L1 ⊂ RH2 such that φ(a) ∈ PSL2(R) = Isom(RH2) is the reflection across L1. Next,
consider the generator b ∈ Γ3,5,10. There exists a geodesic L2 ⊂ RH2 such that φ(b)
is the reflection across L2. One easily shows that L2 ∩ L1 6= ∅. Let x ∈ L1 ∩ L2.
Then φ(a)φ(b) is an element of order three that fixes x, hence φ(a)φ(b) is a rotation
around x. Therefore, one of the angles between L1 and L2 must be π/3. Finally, we
know that φ(c) is an element of order two in PSL2(R), hence a reflection across a line
L3. By the previous arguments, L3 ∩ L2 6= ∅ and L3 ∩ L1 6= ∅. It also follows that
x ∈ L3∩L2∩L1 = ∅. Consequently, the three geodesics Li ⊂ RH2 enclose a hyperbolic
triangle; the orders of φ(a)φ(b), φ(a)φ(c) and φ(b)φ(c) imply that the three interior
angles of the triangle are π/3, π/5 and π/10.

4 The monodromy groups

In this section, we describe the monodromy group PΓ, as well as the groups PΓα
appearing in Proposition 3.2. As for the lattice (Λ, h) (see (7)), we have:

Theorem 4.1 (Shimura). There is an isomorphism of hermitian OK-lattices

(Λ, h) ∼=

(
O3
K , diag

(
1−
√

5

2
, 1, 1

))
.

Proof. See [Shi64, Section 6] as well as item (5) in the table on page 1 of loc. cit.

Let us write Λ = O3
K and h = diag(1, 1, 1−

√
5

2
) in the remaining part of Section 4. Write

α = ζ5 + ζ−1
5 =

√
5−1
2

. For the element θ = ζ5 − ζ−1
5 ∈ OK we have that |θ|2 =

√
5+5
2

.
Define three quadratic forms q0, q1 and q2 on Z[α]3 as follows:

q0(x0, x1, x2) = x2
0 + x2

1 − αx2
2,

q1(x0, x1, x2) = |θ|2x2
0 + x2

1 − αx2
2,

q2(x0, x1, x2) = |θ|2x2
0 + |θ|2x2

1 − αx2
2.

(28)

Consider Z[α] as a subring of R via the standard embedding.
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Theorem 4.2. Consider the quadratic forms qj defined in (28). There is a union
of geodesic subspaces Hj ⊂ RH2, j ∈ {0, 1, 2}, and an isomorphism of hyperbolic
orbifolds

M0(R) ∼=
2∐
j=0

PO(qj,Z[α]) \
(
RH2 −Hj

)
. (29)

Proof. Recall that θ = ζ5− ζ−1
5 ; we consider the F5-vector space W equipped with the

quadratic form q = h mod θ. Define three anti-isometric involutions as follows:

α0 : (x0, x1, x2) 7→ ( x̄0, x̄1, x̄2)

α1 : (x0, x1, x2) 7→ (−x̄0, x̄1, x̄2)

α2 : (x0, x1, x2) 7→ (−x̄0,−x̄1, x̄2).

(30)

For isometries α : W → W , the dimension and determinant of the fixed space
(Wα, q|Wα) are conjugacy-invariant. Using this, one easily shows that an anti-unitary
involution of Λ is Γ-conjugate to exactly one of the ±αj, hence CA has cardinality
three and the elements α0, α1, α2 of (30) form a set of representatives for CA . By
Proposition 3.2, we obtain M0(R) ∼=

∐2
j=0 PΓαj \ (RH2

αj
−H ) where each quotient

space PΓαj \ (RH2
αj
−H ) is connected. Next, consider the fixed lattices

Λ0 := Λα0 = Z[α]⊕ Z[α]⊕ Z[α]

Λ1 := Λα1 = θZ[α]⊕ Z[α]⊕ Z[α]

Λ2 := Λα2 = θZ[α]⊕ θZ[α]⊕ Z[α].

(31)

One easily shows that PΓαj = NPΓ(αj) for the normalizer NPΓ(αj) of αj in PΓ.
Moreover, if hj denotes the restriction of h to Λαj , then there is a natural embedding

ι : NPΓ(αj) ↪→ PO(Λj, hj,Z[α]). (32)

We claim that ι is an isomorphism. This follows from the fact that the natural ho-
momorphism π : NΓ(αj) → O(Λj, hj) is surjective, where NΓ(αj) = {g ∈ Γ : g ◦ αj =
αj ◦ g} is the normalizer of αj in Γ. The surjectivity of π follows from the equality

Λ = OK · Λj +OK · θΛ∨j ⊂ K3,

which follows from (31). Since PO(Λj, hj,Z[α]) = PO(qj,Z[α]), we are done.
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