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Abstract11

This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize12 

grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With 13 

this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over 14 

the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a 15 

GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate 16 

three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of 17 

elevation) were computed from the SfM point clouds and were correlated with the median grain size of 18 

the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and 19 

Wolman grain size. The procedure employed has potential for the rapid and continuous characterization 20 

of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has 21 

been successfully used to produce spatially continuous grain size information on exposed gravel bars22 

and to explore textural changes following flow events.23 

Keywords: SfM, photogrammetry, grain size, roughness, braided rivers, gravel bed rivers24 
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1. Introduction25

Grain roughness and grain size distribution (GSD) of riverbed sediment in gravel-bed rivers have been 26 

a long-standing focus of interest for fluvial scientists (Rice and Church, 1998, 2010). On the one hand, 27 

grain roughness influences flow resistance, the variability and magnitude of shear stress (Naot, 1984; 28 

Robert et al., 1992) and the sediment supply of bedload transport (Paola and Seal, 1995; Vericat et al., 29 

2008), and it is an important parameter in hydraulic modelling (Milan and Heritage, 2012). On the other 30 

hand, GSD exerts a significant control on the habitat of many benthic organisms. 31 

In gravel-bed streams, grain size and surface roughness shows substantial heterogeneity at different 32 

scales (Leopold et al., 1964; Bluck, 1976; Lisle and Madej, 1992; Ashworth, 1996; Rice and Church, 33 

2010; Milan, 2013; Storz-Peretz and Laronne, 2013; Guerit et al., 2014). At the reach scale, it may be 34 

represented by patches or facies of similar texture and grain size (Dietrich et al., 2005; Nelson et al., 35 

2009), defining a textural mosaic. This sedimentary mosaic is particularly complex in braided settings, 36 

where the spatial distribution of patches reflects the main morphological components of the braided 37 

landform (Storz-Peretz and Laronne, 2013; Guerit et al., 2014).38 

Development of a completely satisfactory method for measuring grain size and surface roughness in 39 

gravel-bed rivers (Hodge et al., 2009a) has been made difficult by the multiscale heterogeneity of 40 

riverbed sediment. The most widely followed procedure by fluvial scientists has been the grid-by-41 

number Wolman count (Wolman, 1954; Rice and Church, 1996; Bunte and Abt, 2001). Surface grain 42 

size has also been measured using the photosieving approach, which uses high-resolution close-range 43 

imagery (taken 1 2 m above ground level) and image processing techniques (Ibekken and Schleyer, 44 

1986; Butler et al., 2001; Rubin, 2004; Graham et al., 2005; Buscombe, 2008; Detert and Weibrecht, 45 

2013). However, while these methods provide rapid and objective ways for sampling grain size, they 46 

are best suited for patch-scale studies (Heritage and Milan, 2009; Milan and Heritage, 2012; Woodget, 47 

2015). This is because a large number of samples is needed for a complete characterization of the large-48 

scale sedimentary mosaic (Woodget, 2015). Consequently, fluvial scientists and engineers require a 49 

more rapid and objective technique that is capable of providing fast, continuous, and accurate grain size 50 

measurements at river reach scales (a few hundred meters in length).51 
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Remote sensing approaches have revolutionized the production of fluvial topographic data over the last 52

two decades (Hohenthal et al., 2011; Brasington et al., 2012), and these new technologies could deliver53 

a satisfying alternative to the classical ways of measuring grain size and surface roughness (Heritage 54 

and Milan, 2009; Brasington et al., 2012; Woodget, 2015). Carbonneau et al. (2004, 2005), Verdu et al. 55 

(2005), Dugdale et al. (2010), and Tamminga et al. (2014) have successfully employed high-resolution 56 

aerial imagery and image texture analysis for grain size determination over large areas, the so-called 57 

aerial photosieving approach. This method depends on high-resolution images and light conditions as 58 

well as sediment color and texture, and they are limited by pixel size and the need for field calibration 59 

(Carbonneau et al., 2005; Verdú et al., 2005). Dugdale et al. (2010) used manual calibration performed 60 

directly on the aerial images to replace field data. However, a systematic bias was identified in their 61 

results, leading to a consistent overestimation of median grain size. Aerial-image calibration is restricted 62 

by the ability to discriminate smaller size classes and by pixel bleeding effects (lighter colored63 

stones falsely illuminate adjacent pixels, resulting in clasts appearing to be larger than they actually are).64 

Another alternative approach is based on the use of terrestrial laser scanning (TLS). Several recent 65 

studies demonstrate that TLS-derived three-dimensional point clouds provide grain-scale altimetric 66 

fields that can be used to infer grain size (Smart et al., 2004; Entwistle and Fuller, 2009; Hodge et al., 67 

2009a, b; Hollenthal et al., 2011; Milan and Heritage, 2012). Based on this, Heritage and Milan (2009) 68 

and Brasington et al. (2012) used grain roughness obtained from TLS point clouds to retrieve grain size 69 

data in gravel-bed rivers. Also, Milan et al. (2009) and Milan and Heritage (2012) showed grain 70 

roughness change maps derived from TLS data. However, TLS surveys are expensive and time-71 

consuming for large-scale applications.72 

The recent growth and spread of unmanned aerial systems (UASs), coupled with the development and 73 

improvement of SfM (Structure from Motion) algorithms (Westoby et al., 2012; Fonstad et al., 2013; 74 

Dietrich, 2016; Smith et al., 2016), has enabled the production of highly useful topographic models of 75 

fluvial surfaces (Brasington et al., 2012; Micheletti et al., 2014, 2015; Tamminga et al., 2014). The 76 

UAS-based SfM photogrammetry provides reconstructions of unvegetated and exposed fluvial 77 

topography comparable to those derived by airborne and terrestrial LiDAR (Westoby et al., 2012; Smith 78 

and Vericat, 2015), with the main advantage of less expensive equipment. Therefore UAS-based SfM 79 
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photogrammetry could seemingly provide high quality, spatially distributed roughness and morphology 80

data that are needed by hydraulic and morphodynamics models (Tamminga et al., 2014). For example, 81 

some recent morphodynamic models (i.e., Lauer et al., 2016) considered lateral variations in grain size, 82 

and UAS-derived SfM terrain models may have the potential to feed them with the required data in this 83 

regard.84 

This paper reports the testing of optical imagery acquired from UAS in connection with SfM and 85 

multiview stereo (MVS) photogrammetry to retrieve the GSD of surface bed sediment in a braided 86 

gravel-bed river (Vénéon River, French Alps). As it was already mentioned above, previous TLS 87 

experiments (Aberle and Smart, 2003; Heritage and Milan, 2009; Brasington et al., 2012) showed that88 

surface roughness computed from 3D point clouds can be used as a proxy of grain size in gravel beds. 89 

Here we followed the same approach, using instead SfM-derived point clouds. Three main objectives 90 

guided this research: (i) determine the best roughness metric for a percentile estimate from 3D point 91 

clouds; (ii) explore whether capturing the spatial variability of surface grain size is possible from 92 

distributed roughness information; and (iii) investigate whether detecting changes in surface grain size 93 

from roughness information is feasible.94 

2. Study site95 

The Vénéon River is a tributary to the Romanche River in the Southern French Alps, draining a 316-96 

km2 catchment in the Ecrins Massif (Figs. 1A, B). The physical landscape of the basin is dominated by 97 

steep rocky slopes, colluvium deposits, and modern and relict periglacial and glacial landforms. Current 98 

climate conditions are those typical of a continental, relatively dry and cold climate. The main water 99 

source of the Vénéon is La Pilatte glacier, determining a glacial-nival hydrological regime, with the 100 

highest discharges between May and August related to snow and glacier melting. High-magnitude flood 101 

discharges are related to high temperatures combined with the occurrence of storm-induced heavy 102 

rainfalls. The lowest discharges occur between January and March when snowfall dominates. An EDF 103 

(Electricité de France) gauging station that has gathered data from 1989 to the present is located 104 

upstream of the study site. The mean hourly discharge of this gauging record is 12 m3 s-1, while the 105 

maximum and minimum hourly discharges are 206 and 0.1 m3 s-1, respectively. The estimated biannual 106 

and decadal peak discharges are 110 and 168 m3 s-1, respectively.107 
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The study reach comprises a 2.5-km-long and 100- to 200-m-wide river reach where the Vénéon 108

develops a braided planform (Fig. 1C). This braided channel is located upstream of a major obstruction 109 

related to a large left-bank rock avalanche deposit. The mean channel slope is 0.013. The catchment 110 

area at the study reach is 235 km2. Two single dominant channels can generally be distinguished within 111 

the overall braided plain. Several seasonal bar-top channels that cut bar surfaces are present. Water flows 112 

permanently in the two main anabranches, while bar-top channels are only active during summer high 113 

flow events. A 20-m-high hydropower dam (the Plan du Lac dam) was built between 1941 and 1943 114 

immediately downstream of the study reach (Fig. 1). This hydropower dam is managed by EDF.115 

Bed sediment of the study site is mainly composed of well-rounded and subspherical granitic and 116 

metamorphic gravels and cobbles. On exposed gravel bars, the bed sediment is randomly packed, 117 

exhibiting sensu Church, 1978) without strong imbrication or well-developed 118 

grain arrangements (e.g., clusters, stone lines). Discrete small patches (decametric to metric scales) of 119 

sand and fine gravel are spread throughout the coarse framework of gravel bars. Conversely, the 120 

underwater channel is depleted in sand sediment; and the bed state is composed mainly of 121 

closely packed and imbricated coarse particles and grain structures.122 

3. Material and methods123 

3.1. Field data acquisition124 

3.1.1. UAS surveys125 

Five UAS flights were carried out over the study reach between April and July 2015 using the same 126 

unmanned vehicle, a rotatory-wing quadcopter equipped with a GPS for automate flights (Fig. 1C). The 127 

capabilities of the vehicle were limited to favorable weather conditions (no rain, wind velocity up to 11 128 

m s-1). Flight height was ~30 m, and the average flight velocity was ~5 m s-1. Images were taken at 1-s129 

intervals using a GoPro HERO 3+ Silver camera (2.77 mm focal length) that was mounted on a platform 130 

in the base of the quadcopter. Images were recorded with a resolution of 5 Mpx (2624 × 1968 pixels),131 

using a narrow field of view (28 mm equivalent focal length).132 

The SfM-derived point clouds were georeferenced using a set of 92 ground control points (GCPs; Fig.133 

1C) marked along the study reach using a target design automatically detected by the photogrammetric 134 

software (AgiSoft PhotoScan). The targets were deployed in the field and this operation took between 1 135 
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and 2 hours before every flight. To save time during the successive drone surveys, target positions were136

marked with paint in those areas overlapping over consecutive flights. The GCP coordinates were 137 

measured in the RGF Lambert 93 coordinate system (EPSG 2154) using a dGPS in RTK (Real Time 138 

Kinematic) mode (10 s). A unique position of the dGPS receiver was chosen on an elevated point 139 

covering the whole study reach, where good satellite constellation coverage was achieved. Furthermore, 140 

to increase the accuracy of dGPS data, the coordinates of the receiver position were referred to those of 141 

a permanent geodetic point from the IGN (National Geographic Institute) network during post-142 

processing.143 

3.1.2. Pebble counts on exposed gravel bars144 

A data set of 19 Wolman pebble counts was collected in the study reach. These samples were taken145 

between March and May 2015 on exposed gravel bars (Fig. 1C). Sample locations were chosen to be 146 

representative of the dominant sediment facies. Each pebble count consisted of 100 grains collected 147 

along two ~50 m sampling lines spaced ~5 m apart. Sampling of grains was done systematically, 148 

extracting them at every 1 m intersection along a tape (around twice the largest grain size visually 149 

estimated in the field). To minimize the selected and measured by 150 

the same person. Metallic templates were used to measure the b-axis of grains > 8 mm and to classify 151 

them into half- size classes. Smaller grains were classified into two groups: grains between 4 and 8152 

mm and grains <4 mm. In addition, the coordinates of the central point of each sampling area were 153 

measured using a GPS device.154 

Average D50 and D84 of exposed gravel bars were 39 and 81 mm, respectively. The average percentage 155 

of fine sediment (<8 mm) was 18% (±9%). In addition, GSDs have been truncated at 8 mm, following 156 

Rice (1995) who found that particles finer than 8 mm are underrepresented in pebble counts and should 157 

consequently not be considered. Average D50 and D84 of truncated GSDs were 46 and 87 mm,158 

respectively (Fig. 2).159 

3.2. Point cloud processing160 

3.2.1. SfM photogrammetry161 

The UAS images were processed using Agisoft PhotoScan. This software follows the typical steps of 162 

SfM-MVS photogrammetry (Remondino et al., 2014). First, it searches for common features across 163 
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overlapping images and finds points that are stable under viewpoint. Afterwards it solves the intrinsic 164

and extrinsic orientation parameters of the camera using a bundle-adjustment algorithm (Robertson and 165 

Cipolla, 2009; Semyonov, 2011; Verhoeven et al., 2012; Javernick et al., 2014; Woodget, 2015) and 166 

uses the Brown model to correct image distortions related to the camera lens (Brown, 1966; Agisoft, 167 

2013; Woodget, 2015). In the third stage, PhotoScan makes a densification of the point cloud using a168 

dense multiview stereo reconstruction.169 

As a result of this workflow, a dense point cloud in an arbitrary coordinate system is produced. 170 

PhotoScan can transform the derived model into the absolute coordinate system. To accomplish this, 171 

GCPs should be manually identified and coordinates imported into the user interface (Javernick et al., 172 

2014). In theory, this process only requires a minimum of three GCPs (James and Robson, 2012, 2014);173 

in practice, more GCPs will produce a better registration of the model. Here we used a large number of 174 

GCPs (~90) to achieve a good alignment quality. In addition, an optimization transformation to reduce 175 

nonlinear distortions and increase the quality of model registration (Agisoft, 2013; Javernick et al., 2014; 176 

Woodget, 2015) was applied. The optimization procedure minimizes geometric distortions by using the 177 

known GCP positions to refine the camera lens model and realign the images. Then the geometry of the 178 

model is rebuilt after the optimization process.179 

Using the Agisoft PhotoScan workflow and its custom algorithms (Fig. 3), we produced five different 180 

SfM point clouds, corresponding to each UAS survey (Fig. 1C). Average point densities ranged from 181 

40 to 900 points/m2 (Table 1). We also derived an orthophoto mosaic with a 2-cm pixel resolution for 182 

each UAS survey.183 

PhotoScan point clouds were finally post-processed using Cloud Compare (Cloud Compare 2.6.2., 184 

2015). In the first step, we filtered and smoothed each UAS-SfM point cloud. Visual assessment revealed 185 

some isolated erroneous points. We used the SOR (Statistical Outlier Removal) and noise filters 186 

available on Cloud Compare to remove them: the former removes the outliers from the 3D point cloud; 187 

the latter works as a low pass filter, locally fitting a plan around each point and removing the points too 188 

far away from the fitted plan. 189 

The planimetric accuracy of 3D point clouds, appraised from the GCPs, is 8 12 cm. To evaluate the190 

altimetric precision, 71 points were measured with a dGPS in RTK mode (10 s) on a gravel bar: the 191 
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standard deviation of Z-differences between the dGPS and the UAS-SfM data (±5.3 cm) was used as a 192

measure of the vertical precision of the point clouds.193 

The resolution of the SfM models (position uncertainty of each point in the point clouds) was quantified 194 

using the flat surface of a road located on the right bank of the river (Fig., 1C), assuming that on a planar-195 

scanned surface the local difference of the point cloud heights should be 0 (Lague et al., 2013; Smith 196 

and Vericat, 2015). For each point belonging to the road, we estimated the average difference of 197 

elevation to the mean in a 10-cm moving window. This value was then averaged for all the points located 198 

on the road and assumed as a descriptor of point position uncertainty. In this way, we estimated a 199 

resolution of ±0.7 cm for the point clouds (Table 1).200 

3.2.2. Roughness metrics201 

Different metrics have been used to characterize surface roughness of fluvial sediments. These can be 202 

grouped in three different types: (i) roughness height rh (Gomez, 1993), the difference in height between 203 

the top of the bed sediment and the locally averaged topographic surface; (ii) twice the standard 204 

deviation (2 z) of elevations in a given area (Heritage and Milan, 2009); and (iii) the root mean square 205 

height (RMSH), the standard deviation of heights in a given area for which the average slope has been 206 

detrended (Aberle and Smart, 2003; Brasington et al., 2012; Storz-Peretz and Laronne, 2013).207 

The roughness height was obtained by computing the difference in elevation between each point in the 208 

point cloud and the least-squares best-fitting plane computed on its nearest neighbors, within a kernel 209 

distance of a specified size. This was achieved using the Cloud Compare roughness tool. To compute210 

the standard deviation of elevations, we first built a regular grid of a given size, and we assigned to each 211 

node the standard deviation of elevation for all the points falling within the grid cell. Finally, we 212 

estimated the RMSH following a procedure similar to Brasington et al. (2012) and Rychov et al. (2012). 213 

A regular-size grid was built, and the average elevation value for all the points falling in the cell was 214 

assigned to each cell node. Then a Delaunay triangulation was used to interpolate a height mesh from 215 

this grid. At that point, we subtracted the value of elevation in the mesh from the elevation data of the 216 

SfM point cloud. Finally, we took these differences and built a new grid, assigning to each cell node the 217 

standard deviation of the residuals falling in the cell.218 
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Cloud Compare was used to calculate these three different roughness metrics from the SfM point clouds.219

Once computed, roughness metrics were compared with grain size percentiles to find the best grain size220 

proxy. At the same time, we evaluated different sizes for the kernel radius used for the rh estimates and 221 

the grid size utilized during the z and RMSH computations. We found an optimum radius of 50 cm (two 222 

to three times the largest clast) for the roughness heights and 1 m (four to six times the largest clast) for 223 

the grid size used to compute z and RMSH. The workflow followed to derive a proxy correlation 224 

between grain size and surface roughness obtained from UAS-SfM point clouds is summarized in Fig. 225 

4.226 

4. Results227 

4.1. Roughness as a proxy of GSD percentiles228 

Roughness estimates from SfM were compared to the field grain size measurements. Taking the GPS 229 

coordinates of the central point of each Wolman sample area, a 25-m radius buffer was defined on 230 

ArcGis. Then, using the UAS-derived orthophoto mosaic, each buffer was clipped defining an area 231 

covering the same sedimentary facies sampled in the field. Surfaces corresponding to woody debris were 232 

manually excluded from the buffer. Each defined polygon was used as a mask to extract the data from 233 

the roughness clouds. The cumulative distributions of the extracted roughness values were computed 234 

and the different percentiles were obtained from these distributions.235 

The D50 correlates with median roughness values (Fig. 5): statistically significant (95% confidence level) 236 

linear correlations were found between the different roughness estimates and the median grain size, 237 

except for the RMSH in the nontruncated case. Roughness heights exhibited the strongest correlation 238 

with median grain size, while RMSH showed the weakest fit. The strength of correlation was higher 239 

when using GSDs truncated at <8 mm. Grain size / roughness ratios were around 1:1 with roughness 240 

heights, 1:0.5 with z, and between 1:1 and 1:2 with the RMSH.241 

Significant fit was also found between the 84th percentiles of roughness distribution and the D84 (Fig. 6).242 

Significant correlations were found with all the roughness metrics (except for RMSH in nontruncated 243 

cases), but the best fit was found again with rh in the truncated GSD. With the 16th percentiles, 244 

significant correlations were only found in the truncated GSD with rh and the z (Fig., 7). Correlation is 245 

lacking in the nontruncated GSD for the 16th percentile with the three roughness parameters. Yet again, 246 
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for the 16th and the 84th percentiles, the grain size / roughness ratios are close to 1:1 with roughness 247

heights, 1:1 2 for RMSH, and 1:0.5 for z.248 

The previous results show that correlation between roughness and grain size is stronger when 249 

considering truncated GSD. The random elevation error in our point clouds is 0.7 cm on flat surfaces. 250 

As a consequence, the real protrusion and roughness elevation of particles smaller than ~1 cm may be 251 

masked by the intrinsic noise of the SfM reconstructions. Then we can be consider that SfM roughness 252 

is somehow truncated at the fine terms of the GSD, and this may explain why the correlation is stronger 253 

when using the <8-mm truncated GSDs.254 

4.2. Sensitivity analysis255 

Several issues should be considered in order to understand how to produce a good proxy correlation 256 

between roughness and grain size. These concern the number of samples required to calibrate the 257 

regression model, the influence of point cloud density in the strength of the correlation, and whether or 258 

not field calibration would be needed after each flight.259 

Therefore, one important issue concerns how many pebble counts are required to calibrate the regression 260 

model. Using the mean and standard deviation of our roughness data, a log-normal probability 261 

distribution of 3000 roughness values was built (considering rh as roughness parameter). Later, the262 

regression model correlating rh to D50 (regression equation in Fig. 5D) was applied to each rh value of 263 

the random roughness distribution, and then a matched distribution of 3000 Wolman D50 was derived. 264 

To take into account the effect of the uncertainty in our roughness-D50 fit, we introduced in these 265 

simulated D50-samples a gaussian random error equal to the residual standard error of our regression 266 

model. Afterwards an increasing number of paired rh-D50 data was randomly selected; and then the 267 

regression was repeatedly run to see how the slope coefficients of the regression equation change as a 268 

function of sample number. This simulation was repeated 1000 times. The results of the analysis are 269 

presented in Fig. 8A: this plot shows a change of slope in the plot around 8-10 samples. Above this 270 

number, slope coefficient of the regression converges to the experimental one, and further increases in 271 

the number of samples only involve small changes in the slope coefficient of the regression equation.272 

So, 8-10 samples may be considered as an optimum number of Wolman counts required to calibrate the 273 

roughness-grain size fit.274 
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Later, the influence of point density in the strength of the roughness-grain size fit was also assessed. The 275

point clouds were resampled at different point densities and tested how the R2 of the regression model 276 

varies with point cloud density. Fig. 8B shows how the strength of the regression decreases quickly 277 

below average point densities around 10 15 points/m2.278 

Finally, we also evaluated whether the calibration between roughness height and grain size is flight 279 

dependent or not. Data from the first UAS survey (April) were compared with data obtained during the 280 

last survey (July): no differences were observed in the regression lines between April and June; and the 281 

data from the five UAS flights plot close to both regression lines, independently of the date of the drone 282 

survey (Fig. 9A). This suggests that the calibration is not flight dependent. To check this impression 283 

more quantitatively, the regression was run individually for each UAS flight data, and the obtained fit284 

was applied to predict grain size for the other four UAS flight subsamples. Predicted D50 were plotted 285 

versus the measured D50 (Fig. 9B) and the plots project very close to the x = y line. This suggests how286 

well the regression equation obtained for each drone flight predicts the grain size-roughness fit in not 287 

overlain areas, at least in those covered by the other four UAS flights. This also involves the shape of 288 

the regression, which is not substantially different between the five drone flights.289 

4.3. Applications of the method: mapping surficial GSD and detecting changes after flow events290 

4.2.1. GSD mapping of exposed gravel bars291 

The UAS-SfM point clouds have been used to derive grain size maps based on surface roughness metrics 292 

(Fig. 10). Once surface roughness was estimated, we sorted point clouds into regular grids (1×1 m) and 293 

assigned to each cell the median roughness value for the points falling into the grid cell. We used rh as294 

the roughness metric. Then we applied the calibration law between the median roughness and the median 295 

grain size, and as a final step we reclassified the size estimates according to the Wentworth grain size 296 

scale (Wentworth, 1922).297 

In this way, we derived grain size charts for April and June 2015 with 1×1-m grid cells. These maps 298 

were not quantitatively validated, but visual assessment revealed that the results were coherent with 299 

textures of exposed gravel bars visible on images (Fig. 11). The derived grain size maps are restricted 300 

to the exposed gravel bar surfaces, and they exclude the areas of woody debris where surface roughness 301 

is not directly related to grain-scale topography. In general, the areal extents of the different grain size 302 
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classes were very similar in April and June (Fig. 12). Nevertheless, the percentage of sand-to-fine 303

gravels and boulders were slightly lower in June, while the areal coverage of medium and coarse gravels 304 

was slightly larger. Indeed, differences in GSDs inferred from April and June grain size maps are 305 

statistically significant (p < 0.01, Wilcoxon test).306 

4.2.2. Detection of surficial GSD changes after a flow event307 

Sequential UAS data can be also used to link morphological and textural changes following floods. Two 308 

UAS surveys (10 April and 11 June 2015) were used to detect changes after a 42-m3 s-1 flow event that 309 

occurred between 1 and 7 May 2015 (Fig. 13). During this event, the bar-top channels and some marginal 310 

areas of gravel bars were flooded. Various morphological adjustments on the surface of the exposed 311 

bars and channel margins were induced by this flow event. These data were used to explore whether the 312 

elevation changes were related to roughness adjustments on the surface of gravel bars. 313 

Grain roughness maps were built from April and June UAS-SfM data. Point clouds were sorted into 314 

regular grids (1×1 m), and we assigned to each pixel the median roughness value using the rh metrics. 315 

Then, by subtracting the April and June roughness grids, a map of surficial roughness change was 316 

produced. A level of detection was applied to the map using the following equation for error estimation:317 

2296.1U (1)318 

where U is the uncertainty in roughness change estimation, and 319 

clouds defined from a flat scanned surface (section 3.2.1). Parameter U was then used as a threshold for 320 

roughness change detection. The obtained U was 19 mm, below the median roughness and average D50321 

of Vénéon gravel bars (31 and 39 mm, respectively). This value was subtracted from all the cells in the 322 

model of roughness differences to derive a map of significant roughness change (Fig. 14). An average 323 

.6 mm (standard deviation, 36.0 mm) was obtained.324 

To better evaluate the detected roughness adjustments, these should be compared with morphological 325 

changes (Fig. 14). The use of sequential 3D data sets to evaluate geomorphological changes requires 326 

multitemporal point cloud alignment (Lallias-Tacon et al., 2014). An alignment operation was 327 

performed between the April and June point clouds with the automatic iterative closest point (ICP) 328 

algorithm from Cloud Compare by selecting common stable surfaces. This method is often used for 329 
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alignment of adjacent scans of terrestrial and airborne LiDAR (Lallias-Tacon et al., 2014) and 330

sometimes for fusion of airborne and terrestrial LiDAR point clouds (Iavarone and Vagners, 2003; 331 

Rabatel et al., 2008; Theule et al., 2012). After the alignment process, the average difference in elevation 332 

between common stable areas was 1 mm.333 

Based on the recorded point clouds, DEMs were constructed with ArcGIS following a simple workflow 334 

in which ground points and inverse weighted distances were used to derive a triangular irregular network 335 

(TIN), which was then linearly resampled on a 0.25-m grid. A DEM of differences (DoD) was calculated 336 

by subtracting the June elevations from April elevations on a cell-by-cell basis. Several studies (Heritage 337 

et al., 2009; Wheaton et al., 2010; Milan et al., 2011) have demonstrated the importance of accounting 338 

for spatially distributed errors across a DEM surface. Spatially distributed errors were accounted here 339 

following the protocol suggested by Lallias-Tacon et al. (2014), based on Milan et al. (2011). This 340 

procedure estimates spatially distributed errors in the DoD by separating errors induced by the 341 

photogrammetric survey and errors induced by interpolation method used to produce the DEM. The 342 

level of detection (LoD) of altimetric change can then be propagated into the DoD from:343 

                                                                                                                                         (2)344 

where sur is the altimetric error and int the interpolation error. As already pointed out in section 3.2.1, 345 

the altimetric error (5.3 cm) was estimated from the comparison with dGPS data. Interpolation errors 346 

were estimated from a regression equation established between the standard deviation of elevation error 347 

(difference between SfM points and DEM pixel elevations) and topographic roughness. Equation (2)348 

defines the minimum LoD for a significant elevation change between April and October.349 

The thresholded DoD shows an average elevation change of 5 cm (standard deviation, ±25 cm). Patches 350 

of scour and fill are spread throughout the surface of compound bars, covering roughly 30% of the 351 

exposed surface (9% scour, 21% fill). The thresholded DoD was compared to the model of roughness 352 

variations (Fig. 14). While different directions of change in grain roughness were found for the scoured 353 

and filled surfaces, scoured areas show some tendency toward roughness decrease (average change, 354 

19.4 mm, ±49.5 mm). Eroded surfaces were often located on bar platforms, where scouring involved 355 

the removal of protruding stones as well as smoothing of sand patches through removal of bedforms 356 

(current ripples, megaripples). This should involve a decrease in surface roughness. 357 

2
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5. Discussion358

5.1. Roughness as a proxy of GSD359 

These results show that the rh roughness metric provided the best proxy of grain size percentiles. 360 

Compared to the z and the RMSH, roughness heights are more closely related to the actual protrusion 361 

of grains on the bed surface: it quantifies the exact difference in height between the top of stones and 362 

the average bed surface, while z and the RMSH only deliver an averaged measure of grain scale relief363 

in the surrounding area of each stone.364 

In some of the sample locations, sand and fine sediment occupies pockets between coarse stones. This 365 

strong variation in local relief in these interstitial spaces involves high roughness values for the smaller 366 

clasts. Also, sand bodies in the Vénéon are often featured by bedforms (current ripples, megaripples), 367 

so roughness is more closely related to microforms than to grains in some of these sand patches. Both 368 

effects may help to explain why correlation strength decreases for the finer percentiles of the GSDs.369 

The comparison with previously published TLS-based experiments (Fig. 15) reveals that no universal 370 

relation exists between surface roughness and grain size. Our results fall very close to a 1:1 ratio and 371 

very close to the c-axis plot reported by Heritage and Milan (2009). However, with the Wolman 372 

sampling, the b-axis was measured. It is often said (Johansson, 1963; Limerinos, 1970; Bathurst, 1982; 373 

Gomez, 1993) that the c-axis is usually aligned to the vertical, while the a- and b-axes are preferentially 374 

aligned orthogonal and parallel to the main flow direction, respectively (Gomez, 1993; Baewert et al., 375 

2014). Visual assessment in the field of particle shape revealed that clasts are mostly rounded to sub-376 

rounded in the Vénéon. Rounded particles are featured by very similar c- and b-axis dimensions, and 377 

this could explain why the data plot very close to a 1:1 ratio and also to the c-axis roughness relations 378 

found by Heritage and Milan (2009). Brasington et al. (2012) plotted data between the c- and b-axis379 

relation given by Heritage and Milan (2009), which could be partially explained by the fact that their 380 

data set includes a mixture of rounded and platy particles. In the same vein, Heritage and Milan (2009) 381 

found that two patches of similar size and particle shape may have different roughness heights resulting 382 

from textural differences. Apart from clast shape, other textural constraints on surface roughness may383 

be packing, variable burial depth of clasts by fines or imbrication angle (Robert, 1990; Heritage and 384 

Milan, 2009; Hodge et al., 2009b), as well as bedforms and particle clusters (Brasington et al., 2012).385 



16 
 

In summary, while grain size should be one of the major controls on surface roughness in gravel-bed 386

rivers (Hodge et al., 2009b), other factors such as particle shape, grain packing, imbrication, and 387 

clustering are also important controls on surface roughness. As a consequence, the grain size roughness 388 

relationship is far from being universal. In each study case, it should be affected in a unique manner by 389 

all the textural constraints.390 

5.2. GSD mapping of exposed gravel bars391 

Based on UAS-SfM point clouds and using surface roughness metrics, we succeeded in deriving grain 392 

size charts of the study site. While these maps were not validated with an independent data set, the visual 393 

comparison with high-resolution images (2-cm pixel size) suggests that these GSD charts are quite 394 

realistic when compared with the actual surface GSD of gravel bars.395 

Comparable spatially continuous grain size maps were previously produced based on high-resolution 396 

aerial images and image texture analysis (Carbonneau et al., 2005; Verdu et al., 2005; Dugdale et al., 397 

2010; de Haas et al., 2014; Tamminga et al., 2014). This method can potentially deliver continuous grain 398 

size maps over large areas (1 80 km) with centimetric precision at spatial resolutions of 1 m2. However, 399 

it is strongly dependent on particle sorting, substrate homogeneity, and scene illumination and requires 400 

very high resolution imagery (Brasington et al., 2012). Indeed, the image texture approach is adversely 401 

affected by the blurred imagery often acquired from relatively unstable UAS platforms (de Haas et al., 402 

2014; Woodget, 2015). On the contrary, the SfM-roughness approach allows more flexibility on data 403 

acquisition, and it also has the potential to provide grain size measurements at finer scales than the image 404 

texture analysis, which is restricted by the pixel size of available aerial imagery and pixel bleeding 405 

effects when the operator calibrates directly on the aerial images (Dugdale et al., 2010). Additionally,406 

UAS-SfM simultaneously provides highly accurate topographic reconstructions and GSD information 407 

of gravel beds, while the image texture approach only delivers grain size information.408 

However, GSD mapping based on UAS-SfM data sets has two main limitations. One is because of409 

woody debris on gravel bars. On these surfaces, roughness is not related to grain size, but rather to the 410 

shape of the log and woody bodies. No grain size information can be retrieved from roughness near 411 

these areas. Another disadvantage is the limitation of our GSD charts to exposed gravel bar surfaces.412 

This could be enough for many applications, but in other cases the grain size of submerged areas is also 413 
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important. One possible solution is the combination of the UAS-SfM-based method with the 414

conventional Wolman sampling of submerged areas. Nevertheless, Woodget et al. (2015) showed that 415 

a refraction correction could be applied on submerged areas on SfM point clouds, and in this way, they 416 

obtained information on channel bathymetry in shallow and clear water areas (<0.5 m) with centimetric 417 

vertical accuracy comparable to dry bar areas.418 

While we flew over the Vénéon during overall low-flow conditions, the waters of this river were featured 419 

by a characteristic opaque, turquoise color typical of glacier melting flows. Consequently, the 420 

information about the submerged areas was lost here. However, results from Woodget et al. (2015) are 421 

very promising and suggest that the roughness estimates based on UAS-SfM point clouds could also be 422 

applied to shallow, clear water areas.423 

5.3. Detection of roughness adjustments424 

The level of detection of significant surface roughness change was estimated at 19 mm. Taking into 425 

account that the median grain roughness for Vénéon gravel bars is 31 mm, changes that are smaller than 426 

the median roughness of gravel bars can be detected with confidence.427 

In addition, grain roughness change detection in the Vénéon is only possible for the areas that remained 428 

exposed before and after the flow event. Information on underwater GSD changes are lost. However, as 429 

we stated above (section 5.2), the results of the Woodget et al. (2015) study suggested that SfM has the 430 

potential to be applied to shallow-water submerged areas.431 

Milan et al. (2009) and Milan and Heritage (2012) were the first to show grain roughness change maps432 

derived from TLS data. They found coarsening in areas of scour and fining in areas of deposition.433 

Conversely, results of the present study show that morphological and roughness changes are not clearly434 

related. Grain roughness changes occurred in the Vénéon without significant elevation changes and vice-435 

versa. Previously, Rice and Church (2010) also found slight grain size adjustments after floods in the 436 

wandering Fraser River, with no clear relation between morphological and grain size changes.437 

5.4. Summary recommendations438 

Figure 4 graphically summarizes the workflow followed in this study to approach grain size from surface 439 

roughness and UAS-SfM point clouds. The results are very encouraging. Applying SfM-MVS 440 

photogrammetry to optical images, taken with a low-cost unmanned aerial platform provided with an441 
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inexpensive camera system and flown at a low altitude, we succeeded in obtaining a good regression 442

model correlating surface roughness and grain size.443 

Related to flight conditions, previous studies by Micheletti et al. (2014) and Smith and Vericat (2015)444 

showed that a ratio of 1:625 to 639 exists between the RMSE of elevation values and flight range.445 

Consequently, strong decreases could be expected in the quality of the roughness reconstruction with 446 

flight range. Taking this into account, UAS flights should probably be done at low altitudes (30 50 m) 447 

for surface roughness characterization. The sensor utilized for measurements could also have some 448 

influence, but this topic is not addressed herein. Probably, the use of a higher-resolution and better-449 

quality camera system would allow increasing flight height. Nevertheless, according to Micheletti et al. 450 

(2015) and Smith et al. (2016), no significant differences in the quality of SfM reconstructions should 451 

be expected between different sensors flown at flight ranges <100 m. Regarding data processing, it 452 

seems that point densities between 15 and 20 points/m2 are enough for a good characterization of surface 453 

roughness for the purpose of grain size mapping. Once high-density SfM point clouds are derived, they 454 

can be thinned and density lowered to 15 20 points/m2, simply to reduce computing time when 455 

estimating roughness statistics. This density threshold may be grain size dependent and probably higher 456 

in case of gravel beds much finer than those studied here.457 

From our data, roughness height was found to be the best proxy for grain size. More data is needed to 458 

determine if roughness height performs the best for all sediment textures. Additionally, it seems that a 459 

textural signature exists in the slope coefficient of the regression equation linking surface roughness to 460 

grain size. Field calibration is necessary if SfM roughness is to be used to predict grain size. An 461 

important issue concerns the minimum number of samples needed to reach a satisfactory regression 462 

model. Here we used 19 Wolman counts to calibrate the regression models, but according to the 463 

sensibility analysis, half this number (9 to 10 samples) would have been enough to achieve a reliable fit. 464 

This is an affordable number of samples, which could easily be taken over 1 2 days simultaneously with 465 

a UAS survey. However, we can easily imagine that the number of samples needed could be influenced 466 

by grain size heterogeneity and patchiness. Study cases with a more patched bed texture or grain size 467 

heterogeneity could require a larger number of samples. 468 

6. Conclusions469 
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In this paper, UAS optical imagery and SfM photogrammetry were used to characterize grain roughness 470

and GSD of a braided reach in the Vénéon River, a gravel-bed stream located in the French Alps. We471 

showed the potential of this relatively inexpensive method to provide, together with highly dense and 472 

accurate topographical reconstruction of fluvial topography, spatially continuous characterizations of 473 

grain size.474 

The results found here confirms that surface roughness computed from dense and accurate UAS-derived 475 

SfM point clouds can be used to provide data on the distribution of grain roughness for exposed bar and 476 

river bed surfaces. In summary, the results show moderate to strong correlations (0.45-0.90) between 477 

surface roughness and the different percentiles of the truncated GSD and the coarser percentiles of the 478 

nontruncated GSD (Table 2). In general, the correlation was stronger when using roughness heights as 479 

the roughness metric.480 

We believe that the procedure followed here has great potential for simplifying grain size measurements 481 

in gravel-bed rivers by reducing the number of Wolman counts needed to characterize the reach scale482 

GSD. Field calibration is still necessary, to the extent that surface roughness is not only controlled by 483 

grain size but also by other textural constraints. Nevertheless, a low number (8-10) of Wolman samples 484 

seems to be required; and once the roughness-GSD model for a given stream has been calibrated,485 

running long-term monitoring of grain size and roughness would be possible without the need for a new 486 

field sampling. Consequently, the methodology presented in this paper offers a reliable and low-cost 487 

solution for the monitoring of the surface texture of exposed gravel bars over stream reaches of a few 488 

kilomet length.489 
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Table 1

Summary of the main characteristics of the UAS-
SfM point clouds 

Source/ 
UAS 
survey 

Point 
density 
(pts/m2) 

Average 
point 
distance 
(cm) 

Roughness 
resolution 
(cm) 

10/04/2015 1052 0.1 0.3 

16/04/2015 291 0.8 0.9 

11/06/2015 52 3.4 1.3 

24/06/2015 45 4.5 - 

02/072015 36 6.0 0.3 

Mean 295 3.0 0.7 
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Table 2. R2 for the regression equation fitting roughness and grain size, for several percentiles 
of the cumulative distributions.

 Nontruncated GSD Truncated GSD 

 R. heights z RMSH R. heights z RMSH 

D5 0.08 0.02 0.09 0.59 0.36 0.15 

D16 0.00 0.04 0.00 0.64 0.45 0.19 

D25 0.01 0.04 0.01 0.68 0.58 0.28 

D50 0.26 0.35 0.12 0.89 0.66 0.45 

D75 0.57 0.43 0.22 0.86 0.58 0.32 

D84 0.54 0.35 0.19 0.83 0.51 0.28 

D95 0.35 0.10 0.09 0.73 0.28 0.27 
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CAPTIONS

Fig. 1. (A) Location of the study site in France. B) Location of the Vénéon River in the Ecrins Massif 

(French Alps). (C) Detailed view of the study site, with positions of Wolman samples and GCPs.

Fig. 2. Data set of GSD measured in the field during this study. (A) All GSD data. (B) Truncated (<8 

mm) GSD data.

Fig. 3. Steps followed in Agisoft PhotoScan to derive SfM point clouds from UAS imagery.

Fig. 4. Workflow for estimating grain size from UAS-SfM point clouds, using a regression model 

calibrated with a few conventional Wolman pebble counts.

Fig. 5. Median GSD value versus the median roughness value. In the upper row, median GSD values 

are plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm) 

GSDs.

Fig. 6. GSD 84th percentile versus roughness 84th percentile. In the upper row, GSD 84th percentiles are 

plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm) GSDs.

Fig. 7. GSD 16th percentile versus the roughness 16th percentile. In the upper row, GSD 16th percentiles 

are plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm) 

GSDs.

Fig. 8. (A) Results of the analysis concerning how many pebble counts are required to calibrate the 

regression model. An increasing number of roughness-D50 data were randomly selected, and then we

repeatedly ran the regression to analyze how may pebble counts would be required for calibration. In 

the figure, the maximum and minimum values obtained for the slope coefficient of the regression 

equation are plotted (after resampling 1000 times for each sample size). (B) Effect of UAS-SfM point 

cloud density on the correlation coefficient (r²) between grain size and roughness median percentiles.

Fig. 9. (A) Regression fit between the 8-mm lower truncated D50 and the roughness height (rh) obtained 

for April (solid line) and July (dashed line) data subsamples. (B) Predicted vs. observed D50 values.

Fig. 10. Workflow for extracting the grain size maps from the UAS-SfM point clouds.

Fig. 11. Surface GSD chart derived from UAS-SfM point clouds (right). Left, the ortophotograph (2-

cm pixel size). Visual inspection shows correspondence between GSD chart and ortophotograph.

Fig. 12. Areal extent of the different grain size classes determined from surface GSD charts.
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Fig. 13. Discharge record of the Vénéon River during the period including UAS flights and grain size 

field sampling. The arrows represent the dates of UAS surveys, and the grey dashed lines represent the 

period during which Wolman pebble counts were done.

Fig. 14. DoD model (right) and model of roughness changes (left) built for the study site.

Fig. 15. Roughness and grain size data obtained in the current study are compared to TLS data compiled 

from the scientific literature. (A) Comparison with studies that used the standard deviation of elevation 

as the roughness descriptor; (B) comparison with data sets that used the detrended standard deviation.
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