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Integral Fourier transforms and the integral Hodge
conjecture for one-cycles on abelian varieties

Thorsten Beckmann & Olivier de Gaay Fortman

February 8, 2023

Abstract

We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety
whose minimal class is algebraic. In particular, the Jacobian of a smooth projective curve over the
complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift
of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for
one-cycles on the Jacobian of a smooth projective curve over the separable closure of a finitely generated
field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.

1 Introduction

Let g be a positive integer and let A be an abelian variety of dimension g over a field k with dual
abelian variety Â. The correspondence attached to the Poincaré bundle PA on A × Â defines
a powerful duality between the derived categories, rational Chow groups and cohomology of A
and Â [Muk81; Bea83; Huy06]. We shall refer to such morphisms as Fourier transforms.

On the level of cohomology, the Fourier transform preserves integral `-adic étale cohomology
when k = ks and integral Betti cohomology when k = C. It is thus natural to ask whether the
Fourier transform on rational Chow groups preserves integral cycles modulo torsion or, more
generally, lifts to a homomorphism between integral Chow groups. This question was raised
by Moonen–Polishchuk [MP10] and Totaro [Tot21]. More precisely, Moonen and Polishchuk
gave a counterexample for abelian varieties over non-closed fields and asked about the case of
algebraically closed fields.

In this paper we further investigate this question with a view towards applications concerning
the integral Hodge conjecture for one-cycles when A is defined over C. To state our main result,
we recall that whenever ι : C ↪→ A is a smooth curve, the image of the fundamental class
under the pushforward map ι∗ : H2(C,Z) → H2(A,Z) ∼= H2g−2(A,Z) defines a cohomology
class [C] ∈ H2g−2(A,Z). This construction extends to one-cycles and factors modulo rational
equivalence. As such, it induces a canonical homomorphism, called the cycle class map,

cl : CH1(A)→ Hdg2g−2(A,Z),

which is a direct summand of a natural graded ring homomorphism cl : CH(A)→ H•(A,Z).
The liftability of the Fourier transform turns out to have important consequences for the

image of the cycle class map. Recall that an element α ∈ H•(A,Z) is called algebraic if it is
in the image of cl, and that A satisfies the integral Hodge conjecture for k-cycles if all Hodge
classes in H2g−2k(A,Z) are algebraic. Although the integral Hodge conjecture fails in general
[AH62; Tre; Tot97], it is an open question for abelian varieties. Our main result is as follows.
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Theorem 1.1. Let A be a complex abelian variety of dimension g with Poincaré bundle PA.
The following three statements are equivalent:

1. The cohomology class c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic.

2. The Chern character ch(PA) = exp(c1(PA)) ∈ H•(A× Â,Z) is algebraic.

3. The integral Hodge conjecture for one-cycles holds for A× Â.
Any of these statements implies that

4. The integral Hodge conjecture for one-cycles holds for A and Â.

Suppose that A is principally polarized by θ ∈ Hdg2(A,Z) and consider the following statements:

5. The minimal cohomology class γθ := θg−1/(g − 1)! ∈ H2g−2(A,Z) is algebraic.

6. The cohomology class c1(PA)2g−2/(2g − 2)! ∈ H4g−4(A× Â,Z) is algebraic.

7. For every algebraic cohomology class α ∈ H>0(A,Z) and every i ∈ Z≥1, the cohomology class
αi/i! ∈ H•(A,Z) is algebraic.

Then statements 1− 7 are equivalent.

Remark that Condition 5 is stable under products, so a product of principally polarized abelian
varieties satisfies the integral Hodge conjecture for one-cycles if and only if each of the factors
does. More importantly, if J(C) is the Jacobian of a smooth projective curve C of genus g, then
every integral Hodge class of degree 2g − 2 on J(C) is a Z-linear combination of curves classes:

Theorem 1.2. Let C1, . . . , Cn be smooth projective curves over C. Then the integral Hodge
conjecture for one-cycles holds for the product of Jacobians J(C1)× · · · × J(Cn).

See Remark 4.2.1 for another approach towards Theorem 1.2 in the case n = 1. A second
consequence of Theorem 1.1 is that the integral Hodge conjecture for one-cycles on principally
polarized complex abelian varieties is stable under specialization, see Corollary 4.3. An appli-
cation of somewhat different nature is the following density result, proven in Section 4.2:

Theorem 1.3. Let δ = (δ1, . . . , δg) be positive integers such that δi|δi+1 and let Ag,δ(C) be the
coarse moduli space of polarized abelian varieties over C with polarization type δ. There is a
countable union X ⊂ Ag,δ(C) of closed algebraic subvarieties of dimension at least g, that satisfies
the following property: X is dense in the analytic topology and the integral Hodge conjecture for
one-cycles holds for those polarized abelian varieties whose isomorphism class lies in X.

Remark 1.4. The lower bound that we obtain on the dimension of the components of X
actually depends on δ and is often greater than g. For instance, when δ = 1 and g ≥ 2, there is
a set X as in the theorem, whose elements are prime-power isogenous to products of Jacobians
of curves. Therefore, the components of X have dimension 3g − 3 in this case, c.f. Remark 4.7.

One could compare Theorem 1.1 with the following statement, proven by Grabowski [Gra04]:
if g is a positive integer such that the minimal cohomology class γθ = θg−1/(g − 1)! of every
principally polarized abelian variety of dimension g is algebraic, then every abelian variety of
dimension g satisfies the integral Hodge conjecture for one-cycles. In this way, he proved the
integral Hodge conjecture for abelian threefolds, a result which has been extended to smooth
projective threefolds X with KX = 0 by Voisin and Totaro [Voi06; Tot21]. For abelian varieties
of dimension greater than three, not many unconditional statements seem to have been known.

The idea behind the proof of Theorem 1.1 is the following. Let A be a complex abelian va-
riety of dimension g and let i ≥ 0 be an integer. Then Poincaré duality induces a canonical
isomorphism ϕ : H2i(A,Z) ∼= H2g−2i(A,Z)∨ ∼= H2g−2i(Â,Z). The map ϕ respects the Hodge
structures and thus induces an isomorphism Hdg2i(A,Z) ∼= Hdg2g−2i(Â,Z). However, it is
unclear a priori whether ϕ sends algebraic classes to algebraic classes. We prove that the alge-
braicity of c1(PA)2g−1/(2g− 1)! forces ϕ to be algebraic, i.e. to be induced by a correspondence
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Γ ∈ CH(A × Â). In particular, one then has Z2i(A) := Hdg2i(A,Z)/H2i(A,Z)alg ∼= Z2g−2i(Â).
To prove this, we lift the cohomological Fourier transform to a homomorphism between inte-
gral Chow groups whenever c1(PA)2g−1/(2g − 1)! is algebraic. For this we use a theorem of
Moonen–Polishchuk saying that the ideal of positive dimensional cycles in the Chow ring with
Pontryagin product of an abelian variety admits a divided power structure [MP10, Theorem 1.6].

In Section 5, we consider an abelian variety A/C of dimension g and ask: if n ∈ Z≥1 is such that
n · c1(PA)2g−1/(2g−1)! ∈ H4g−2(A× Â,Z)alg, can we bound the order of Z2g−2(A) in terms of g
and n? For a smooth complex projective d-dimensional variety X, Z2d−2(X) is called the degree
2d−2 Voisin group ofX [Per20], is a stably birational invariant [Voi16, Lemma 2.20], and related
to the unramified cohomology groups by Colliot-Thélène–Voisin and Schreieder [CTV12; Sch21].
We prove that if n · c1(PA)2g−1/(2g − 1)! is algebraic, then gcd(n2, (2g − 2)!) · Z2g−2(A) = (0).
In particular, (2g−2)! ·Z2g−2(A) = (0) for any g-dimensional complex abelian variety A. More-
over, if A is principally polarized by θ ∈ NS(A) and if n · γθ ∈ H2g−2(A,Z) is algebraic, then
n · c1(PA)2g−1/(2g − 1)! is algebraic. Since it is well known that for Prym varieties, the Hodge
class 2 · γθ is algebraic, these observations lead to the following result (see also Theorem 5.3).

Theorem 1.5. Let A be a g-dimensional Prym variety over C. Then 4 · Z2g−2(A) = (0).

For the study of the liftability of the Fourier transform, which was initiated by Moonen and
Polishchuk in [MP10], it is more natural to consider abelian varieties defined over arbitrary fields.
For this reason we define and study integral Fourier transforms in this generality, see Section
3. We provide, for an abelian variety principally polarized by a symmetric ample line bundle,
necessary and sufficient conditions for an integral Fourier transform to exist, see Theorem 3.8.

This generality also allows to obtain the analogue of Theorem 1.1 over the separable closure
k of a finitely generated field. Recall that a smooth projective variety X of dimension d over k
satisfies the integral Tate conjecture for one-cycles over k if, for every prime number ` different
from char(k) and for some finitely generated field of definition k0 ⊂ k of X, the cycle class map

cl : CH1(X)Z` = CH1(X)⊗Z Z` →
⋃
U

H2d−2
ét (X,Z`(d− 1))U (1)

is surjective, where U ranges over the open subgroups of Gal(k/k0).

Theorem 1.6. Let A be an abelian variety of dimension g over the separable closure k of a
finitely generated field. The following assertions are true:

1. The abelian variety A satisfies the integral Tate conjecture for one-cycles over k if the coho-
mology class

c1(PA)2g−1/(2g − 1)! ∈ H4g−2
ét (A× Â,Z`(2g − 1))

is the class of a one-cycle with Z`-coefficients for every prime number ` < (2g − 1)! unequal to
char(k).

2. Suppose that A is principally polarized and let θ` ∈ H2
ét(A,Z`(1)) be the class of the polariza-

tion. The map (1) is surjective if γθ` := θg−1
` /(g − 1)! ∈ H2g−2

ét (A,Z`(g − 1)) is in its image. In
particular, if ` > (g−1)! then this always holds. Thus A satisfies the integral Tate conjecture for
one-cycles if γθ` is in the image of (1) for every prime number ` < (g − 1)! unequal to char(k).

Theorem 1.6 implies that products of Jacobians of smooth projective curves over k satisfy
the integral Tate conjecture for one-cycles over k. Moreover, for a principally polarized abelian
variety AK over a number field K ⊂ C, the integral Hodge conjecture for one-cycles on AC is
equivalent to the integral Tate conjecture for one-cycles on AK̄ (Corollary 6.2), which in turn
implies the integral Tate conjecture for one-cycles on the geometric special fiber A

k(p)
of its

Néron model of A/OK for any prime p ⊂ OK at which AK has good reduction (Corollary 6.3).
Finally, Theorem 1.3 has an analogue in positive characteristic. The definition for a smooth

projective variety over the algebraic closure k of a finitely generated field to satisfy the integral
Tate conjecture for one-cycles over k is analogous to the definition above (see e.g. [CP15]).
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Theorem 1.7. Let k be the algebraic closure of a finitely generated field of characteristic p > 0.
Let Ag be the coarse moduli space over k of principally polarized abelian varieties of dimension
g over k. The subset of Ag(k) of isomorphism classes of principally polarized abelian varieties
over k that satisfy the integral Tate conjecture for one-cycles over k is Zariski dense in Ag.
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2 Notation

• We let k be a field with separable closure ks and ` a prime number different from the charac-
teristic of k. For a smooth projective variety X over k, we let CH(X) be the Chow group of X
and define CH(X)Q = CH(X)⊗Q, CH(X)Q` = CH(X)⊗Q` and CH(X)Z` = CH(X)⊗Z`. We
let Hi

ét(Xks ,Z`(a)) be the i-th degree étale cohomology group with coeffients in Z`(a), a ∈ Z.

• Often, A will denote an abelian variety of dimension g over k, with dual abelian variety Â
and (normalized) Poincaré bundle PA on A× Â. The abelian group CH(A) will in that case be
equipped with two ring structures: the usual intersection product · as well as the Pontryagin
product ?. Recall that the latter is defined as follows:

? : CH(A)× CH(A)→ CH(A), x ? y = m∗(π
∗
1(x) · π∗2(y)).

Here, as well as in the rest of the paper, πi denotes the projection onto the i-th factor, ∆: A→
A × A the diagonal morphism, and m : A × A → A the group law morphism of A. There is a
similar Pontryagin product ? on étale cohomology, and on Betti cohomology if k = C.

• For any abelian group M and any element x ∈M , we will denote by xQ ∈M ⊗ZQ the image
of x in M ⊗Z Q under the canonical homomorphism M →M ⊗Z Q.

3 Integral Fourier transforms and one-cycles on abelian varieties

Our goal in this section is to provide necessary and sufficient conditions for the Fourier transform
on rational Chow groups or cohomology to lift to a motivic homomorphism between integral
Chow groups. We will relate such lifts to the integral Hodge conjecture when k = C. In
subsequent Section 4 we will use the theory developed in this section to prove Theorem 1.1.

3.1 Integral Fourier transforms and integral Hodge classes
For abelian varieties A over k = ks, it is unknown whether the Fourier transform FA : CH(A)Q →
CH(Â)Q preserves the subgroups of integral cycles modulo torsion. A sufficient condition for
this to hold is that FA lifts to a homomorphism CH(A)→ CH(Â). In this section we outline a
second consequence of such a lift CH(A)→ CH(Â) when A is defined over the complex numbers:
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the existence of an integral lift of FA implies the integral Hodge conjecture for one-cycles on Â.

Let A be an abelian variety over k. The Fourier transform on the level of Chow groups is
the group homomorphism

FA : CH(A)Q → CH(Â)Q

induced by the correspondence ch(PA) ∈ CH(A× Â)Q, where ch(PA) is the Chern character of
PA. Similarly, one defines the Fourier transform on the level of étale cohomology:

FA : H•ét(Aks ,Q`(•))→ H•ét(Âks ,Q`(•)).

In fact, FA preserves the integral cohomology classes and induces, for each integer j with
0 ≤ j ≤ 2g, an isomorphism [Bea83, Proposition 1], [Tot21, page 18]:

FA : Hj
ét(Aks ,Z`(a))→ H2g−j

ét (Âks ,Z`(a+ g − j)).

Similarly, if k = C, then ch(PA) induces, for each integer i with 0 ≤ i ≤ 2g, an isomorphism of
Hodge structures

FA : Hi(A,Z)→ H2g−i(Â,Z)(g − i). (2)

In [MP10], Moonen and Polishchuk consider an isomorphism φ : A
∼−→ Â, a positive integer

d, and define the notion of motivic integral Fourier transform of (A, φ) up to factor d. The
definition goes as follows. Let M(k) be the category of effective Chow motives over k with
respect to ungraded correspondences, and let h(A) be the motive of A. Then a morphism
F : h(A) → h(A) in M(k) is a motivic integral Fourier transform of (A, φ) up to factor d if
the following three conditions are satisfied: (i) the induced morphism h(A)Q → h(A)Q is the
composition of the usual Fourier transform with the isomorphism φ∗ : h(Â)Q

∼−→ h(A)Q, (ii)
one has d · F ◦ F = d · (−1)g · [−1]∗ as morphisms from h(A) to h(A), and (iii) d · F ◦m∗ =
d ·∆∗ ◦ F ⊗ F : h(A)⊗ h(A)→ h(A).

For our purposes, we will consider similar homomorphisms CH(A) → CH(Â). However, to
make their existence easier to verify (c.f. Theorem 3.8) we relax some of the above conditions:

Definition 3.1. Let A/k be an abelian variety and let F : CH(A)→ CH(Â) be a group homo-
morphism. We call F a weak integral Fourier transform if the following diagram commutes:

CH(A)

��

F // CH(Â)

��

CH(A)Q
FA // CH(Â)Q.

(3)

A group homomorphism F : CH(A) → CH(Â) is an integral Fourier transform up to homology
if the following diagram commutes:

CH(A)

��

F // CH(Â)

��

⊕r≥0H2r
ét (Aks ,Z`(r))

FA // ⊕r≥0H2r
ét (Âks ,Z`(r)).

(4)

Similarly, a Z`-module homomorphism F` : CH(A)Z` → CH(Â)Z` is called an `-adic integral
Fourier transform up to homology if F` is compatible with FA and the `-adic cycle class maps.

Remarks 3.2. 1. Let Γ ∈ CH(A× Â) (resp. Γ` ∈ CH(A× Â)Z`) such that

cl(Γ) = ch(PA) (resp. cl(Γ`) = ch(PA)) in ⊕r≥0 H2r
ét ((A× Â)ks ,Z`(r)).
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Then F = Γ∗ : CH(A) → CH(Â) (resp. F` = (Γ`)∗ : CH(A)Z` → CH(Â)Z`) is an integral
Fourier transform up to homology (resp. an `-adic integral Fourier transform up to homology).
Similarly, any cycle Γ ∈ CH(A× Â) that satisfies ΓQ = ch(PA) ∈ CH(A× Â)Q induces a weak
integral Fourier transform F = Γ∗ : CH(A)→ CH(Â).

2. If F : CH(A) → CH(Â) is a weak integral Fourier transform, then F is an integral Fourier
transform up to homology, the Z`-module ⊕r≥0H2r

ét (Âks ,Z`(r)) being torsion-free. If k = C,
then F : CH(A) → CH(Â) is an integral Fourier transform up to homology if and only if F is
compatible with the Fourier transform FA : H•(A,Z)→ H•(Â,Z) on Betti cohomology.

The relation between integral Fourier transforms and integral Hodge classes is as follows:

Lemma 3.3. Let A be a complex abelian variety and F : CH(A)→ CH(Â) an integral Fourier
transform up to homology.

1. For each i ∈ Z≥0, the integral Hodge conjecture for degree 2i classes on A implies the integral
Hodge conjecture for degree 2g − 2i classes on Â.

2. If F = Γ∗ for some Γ ∈ CH(A× Â) with cl(Γ) = ch(PA), then FA induces a group isomor-
phism Z2i(A)

∼−→ Z2g−2i(Â) and, therefore, the integral Hodge conjectures for degree 2i classes
on A and degree 2g − 2i classes on Â are equivalent for all i.

Proof. We can extend Diagram (4) to the following commutative diagram:

CHi(A)

cli

��

// CH(A)

��

F // CH(Â)

��

// CHi(Â)

cli
��

H2i(A,Z) // H•(A,Z)
FA // H•(Â,Z) // H2g−2i(Â,Z).

The composition H2i(A,Z)→ H2g−2i(Â,Z) appearing on the bottom line agrees up to a suitable
Tate twist with the map FA of Equation (2). Therefore, we obtain a commutative diagram:

CHi(A)

cli

��

// CHi(Â)

cli
��

Hdg2i(A,Z)
∼ // Hdg2g−2i(Â,Z).

(5)

Thus the surjectivity of cli implies the surjectivity of cli. Moreover, if F is induced by some
Γ ∈ CH(A × Â), then replacing A by Â and Â by ̂̂

A in the argument above shows that the
images of cli and cli are identified under the isomorphism FA : Hdg2i(A,Z)

∼−→ Hdg2g−2i(Â,Z)
in Diagram (5).

3.2 Properties of the Fourier transform on rational Chow groups
Let A be a complex abelian variety. Observe that, for any j ∈ Z≥1 and x ∈ H2j(A,Z), one has

xi

i!
∈ H2ij(A,Z) ⊂ H2ij(A,Q) for all i ∈ Z≥1.

In particular, the ideal ⊕j>0H2j(A,Z) ⊂ H2•(A,Z) admits a PD-structure [Stacks, Tag 07GM].
The analogue of this statement in `-adic étale cohomology holds when A is an abelian variety
over a separably closed field.

Lemma 3.3 suggests that to prove Theorem 1.1, one would need to show that for a com-
plex abelian variety of dimension g whose minimal Poincaré class c1(PA)2g−1/(2g − 1)! ∈
H4g−2(A × Â,Z) is algebraic, all classes of the form c1(PA)i/i! ∈ H2i(A × Â,Z) are algebraic.
With this goal in mind we shall study Fourier transforms on rational Chow groups in Section

6
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3.2, and investigate how these relate to ch(PA) ∈ CH(A × Â)Q. In turns out that the cycles
c1(PA)i/i! ∈ CH(A × Â)Q satisfy several relations that are very similar to those proved by
Beauville for the cycles θi/i! ∈ CH(A)Q in case A is principally polarized, see [Bea83]. Since we
will need these results in any characteristic in order to prove Theorem 1.6, we will work over
our general field k, see Section 2.

Let A be an abelian variety over k. Define

RA = c1(PA)2g−1/(2g − 1)! ∈ CH1(A× Â)Q,

R
Â

= c1(P
Â

)2g−1/(2g − 1)! ∈ CH1(Â×A)Q.

For a ∈ CH(A)Q, define E(a) ∈ CH(A)Q as the ?-exponential of a:

E(a) :=
∑
n≥0

a?n

n!
∈ CH(A)Q,

where a?n denotes the n-fold Pontryagin product of a (see Section 2). The key to Theorem 1.1
will be the following:

Lemma 3.4. We have ch(PA) = exp(c1(PA)) = (−1)g · E((−1)g ·RA) ∈ CH(A× Â)Q.

Proof. The most important ingredient in the proof is the following:

Claim (∗): With respect to the Fourier transform F
A×Â : CH(A × Â)Q → CH(Â × A)Q, one

has
F
A×Â (exp(c1(PA))) = (−1)g · exp(−c1(P

Â
)) ∈ CH(Â×A)Q.

To prove Claim (∗), we lift the desired equality in the rational Chow group of Â × A to an
isomorphism in the derived category Db(Â × A) of Â × A. For X = A × Â the Poincaré line
bundle PX on X × X̂ ∼= A× Â× Â×A is isomorphic to π∗13PA ⊗ π∗24PÂ. Let

ΦPX : Db(A× Â)→ Db(Â×A)

be the Fourier-Mukai transform attached to PX ∈ Db(X × X̂) as in [Huy06, Definition 5.1].
Evaluating it at PA gives the object

ΦPX (PA) ∼= π34,∗
(
π∗13PA ⊗ π∗24PÂ ⊗ π

∗
12PA

)
∈ Db(Â×A),

whose Chern character is exactly FX(exp(c1(PA))). Consider the permutation map

(123) : A× Â× Â×A ∼= Â×A× Â×A,

with inverse (321). We have

π34,∗
(
π∗13PA ⊗ π∗24PÂ ⊗ π

∗
12PA

) ∼= π34,∗
(
π∗31PÂ ⊗ π

∗
12PA ⊗ π∗24PÂ

)
∼= π14,∗

(
(123)∗

(
π∗31PÂ ⊗ π

∗
12PA ⊗ π∗24PÂ

))
∼= π14,∗

(
(321)∗

(
π∗31PÂ ⊗ π

∗
12PA ⊗ π∗24PÂ

))
∼= π14,∗

(
π∗12PÂ ⊗ π

∗
23PA ⊗ π∗34PÂ

)
.

We conclude that ΦPX (PA) ∼= π14,∗
(
π∗12PÂ ⊗ π

∗
23PA ⊗ π∗34PÂ

)
. The latter is isomorphic to the

Fourier–Mukai kernel of the composition

ΦP
Â
◦ ΦPA ◦ ΦP

Â
.

Since ΦPA ◦ ΦP
Â
is isomorphic to [−1

Â
]∗ ◦ [−g] by [Muk81, Theorem 2.2], we have

ΦP
Â
◦ ΦPA ◦ ΦP

Â

∼= ΦP
Â
◦ [−1

Â
]∗ ◦ [−g].
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This is the Fourier–Mukai transform with kernel P∨
Â

[−g] ∈ Db(Â × A). By uniqueness of the
Fourier–Mukai kernel of an equivalence [Orl97, Theorem 2.2], it follows that ΦPX (PA) ∼= P∨

Â
[−g].

Since the Chern character of P∨
Â

[−g] equals (−1)g · exp(−c1(P
Â

)) ∈ CH(Â× A)Q, this finishes
the proof of Claim (∗).

Next, we claim that (−1)g · F
Â×A(−c1(P

Â
)) = RA. To see this, recall that for each integer

i with 0 ≤ i ≤ g, there is a canonical Beauville decomposition CHi(A)Q = ⊕ij=i−gCHi,j(A)Q

[Bea86; DM91]. Since the Poincaré bundle PA is symmetric, we have c1(PA) ∈ CH1,0(A× Â)Q
and hence c1(PA)i ∈ CHi,0(A× Â)Q. In particular, we have RA ∈ CH2g−1,0(A× Â)Q. The fact
that PA is symmetric also implies - via Claim (∗) - that we have

F
Â×A

(
(−1)g · exp(−c1(P

Â
)
)

= exp(c1(PA)).

Indeed, F
Â×A◦FA×Â = [−1]∗ ·(−1)2g = [−1]∗, see [DM91, Corollary 2.22]. Since F

Â×A identifies
CHi,0(Â×A)Q with CHg−i,0(A× Â) (see [DM91, Lemma 2.18]), we must indeed have

(−1)g · F
Â×A

(
−c1(P

Â
)
)

= F
Â×A

(
(−1)g+1 · c1(P

Â
)
)

=
c1(PA)2g−1

(2g − 1)!
= RA. (6)

For a g-dimensional abelian variety X and any x, y ∈ CH(X)Q, one has

FX(x · y) = (−1)g · FX(x) ? FX(y) ∈ CH(X̂)Q.

Indeed, in [Mur00, Theorem 4.5] this is proved when k is algebraically closed, but holds over
general k (and even for abelian schemes, see e.g. [EGM21]).

This implies (see also [MP10, §3.7]) that if a is a cycle on X such that FX(a) ∈ CH>0(X̂)Q,
then FX(exp(a)) = (−1)g · E((−1)g · FX(a)). This allows us to conclude that

exp(c1(PA)) = F
Â×A

(
(−1)g · exp(−c1(P

Â
))
)

= (−1)g · E
(
F
Â×A(−c1(P

Â
))
)

= (−1)g · E((−1)g ·RA),

which finishes the proof.

Next, assume that A is equipped with a principal polarization λ : A
∼−→ Â, and define

Θ =
1

2
· (id, λ)∗c1(PA) ∈ CH1(A)Q and Θ̂ =

1

2
· (λ−1, id)∗c1(PA) ∈ CH1(Â)Q. (7)

Here (id, λ) (resp. (λ−1, id)) is the morphism (id, λ) : A→ A× Â (resp. (λ−1, id) : Â→ A× Â).
One can understand the relation between

ΓΘ := Θg−1/(g − 1)! ∈ CH1(A)Q

and RA = c1(PA)2g−1/(2g − 1)! ∈ CH1(A × Â)Q in the following way. Define j1 : A → A × Â
and j2 : Â→ A× Â by x 7→ (x, 0) and y 7→ (0, y) respectively. Define a one-cycle τ on A× Â as
follows:

τ := j1,∗(ΓΘ) + j2,∗(ΓΘ̂
)− (id, λ)∗(ΓΘ) ∈ CH1(A× Â)Q.

Lemma 3.5. One has τ = (−1)g+1 ·RA ∈ CH1(A× Â)Q.

Proof. Identify A and Â via λ. This gives c1(PA) = m∗(Θ) − π∗1(Θ) − π∗2(Θ), and the Fourier
transform becomes an endomorphism FA : CH(A)Q → CH(A)Q. We claim that τ = (−1)g ·
(∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)). For this, it suffices to show that FA(Θ) = (−1)g−1 ·
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Θg−1/(g − 1)! ∈ CH1(A)Q. Now FA(exp(Θ)) = exp(−Θ) by Lemma 3.6 below. Moreover,
since Θ is symmetric, we have Θ ∈ CH1,0(A)Q, hence Θi/i! ∈ CHi,0(A)Q for each i ≥ 0.
Therefore, FA

(
Θi/i!

)
∈ CHg−i,0(A)Q by [DM91, Lemma 2.18]. This implies that in fact,

FA
(
Θi/i!

)
= (−1)g−i ·Θg−i/(g− i)! ∈ CHg−i,0(A)Q for every i. In particular, the claim follows.

Next, recall that FA×A(c1(PA)) = (−1)g+1 · RA, see Claim (∗). So at this point, it suffices
to prove the identity FA×A(c1(PA)) = (−1)g · (∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)). To prove
this, we use the following functoriality properties of the Fourier transform on the level of rational
Chow groups. Let X and Y be abelian varieties and let f : X → Y be a homomorphism with
dual homomorphism f̂ : Ŷ → X̂. We then have the following equalities [MP10, (3.7.1)]:

(f̂)∗ ◦ FX = FY ◦ f∗, FX ◦ f∗ = (−1)dimX−dimY · (f̂)∗ ◦ FY . (8)

Since c1(PA) = m∗Θ− π∗1Θ− π∗2Θ, it follows from Equation (8) that

FA×A(c1(PA)) = FA×A (m∗Θ)−FA×A (π∗1Θ)−FA×A (π∗2Θ)

= (−1)g · (∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)) .

Lemma 3.6 (Beauville). Let A be an abelian variety over k, principally polarized by λ : A
∼−→ Â,

and define Θ = 1
2 ·(id, λ)∗c1(PA) ∈ CH1(A)Q. Identify A and Â via λ. With respect to the Fourier

transform FA : CH(A)Q
∼−→ CH(A)Q, one has FA(exp(Θ)) = exp(−Θ).

Proof. Our proof follows the proof of [Bea83, Lemme 1], but has to be adapted, since Θ does
not necessarily come from a symmetric ample line bundle on A. Since one still has c1(PA) =
m∗Θ− π∗1Θ− π∗2Θ, the argument can be made to work: one has

FA(exp(Θ)) = π2,∗ (exp(c1(PA)) · π∗1 exp(Θ))

= π2,∗ (exp(m∗Θ− π∗2Θ))

= exp(−Θ) · π2,∗(m
∗ exp(Θ)) ∈ CH(A)Q.

For codimension reasons, one has π2,∗(m
∗ exp(Θ)) = π2,∗m

∗(Θg/g!) = deg(Θg/g!) ∈ CH0(A)Q ∼=
Q. Pull back Θg/g! along Aks → A to see that deg(Θg/g!) = 1 ∈ CH0(A)Q ∼= CH0(Aks)Q, since
over ks the cycle Θ becomes the cycle class attached to a symmetric ample line bundle.

3.3 Divided powers and integral Fourier transforms
It was asked by Bruno Kahn whether there exists a PD-structure on the Chow ring of an abelian
variety over any field with respect to its usual (intersection) product. There are counterexamples
over non-closed fields: see [Esn04], where Esnault constructs an abelian surface X and a line
bundle L on X such that c1(L) · c1(L) is not divisible by 2 in CH0(X). However, the case of
algebraically closed fields remains open [MP10, Section 3.2]. What we do know, is the following:

Theorem 3.7 (Moonen–Polishchuk). Let A be an abelian variety over k. The ring (CH(A), ?)
admits a canonical PD-structure γ on the ideal CH>0(A) ⊂ CH(A). If k = k̄, then γ extends to
a PD-structure on the ideal generated by CH>0(A) and the zero cycles of degree zero.

In particular, for each element x ∈ CH>0(A) and each n ∈ Z≥1, there is a canonical element
x[n] ∈ CH>0(A) such that n!x[n] = x?n, see [Stacks, Tag 07GM]. For x ∈ CH>0(A), we may
then define E(x) =

∑
n≥0 x

[n] ∈ CH(A) as the ?-exponential of x in terms of its divided powers.

Together with the results of Section 3.2, Theorem 3.7 enables us to provide several criteria
for the existence of a weak integral Fourier transform. We recall that for an abelian variety A
over k, principally polarized by λ : A

∼−→ Â, we defined Θ ∈ CH1(A)Q to be the symmetric ample
class attached to the polarization λ, see Equation (7).
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Theorem 3.8. Let A/k be an abelian variety of dimension g. The following are equivalent:

1. The one-cycle RA = c1(PA)2g−1/(2g− 1)! ∈ CH(A× Â)Q lifts to a one-cycle in CH(A× Â).

2. The cycle ch(PA) ∈ CH(A× Â)Q lifts to a cycle in CH(A× Â).

3. The cycle ch(P
A×Â) ∈ CH(A× Â× Â×A)Q lifts to a cycle in CH(A× Â× Â×A).

Moreover, if A carries a symmetric ample line bundle that induces a principal polarization
λ : A

∼−→ Â, then the above statements are equivalent to the following equivalent statements:

4. The two-cycle c1(PA)2g−2/(2g − 2)! ∈ CH(A× Â)Q lifts to a two-cycle in CH(A× Â).

5. The one-cycle ΓΘ = Θg−1/(g − 1)! ∈ CH(A)Q lifts to a one-cycle in CH(A).

6. The abelian variety A admits a weak integral Fourier transform.

7. The Fourier transform FA satisfies FA (CH(A)/torsion) ⊂ CH(Â)/torsion.

8. There exists a PD-structure on the ideal CH>0(A)/torsion ⊂ CH(A)/torsion.

Proof. Suppose that 1 holds, and let Γ ∈ CH1(A × Â) be a cycle such that ΓQ = RA. Then
consider the cycle (−1)g · E((−1)g · Γ) ∈ CH(A× Â). By Lemma 3.4, we have

(−1)g ·E((−1)g ·Γ)Q = (−1)g ·E((−1)g ·ΓQ) = (−1)g ·E((−1)g ·RA) = ch(PA) ∈ CH(A× Â)Q.

Thus 2 holds. We claim that 3 holds as well. Indeed, consider the line bundle P
A×Â on the

abelian variety X = A× Â× Â×A; one has that P
A×Â

∼= π∗13PA ⊗ π∗24PÂ, which implies that

RA×Â =
1

(4g − 1)!
·
(
π∗
13c1(PA) + π∗

24c1(PÂ)
)4g−1

=
1

(2g)!(2g − 1)!
·
(
π∗
13c1(PA)2g−1 · π∗

24c1(PÂ)2g + π∗
13c1(PA)2g · π∗

24c1(PÂ)2g−1
)

=
1

(2g)!(2g − 1)!
·
(
π∗
13c1(PA)2g−1 · π∗

24

(
(2g)! · [0]A×Â

)
+ π∗

13

(
(2g)! · [0]Â×A

)
· π∗

24c1(PÂ)2g−1
)

= π∗
13

(
c1(PA)2g−1

(2g − 1)!

)
· π∗

24([0]A×Â) + π∗
13([0]Â×A) · π∗

24

(
c1(PÂ)2g−1

(2g − 1)!

)
∈ CH1(X)Q.

(9)

We conclude that R
A×Â lifts to CH1(X) which, by the implication [1 =⇒ 2] (that has already

been proved), implies that 3 holds. The implication [3 =⇒ 1] follows from the fact that
(−1)g · F

Â×A(−c1(P
Â

)) = RA (see Equation (6)). Therefore, we have [1 ⇐⇒ 2 ⇐⇒ 3].
Let us from now on assume that A is principally polarized by λ : A

∼−→ A, where λ is the
polarization attached to a symmetric ample line bundle L on A. Moreover, in what follows we
shall identify Â and A via λ.

Suppose that 4 holds and let SA ∈ CH2(A×A) = CH2g−2(A×A) be such that

(SA)Q = c1(PA)2g−2/(2g − 2)! ∈ CH2(A×A)Q.

Define CH1,0(A) := Picsym(A) to be the group of isomorphism classes of symmetric line bundes
on A. Then SA induces a homomorphism F : CH1,0(A)→ CH1(A) defined as the composition

F : CH1,0(A)
π∗

1−→ CH1(A×A)
·SA−−→ CH2g−1(A×A) = CH1(A×A)

π2,∗−−→ CH1(A).

Since FA
(
CH1,0(A)Q

)
⊂ CH1(A)Q (see [DM91, Lemma 2.18]) we see that the diagram

CH1,0(A)

��

F // CH1(A)

��

CH1,0(A)Q
FA // CH1(A)Q

(10)
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commutes. On the other hand, since the line bundle L is symmetric, we have

Θ =
1

2
·∆∗c1(PA) =

1

2
· c1 (∆∗PA) =

1

2
· c1(L ⊗ L) = c1(L) ∈ CH1(A)Q. (11)

The class c1(L) ∈ CH1,0(A) of the line bundle L thus lies above Θ ∈ CH1(A)Q. Therefore,
F(c1(L)) ∈ CH1(A) lies above ΓΘ = (−1)g−1FA(Θ) by the commutativity of (10), and 5 holds.

Suppose that 5 holds. Then 1 follows readily from Lemma 3.5. Moreover, if 2 holds, then
ch(PA) ∈ CH(A × A)Q lifts to CH(A × A), hence in particular 4 holds. Since we have already
proved that 1 implies 2, we conclude that [4 =⇒ 5 =⇒ 1 =⇒ 2 =⇒ 4].

The implications [2 =⇒ 6 =⇒ 7] are trivial. Assume that 7 holds. By Equation (11),
Θ ∈ CH1(A)Q lifts to CH1(A), hence FA(Θ) = (−1)g−1 · ΓΘ lifts to CH1(A), i.e. 5 holds.

Assume that 7 holds. The fact that FA (CH(A)/torsion) ⊂ CH(A)/torsion implies that

CH(A)/torsion = FA (FA (CH(A)/torsion)) ⊂ FA (CH(A)/torsion) ⊂ CH(A)/torsion.

Thus, the restriction of the Fourier transform FA to CH(A)/torsion defines an isomorphism

FA : CH(A)/torsion ∼−→ CH(A)/torsion.

Now if R is a ring and γ is a PD-structure on an ideal I ⊂ R, then γ extends to a PD-structure
on I/torsion ⊂ R/torsion. Consequently, the ideal CH>0(A)/torsion ⊂ CH(A)/torsion admits a
PD-structure for the Pontryagin product ? by Theorem 3.7. Since FA exchanges the Pontryagin
and intersection product (up to a sign, see [Bea83, Proposition 3(ii)]), it follows that 8 holds.
Since 8 trivially implies 5, we are done.

Question 3.9 (Moonen–Polishchuk [MP10], Totaro [Tot21]). Let A be any principally polarized
abelian variety over k = k̄. Are the equivalent conditions in Theorem 3.8 satisfied for A?

Remark 3.10. For Jacobians of hyperelliptic curves the answer to Question 3.9 is "yes" [MP10].

Similarly, there is a relation between integral Fourier transforms up to homology and the
algebraicity of minimal cohomology classes induced by Poincaré line bundles and theta divisors.

Proposition 3.11. Let A/k be an abelian variety of dimension g. The following are equivalent:

1. The class c1(PA)2g−1/(2g − 1)! ∈ H4g−2
ét ((A× Â)ks ,Z`(2g − 1)) lifts to CH1(A× Â).

2. The class ch(PA) ∈ ⊕r≥0H2r
ét ((A× Â)ks ,Z`(r)) lifts to a cycle in CH(A× Â).

3. The class
ch(P

A×Â) ∈ ⊕r≥0H2r
ét ((A× Â× Â×A)ks ,Z`(r))

lifts to a cycle in CH(A× Â× Â×A).

Moreover, if A carries an ample line bundle that induces a principal polarization λ : A
∼−→ Â,

then the above statements are equivalent to the following equivalent statements:

4. The class c1(PA)2g−2/(2g − 2)! ∈ H4g−4
ét ((A× Â)ks ,Z`(2g − 2)) lifts to CH2(A× Â).

5. The class γθ = θg−1/(g − 1)! ∈ H2g−2
ét (Aks ,Z`(g − 1)) lifts to a cycle in CH1(A).

6. The abelian variety A admits an integral Fourier transform up to homology.

7. The Fourier transform FA satisfies FA

(
H2•

ét (Aks ,Z`(•))alg
)
⊂ H2•

ét (Âks ,Z`(•))alg.

8. There exists a PD-structure on the ideal ⊕j>0H2j
ét (Aks ,Z`(j))alg ⊂ H2•

ét (Aks ,Z`(•))alg.

Here, H2•
ét (Aks ,Z`(•))alg denotes the image of the cycle class map CH•(A)→ H2•

ét (Aks ,Z`(•)).

Proof of Proposition 3.11. The proof of Theorem 3.8 can easily be adapted to this situation.
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Proposition 3.12. 1. If k = C, then each of the statements 1 − 8 in Proposition 3.11 is
equivalent to the same statement with étale cohomology replaced by Betti cohomology.

2. Proposition 3.11 remains valid if one replaces integral Chow groups by their tensor product
with Z`, ‘integral Fourier transform up to homology’ by ‘`-adic integral Fourier transform up to
homology’, and H2•

ét (Aks ,Z`(•))alg by the image of the map CH•(A)⊗ Z` → H2•
ét (Aks ,Z`(•)).

Proof. 1. In this case Z`(i) = Z` and the Artin comparison isomorphism

H2i
ét(A,Z`)

∼−→ H2i(A(C),Z`)

[AGV71, III, Exposé XI] is compatible with the cycle class map. Since the map H2i(A(C),Z)→
H2i

ét(A,Z`) is injective, a class β ∈ H2i(A(C),Z) is in the image of cl : CHi(A) → H2i(A(C),Z)
if and only if its image β` ∈ H2i

ét(A,Z`) is in the image of cl : CHi(A)→ H2i
ét(A,Z`).

2. Indeed, for an abelian variety A over k, the PD-structure on CH>0(A) ⊂ (CH(A), ?) induces
a PD-structure on CH>0(A)⊗ Z` ⊂ (CH(A)Z` , ?) by [Stacks, Tag 07H1], because the ring map
(CH(A), ?)→ (CH(A)Z` , ?) is flat. The latter follows from the flatness of Z→ Z`.

4 The integral Hodge conjecture for one-cycles on complex abelian varieties

In this section we use the theory developed in Section 3 to prove Theorem 1.1. We also prove
some applications of Theorem 1.1: the integral Hodge conjecture for one-cycles on products of
Jacobians (Theorem 1.2), the fact that the integral Hodge conjecture for one-cycles on principally
polarized complex abelian varieties is stable under specialization (Corollary 4.3) and density of
polarized abelian varieties satisfying the integral Hodge conjecture for one-cycles (Theorem 1.3).

4.1 Proof of the main theorem
Let us prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that 1 holds. Then 2 holds by Propositions 3.11 and 3.12.1.
Suppose that 2 holds. Then 4 follows from Lemma 3.3. So we have [1 ⇐⇒ 2 =⇒ 4].

For a complex abelian variety X of dimension g, define

ρX = c1(PX)2g−1/(2g − 1)! ∈ H4g−2(X × X̂,Z).

If 1 holds, then ρA = c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z) is algebraic, which implies that
ρ
Â
∈ H4g−2(Â×A,Z) is algebraic. Therefore,

ρ
A×Â ∈ H8g−2(A× Â× Â×A,Z)

is algebraic by Equation (9). We then apply the implication [1 =⇒ 4] to the abelian variety
A × Â, which shows that 3 holds. Since [3 =⇒ 1] is trivial, we have proven [1 ⇐⇒ 2 ⇐⇒
3 =⇒ 4].

Next, assume that A is principally polarized by θ ∈ NS(A) ⊂ H2(A,Z). The directions
[4 =⇒ 5] and [2 =⇒ 6] are trivial and [5 =⇒ 1] follows from Propositions 3.11 and
3.12.1. We claim that 6 implies 4. Define σA = c1(PA)2g−2/(2g− 2)! ∈ H4g−4(A× Â,Z) and let
S ∈ CH2(A× Â) be such that cl(S) = σA. The squares in the following diagram commute:

CH1(A)

cl
��

π∗
1 // CH1(A× Â)

cl
��

·S // CH2g−1(A× Â)

cl
��

π2,∗
// CH1(Â)

cl
��

H2(A,Z)
π∗

1 // H2(A× Â,Z)
·σA // H4g−2(A× Â,Z)

π2,∗
// H2g−2(Â,Z).

(12)
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Since FA = π2,∗ (ch(PA) · π∗1(−)) restricts to an isomorphism FA : H2(A,Z)
∼−→ H2g−2(Â,Z) by

[Bea83, Proposition 1], the composition π2,∗ ◦ (− · σA) ◦ π∗1 on the bottom row of (12) is an
isomorphism. Thus, by Lefschetz (1, 1), cl : CH1(Â)→ Hdg2g−2(Â,Z) is surjective.

Finally, the equivalence [5 ⇐⇒ 7] follows directly from Propositions 3.11 and 3.12.1.

Corollary 4.1. Let A and B be complex abelian varieties of respective dimensions gA and gB.

1. The Hodge classes

c1(PA)2gA−1/(2gA−1)! ∈ H4gA−2(A×Â,Z) and c1(PB)2gB−1/(2gB−1)! ∈ H4gB−2(B×B̂,Z)

are algebraic if and only if A× Â, B× B̂, A×B and Â× B̂ satisfy the integral Hodge conjecture
for one-cycles.

2. If A and B are principally polarized, then the integral Hodge conjecture for one-cycles holds
for A×B if and only if it holds for A and B.

Proof. The first statement follows from Theorem 1.1 and Equation (9). The second statement
follows from the fact that the minimal cohomology class of the product A × B is algebraic if
and only if the minimal cohomology classes of the factors A and B are both algebraic.

Proof of Theorem 1.2. By Corollary 4.1 we may assume n = 1, so let C be a smooth projective
curve. Let p ∈ C and consider the morphism ι : C → J(C) defined by sending a point q to the
isomorphism class of the degree zero line bundle O(p−q). Then cl(ι(C)) = γθ ∈ H2g−2(J(C),Z)
by Poincaré’s formula [Arb+85], so γθ is algebraic and the result follows from Theorem 1.1.

Remarks 4.2. 1. Let us give another proof of Theorem 1.2 in the case n = 1, i.e. let C be a
smooth projective curve of genus g and let us prove the integral Hodge conjecture for one-cycles
on J(C) in a way that does not use Fourier transforms. It is classical that any Abel-Jacobi map
C(g) → J(C) is birational. On the other hand, the integral Hodge conjecture for one-cycles is a
birational invariant, see [Voi07, Lemma 15]. Therefore, to prove it for J(C) it suffices to prove
it for C(g). One then uses [Bn02, Corollary 5] which says that for each n ∈ Z≥1, there is a
natural polarization η on the n-fold symmetric product C(n) such that for any i ∈ Z≥0, the map
ηn−i ∪ (−) : Hi(C(n),Z) → H2n−i(C(n),Z) is an isomorphism. In particular, the variety C(n)

satisfies the integral Hodge conjecture for one-cycles for any positive integer n.

2. Along these lines, observe that the integral Hodge conjecture for one-cycles holds not only for
symmetric products of smooth projective complex curves but also for any product C1×· · ·×Cn
of smooth projective curves Ci over C. Indeed, this follows readily from the Künneth formula.

3. Let C be a smooth projective complex curve of genus g. Our proof of Theorem 1.1 provides
an explicit description of Hdg2g−2(J(C),Z) depending on Hdg2(J(C),Z). More generally, let
(A, θ) be a principally polarized abelian variety of dimension g, and identify A and Â via the
polarization. Then c1(PA) = m∗(θ)− π∗1(θ)− π∗2(θ), which implies that

1

(2g − 2)!
· c1(PA)2g−2 =

2g−2∑
i,j,k≥0

i+j+k=2g−2

(−1)j+k ·m∗
(
θi

i!

)
· π∗1

(
θj

j!

)
· π∗2

(
θk

k!

)
.

On the other hand, any β ∈ Hdg2g−2(A,Z) is of the form

β = π2,∗

(
c1(PA)2g−2

(2g − 2)!
· π∗1[D]

)
∈ Hdg2g−2(A,Z),

where we write [D] = cl(D) for a divisor D on A, as follows from (12). Therefore, any element
β ∈ Hdg2g−2(A,Z) may be written as

β =

2g−2∑
i,j,k≥0

i+j+k=2g−2

(−1)j+k · π2,∗

(
m∗
(
θi

i!

)
· π∗1

(
θj

j!

)
· π∗1[D]

)
· θ

k

k!
. (13)
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Returning to the case of a Jacobian J(C) of a smooth projective curve C of genus g, the classes
θi/i! appearing in (13) are effective algebraic cycle classes. Indeed, for p ∈ C and d ∈ Z≥1, the
image of the morphism Cd → J(C), (xi) 7→ O(

∑
i xi−d · p) defines a subvariety Wd(C) ⊂ J(C)

and by Poincaré’s formula [Arb+85, §I.5] one has cl(Wd(C)) = θg−d/(g−d)! ∈ H2g−2d(J(C),Z).

Besides Theorem 1.2, we obtain the following corollary of Theorem 1.1:

Corollary 4.3. Let A→ S be a principally polarized abelian scheme over a proper, smooth and
connected variety S over C. Let X ⊂ S(C) be the set of x ∈ S(C) such that the abelian variety
Ax satisfies the integral Hodge conjecture for one-cycles. Then X = ∪iZi(C) for some countable
union of closed algebraic subvarieties Zi ⊂ S. In particular, if the integral Hodge conjecture for
one-cycles holds on U(C) for a non-empty open subscheme U of S, then it holds on all of S(C).

Proof. Write A = A(C) and B = S(C) and let π : A → B be the induced family of complex
abelian varieties. Let g ∈ Z≥0 be the relative dimension of π and define, for t ∈ S(C), θt ∈
NS(At) ⊂ H2(At,Z) to be the polarization of At. There is a global section γθ ∈ R2g−2π∗Z such
that for each t ∈ B, γθt = θg−1

t /(g−1)! ∈ H2g−2(At,Z). Note that γθ is Hodge everywhere on B.
For those t ∈ B for which γθt is algebraic, write γθt as the difference of effective algebraic cycle
classes on At. This gives a countable disjoint union φ : tijHi×SHj → S of products of relative
Hilbert schemes Hi → S. By Lemma 4.4 below, γθt is algebraic precisely for closed points t in
the image Y ⊂ S of φ. Theorem 1.1 implies that X = Y and the assertion is proven.

Lemma 4.4. Let S be an integral variety over C, let A → S be a principally polarized abelian
scheme of relative dimension g over S and let Ci ⊂ A for i = 1, . . . , k be relative curves in A
over S. Let n1, . . . , nk be integers and let y ∈ S(C) be a point that satisfies

∑k
i=1 ni · cl(Ci,y) =

γθy ∈ H2g−2(Ay,Z). Then for every x ∈ S(C), one has
∑k

i=1 ni · cl(Ci,x) = γθx ∈ H2g−2(Ax,Z).

Proof. Since it suffices to prove the lemma for any open affine U ⊂ S that contains y, we may
assume that S is quasi-projective. Fix x ∈ S(C). After replacing S by a suitable base change
containing x and y, we may assume that S is an open subscheme of a smooth connected curve.
For t ∈ S, denote by θt̄ ∈ H2

ét(At̄,Z`) the class of the polarization and γθt̄ = θg−1
t̄

/(g − 1)!. Let
η = Spec K be the generic point of S. The elements

∑
i ni · cl(Ci,η̄) and γθη̄ in H2g−2

ét (Aη̄,Z`)
both map to

∑
i ni · cl(Ci,y) = γθy ∈ H2g−2

ét (Ay,Z`) under the specialization homomorphism
s : H2g−2

ét (Aη̄,Z`) → H2g−2
ét (Ay,Z`) by [Ful98, Example 20.3.5]. Since s is an isomorphism, we

have
∑

i ni · cl(Ci,η̄) = γθη̄ , which implies that
∑

i ni · cl(Cx,i) = γθx ∈ H2g−2
ét (Ax,Z`).

4.2 Density of abelian varieties satisfying IHC1

The goal of this section is to prove that Conditions 1−3 in Theorem 1.1 are satisfied on a dense
subset of the moduli space of complex abelian varieties. To do so, will we state yet another
criterion that a complex abelian variety may satisfy. In some sense this criterion provides a bridge
between abelian varieties outside the Torelli locus and those lying within, thereby implying the
integral Hodge conjecture for one-cycles for the abelian variety under consideration.

Definition 4.5. Let A and B be a complex abelian varieties and let p a prime number. We say
that A is prime-to-p isogenous to a B if there exists an isogeny α : A→ B whose degree deg(α)
is not divisible by p. We say that A is p-power isogenous to B if A is isogenous to B for some
isogeny α whose degree is a power of p.

The following proposition shows in particular that to prove the density part of the statement
in Theorem 1.3, it suffices to prove that for any prime number `, those abelian varieties that are
`-power isogenous to a product of elliptic curves are dense in their moduli space.

Proposition 4.6. Let A be a complex abelian variety of dimension g. Let Â be the dual abelian
variety and let PA be the Poincaré bundle. Let κ be a non-zero integer such that the cohomology
class κ · c1(PA)/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic. Consider the following statements:
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1. The abelian variety A satisfies the integral Hodge conjecture for one-cycles.

2. For every prime number p, there exists an abelian variety B such that the abelian variety
A×B is prime-to-p isogenous to the Jacobian of a smooth projective curve.

3. For every prime number p that divides κ, there exists an abelian variety B such that the
abelian variety A×B is prime-to-p isogenous to a Jacobian of a smooth projective curve.

4. For every prime number p, there exists an abelian variety B such that the abelian variety
A×B is prime-to-p isogenous to a product of Jacobians of smooth projective curves.

5. For every prime number p dividing κ, there exists an abelian variety B such that the abelian
variety A×B is prime-to-p isogenous to a product of Jacobians of smooth projective curves.

Then [2 =⇒ 3 =⇒ 5 =⇒ 1] and [2 =⇒ 4 =⇒ 5]. Moreover, if A is principally polarized
by θA ∈ NS(A), then 1 is implied by

6. For any prime number p|(g− 1)! there exists a smooth projective curve C and a morphism of
abelian varieties φ : A→ J(C) such that φ∗θJ(C) = m · θA for m ∈ Z≥1 with gcd(m, p) = 1.

Finally, if A is principally polarized of Picard rank one, then the statements 1−6 are equivalent.

Proof. Step one: [2 =⇒ 3 =⇒ 5] and [2 =⇒ 4 =⇒ 5]. These implications are trivial.

Step two: [5 =⇒ 1]. Let g be the dimension of A. We want to prove that the class
c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z) is algebraic. Let p be any prime number that divides
κ. Then by Condition 5, there exists an abelian variety B and an isogeny α : A × B → Y
to the product Y =

∏
i J(Ci) of Jacobians J(Ci) of smooth projective curves Ci such that

gcd(deg(α), p) = 1. Define X = A × B. Let gB be the dimension of B, let h = g + gB =
dim(X) = dim(Y ), and let mp = deg(α). There exists an isogeny β : Y → X such that
β ◦ α = [mp]X . If we define np = deg(β) then mp · np = deg(α) · deg(β) = deg(α ◦ β) = m2h

p .
Therefore, (β ◦ α) × (α̂ ◦ β̂) = [mp]X×X̂ . Consequently, if Np = 2h · (4h − 2), then the homo-
morphism

[m2h
p ]∗ = (m

Np
p · (−)) : H4h−2(X × X̂,Z)→ H4h−2(X × X̂,Z)

factors through H4h−2(Y ×Ŷ ,Z). Since Y ×Ŷ satisfies the integral Hodge conjecture by Theorem
1.2, the Hodge class mNp

p · c1(PX)2h−1/(2h − 1)! ∈ H4h−2(X × X̂,Z) is algebraic. Let f : A ×
B × Â × B̂ → A × Â and g : A × B × Â × B̂ → B × B̂ be the canonical projections. Then
PX ∼= f∗PA ⊗ g∗PB. Using this and denoting µ = c1(PA) and ν = c1(PB) we have

c1(PX)2h−1

(2h− 1)!
= f∗

(
µ2g−1

(2g − 1)!

)
· g∗

(
ν2gB

(2gB)!

)
+ f∗

(
µ2g

(2g)!

)
· g∗

(
ν2gB−1

(2gB − 1)!

)
.

This implies that f∗
(
c1(PX)2h−1/(2h− 1)!

)
= (−1)gbµ2g−1/(2g − 1)!. In particular, the class

m
Np
p · c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic.
Let p1, . . . , pn be all prime divisors of κ and observe that gcd(κ,m

Np1
p1 ,m

Np2
p2 , . . . ,m

Npn
pn ) = 1.

Therefore, there are integers a, b1, . . . , bn such that a · κ+
∑n

i=1 bi ·m
Npi
pi = 1. One obtains

c1(PA)2g−1

(2g − 1)!
= a · κ · c1(PA)2g−1

(2g − 1)!
+

n∑
i=1

bi ·m
Npi
pi ·

c1(PA)2g−1

(2g − 1)!
∈ H4g−2(A× Â,Z).

This proves that c1(PA)2g−1/(2g − 1)! is a Z-linear combination of algebraic classes, hence al-
gebraic. Condition 1 follows then from Theorem 1.1.

Step three: [6 =⇒ 1] for A principally polarized by θA ∈ NS(A). Let p1, . . . , pk be the
prime factors of (g − 1)! and let C1, . . . , Ck be smooth proper curves for which there exist ho-
momorphisms φi : A → J(Ci) such that φ∗θJ(Ci) = mi · θA for some mi ∈ Z≥1 with pi - m.
Since θg−1

J(Ci)
/(g − 1)! ∈ H2g−2(J(Ci),Z) is algebraic for each i, the classes φ∗i (θ

g−1
J(Ci)

/(g − 1)!) =
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mg−1
i · θg−1

A /(g − 1)! ∈ H2g−2(A,Z) are algebraic. Since gcd((g − 1)!,m1, . . . ,mk) = 1, this
implies that θg−1

A /(g − 1)! is algebraic. Condition 1 follows then from Theorem 1.1.

Step four: [6 ⇐= 1 =⇒ 2] for (A, θA) principally polarized with ρ(A) = 1. Write θ = θA.
Let Z1, . . . , Zn be integral curves Zi ⊂ A and let e1, . . . , en ∈ Z with ei 6= 0 for all i be such
that θg−1/(g − 1)! =

∑n
i=1 ei · [Zi] ∈ H2g−2(A,Z). Since ρ(A) = 1, the group Hdg2g−2(A,Z) is

generated by θg−1/(g− 1)!. Consequently, we have [Zi] = fi ·
(
θg−1/(g − 1)!

)
for some non-zero

fi ∈ Z. Hence we can write

θg−1/(g − 1)! =
n∑
i=1

ei · [Zi] =
n∑
i=1

ei · fi · θg−1/(g − 1)!

which implies that
∑n

i=1 ei · fi = 1. Now let p be any prime number. Then there exists an
integer i with 1 ≤ i ≤ n such that p does not divide fi. Let Ci → Zi be the normalization of Zi
and let λA = ϕθ : A→ Â be the polarization corresponding to θ. This gives a diagram

Ci
ϕ

//

ι

&&

A

φ

88∼
λA // Â

ϕ∗
// Pic0(Ci)

a
∼

// J(Ci),

J(Ci)

ψ

88

(14)

where ι : Ci → J(Ci) = H0(C,ΩC)∗/H1(C,Z) is the Abel–Jacobi map (for some p ∈ C), and
ϕ∗ : Â = Pic0(A) → Pic0(Ci) is the pullback of line bundles along ϕ : Ci → A. The natural
homomorphism a : Pic0(Ci)→ J(Ci) is an isomorphism by the Abel–Jacobi theorem. Since the
triangle on the left in Diagram (14) commutes and [Zi] ∈ H2g−2(A,Z) is non-zero, the morphism
ψ : J(Ci)→ A is non-zero. As ρ(A) = 1, the map ψ : J(Ci)→ A must be surjective, the Picard
rank of a non-simple abelian variety being greater than one. Dually, ψ gives rise to a non-zero
homomorphism ψ̂ : Â→ Ĵ(Ci), and the simpleness of Â implies that ψ̂ is finite onto its image.
We claim that the same is true for φ. To prove this, it suffices to show that the kernel of ϕ∗ : Â→
Pic0(Ci) is finite. Since the homomorphism ι∗ : Ĵ(Ci) → Pic0(Ci) induced by the embedding
ι : Ci → J(Ci) is an isomorphism, dualizing the triangle on the left in Diagram (14) proves our
claim. By construction, we have ϕ∗[Ci] = [Zi] = fi ·θg−1/(g−1)! ∈ H2g−2(A,Z). By a version of
Welters’ Criterion (see [BL04, Lemma 12.2.3]), this implies that φ∗

(
θJ(Ci)

)
= fi · θ ∈ H2(A,Z),

where θJ(Ci) ∈ H2(J(Ci),Z) is the canonical principal polarization. In particular, 6 holds.
We claim that also 2 holds. Let j : A0 ↪→ J(Ci) be the embedding of A0 = φ(A) into J(Ci)

and let λ0 : A0 → Â0 be the polarization on A0 induced by j. We have φ∗(λ) = ϕfi·θ = fi ·ϕθ =
fi · λA. We obtain a commutative diagram

A

[fi]A

xx

π //

fi·λA
��

A0

λ0
��

j
// J(Ci)

λ
��

A Â
λ
Â

oo Â0
π̂

oo Ĵ(Ci).oo

ĵ

oo

Let G be the kernel of π. Define K = Ker([fi]A) = Ker(fi · λA) ∼= (Z/fi)2g ⊂ A, and U =
Ker(π̂ ◦ λ0) ⊂ A0. Also define H = Ker(λ0), and observe that H ⊂ U . The exact sequence
0→ G→ K → U → 0 shows that if a, k, u and h are the respective orders of G, K, U and H,
then one has

h|u|k|fi and a|k|fi. (15)

Then define B = Ker(ĵ ◦ λ) ⊂ J(Ci) with inclusion i : B ↪→ J(Ci). It is easy to see that B is
connected. Moreover, we have A0 ∩ B = H and, therefore, an exact sequence of commutative
group schemes

0→ H → A0 ×B
ψ−→ J(Ci)→ 0.
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The morphism α : A×B → J(Ci), defined as the composition A×B π×id
// A0 ×B

ψ
// J(Ci),

is an isogeny. Since the degree of an isogeny is multiplicative in compositions, we have deg(α) =
deg (ψ ◦ (π × id)) = deg(ψ) · deg(π × id) = h · deg(π) = h · a. In particular, p does not divide
deg(α) because h and a divide fi by Equation (15).

Proof of Theorem 1.3. According to Theorem 1.1, it suffices to show that the cohomology class
c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic for [(A, λ)] in a dense subset X of Ag,δ(C)
as in the statement. Define D = diag(δ1, . . . , δg) and define, for each subring R of C, a group

Spδ2g(R) =

{
M ∈ GL2g(R) |M

(
0 D
−D 0

)
M t =

(
0 D
−D 0

)}
.

The isomorphism

Spδ2g(R)→ Sp2g(R), M 7→
(

1g 0
0 D

)−1

M

(
1g 0
0 D

)
induces an action of Spδ2g(Z) on the genus g Siegel space Hg, and the period map defines
an isomorphism of complex analytic spaces Ag,δ(C) ∼= Spδ2g(Z) \ Hg [BL04, Theorem 8.2.6].
Pick any prime number ` > (2g − 1)! and consider, for a period matrix x ∈ Hg, the orbit
Spδ2g(Z[1/`]) · x ⊂ Hg. Let (A, λ) be a polarized abelian variety admitting a period matrix
equal to x. The image of Spδ2g(Z[1/`]) · x in Ag,δ(C) is the Hecke-`-orbit of [(A, λ)] ∈ Ag,δ(C),
i.e. the set of isomorphism classes of polarized abelian varieties [(B,µ)] ∈ Ag,δ(C) for which
there exists integers n,m ∈ Z≥0 and an isomorphism of polarized rational Hodge structures
φ : H1(B,Q)

∼−→ H1(A,Q) such that `n ·φ and `m ·φ−1 are morphisms of integral Hodge structures
(Hecke orbits were studied in positive characteristic in e.g. [Cha95; CO19]). The degree of the
isogeny α = `nφ must be `k for some nonnegative integer k. In particular, if one abelian variety
in a Hecke-`-orbit happens to be isomorphic to a Jacobian, then every abelian variety in that
orbit is `-power isogenous to a Jacobian, see Definition 4.5.

The decomposition of a polarized abelian variety into non-decomposable polarized abelian
subvarieties is unique [Deb96, Corollaire 2], which implies that the following morphism

π :

g∏
i=1

A1,1 → Ag,δ, ([(E1, λ1)], . . . , [(Eg, λg)]) 7→ ([E1 × · · · × Eg, δ1 · λ1 × · · · × δg · λg)]

is finite onto its image. Thus Ag,δ contains a g-dimensional subvariety on which the integral
Hodge conjecture for one-cycles holds. We claim that Spδ2g(Z[1/`]) is dense in Sp2g(R). Since
Spδ2g(Q) arises as the group of rational points of an algebraic subgroup Spδ2g of GL2g over Q
[PR94, Chapter 2, §2.3.2], which is isomorphic to Sp2g over Q, this claim follows from the
well-known fact that for S = {`} ⊂ Spec Z, the algebraic group Sp2g satisfies the strong approx-
imation property with respect to S [PR94, Chapter 7, §7.1] (indeed, this is classical and follows
from the non-compactness of Sp2g(Q`), see [PR94, Theorem 7.12]).

Let V = π (
∏g
i=1 A1,1) ⊂ Ag,δ. Then X ′ := Spδ2g(Z[1/`]) · V = ∪iZi ⊂ Ag,δ(C) is a countable

union of closed analytic subsets Zi ⊂ Ag,δ(C) of dimension dimZi ≥ g such that X ′ ⊂ Ag,δ(C)

is dense in the analytic topology and c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z) is algebraic for
every polarized abelian variety (A, λ) of polarization type δ whose isomorphism class lies in X ′.
To prove the theorem, we are reduced to proving that there exists a similar countable union
X ⊂ Ag,δ(C) whose components are algebraic. For this, it suffices to prove the following claim:
the locus of [(A, λ)] ∈ Ag,δ(C) such that c1(PA)2g−1/(2g−1)! ∈ H4g−2(A×Â,Z)alg is a countable
union W = ∪jYj ⊂ Ag,δ(C) of closed algebraic subsets Yj ⊂ Ag,δ(C). Indeed, if this holds, then
X ′ ⊂W and since each Zi ⊂ X is irreducible, each Zi is contained in an irreducible component
Yj ⊂W . We may then define X as the union of those Yj ⊂W that contain some Zi.

To prove the claim, let U → Ag,δ be a finite étale cover of the moduli stack Ag,δ and let
X → U be the pullback of the universal family of abelian varieties along U → Ag,δ. This gives
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an abelian scheme X × X̂ → U carrying a relative Poincaré line bundle PX/U and arguments
similar to those used to prove Lemma 4.4 show that indeed, for each irreducible component
U ′ ⊂ U , the locus in U ′(C) where c1(PA)2g−1/(2g − 1)! is algebraic is a countable union of
closed algebraic subvarieties of U ′(C).

Finally, Theorem 1.1 implies that for each [(A, λ)] ∈ X, the integral Hodge conjecture for
one-cycles holds for the abelian variety A, so we are done.

Remark 4.7. Using level structures one can show that whenever gcd(
∏
i δi, (2g − 1)!) = 1

(or, more generally, gcd(
∏
i δi, (2g − 2)!) = 1, see Section 5 below), there is a countable union

X = ∪iZi ⊂ Ag,δ(C) as in Theorem 1.3 such that dimZi ≥ 3g − 3. Indeed, let A∗g,δg be the
moduli space of principally polarized abelian varieties of dimension g with δg-level structure.
Then there is a natural morphism φ : A∗g,δg → Ag,δ such that for any x = [(A, λ)] ∈ A∗g,δg(C) with
[(B,µ)] = φ(x) ∈ Ag,δ(C), there exists an isogeny α : A→ B of degree

∏g
i=1 δi, see [Mum71].

Remark 4.8. In the principally polarized case, the density in the moduli space of those abelian
varieties that satisfy the integral Hodge conjecture for one-cycles admits another proof which
might be interesting for comparison. Let Ag be the coarse moduli space of principally polarized
complex abelian varieties of dimension g and let [(A, θ)] be a closed point of Ag. Then by [BL04,
Exercise 5.6.(10)], the following are equivalent: (i) A is isogenous to the g-fold self-product Eg

for an elliptic curve E with complex multiplication, (ii) A has maximal Picard rank ρ(A) = g2,
(iii) A is isomorphic to the product E1 × · · · × Eg of pairwise isogenous elliptic curves Ei with
complex multiplication. If any of these conditions is satisfied, then A satisfies the integral Hodge
conjecture for one-cycles by Theorem 1.2. Moreover, the set of isomorphism classes of principally
polarized abelian varieties (A, θ) for which this holds is dense in Ag by [Lan75]. For an explicit
example in dimension g = 4 of a principally polarized abelian variety (A, θ) that satisfies one of
the equivalent conditions above, but which is not isomorphic to a Jacobian, see [Deb87, §5].

5 The integral Hodge conjecture for one-cycles up to factor n

In this section, we study a property of a smooth projective complex variety that lies somewhere
in between the integral Hodge conjecture and the usual (i.e. rational) Hodge conjecture. The
key will be the following:

Definition 5.1. Let d, k, n ∈ Z≥1 and let X be a smooth projective variety over C of dimension
d. Recall the definition of the degree 2d− 2k Voisin group of X [Voi16; Per20]:

Z2d−2k(X) := Hdg2d−2k(X,Z)/H2d−2k(X,Z)alg = Coker
(
CHk(X)→ Hdg2d−2k(X,Z)

)
.

We say that X satisfies the integral Hodge conjecture for k-cycles up to factor n if Z2d−2k(X) is
annihilated by n (in other words, if n · x ∈ H2d−2k(X,Z)alg for every x ∈ Hdg2d−2k(X,Z)).

Lemma 5.2. Let A be a complex abelian variety of dimension g.

1. Let n be a positive integer and let Fn : CH1(Â) → CH1(A) be a group homomorphism such
that the following diagram commutes:

CH1(Â)

��

Fn // CH1(A)

��

H2(Â,Z)
n·F

Â // H2g−2(A,Z).

Then A satisfies the integral Hodge conjecture for one-cycles up to factor n.

2. Let n ∈ Z≥1 be such that n · c1(PA)2g−2/(2g− 2)! is algebraic. Then a homomorphism Fn as
in 1 exists.
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Proof. Statement 1 follows immediately from the fact that CH1(Â)→ Hdg2(Â,Z) is surjective
by Lefschetz (1, 1). To prove 2, define σA ∈ H4g−4(A×Â,Z) to be the class c1(PA)2g−2/(2g−2)!.
First observe that if σ

Â
:= c1(P

Â
)2g−2/(2g − 2)! ∈ H4g−4(Â × A,Z), then n · σ

Â
is algebraic

since n · σA is. Let Σn ∈ CH2(Â× A) be such that cl(Σn) = n · σ
Â
. This gives a commutative

diagram:

CH1(Â)

cl
��

π∗
1 // CH1(Â×A)

cl
��

·Σn // CH2g−1(Â×A)

cl
��

π2,∗
// CH1(A)

cl
��

H2(Â,Z)
π∗

1 // H2(Â×A,Z)
·n·σ

Â // H4g−2(Â×A,Z)
π2,∗

// H2g−2(A,Z).

Since π2,∗ ◦
(
(−) · n · σ

Â

)
◦ π∗1 = n ·F

Â
, the homomorphism Fn := π2,∗ ◦ ((−) · Σn) · π∗1 has

the required property.

Theorem 5.3. Consider a complex abelian variety A of dimension g.

1. Let n ∈ Z≥1 be such that n · c1(PA)2g−1/(2g−1)! is algebraic. Then n2 · c1(PA)2g−2/(2g−2)!
is algebraic. In particular, A satisfies the integral Hodge conjecture up to factor gcd(n2, (2g−2)!)
in this case.

2. If A is principally polarized, and n ∈ Z≥1 is such that n · γθ ∈ Hdg2g−2(A,Z) is algebraic,
then n · c1(PA)2g−1/(2g − 1)! ∈ Hdg4g−2(A× Â,Z) is algebraic.

3. We have that A satisfies the integral Hodge conjecture for one-cycles up to factor (2g − 2)!,
and Prym varieties satisfy the integral Hodge conjecture for one-cycles up to factor 4.

Proof. 1. By Lemma 3.4, one has

c1(PA)2g−2/(2g − 2)! = (−1)g ·
(
c1(PA)2g−1/(2g − 1)!

)?2
/2! ∈ H4g−4(A× Â,Z).

By Theorem 3.7, this implies that if n · c1(PA)2g−1/(2g− 1)! is algebraic, then also the element
n2 ·c1(PA)2g−2/(2g−2)! is algebraic. Since (2g−2)! ·c1(PA)2g−2/(2g−2)! is algebraic, it follows
that gcd(n2, (2g − 2)!) · c1(PA)2g−2/(2g − 2)! is algebraic. Thus we are done by Lemma 5.2.

2. This follows from Lemma 3.5.
3. This follows from Lemma 5.2, parts 1 and 2 and the fact that if A is a g-dimensional Prym

variety with principal polarization θ ∈ Hdg2(A,Z), then 2 · γθ ∈ H2g−2(A,Z) is algebraic.

6 The integral Tate conjecture for one-cycles on abelian varieties over the
separable closure of a finitely generated field

Let X be a smooth projective variety over the separable closure k of a finitely generated field.
Let k0 be a finitely generated field of definition ofX. A class u ∈ H2i

ét(X,Z`(i)) is an integral Tate
class if it is fixed by some open subgroup of Gal(k/k0). Totaro has shown that for codimension-
one cycles on X, the Tate conjecture over k implies the integral Tate conjecture over k [Tot21,
Lemma 6.2]. This means that every integral Tate class is the class of an algebraic cycle over k
with Z`-coefficients.

Suppose that A/k is an abelian variety, defined over a finitely generated field k0 ⊂ k such
that k is the separable closure of k0. Then the Tate conjecture for codimension-one cycles holds
for A over k by results of Tate [Tat66], Faltings [Fal83; Fal+86], and Zarhin [Zar74b; Zar74a].
By the above, A satisfies the integral Tate conjecture for codimension-one cycles over k. On the
other hand, the Fourier transform defines an isomorphism

FA : H2
ét(A,Z`(1))

∼−→ H2g−2
ét (Â,Z`(g − 1)), (16)

see [Tot21, Section 7]. Since (16) is Galois-equivariant (the Poincaré bundle being defined over
k0) it sends integral Tate classes to integral Tate classes. Therefore, to prove the integral Tate
conjecture for one-cycles on A, it suffices to lift (16) to a homomorphism CH1(A)Z` → CH1(Â)Z` .
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Proof of Theorem 1.6. This follows from the above together with Propositions 3.11 and 3.12.2.

For an abelian variety X over the separable closure k of a finitely generated field, call α ∈
H2•

ét (X,Z`(•)) algebraic if α is in the image of the cycle class map CH(X)⊗Z` → H2•
ét (X,Z`(•)).

Corollary 6.1. Let A and B be abelian varieties defined over the separable closure k of a finitely
generated field, of respective dimensions gA and gB.

1. The classes c1(PA)2gA−1/(2gA−1)! in H4gA−2
ét (A×Â,Z`(2gA−1)) and c1(PB)2gB−1/(2gB−1)!

in H4gB−2
ét (B × B̂,Z`(2gB − 1)) are algebraic if and only if A × Â, B × B̂, A × B and Â × B̂

satisfy the integral Tate conjecture for one-cycles.

2. If A and B are principally polarized, then the integral Tate conjecture for one-cycles holds
for A×B if and only if it holds for both A and B.

3. Let g = gA and let θ ∈ H2
ét(A,Z`(1)) be the first Chern class of an ample line bundle that

induces a principal polarization on A. Suppose that θg−1/(g − 1)! ∈ H2g−2
ét (A,Z`(g − 1)) is

algebraic. Then for every algebraic cohomology class α ∈ ⊕j>0H2j
ét (A,Z`(j)) ⊂ H2•

ét (A,Z`(•))
and every i ∈ Z≥1, the cohomology class αi/i! ∈ H2•

ét (A,Z`(•)) is algebraic.

Proof. 1. See Equation (9).
2. This is true because the minimal cohomology class of the product is algebraic if and only

if the minimal cohomology classes of the factors are algebraic.
3. This follows from Propositions 3.11 and 3.12.2.

Combining Theorems 1.1 and 1.6, we obtain:

Corollary 6.2. Let AK be a principally polarized abelian variety over a number field K ⊂ C and
let AC be its base change to C. Then AC satisfies the integral Hodge conjecture for one-cycles if
and only if AK̄ satisfies the integral Tate conjecture for one-cycles over K̄ = Q̄.

Proof. We view Q̄ as a subfield of C in a way compatible with the inclusion K ↪→ C. For a
prime number `, let θ` ∈ H2

ét(AQ̄,Z`(1)) be the `-adic étale cohomology class of the polarization
of AQ̄. Similarly, define θC ∈ NS(AC) ⊂ H2(AC,Z) as the polarization of the complex abelian
variety AC. By Theorems 1.1 and 1.6, it suffices to show that γθC ∈ H2g−2(AC,Z) is algebraic if
and only if γθ` ∈ H2g−2

ét (AQ̄,Z`(g − 1)) is in the image of (1) for each prime number `.
The Artin comparison theorem gives an isomorphism of Z`-algebras

φ : H•ét(AQ̄,Z`) = H•ét(AC,Z`) ∼= H•(AC,Z)⊗Z Z`.

Since φ is compatible with the cycle class maps clQ̄ : CH(AQ̄)→ H•ét(AQ̄,Z`) and clC : CH(AC)→
H•(AC,Z), we have φ(γθ`) = γθC . Define

R2g−2(A) = Coker
(
CH1(AC)→ H2g−2(AC,Z)

)
.

Then R2g−2(A)⊗ Z` = Coker
(
CH1(AC)Z` → H2g−2(AC,Z`)

)
. Suppose that γθ` is in the image

of (1) for every prime number `. The image of γθC in R2g−2(A)⊗Z` is then zero for each prime
`, which implies that the image of γθC in R2g−2(A) is zero, i.e. γθC is algebraic. Conversely,
suppose that γθC =

∑k
i=1 ni · cl(Ci) for some smooth projective curves Ci over C. The Hilbert

schemeH = HilbAK/K is defined overK; for each i = 1, . . . , k we pick a Q̄-point in the connected
component of H containing [Ci ⊂ A]. This gives smooth projective curves C ′i ⊂ AQ̄ over Q̄. If
Γ =

∑
i ni · [C ′i] ∈ CH1(AQ̄), then we have clC(ΓC) = γθC by Lemma 4.4, hence clQ̄(Γ) = γθ` .

Another corollary of Theorem 1.6 is that the integral Tate conjecture for one-cycles on principally
polarized abelian varieties is stable under specialization. Indeed, one has (c.f. Corollary 4.3):
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Corollary 6.3. Let AK be a principally polarized abelian variety over a number field K and
suppose that AK̄ satisfies the integral Tate conjecture for one-cycles over K̄. Let p be a prime
ideal of the ring of integers OK of K at which AK has good reduction and write κ = OK/p.
Then the abelian variety Aκ̄ over κ̄ satisfies the integral Tate conjecture for one-cycles over κ̄.

Proof. Write S = Spec OK and let A→ S be the Néron model of AK . Let R (resp. Kp) be the
completion of OK (resp. K) at the prime p. The natural composition K → Kp → K̄p induces
an embedding K̄ → K̄p, where K̄p is an algebraic closure of Kp. This gives a commutative
diagram, where the square on the right is provided in [Ful98, Example 20.3.5]:

CH(AK̄)Z`
//

��

CH(AK̄p
)Z`

//

��

CH(Aκ̄)Z`

��

⊕r≥0H2r
ét (AK̄ ,Z`(r))

∼ // ⊕r≥0H2r
ét (AK̄p

,Z`(r))
∼ // ⊕r≥0H2r

ét (Aκ̄,Z`(r)).

(17)

Now the principal polarization λK : AK
∼−→ ÂK extends uniquely to a homomorphism λ : A→ Â

by the Néron mapping property [BLR90, Section 1.2, Definition 1] and since the same is true
for the inverse λ−1

K : ÂK
∼−→ AK we find that λ is an isomorphism. In particular, we see that Aκ̄

is principally polarized and that the class in CH1(AK̄)Z` of a theta divisor on AK̄ is sent to the
class in CH1(Aκ̄)Z` of a theta divisor on Aκ̄. Thus, the minimal class γθK̄ ∈ H2g−2

ét (AK̄ ,Z`(g−1))

is sent to the minimal class γθκ̄ ∈ H2g−2
ét (Aκ̄,Z`(g − 1)) by the isomorphism on the bottom of

Diagram (17). It follows that γθκ̄ is algebraic which by Theorem 1.6 means that we are done.

Finally, let us prove Theorem 1.7. The theorem follows from Theorem 1.6 together with a
result of Chai on the density of an ordinary isogeny class in positive characteristic [Cha95].

Proof of Theorem 1.7. For any t ∈ Ag(k), let (At, λt) be a principally polarized abelian variety
such that [(At, λt)] = t. Let A = E1 × · · · × Eg be the product of g ordinary elliptic curves
Ei over k and provide A with its natural principal polarization. Let x ∈ Ag(k) be the point
corresponding to the isomorphism class of A. Let q > (g− 1)! be a prime number different from
p and let Gq(x) ⊂ Ag(k) be the set of isomorphism classes y = [(Ay, λy)] that admit an isogeny
φ : Ay → Ax with φ∗λx = qN ·λy for some nonnegative integer N . We claim that Ay satisfies the
integral Tate conjecture for one-cycles over k for any y ∈ Gq(x). Indeed, for such y there exists a
nonnegative integer N such that the isogeny [qN ] : Ay → Ay factors through Ax. Consequently,
q(2g−2)·N · γθ is algebraic for the first Chern class θ of the principal polarization on Ay, which
implies that γθ is algebraic (as q > (g − 1)!). Thus, the claim follows from Theorem 1.6. Now
Gq(z) is dense in Ag for any ordinary principally polarized abelian variety (Az, λz) by a result
of Chai [Cha95, Theorem 2]. Therefore, Gq(x) is dense in Ag and the proof is finished.
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