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Abstract

We revisit the original approach of using deep learning and neural networks to solve differential

equations by incorporating the knowledge of the equation. This is done by adding a dedicated

term to the loss function during the optimization procedure in the training process. The so-called

physics-informed neural networks (PINNs) are tested on a variety of academic ordinary differential

equations in order to highlight the benefits and drawbacks of this approach with respect to standard

integration methods. We focus on the possibility to use the least possible amount of data into the

training process. The principles of PINNs for solving differential equations by enforcing physical

laws via penalizing terms are reviewed. A tutorial on a simple equation model illustrates how to

put into practice the method for ordinary differential equations. Benchmark tests show that a

very small amount of training data is sufficient to predict the solution when the non linearity of

the problem is weak. However, this is not the case in strongly non linear problems where a priori

knowledge of training data over some partial or the whole time integration interval is necessary.

a Corresponding author: hubert.baty@unistra.fr
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I. INTRODUCTION

Neural networks (NN) are widely used to solve problems in a variety of domains including

computer vision, language processing, game theory, etc., as one can see in Le Cun et al.

(2015) and references therein. The use of machine learning approaches in the field of scientific

computing including differential equations is relatively recent. Indeed, the idea of leveraging

prior knowledge of the physics in the learning process of a NN network was introduced by

Raissi et al. (2017, 2019).

Among other things, NN are a tool that can be used for supervised learning, one of the

main machine learning settings. Supervised learning consists in finding a mapping function

between given input objects and their associated output values. This is done by using

knowledge about a dataset containing several input/output pairs. This dataset is used to

parameterize the NN such that it minimizes the error between solutions predicted by the NN

and true known solutions in the dataset. The convergence is achieved by minimizing a loss

function which expression is based on the mean squared error. Finding “good” parameters

is achieved by solving an optimization problem using a gradient algorithm that relies on

automatic differentiation to back-propagate gradients through the network (Baydin et al.

2018).

In the case of differential equations, we can apply the supervised learning setting. Indeed,

solving a given differential equation comes down to finding a mapping function between some

physical input variable values (position, time, . . . ) and a corresponding unknown physical

quantity which is the solution of the equation. Hence, by training a NN we can obtain a

non-linear approximation of the solution, which can be used to instantaneously predict the

equation’s solution at any given input point. However, a first strong limitation comes from

the impossibility to extrapolate the desired solution for input variable values situated outside

the range of the training data. In other words, the NN is a bad extrapolation function.

Second, a minimum amount of training data is required, otherwise, wrong solutions or even

absence of convergence can occur during the training process.

In order to tackle these limitations, classical NN can be enhanced by giving it additional

information corresponding to the physics. These approaches are generally called physics-

informed neural networks (PINNs), in the context of simulating physical and engineering

systems modeled by differential equations. The method consists in evaluating the solution at
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some other set of data points (called collocation points) at which the estimated solution must

ensure the equations. A new loss function corresponding to the physics is thus defined and

added to the previous one in the learning process. In other words, the training is penalized by

this additional constraint. The space of available solutions is thus restricted, being partly

driven by the original data and also partly driven by the physics. When solving partial

differential equations (PDEs), one is particularly interested in using only a very minimal

known data set, as for example the solution on the boundary and at the initial time. Then,

in this sense, the PINNs approach can be said to be mostly physically-driven, as opposed to

data-driven. In this work, we focus on such motivation, even if PINNs can also be used for

many other aims like inverse or physics discovery problems (see the discussion and conclusion

in the last section). One can also refer to Cuomo et al. (2022) and Karniadakis et al. (2021)

for reviews.

The paper is organized as follows. We first review the basics of PINNs for PDEs in Section

2. Section 3 is devoted to a tutorial of the method to solve a simple first order ordinary

equation. The results of benchmark tests performed on a series of different academic ordinary

differential equations (with increasingly non-linearity) are presented in Section 4. Finally, a

discussion and conclusions are drawn in Section 5, with a particular attention on highlighting

the advantages and drawbacks of the PINN approach versus standard integration schemes.

II. PHYSICS-INFORMED NEURAL NETWORKS

A. The basics of PINNs for PDE

We consider a partial differential equation (PDE) written in the following residual form

F(x, t, ux, ut, ...) = 0, x ∈ Ω, t ∈ [t0, T ] , (1)

with the imposed initial condition u(x, t0) = u0(x). A boundary condition must be also

specified as, u(x, t) = uΓ(t) for x ∈ ∂Ω (a Dirichlet-like condition is chosen for simplic-

ity). Ω and ∂Ω represent the spatial domain and associated contour, respectively. The

variables x ∈ Rd (d being a spatial dimension) and t ∈ R denote the spatial coordinate

and time, respectively. Note that higher order differential operators can be also included in

correspondence with multidimensional system of equations instead of Equation 1.
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We introduce a neural network approximating the desired solution u(x, t) of the PDE

with ûθ ' u, where θ is a set of model parameters. An artificial feed forward neural

network is taken (see Figure 1), with neurons organized in different layers in order to perform

calculations in a sequential way. A single input layer containing the input variables (x, t) is

connected to a few hidden layers (two layers with four neurons in the schematic example of

Figure 1), and finally to an output layer for the solution ûθ. Neurons are only connected in

adjacent layers, and are not linked inside each layer. The neural network of L + 1 layers is

a non linear approximation function, N L(z), that can be expressed recursively as follows.

The input vector is denoted by z ∈ Rd
i , with di = d + 1, as it includes the spatio-temporal

coordinates (x, t). Thus,

N 0(z) = z. (2)

For the hidden layers (1 ≤ l ≤ L− 1), we have

N l(z) = σ(W lN l−1(z) + bl), (3)

where we denote the weight matrix and bias vector in the l-th layer by W l ∈ Rdl−1×dl

and bl ∈ Rdl (dl being the dimension of the input vector for the l-th layer). σ(.) is a non

linear activation function, which is applied element-wisely. In this work, me choose the most

commonly used hyperbolic tangent tanh function. For the (final) output layer, we get

N L(z) = W LN L−1(z) + bL, (4)

and finally ûθ(x, t) = N L(z). The network can be also written as a sequence of non linear

functions

ûθ(x, t) = (N L ◦ N L−1... N 0)(x, t), (5)

where the operator ◦ denotes the composition and θ = {W l, bl}l=1,L represents the trainable

parameters (weight matrices and bias vectors) of the network. The goal is to calibrate its

parameters θ such that ûθ approximates the target solution u(x, t).

B. The training of PINNs for PDE

The resolution of the PDE is reduced to an optimization problem as follows, and as

schematized in Figure 1. We first assume that a set of Ndata data is available for the known

solution at different times, i.e. {tidata,xidata, uidata}
Ndata
i=1 that are the training data, which
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FIG. 1. Schematic representation of the structure for a Physics-Informed Neural Network applied

to the resolution of a differential equation. The input layer has two input variables (i.e. two

neurons) noted x1 and x2 representing for example a space and a time coordinate respectively.

Two hidden layers with four neurons per layer are connected with the input and the output layer,

where the latter has a single variable (one neuron) representing the desired solution ûθ.

include the initial condition. A corresponding loss function Ldata (using the mean square

error formulation) can be deduced from the residual as

Ldata(θ) =
1

Ndata

Ndata∑
i=1

∥∥ ûθ(zi)− uidata
∥∥2
. (6)

In a similar way, defining a loss function Lb corresponding to the knowledge of the boundary

condition, we have

Lb(θ) =
1

Nb

Nb∑
i=1

∥∥ ûθ(zi)− uib
∥∥2
, (7)

where a set of Nb known data is imposed via {tib,xib, uib}
Nb
i=1. Finally, another loss function

for the equation itself can be also obtained as,

LF(θ) =
1

Nc

Nc∑
i=1

‖ F(ûθ(zi))‖2 , (8)

that must be evaluated on a set of Nc data points (generally called collocation points) as

explained below. Indeed, one advantage of the neural network approach is given by the

possibility to evaluate exactly the differential operators at the collocation points in LF and

F by using automatic differentiation. The automated differentiation is also used to compute
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derivatives with respect to the network weights (i.e. θ), that is necessary to implement the

optimization procedure (see below). Note that in this way, the derivatives can be obtained

at machine precision, contrary to the use of some standard numerical scheme. Moreover,

the latter operations are greatly facilitated by Python open source software libraries like

Tensorflow or Pytorch.

A composite loss function is generally formed as

L(θ) = ωdataLdata(θ) + ωbLb(θ) + ωFLF(θ), (9)

where an optimal choice of values for hyper-parameters (ωdata, ωb, ωF) allow to ameliorate the

eventual unbalance between the partial losses during the training process. These weights can

be user-specified or automatically tuned. In the present work, for simplicity we fix the ωdata

value to be constant and equal to unity, and the other weight parameters are determined

with values varying from case to case.

A gradient descent algorithm is used until convergence towards the minimum is obtained

for a predefined accuracy (or a given maximum iteration number) as

θi+1 = θi − η∇θL(θi), (10)

for the i-th iteration also called epoch in the literature, leading to θ∗ = argminθ L(θ),

where η is known as the learning rate parameter. In this work, we choose the well known

Adam optimizer. A standard automatic differentiation technique is necessary to compute

derivatives (i.e. ∇θ) with respect to the NN parameters (e.g. weights and biases) of the

model (Raissi et el. 2019).

C. The ODE case

In this study, we focus on ordinary differential equations (ODE). Thus, the spatial de-

pendence is ignored in Equation 1, and we are left with a desired solution u(t) and its

approximation ûθ(t). The input first layer of the neural network is supplied with Ndata val-

ues at different times ti ∈ [t0, T ] corresponding to udata(ti) = uidata (with i = 1, Ndata). The

initial condition corresponds to the first point, udata(t0) = u1
data. In this work, for simplicity,

we assume a uniform distribution of the Ndata points within a subinterval of the full time

interval domain. As a consequence of the ODE particular case, we are not concerned with
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the boundary condition, thus ωb = 0. However, the central part of the PINNs concept

concerns the loss function LF(θ), that is evaluated at Nc collocation points which are not

necessarily coinciding in time values with Ndata. The distribution of Nc is also taken to be

uniform in the full time domain, or on a subinterval of it.

Some of the Pytorch Python-based codes and data-sets accompanying this manuscript are

available on the GitHub repository at https://github.com/hubertbaty/PINNS-EDO. These

have been inspired by the codes provided on https://benmoseley.blog and available on

GitHub repository at https://github.com/benmoseley/harmonic-oscillator-pinn. We have

chosen to use very simple deep feed-forward networks architectures with hyperbolic tangent

activation functions. In this work, the optimal choice of detailed architecture of the network

(number of hidden layers, number of neurons per layer) and of hyperparameters (learning

rate, loss weights) is done manually. Although more systematic/automatic procedures could

be used, this is a more complicated task not considered in this work.

Note that we use the notation y for the desired ODE solution in the following instead of

u introduced in the previous section for a PDE case.

FIG. 2. Tutorial solution ŷθ(t) (red solid line) predicted by the normal NN for nt = 4000 iterations

(in left panel) and nt = 24000 iterations (in right panel) respectively, and compared to the exact

solution (blue hatched line). The chosen training data set values are indicated using circles (with

Ndata = 101). The physical information is not used, i.e. ωF = 0.
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FIG. 3. Loss function as a function of the number of epochs (i.e. number of iterations nt),

corresponding to the previous figure.

FIG. 4. Tutorial solution obtained in two cases using the normal NN, for a low number of data

(Ndata = 26) uniformly taken within the whole time domain (left panel), and for Ndata = 61 taken

within a left subinterval (right panel). The convergence is stopped at nt = 48000.

III. ILLUSTRATION OF THE METHOD ON A SIMPLE TUTORIAL EXAMPLE

A. The differential equation: a tutorial example

Let us consider the following equation example, called tutorial equation below, to be

solved for y(t),

dy

dt
+ 0.1t− sin(πt/2) = 0, (11)

fo t ∈ [0, 30], using the initial condition y0 = y(0) = 1. As can be seen below, the corre-

sponding solution contains two time scales, a first one due to the sinusoidal forcing term,

and a second one due to the linear term in t
10

that gives an exponentially decreasing envelope

amplitude.
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B. Solving with a normal neural network

We first consider a situation without any constraint coming from the differential equation,

i.e. ωF = 0. As we are left with data coming only from the exact solution, we call it the

normal neural network. The training procedure is illustrated on Figure 2 for two training

steps (i.e. nt), at nt = 4000 and nt = 24000. The solution is not fully converged for

nt = 4000, contrary to nt = 24000. This is in agreement with the history of the loss function

(see Figure 3), where the convergence is already roughly obtained when nt ' 15000. A

learning rate of η = 3× 10−3, with ωdata = 1 is chosen. A choice of 3 hidden layers with 32

neurons per layer is also done. The exact solution that is drawn for comparison, is obtained

using a classical Runge-Kutta method of order two. Note that the later is also useful to

extract the training data corresponding to the Ndata values, yidata. Figure 2 clearly illustrates

the ability of the normal NN to approximate the solution for a relatively high number of

Ndata values, as Ndata = 101 is employed.

However, when the number of training points is not enough, the convergence towards the

solution is bad, or it can completely fail. This is illustrated in two cases at the end of the

convergence process stopped at nt = 48000. Indeed, the results for the first case obtained

for Ndata = 26 values uniformly chosen within the full time interval, show bad convergence

properties as illustrated in Figure 4 (left panel). Moreover, when the points are distributed

only within a subinterval (with Ndata = 61), Figure 4 (right panel) shows that the method

completely fails to obtain an acceptable solution in the other subinterval that is free of

training data. In other words, the NN is not able to correctly extrapolate the solution in

these two cases.

C. Solving with PINNs

In this sub-section, we consider now the possibility to add the constraint on the loss

function with a non zero contribution coming from the differential equation at some chosen

collocation points, i.e. ωF 6= 0. In other words, we minimize by adding a weighted partial

loss function term ωFLF(θ), where F = dy
dt

+0.1t− sin(πt/2). Typically, we define a uniform

data set of Nc = 50 points within the full time interval. The results of the training process

is illustrated for the two cases previously studied using the normal network, for which the
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FIG. 5. Tutorial solution obtained in the two cases of the previous figure with PINNs, where a

set of Nc = 50 collocation points is used to calculate an ODE loss function LF . The cases with

Ndata = 26 data points taken within the whole interval, and with Ndata = 61 data values within a

left subinterval, are plotted in left/right panel respectively. The time values (for collocation points)

at which the physical loss function is evaluated are indicated with the small green circle on t axis.

FIG. 6. Tutorial solution obtained with PINNs for Ndata = 61 training data values taken within a

left subinterval, and Nc = 30 collocation points taken within a complementary right subinterval.

FIG. 7. (Left panel) Tutorial solution obtained with PINNs, with Ndata = 1 (initial condition

imposed at t = 0), and Nc = 50 collocation points. (Right panel) Corresponding history of the loss

function.
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convergence is not satisfaying. The results plotted in left/right panels of Figures 5, display a

spectacular amelioration after nt = 40000 iteration steps in both cases. Additionally, Figure

6 shows that taking collocation points only within a right subinterval (for the second above

case) can also be sufficient. Note that, a minimum value for Nc is required with an exact

value that depends on the parameters of the network (i.e. number of layers, neurons, etc.).

The distribution of the collocation points can also influence the results, but the philosophy

behind the PINNs technique remains. The learning rate together with the loss weight values

can also influence the convergence of the gradient descent algorithm. Indeed, a too high

value of η leads to strong oscillations in the loss function, whilst a too small value can

induce a very small convergence speed. The combination of relative weights (ωdata and ωF)

is also important, in order that the two partial losses converge at a similar rate. For the

example studied above, we have taken optimal values ωdata = 1, and ωF = 6× 10−2 for the

weights of the two partial losses.

If we reduce the training data amount to the minimum possible, i.e. only one point

corresponding to the initial value is taken, the solution obtained is also excellent as one can

see in left panel of Figure 7. The corresponding loss function is also plotted in right panel

of Figure 7. Note that, in this case, an optimal choice of 4 hidden layers with 32 neurons

per layer is done.

Now the question is, does the method work so nicely for any (ODE) differential equation

for which a very reduced amount of data is known. In order to answer this question, we

investigate a rather large number of academic cases in the following section, including the

important class of second order differential equations.

IV. DIFFERENT EXAMPLES - BENCHMARK TESTS

A. Harmonic oscillator

In this sub-section, we first consider the following harmonic oscillator equation,

d2y

dt2
+ ω2

0y = 0, (12)

where ω0 is the normalized angular frequency, and where the time domain considered is

t ∈ [0, 1]. We also take the initial conditions y(t = 0) = y0 = 1 and dy
dt

(t = 0) = 0. Thus, the

exact solution is a simple cosine function, i.e. y(t) = cos(ω0t). Our PINNs algorithm is first
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used to integrate the oscillator equation for ω0 = 20, i.e. for a time interval slightly larger

than 3 periods. Note that, in order to evaluate the corresponding ODE loss function LF ,

a second order automatic differentiation must be used for this example. The choice of the

activation function is important to this respect (i.e. the hyperbolic tangent in this study).

The solution predicted when only one point corresponding to the initial value (Ndata = 1)

is imposed, is plotted in left panel of Figure 8. It is clearly bad for the parameters taken

in this case. The quality of the result can slightly varies with this choice, but taking only

one training data value is in general not sufficient to lead to an acceptable solution. This

is not surprising, as a classical integration method (either analytical or numerical) requires

two initial conditions for such second order differential equation.

The quality of the solution is greatly ameliorated by adding a second data value (i.e.

Ndata = 2). Another second improvement comes from adding another constraint, that is the

conservation of the total energy E = 1
2
(dy
dt

)2 + 1
2
ω2

0y
2 (up to addition by a constant which

value is determined by the initial conditions). Indeed, we can add to the total loss another

partial loss function defined as

LE =
1

2

(
dy

dt

)2

+
1

2
ω2

0y
2 − 1

2
ω2

0y
2
0, (13)

with a corresponding weight ωE to be determined. More explicitly, we have L(θ) =

ωdataLdata(θ) +ωELE(θ) +ωFLF(θ). These new results are visible in right panel of Figure 8

for the predicted solution obtained at nt = 54000. Moreover in Figure 9, one can compare

the corresponding mean square error (MSE) and loss histories evaluated for 1000 points

taken within the full time domain. One can clearly see the improvement with a lower

minimum MSE value by more than two orders of magnitude obtained in the improved

procedure. This is remarkable, as this is despite the fact that the loss function history (also

visible on the same figure) converges in a similar way in the two cases.

Note also that, with these two improvements we have obtained that a relatively low

minimum value for the number of collocation points with Nc ' 24 is sufficient. Such very

small minimum number of collocation points is a great advantage compared to a standard

integration method for which the small time step restriction (because of stability and/or

precision) requires a much larger number of points within the time interval. The choice of

the other hyperparameters are η = 3 × 10−4, ωdata = 1, and ωF = ωE = 3 × 10−4. Three

hidden layers with 32 neurons per layer are taken for the neural network architecture. We

12



FIG. 8. (Left panel) Harmonic oscillator predicted solution obtained with PINNs, using Ndata = 1

(initial condition imposed at t = 0), and Nc = 40 collocation points. (Right panel) Predicted solu-

tion obtained with PINN, with Ndata = 2 and the additional constraint on the energy conservation

(see text).

FIG. 9. Histories of the total loss function L(θ) and MSE corresponding to the two panels of

the previous figure respectively. The MSE is evaluated using the standard expression, MSE =

1
Neval

∑Neval
i=1

∥∥ ŷθ(ti)− yieval∥∥2
, where the evaluation ŷθ(ti) is done on Neval = 1000 points uniformly

distributed within the whole time interval, and yieval is the expected exact solution at t = ti.

have also investigated longer time cases with higher ω0 values, typically up to ω0 ' 130 (not

shown). The conservation of energy is fundamental to this respect, otherwise the algorithm

doesn’t converge towards the expected solution for such long time integration.
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FIG. 10. PINNs solution obtained for the non linear pendulum with Ndata = 1 and Nc = 40

collocation points, using a NN architecture of 3 hidden layers (left panel) and 4 hidden layers

(right panel).

B. Non linear pendulum

Second, as a natural extension of the harmonic oscillator, we consider the non linear

pendulum example below,

d2y

dt2
+ ω2

0 sin(y) = 0, (14)

where ω0 is the normalized angular frequency (a value ω0 = 25 is taken below), and where

the time domain considered is t ∈ [0, 1]. We also choose the initial conditions y0 = 0.1

and dy
dt

(t = 0) = 40. As for the harmonic oscillator, we investigate the possibility to use

one single point for Ndata corresponding to the initial condition y0, the conservation of the

total energy E being imposed via a non zero ωELE(θ) term with E = 1
2
(dy
dt

)2 − ω2
0 cos(y)

(up to addition by a constant which value is determined by the initial conditions). The

hyperparameters used are η = 1 × 10−3, ωdata = 1, ωF = 3 × 10−6, and ωE = 3 × 10−7.

When the NN architecture is composed of 4 hidden layers with 32 neurons per layer, the

converged solution obtained for 72000 epochs is correct. However, taking 3 layers (instead

of 4) leads to a wrong solution even if the loss function displays convergence. Indeed, in

the latter case, the calculated solution is shifted with respect to the exact solution, and the

MSE is dramatically high. This is illustrated in Figures 10 and 11.

Of course, taking two data points (i.e. Ndata = 2) allows a nice convergence towards the

expected exact solution (not shown) for 3 and 4 hidden layers. And, as for the harmonic

oscillator equation, the minimum required value for the number of colocation points Nc

remains rather low, as it is of order 35 now.

We have also investigated the possibility to use an equivalent form of a system of two
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FIG. 11. History of the total loss function L(θ) and MSE corresponding to the two cases of

the previous figure (left and right panel for Ndata = 1 and Ndata = 2 respectively). The MSE

is evaluated using the standard expression, MSE = 1
Neval

∑Neval
i=1

∥∥ ŷθ(ti)− yieval∥∥2
, where the

evaluation ŷθ(ti) is done on Neval = 1000 points uniformly distributed within the whole time

interval, and yieval is the expected exact solution at t = ti.

first order differential equations, as done in analytical or classical numerical integrations.

Indeed, we can consider the following equivalent system:


dy1

dt
− ω0y2 = 0,

dy2

dt
+ ω0 sin(y1) = 0,

(15)

where y1 represents the desired solution (i.e. the previous y parameter) and y2 is its as-

sociated time derivative dy
dt

divided by ω0. The advantage of the latter normalisation is

important, as it facilitates the use of the NN network because in this way y1 and y2 have

values of the same order of magnitude. Otherwise, two networks (one per variable) must

probably be employed. We have thus used our PINNs algorithm with an input layer con-

taining one neuron for t, 4 hidden layers with 32 neurons per layer, and a final output layer

containing two neurons for y1 and y2. The partial loss function for the data, Ldata, is calcu-

lated using two points at t = 0 now, one value for y1(t = 0) = 0.1 and one for y2(t = 0) = 1.6.

The procedure is equivalent to a standard integration scheme using one initial condition for

the solution and one for its derivative. The partial loss for the ODE, LF = LF1 + LF2 ,

is now the sum of two terms corresponding to the two equations respectively. The results

of the previous example with Nc = 40 are successfully obtained using the following hyper

parameters, η = 3 × 10−3, ωdata = 1, ωF = 1 × 10−1, and ωE = 2 × 10−6, as plotted in

15



FIG. 12. PINNs solution obtained for the non linear pendulum using an equivalent formulation

with two equations for the two variables y1 and y2 (see text) with Ndata = 2 (one point for y1 and

one for y2, i.e. for the two initial conditions at t = 0) and Nc = 40 collocation points. The energy

conservation is also applied. Solutions as functions of time and in phase space are plotted in left

and right panels, respectively.

Figure 12. The corresponding MSE is similar to the MSE previously obtained for the

PINN solution of the single second order equation using Ndata = 2, with the constraint on

the energy conservation via a LE partial loss function. Note that, the total energy with the

system formulation is, E = ω2
0

(
y22
2
− cos(y1)

)
(up to a addition by a constant).

C. Anharmonic oscillators

If we consider an anharmonic potentiel of the form y4

4
(instead of y2

2
for the harmonic

oscillator), we get the corresponding ODE with a non linear restoring force ∝ y3,

d2y

dt2
+ ω2

0y
3 = 0. (16)

The PINNs integration for this problem leads to results and conclusions very similar to

the non linear pendulum case. Indeed, the use of two training data points with energy

conservation constraint considerably ameliorate the convergence. Thus we have E = 1
2
(dy
dt

)2+

1
4
ω2

0y
4 (up to addition by a constant which value is determined by the initial conditions).

This is illustrated in Figure 13 for a case with y0 = 1.5 and ω0 = 15.5. We have chosen the

following hyper parameters, η = 1.5× 10−3, ωdata = 1, ωF = 1 × 10−5, and ωE = 1× 10−6.

The choice of five hidden layers for the neural network seems to be a better optimal choice

for this equation. Note also that for the latter example, a minimum number of collocation
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FIG. 13. PINN solution obtained for the anharmonic oscillator with Ndata = 2 and Nc = 40.

points of Nc = 37 seems to be necessary, that is slightly higher than for the non linear

pendulum. However, as we have not investigated a large range of different initial parameters,

this conclusion is not firm and only gives a rough tendency.

It is also instructive to consider a more complex dynamical system corresponding to a

double well potential of the form y4

4
− y2

2
, and according to the differential equation,

d2y

dt2
+ ω2

0(y3 − y) = 0. (17)

For this example, two families of solution exist (see below). In order to easier impose the

initial conditions, we also take the equivalent system of two equations (as done for the non

linear pendulum), 
dy1

dt
− ω0y2 = 0,

dy2

dt
+ ω0(y3

1 − y1) = 0.

(18)

Indeed, taking the initial condition y(0) = y0 = 1.8 , or equivalently y1(0) = 1.8, together

with zero derivative y2(0) = 0, a first solution is obtained as plotted in Figure 14. We use

ω0 = 12. The predicted solution is nicely reproduced when compared to the exact expected

solution (obtained using a Runge-Kutta integration). For this example, two training data

points seems to be necessary (i.e. Ndata = 4), with the use of the energy conservation as

E = ω2
0(
y22
2

+
y41
4
− y21

2
). We have also chosen the following hyper parameters, η = 1 × 10−3,

ωdata = 1, ωF = 6× 10−3, and ωE = 6× 10−5, but they must be adjusted from case to case.

A second solution corresponding to y(0) = y0 = 1.38 (with zero initial derivative condition)

is also trained and nicely obtained, as one can see in Figure 15.

However, taking an initial condition closer to the critical value y0 =
√

2, our PINN

algorithm fails to converge to the exact solution. This is not completely surprising, as this
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FIG. 14. PINNs solution obtained for the double well oscillator system for the initial condition

y0 = 1.8. We use Ndata = 4 with 2 points for each variable, and Nc = 40 collocation points. A NN

architecture with five hidden layers is taken. The energy conservation is also applied. Solutions

are plotted as functions of time (left panel), and in phase space (right panel).

FIG. 15. PINNs solution obtained for the double well oscillator system for the initial condition

y0 = 1.38. We use Ndata = 4 with 2 points for each variable, and Nc = 40 collocation points. A NN

architecture with five hidden layers is taken. The energy conservation is also applied. Solutions

are plotted as functions of time (left panel), and in phase space (right panel).

corresponds to a threshold separating solutions having orbits in the phase space trapped in

the well centered on (y1 = 0, y2 = 0) with solutions having orbits centered on (y1 = 1, y2 = 0).

In other words, two types of solutions coexist for y0 =
√

2.

D. Van Der Pol oscillator

We now consider the Van Der Pol (VDP) oscillator equation given by,

d2y

dt2
+ ω2

0y − εω0(1− y2)
dy

dt
= 0, (19)
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FIG. 16. Exact solution of the VDP oscillator equation obtained for ε = 5 and the initial conditions

y(t = 0) = 1, dy
dt (t = 0) = 0. The solution y(t) as a function of time is plotted in the left panel,

and in phase space in the right panel.

FIG. 17. Same as in the previous figure for ε = 1.

where ω0 is a normalized angular velocity, and ε is a parameter having a value which deter-

mines the amplitude of a limit cycle in the phase space (see below). Note that the harmonic

oscillator is recovered for ε = 0. The particularity of the system is the existence of a limit

cycle as illustrated in Figure 16, obtained using a classical Runge-Kutta integration (of order

4) for ω0 = 15, and ε = 5, for t ∈ [0, 3]. When the parameter ε has a lower value, the system

exhibits a limit cycle with less distortion in the phase space, as illustrated in Figure 17.

We have thus used our PINNs algorithm to explore its behavior for three cases corre-

sponding to three values of ε, i.e. ε = 1
3
, 1, and 5. We have chosen ω0 = 15 for t ∈ [0, 1.5].

We also take the initial condition y0 = 1. The results are plotted in Figure 18, for a neural

network having three hidden layers with 32 neurons per layer. The number of training data

and collocation points, as well as the weight ωF associated to the equation (ωdata = 1 being
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fixed) are varying from case to case (see the legend). The results clearly show that increasing

the non linearity (via the ε parameter) require a higher number of points. This is the case

of the number of collocation points, but also of the number of training data points. Indeed,

for the ε = 5 case we need a collection of training data points distributed within the whole

time domain, while for the smallest ε case, three points at early times are sufficient to obtain

a convergence towards the exact solution. This is clearly a strong limitation of the PINN

algorithm when one want to solve highly non linear problems.

V. DISCUSSION AND CONCLUSION

In this work, we have reviewed the basic concepts of using neural networks in order to

integrate differential equations. More specifically, we have focused on the use of the equations

knowledge to penalize the convergence of the training process, and generally referred as

physics-informed neural networks in the literature. A tutorial example on a simple ODE is

presented, with the aim to illustrate how adding a partial loss function associated to the

physics information (i.e. via the differential terms ensuring the equation) can considerably

ameliorate the results of a normal neural network.

Benchmark tests on different second order ODEs are used in order to highlight the ben-

efits and drawbacks of this approach when compared to a traditional numerical integration

method. When the problem equation displays weak non linearity, the training procedure

is successful using known data representing only the initial conditions (as for a classical

integration method). The first advantage of PINNs in this case, is the need to use a very

low number of collocation data points. Indeed, for the problems illustrated in this work,

between 20 and 40 points are sufficient. An integration using a Runge-Kutta method (of

order two) for the same equations would require a number of points higher by at least one

order of magnitude. The second advantage is that, once trained the solution for a given time

(case of an ODE) is instantaneously predicted. This is not the case for a classical integration

for which a new integration procedure must be realized. However, when the non linearity is

increased (ses VDP oscillator tests with increasing ε parameter), the knowledge of a higher

amount of training data is required with also a higher number of collocation data points.

The previously cited benefits of PINNs are consequently reduced. Nevertheless, the second

benefit remains. The other drawbacks of the method concern the lack of general automatic
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FIG. 18. PINN solution of the VDP equation obtained for three values of the parameter ε. In top

panel, a value ε = 1
3 is used, with the hyper parameters η = 7×10−4, ωdata = 1, and ωF = 1×10−4,

and Nc = 48. In middle panel, a value ε = 1 is used, with the hyper parameters η = 7 × 10−4,

ωdata = 1, and ωF = 1×10−4, and Nc = 60. In bottom panel, a value ε = 5 is used, with the hyper

parameters η = 7× 10−4, ωdata = 1, and ωF = 1× 10−5, and Nc = 70

procedure for a fine tuning of the hyperparameters in order to have an optimal convergence

during the training. Nevertheless, the most interesting point of the PINNs is its meshfree

property, contrary to traditional integration methods.

This approach remains relatively recent, and many ameliorations are expected in the next

years. In this work, we have focused on the original PINNs method based on the automatic
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differentiation to evaluate the equation terms at collocation data points. There is already a

wealth of variants to do it differently in order to improve the efficiency of the optimization

procedure. As a very incomplete list of NN-based ideas to solve PDEs, we have methods

based on, learning the solution map, and variational formulation (Ritz and Galerkin). In the

context of solving differential equations, PINNs approach can be also used for other different

problems. For example, it is useful for inverse problems when data are known at some time

different from the initial conditions that are desired (Raissi et al. 2019). Indeed, a neural

network does not make difference between the two boundaries of the time interval. Second,

PINNs technique can be also used when some terms of the differential equations are not

completely known, and which can be added as additional inputs in the input layer. The aim

of the latter problems concerns the data-driven discovery of the governing equations (Rudy

et al. 2017).
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