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Abstract

This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize
grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With
this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over
the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a
GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate
three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of
elevation) were computed from the SfM point clouds and were correlated with the median grain size of
the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and
Wolman grain size. The procedure employed has potential for the rapid and continuous characterization
of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has
been successfully used to produce spatially continuous grain size information on exposed gravel bars
and to explore textural changes following flow events.

Keywords: StM, photogrammetry, grain size, roughness, braided rivers, gravel bed rivers
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1. Introduction

Grain roughness and grain size distribution (GSD) of riverbed sediment in gravel-bed rivers have been
a long-standing focus of interest for fluvial scientists (Rice and Church, 1998, 2010). On the one hand,
grain roughness influences flow resistance, the variability and magnitude of shear stress (Naot, 1984;
Robert et al., 1992) and the sediment supply of bedload transport (Paola and Seal, 1995; Vericat et al.,
2008), and it is an important parameter in hydraulic modelling (Milan and Heritage, 2012). On the other
hand, GSD exerts a significant control on the habitat of many benthic organisms.

In gravel-bed streams, grain size and surface roughness shows substantial heterogeneity at different
scales (Leopold et al., 1964; Bluck, 1976; Lisle and Madej, 1992; Ashworth, 1996; Rice and Church,
2010; Milan, 2013; Storz-Peretz and Laronne, 2013; Guerit et al., 2014). At the reach scale, it may be
represented by patches or facies of similar texture and grain size (Dietrich et al., 2005; Nelson et al.,
2009), defining a textural mosaic. This sedimentary mosaic is particularly complex in braided settings,
where the spatial distribution of patches reflects the main morphological components of the braided
landform (Storz-Peretz and Laronne, 2013; Guerit et al., 2014).

Development of a completely satisfactory method for measuring grain size and surface roughness in
gravel-bed rivers (Hodge et al., 2009a) has been made difficult by the multiscale heterogeneity of
riverbed sediment. The most widely followed procedure by fluvial scientists has been the grid-by-
number Wolman count (Wolman, 1954; Rice and Church, 1996; Bunte and Abt, 2001). Surface grain
size has also been measured using the photosieving approach, which uses high-resolution close-range
imagery (taken 1-2 m above ground level) and image processing techniques (Ibekken and Schleyer,
1986; Butler et al., 2001; Rubin, 2004; Graham et al., 2005; Buscombe, 2008; Detert and Weibrecht,
2013). However, while these methods provide rapid and objective ways for sampling grain size, they
are best suited for patch-scale studies (Heritage and Milan, 2009; Milan and Heritage, 2012; Woodget,
2015). This is because a large number of samples is needed for a complete characterization of the large-
scale sedimentary mosaic (Woodget, 2015). Consequently, fluvial scientists and engineers require a
more rapid and objective technique that is capable of providing fast, continuous, and accurate grain size

measurements at river reach scales (a few hundred meters in length).
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Remote sensing approaches have revolutionized the production of fluvial topographic data over the last
two decades (Hohenthal et al., 2011; Brasington et al., 2012), and these new technologies could deliver
a satisfying alternative to the classical ways of measuring grain size and surface roughness (Heritage
and Milan, 2009; Brasington et al., 2012; Woodget, 2015). Carbonneau et al. (2004, 2005), Verdu et al.
(2005), Dugdale et al. (2010), and Tamminga et al. (2014) have successfully employed high-resolution
aerial imagery and image texture analysis for grain size determination over large areas, the so-called
aerial photosieving approach. This method depends on high-resolution images and light conditions as
well as sediment color and texture, and they are limited by pixel size and the need for field calibration
(Carbonneau et al., 2005; Verdu et al., 2005). Dugdale et al. (2010) used manual calibration performed
directly on the aerial images to replace field data. However, a systematic bias was identified in their
results, leading to a consistent overestimation of median grain size. Aerial-image calibration is restricted
by the user’s ability to discriminate smaller size classes and by pixel bleeding effects (lighter colored
stones falsely illuminate adjacent pixels, resulting in clasts appearing to be larger than they actually are).
Another alternative approach is based on the use of terrestrial laser scanning (TLS). Several recent
studies demonstrate that TLS-derived three-dimensional point clouds provide grain-scale altimetric
fields that can be used to infer grain size (Smart et al., 2004; Entwistle and Fuller, 2009; Hodge et al.,
2009a, b; Hollenthal et al., 2011; Milan and Heritage, 2012). Based on this, Heritage and Milan (2009)
and Brasington et al. (2012) used grain roughness obtained from TLS point clouds to retrieve grain size
data in gravel-bed rivers. Also, Milan et al. (2009) and Milan and Heritage (2012) showed grain
roughness change maps derived from TLS data. However, TLS surveys are expensive and time-
consuming for large-scale applications.

The recent growth and spread of unmanned aerial systems (UASs), coupled with the development and
improvement of SfM (Structure from Motion) algorithms (Westoby et al., 2012; Fonstad et al., 2013;
Dietrich, 2016; Smith et al., 2016), has enabled the production of highly useful topographic models of
fluvial surfaces (Brasington et al., 2012; Micheletti et al., 2014, 2015; Tamminga et al., 2014). The
UAS-based SfM photogrammetry provides reconstructions of unvegetated and exposed fluvial
topography comparable to those derived by airborne and terrestrial LIDAR (Westoby et al., 2012; Smith
and Vericat, 2015), with the main advantage of less expensive equipment. Therefore UAS-based SfTM

4
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photogrammetry could seemingly provide high quality, spatially distributed roughness and morphology
data that are needed by hydraulic and morphodynamics models (Tamminga et al., 2014). For example,
some recent morphodynamic models (i.e., Lauer et al., 2016) considered lateral variations in grain size,
and UAS-derived SfM terrain models may have the potential to feed them with the required data in this
regard.

This paper reports the testing of optical imagery acquired from UAS in connection with SfM and
multiview stereo (MVS) photogrammetry to retrieve the GSD of surface bed sediment in a braided
gravel-bed river (Vénéon River, French Alps). As it was already mentioned above, previous TLS
experiments (Aberle and Smart, 2003; Heritage and Milan, 2009; Brasington et al., 2012) showed that
surface roughness computed from 3D point clouds can be used as a proxy of grain size in gravel beds.
Here we followed the same approach, using instead SfM-derived point clouds. Three main objectives
guided this research: (i) determine the best roughness metric for a percentile estimate from 3D point
clouds; (ii) explore whether capturing the spatial variability of surface grain size is possible from
distributed roughness information; and (iii) investigate whether detecting changes in surface grain size
from roughness information is feasible.

2. Study site

The Vénéon River is a tributary to the Romanche River in the Southern French Alps, draining a 316-
km? catchment in the Ecrins Massif (Figs. 1A, B). The physical landscape of the basin is dominated by
steep rocky slopes, colluvium deposits, and modern and relict periglacial and glacial landforms. Current
climate conditions are those typical of a continental, relatively dry and cold climate. The main water
source of the Vénéon is La Pilatte glacier, determining a glacial-nival hydrological regime, with the
highest discharges between May and August related to snow and glacier melting. High-magnitude flood
discharges are related to high temperatures combined with the occurrence of storm-induced heavy
rainfalls. The lowest discharges occur between January and March when snowfall dominates. An EDF
(Electricité de France) gauging station that has gathered data from 1989 to the present is located
upstream of the study site. The mean hourly discharge of this gauging record is 12 m® s™!, while the
maximum and minimum hourly discharges are 206 and 0.1 m® s, respectively. The estimated biannual
and decadal peak discharges are 110 and 168 m® s, respectively.
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The study reach comprises a 2.5-km-long and 100- to 200-m-wide river reach where the Vénéon
develops a braided planform (Fig. 1C). This braided channel is located upstream of a major obstruction
related to a large left-bank rock avalanche deposit. The mean channel slope is 0.013. The catchment
area at the study reach is 235 km?. Two single dominant channels can generally be distinguished within
the overall braided plain. Several seasonal bar-top channels that cut bar surfaces are present. Water flows
permanently in the two main anabranches, while bar-top channels are only active during summer high
flow events. A 20-m-high hydropower dam (the Plan du Lac dam) was built between 1941 and 1943
immediately downstream of the study reach (Fig. 1). This hydropower dam is managed by EDF.

Bed sediment of the study site is mainly composed of well-rounded and subspherical granitic and
metamorphic gravels and cobbles. On exposed gravel bars, the bed sediment is randomly packed,
exhibiting a ‘normally loose’ state (sensu Church, 1978) without strong imbrication or well-developed
grain arrangements (e.g., clusters, stone lines). Discrete small patches (decametric to metric scales) of
sand and fine gravel are spread throughout the coarse framework of gravel bars. Conversely, the
underwater channel is depleted in sand sediment; and the bed state is “underloose’, composed mainly of
closely packed and imbricated coarse particles and grain structures.

3. Material and methods

3.1. Field data acquisition

3.1.1. UAS surveys

Five UAS flights were carried out over the study reach between April and July 2015 using the same
unmanned vehicle, a rotatory-wing quadcopter equipped with a GPS for automate flights (Fig. 1C). The
capabilities of the vehicle were limited to favorable weather conditions (no rain, wind velocity up to 11
m s). Flight height was ~30 m, and the average flight velocity was ~5 m s™!. Images were taken at 1-s
intervals using a GoPro HERO 3+ Silver camera (2.77 mm focal length) that was mounted on a platform
in the base of the quadcopter. Images were recorded with a resolution of 5 Mpx (2624 x 1968 pixels),
using a narrow field of view (28 mm equivalent focal length).

The SfM-derived point clouds were georeferenced using a set of 92 ground control points (GCPs; Fig.
1C) marked along the study reach using a target design automatically detected by the photogrammetric
software (AgiSoft PhotoScan). The targets were deployed in the field and this operation took between 1

6
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and 2 hours before every flight. To save time during the successive drone surveys, target positions were
marked with paint in those areas overlapping over consecutive flights. The GCP coordinates were
measured in the RGF Lambert 93 coordinate system (EPSG 2154) using a dGPS in RTK (Real Time
Kinematic) mode (10 s). A unique position of the dGPS receiver was chosen on an elevated point
covering the whole study reach, where good satellite constellation coverage was achieved. Furthermore,
to increase the accuracy of dGPS data, the coordinates of the receiver position were referred to those of
a permanent geodetic point from the IGN (National Geographic Institute) network during post-
processing.

3.1.2. Pebble counts on exposed gravel bars

A data set of 19 Wolman pebble counts was collected in the study reach. These samples were taken
between March and May 2015 on exposed gravel bars (Fig. 1C). Sample locations were chosen to be
representative of the dominant sediment facies. Each pebble count consisted of 100 grains collected
along two ~50 m sampling lines spaced ~5 m apart. Sampling of grains was done systematically,
extracting them at every 1 m intersection along a tape (around twice the largest grain size visually
estimated in the field). To minimize the operator’s bias, all the grains were selected and measured by
the same person. Metallic templates were used to measure the b-axis of grains > 8 mm and to classify
them into half-Wsize classes. Smaller grains were classified into two groups: grains between 4 and 8
mm and grains <4 mm. In addition, the coordinates of the central point of each sampling area were
measured using a GPS device.

Average Dso and Dg4 of exposed gravel bars were 39 and 81 mm, respectively. The average percentage
of fine sediment (<8 mm) was 18% (£9%). In addition, GSDs have been truncated at 8 mm, following
Rice (1995) who found that particles finer than 8 mm are underrepresented in pebble counts and should
consequently not be considered. Average Dso and Dss of truncated GSDs were 46 and 87 mm,
respectively (Fig. 2).

3.2. Point cloud processing

3.2.1. SfM photogrammetry

The UAS images were processed using Agisoft PhotoScan. This software follows the typical steps of
SfM-MVS photogrammetry (Remondino et al., 2014). First, it searches for common features across

7
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overlapping images and finds points that are stable under viewpoint. Afterwards it solves the intrinsic
and extrinsic orientation parameters of the camera using a bundle-adjustment algorithm (Robertson and
Cipolla, 2009; Semyonov, 2011; Verhoeven et al., 2012; Javernick et al., 2014; Woodget, 2015) and
uses the Brown model to correct image distortions related to the camera lens (Brown, 1966; Agisoft,
2013; Woodget, 2015). In the third stage, PhotoScan makes a densification of the point cloud using a
dense multiview stereo reconstruction.

As a result of this workflow, a dense point cloud in an arbitrary coordinate system is produced.
PhotoScan can transform the derived model into the absolute coordinate system. To accomplish this,
GCPs should be manually identified and coordinates imported into the user interface (Javernick et al.,
2014). In theory, this process only requires a minimum of three GCPs (James and Robson, 2012, 2014);
in practice, more GCPs will produce a better registration of the model. Here we used a large number of
GCPs (~90) to achieve a good alignment quality. In addition, an optimization transformation to reduce
nonlinear distortions and increase the quality of model registration (Agisoft, 2013; Javernick et al., 2014;
Woodget, 2015) was applied. The optimization procedure minimizes geometric distortions by using the
known GCP positions to refine the camera lens model and realign the images. Then the geometry of the
model is rebuilt after the optimization process.

Using the Agisoft PhotoScan workflow and its custom algorithms (Fig. 3), we produced five different
SfM point clouds, corresponding to each UAS survey (Fig. 1C). Average point densities ranged from
40 to 900 points/m* (Table 1). We also derived an orthophoto mosaic with a 2-cm pixel resolution for
each UAS survey.

PhotoScan point clouds were finally post-processed using Cloud Compare (Cloud Compare 2.6.2.,
2015). In the first step, we filtered and smoothed each UAS-SfM point cloud. Visual assessment revealed
some isolated erroneous points. We used the SOR (Statistical Outlier Removal) and noise filters
available on Cloud Compare to remove them: the former removes the outliers from the 3D point cloud;
the latter works as a low pass filter, locally fitting a plan around each point and removing the points too
far away from the fitted plan.

The planimetric accuracy of 3D point clouds, appraised from the GCPs, is 8—12 cm. To evaluate the
altimetric precision, 71 points were measured with a dGPS in RTK mode (10 s) on a gravel bar: the

8



473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

standard deviation of Z-differences between the dGPS and the UAS-SfM data (£5.3 cm) was used as a
measure of the vertical precision of the point clouds.

The resolution of the StM models (position uncertainty of each point in the point clouds) was quantified
using the flat surface of a road located on the right bank of the river (Fig., 1C), assuming that on a planar-
scanned surface the local difference of the point cloud heights should be 0 (Lague et al., 2013; Smith
and Vericat, 2015). For each point belonging to the road, we estimated the average difference of
elevation to the mean in a 10-cm moving window. This value was then averaged for all the points located
on the road and assumed as a descriptor of point position uncertainty. In this way, we estimated a
resolution of £0.7 cm for the point clouds (Table 1).

3.2.2. Roughness metrics

Different metrics have been used to characterize surface roughness of fluvial sediments. These can be
grouped in three different types: (i) roughness height 74 (Gomez, 1993), the difference in height between
the top of the bed sediment and the locally averaged topographic surface; (ii) twice the standard
deviation (20:) of elevations in a given area (Heritage and Milan, 2009); and (iii) the root mean square
height (RMSH), the standard deviation of heights in a given area for which the average slope has been
detrended (Aberle and Smart, 2003; Brasington et al., 2012; Storz-Peretz and Laronne, 2013).

The roughness height was obtained by computing the difference in elevation between each point in the
point cloud and the least-squares best-fitting plane computed on its nearest neighbors, within a kernel
distance of a specified size. This was achieved using the Cloud Compare roughness tool. To compute
the standard deviation of elevations, we first built a regular grid of a given size, and we assigned to each
node the standard deviation of elevation for all the points falling within the grid cell. Finally, we
estimated the RMSH following a procedure similar to Brasington et al. (2012) and Rychov et al. (2012).
A regular-size grid was built, and the average elevation value for all the points falling in the cell was
assigned to each cell node. Then a Delaunay triangulation was used to interpolate a height mesh from
this grid. At that point, we subtracted the value of elevation in the mesh from the elevation data of the
SfM point cloud. Finally, we took these differences and built a new grid, assigning to each cell node the

standard deviation of the residuals falling in the cell.
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Cloud Compare was used to calculate these three different roughness metrics from the SfM point clouds.
Once computed, roughness metrics were compared with grain size percentiles to find the best grain size
proxy. At the same time, we evaluated different sizes for the kernel radius used for the 74 estimates and
the grid size utilized during the o.and RMSH computations. We found an optimum radius of 50 cm (two
to three times the largest clast) for the roughness heights and 1 m (four to six times the largest clast) for
the grid size used to compute g. and RMSH. The workflow followed to derive a proxy correlation
between grain size and surface roughness obtained from UAS-SfM point clouds is summarized in Fig.
4.

4. Results

4.1. Roughness as a proxy of GSD percentiles

Roughness estimates from SfM were compared to the field grain size measurements. Taking the GPS
coordinates of the central point of each Wolman sample area, a 25-m radius buffer was defined on
ArcGis. Then, using the UAS-derived orthophoto mosaic, each buffer was clipped defining an area
covering the same sedimentary facies sampled in the field. Surfaces corresponding to woody debris were
manually excluded from the buffer. Each defined polygon was used as a mask to extract the data from
the roughness clouds. The cumulative distributions of the extracted roughness values were computed
and the different percentiles were obtained from these distributions.

The Dso correlates with median roughness values (Fig. 5): statistically significant (95% confidence level)
linear correlations were found between the different roughness estimates and the median grain size,
except for the RMSH in the nontruncated case. Roughness heights exhibited the strongest correlation
with median grain size, while RMSH showed the weakest fit. The strength of correlation was higher
when using GSDs truncated at <8 mm. Grain size / roughness ratios were around 1:1 with roughness
heights, 1:0.5 with ¢, and between 1:1 and 1:2 with the RMSH.

Significant fit was also found between the 84" percentiles of roughness distribution and the Dsa (Fig. 6).
Significant correlations were found with all the roughness metrics (except for RMSH in nontruncated
cases), but the best fit was found again with 7% in the truncated GSD. With the 16% percentiles,
significant correlations were only found in the truncated GSD with r4 and the o. (Fig., 7). Correlation is
lacking in the nontruncated GSD for the 16™ percentile with the three roughness parameters. Yet again,
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for the 16™ and the 84™ percentiles, the grain size / roughness ratios are close to 1:1 with roughness
heights, 1:1-2 for RMSH, and 1:0.5 for ..

The previous results show that correlation between roughness and grain size is stronger when
considering truncated GSD. The random elevation error in our point clouds is 0.7 cm on flat surfaces.
As a consequence, the real protrusion and roughness elevation of particles smaller than ~1 cm may be
masked by the intrinsic noise of the SfM reconstructions. Then we can be consider that SfM roughness
is somehow truncated at the fine terms of the GSD, and this may explain why the correlation is stronger
when using the <8-mm truncated GSDs.

4.2. Sensitivity analysis

Several issues should be considered in order to understand how to produce a good proxy correlation
between roughness and grain size. These concern the number of samples required to calibrate the
regression model, the influence of point cloud density in the strength of the correlation, and whether or
not field calibration would be needed after each flight.

Therefore, one important issue concerns how many pebble counts are required to calibrate the regression
model. Using the mean and standard deviation of our Vénéon’s roughness data, a log-normal probability
distribution of 3000 roughness values was built (considering 7/ as roughness parameter). Later, the
regression model correlating 74 to Dso (regression equation in Fig. 5D) was applied to each #% value of
the random roughness distribution, and then a matched distribution of 3000 Wolman Dso was derived.
To take into account the effect of the uncertainty in our roughness-Dso fit, we introduced in these
simulated Dso-samples a gaussian random error equal to the residual standard error of our regression
model. Afterwards an increasing number of paired 74-Dso data was randomly selected; and then the
regression was repeatedly run to see how the slope coefficients of the regression equation change as a
function of sample number. This simulation was repeated 1000 times. The results of the analysis are
presented in Fig. 8A: this plot shows a change of slope in the plot around 8-10 samples. Above this
number, slope coefficient of the regression converges to the experimental one, and further increases in
the number of samples only involve small changes in the slope coefficient of the regression equation.
So, 8-10 samples may be considered as an optimum number of Wolman counts required to calibrate the
roughness-grain size fit.
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Later, the influence of point density in the strength of the roughness-grain size fit was also assessed. The
point clouds were resampled at different point densities and tested how the R? of the regression model
varies with point cloud density. Fig. 8B shows how the strength of the regression decreases quickly
below average point densities around 10-15 points/m?.

Finally, we also evaluated whether the calibration between roughness height and grain size is flight
dependent or not. Data from the first UAS survey (April) were compared with data obtained during the
last survey (July): no differences were observed in the regression lines between April and June; and the
data from the five UAS flights plot close to both regression lines, independently of the date of the drone
survey (Fig. 9A). This suggests that the calibration is not flight dependent. To check this impression
more quantitatively, the regression was run individually for each UAS flight data, and the obtained fit
was applied to predict grain size for the other four UAS flight subsamples. Predicted Dso were plotted
versus the measured Dso (Fig. 9B) and the plots project very close to the x = y line. This suggests how
well the regression equation obtained for each drone flight predicts the grain size-roughness fit in not
overlain areas, at least in those covered by the other four UAS flights. This also involves the shape of
the regression, which is not substantially different between the five drone flights.

4.3. Applications of the method: mapping surficial GSD and detecting changes after flow events

4.2.1. GSD mapping of exposed gravel bars

The UAS-SfM point clouds have been used to derive grain size maps based on surface roughness metrics
(Fig. 10). Once surface roughness was estimated, we sorted point clouds into regular grids (1x1 m) and
assigned to each cell the median roughness value for the points falling into the grid cell. We used 74 as
the roughness metric. Then we applied the calibration law between the median roughness and the median
grain size, and as a final step we reclassified the size estimates according to the Wentworth grain size
scale (Wentworth, 1922).

In this way, we derived grain size charts for April and June 2015 with 1x1-m grid cells. These maps
were not quantitatively validated, but visual assessment revealed that the results were coherent with
textures of exposed gravel bars visible on images (Fig. 11). The derived grain size maps are restricted
to the exposed gravel bar surfaces, and they exclude the areas of woody debris where surface roughness
is not directly related to grain-scale topography. In general, the areal extents of the different grain size
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classes were very similar in April and June (Fig. 12). Nevertheless, the percentage of sand-to-fine
gravels and boulders were slightly lower in June, while the areal coverage of medium and coarse gravels
was slightly larger. Indeed, differences in GSDs inferred from April and June grain size maps are
statistically significant (p < 0.01, Wilcoxon test).

4.2.2. Detection of surficial GSD changes after a flow event

Sequential UAS data can be also used to link morphological and textural changes following floods. Two
UAS surveys (10 April and 11 June 2015) were used to detect changes after a 42-m’ s™! flow event that
occurred between 1 and 7 May 2015 (Fig. 13). During this event, the bar-top channels and some marginal
areas of gravel bars were flooded. Various morphological adjustments on the surface of the exposed
bars and channel margins were induced by this flow event. These data were used to explore whether the
elevation changes were related to roughness adjustments on the surface of gravel bars.

Grain roughness maps were built from April and June UAS-SfM data. Point clouds were sorted into
regular grids (1x1 m), and we assigned to each pixel the median roughness value using the 7/ metrics.
Then, by subtracting the April and June roughness grids, a map of surficial roughness change was

produced. A level of detection was applied to the map using the following equation for error estimation:

U =196-420" (1)

where U is the uncertainty in roughness change estimation, and ¢ is the resolution of the SfM point
clouds defined from a flat scanned surface (section 3.2.1). Parameter U was then used as a threshold for
roughness change detection. The obtained U was 19 mm, below the median roughness and average Dso
of Vénéon gravel bars (31 and 39 mm, respectively). This value was subtracted from all the cells in the
model of roughness differences to derive a map of significant roughness change (Fig. 14). An average
roughness variation of —1.6 mm (standard deviation, 36.0 mm) was obtained.

To better evaluate the detected roughness adjustments, these should be compared with morphological
changes (Fig. 14). The use of sequential 3D data sets to evaluate geomorphological changes requires
multitemporal point cloud alignment (Lallias-Tacon et al., 2014). An alignment operation was
performed between the April and June point clouds with the automatic iterative closest point (ICP)

algorithm from Cloud Compare by selecting common stable surfaces. This method is often used for
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alignment of adjacent scans of terrestrial and airborne LiDAR (Lallias-Tacon et al., 2014) and
sometimes for fusion of airborne and terrestrial LiDAR point clouds (Iavarone and Vagners, 2003;
Rabatel et al., 2008; Theule et al., 2012). After the alignment process, the average difference in elevation
between common stable areas was 1 mm.

Based on the recorded point clouds, DEMs were constructed with ArcGIS following a simple workflow
in which ground points and inverse weighted distances were used to derive a triangular irregular network
(TIN), which was then linearly resampled on a 0.25-m grid. A DEM of differences (DoD) was calculated
by subtracting the June elevations from April elevations on a cell-by-cell basis. Several studies (Heritage
et al., 2009; Wheaton et al., 2010; Milan et al., 2011) have demonstrated the importance of accounting
for spatially distributed errors across a DEM surface. Spatially distributed errors were accounted here
following the protocol suggested by Lallias-Tacon et al. (2014), based on Milan et al. (2011). This
procedure estimates spatially distributed errors in the DoD by separating errors induced by the
photogrammetric survey and errors induced by interpolation method used to produce the DEM. The

level of detection (LoD) of altimetric change can then be propagated into the DoD from:

2 2 : 2 2 :
LOD = 196 ’ (\/O-SMVAvril + O-intAvril J + (\/O-SWJune + O-intJune ) (2)

where oy, 1s the altimetric error and o, the interpolation error. As already pointed out in section 3.2.1,

the altimetric error (5.3 cm) was estimated from the comparison with dGPS data. Interpolation errors
were estimated from a regression equation established between the standard deviation of elevation error
(difference between SfM points and DEM pixel elevations) and topographic roughness. Equation (2)
defines the minimum LoD for a significant elevation change between April and October.

The thresholded DoD shows an average elevation change of 5 cm (standard deviation, =25 cm). Patches
of scour and fill are spread throughout the surface of compound bars, covering roughly 30% of the
exposed surface (9% scour, 21% fill). The thresholded DoD was compared to the model of roughness
variations (Fig. 14). While different directions of change in grain roughness were found for the scoured
and filled surfaces, scoured areas show some tendency toward roughness decrease (average change,
—19.4 mm, +49.5 mm). Eroded surfaces were often located on bar platforms, where scouring involved
the removal of protruding stones as well as smoothing of sand patches through removal of bedforms
(current ripples, megaripples). This should involve a decrease in surface roughness.
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5. Discussion

5.1. Roughness as a proxy of GSD

These results show that the 74 roughness metric provided the best proxy of grain size percentiles.
Compared to the o and the RMSH, roughness heights are more closely related to the actual protrusion
of grains on the bed surface: it quantifies the exact difference in height between the top of stones and
the average bed surface, while g: and the RMSH only deliver an averaged measure of grain scale relief
in the surrounding area of each stone.

In some of the sample locations, sand and fine sediment occupies pockets between coarse stones. This
strong variation in local relief in these interstitial spaces involves high roughness values for the smaller
clasts. Also, sand bodies in the Vénéon are often featured by bedforms (current ripples, megaripples),
so roughness is more closely related to microforms than to grains in some of these sand patches. Both
effects may help to explain why correlation strength decreases for the finer percentiles of the GSDs.
The comparison with previously published TLS-based experiments (Fig. 15) reveals that no universal
relation exists between surface roughness and grain size. Our results fall very close to a 1:1 ratio and
very close to the c-axis plot reported by Heritage and Milan (2009). However, with the Wolman
sampling, the b-axis was measured. It is often said (Johansson, 1963; Limerinos, 1970; Bathurst, 1982;
Gomez, 1993) that the c-axis is usually aligned to the vertical, while the a- and b-axes are preferentially
aligned orthogonal and parallel to the main flow direction, respectively (Gomez, 1993; Baewert et al.,
2014). Visual assessment in the field of particle shape revealed that clasts are mostly rounded to sub-
rounded in the Vénéon. Rounded particles are featured by very similar ¢- and b-axis dimensions, and
this could explain why the data plot very close to a 1:1 ratio and also to the c-axis roughness relations
found by Heritage and Milan (2009). Brasington et al. (2012) plotted data between the c- and b-axis
relation given by Heritage and Milan (2009), which could be partially explained by the fact that their
data set includes a mixture of rounded and platy particles. In the same vein, Heritage and Milan (2009)
found that two patches of similar size and particle shape may have different roughness heights resulting
from textural differences. Apart from clast shape, other textural constraints on surface roughness may
be packing, variable burial depth of clasts by fines or imbrication angle (Robert, 1990; Heritage and
Milan, 2009; Hodge et al., 2009b), as well as bedforms and particle clusters (Brasington et al., 2012).
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In summary, while grain size should be one of the major controls on surface roughness in gravel-bed
rivers (Hodge et al., 2009b), other factors such as particle shape, grain packing, imbrication, and
clustering are also important controls on surface roughness. As a consequence, the grain size—roughness
relationship is far from being universal. In each study case, it should be affected in a unique manner by
all the textural constraints.

5.2. GSD mapping of exposed gravel bars

Based on UAS-SfM point clouds and using surface roughness metrics, we succeeded in deriving grain
size charts of the study site. While these maps were not validated with an independent data set, the visual
comparison with high-resolution images (2-cm pixel size) suggests that these GSD charts are quite
realistic when compared with the actual surface GSD of gravel bars.

Comparable spatially continuous grain size maps were previously produced based on high-resolution
aerial images and image texture analysis (Carbonneau et al., 2005; Verdu et al., 2005; Dugdale et al.,
2010; de Haas et al., 2014; Tamminga et al., 2014). This method can potentially deliver continuous grain
size maps over large areas (1-80 km) with centimetric precision at spatial resolutions of 1 m?. However,
it is strongly dependent on particle sorting, substrate homogeneity, and scene illumination and requires
very high resolution imagery (Brasington et al., 2012). Indeed, the image texture approach is adversely
affected by the blurred imagery often acquired from relatively unstable UAS platforms (de Haas et al.,
2014; Woodget, 2015). On the contrary, the SfM-roughness approach allows more flexibility on data
acquisition, and it also has the potential to provide grain size measurements at finer scales than the image
texture analysis, which is restricted by the pixel size of available aerial imagery and pixel bleeding
effects when the operator calibrates directly on the aerial images (Dugdale et al., 2010). Additionally,
UAS-SfM simultaneously provides highly accurate topographic reconstructions and GSD information
of gravel beds, while the image texture approach only delivers grain size information.

However, GSD mapping based on UAS-SfM data sets has two main limitations. One is because of
woody debris on gravel bars. On these surfaces, roughness is not related to grain size, but rather to the
shape of the log and woody bodies. No grain size information can be retrieved from roughness near
these areas. Another disadvantage is the limitation of our GSD charts to exposed gravel bar surfaces.
This could be enough for many applications, but in other cases the grain size of submerged areas is also
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important. One possible solution is the combination of the UAS-SfM-based method with the
conventional Wolman sampling of submerged areas. Nevertheless, Woodget et al. (2015) showed that
a refraction correction could be applied on submerged areas on SfM point clouds, and in this way, they
obtained information on channel bathymetry in shallow and clear water areas (<0.5 m) with centimetric
vertical accuracy comparable to dry bar areas.

While we flew over the Vénéon during overall low-flow conditions, the waters of this river were featured
by a characteristic opaque, turquoise color typical of glacier melting flows. Consequently, the
information about the submerged areas was lost here. However, results from Woodget et al. (2015) are
very promising and suggest that the roughness estimates based on UAS-SfM point clouds could also be
applied to shallow, clear water areas.

5.3. Detection of roughness adjustments

The level of detection of significant surface roughness change was estimated at 19 mm. Taking into
account that the median grain roughness for Vénéon gravel bars is 31 mm, changes that are smaller than
the median roughness of gravel bars can be detected with confidence.

In addition, grain roughness change detection in the Vénéon is only possible for the areas that remained
exposed before and after the flow event. Information on underwater GSD changes are lost. However, as
we stated above (section 5.2), the results of the Woodget et al. (2015) study suggested that SfM has the
potential to be applied to shallow-water submerged areas.

Milan et al. (2009) and Milan and Heritage (2012) were the first to show grain roughness change maps
derived from TLS data. They found coarsening in areas of scour and fining in areas of deposition.
Conversely, results of the present study show that morphological and roughness changes are not clearly
related. Grain roughness changes occurred in the Vénéon without significant elevation changes and vice-
versa. Previously, Rice and Church (2010) also found slight grain size adjustments after floods in the
wandering Fraser River, with no clear relation between morphological and grain size changes.

5.4. Summary recommendations

Figure 4 graphically summarizes the workflow followed in this study to approach grain size from surface
roughness and UAS-SfM point clouds. The results are very encouraging. Applying SfM-MVS
photogrammetry to optical images, taken with a low-cost unmanned aerial platform provided with an
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inexpensive camera system and flown at a low altitude, we succeeded in obtaining a good regression
model correlating surface roughness and grain size.

Related to flight conditions, previous studies by Micheletti et al. (2014) and Smith and Vericat (2015)
showed that a ratio of 1:625 to 639 exists between the RMSE of elevation values and flight range.
Consequently, strong decreases could be expected in the quality of the roughness reconstruction with
flight range. Taking this into account, UAS flights should probably be done at low altitudes (30—50 m)
for surface roughness characterization. The sensor utilized for measurements could also have some
influence, but this topic is not addressed herein. Probably, the use of a higher-resolution and better-
quality camera system would allow increasing flight height. Nevertheless, according to Micheletti et al.
(2015) and Smith et al. (2016), no significant differences in the quality of SfM reconstructions should
be expected between different sensors flown at flight ranges <100 m. Regarding data processing, it
seems that point densities between 15 and 20 points/m? are enough for a good characterization of surface
roughness for the purpose of grain size mapping. Once high-density SfM point clouds are derived, they
can be thinned and density lowered to 15-20 points/m? simply to reduce computing time when
estimating roughness statistics. This density threshold may be grain size dependent and probably higher
in case of gravel beds much finer than those studied here.

From our data, roughness height was found to be the best proxy for grain size. More data is needed to
determine if roughness height performs the best for all sediment textures. Additionally, it seems that a
textural signature exists in the slope coefficient of the regression equation linking surface roughness to
grain size. Field calibration is necessary if SfM roughness is to be used to predict grain size. An
important issue concerns the minimum number of samples needed to reach a satisfactory regression
model. Here we used 19 Wolman counts to calibrate the regression models, but according to the
sensibility analysis, half this number (9 to 10 samples) would have been enough to achieve a reliable fit.
This is an affordable number of samples, which could easily be taken over 1-2 days simultaneously with
a UAS survey. However, we can easily imagine that the number of samples needed could be influenced
by grain size heterogeneity and patchiness. Study cases with a more patched bed texture or grain size
heterogeneity could require a larger number of samples.

6. Conclusions
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In this paper, UAS optical imagery and SfM photogrammetry were used to characterize grain roughness
and GSD of a braided reach in the Vénéon River, a gravel-bed stream located in the French Alps. We
showed the potential of this relatively inexpensive method to provide, together with highly dense and
accurate topographical reconstruction of fluvial topography, spatially continuous characterizations of
grain size.

The results found here confirms that surface roughness computed from dense and accurate UAS-derived
SfM point clouds can be used to provide data on the distribution of grain roughness for exposed bar and
river bed surfaces. In summary, the results show moderate to strong correlations (0.45-0.90) between
surface roughness and the different percentiles of the truncated GSD and the coarser percentiles of the
nontruncated GSD (Table 2). In general, the correlation was stronger when using roughness heights as
the roughness metric.

We believe that the procedure followed here has great potential for simplifying grain size measurements
in gravel-bed rivers by reducing the number of Wolman counts needed to characterize the reach scale
GSD. Field calibration is still necessary, to the extent that surface roughness is not only controlled by
grain size but also by other textural constraints. Nevertheless, a low number (8-10) of Wolman samples
seems to be required; and once the roughness-GSD model for a given stream has been calibrated,
running long-term monitoring of grain size and roughness would be possible without the need for a new
field sampling. Consequently, the methodology presented in this paper offers a reliable and low-cost
solution for the monitoring of the surface texture of exposed gravel bars over stream reaches of a few
kilometers’ length.
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Table 1

Summary of the main characteristics of the UAS-
SfM point clouds

1542

1543 Source/ Point
1544 UAS density

2
1545 survey (pts/m?)

Average
point
distance
(cm)

Roughness
resolution
(cm)

1546 1010412015 1052 0.1 03
1547 16/0412015 291 0.8 0.9
1548

1540 1110612015 52 34 13
1550 24/06/2015 45 45

1551 02/072015 36 6.0 0.3

1552 Mean 295 3.0 0.7
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Table 2. R? for the regression equation fitting roughness and grain size, for several percentiles
of the cumulative distributions.

1603
1604 Nontruncated GSD Truncated GSD

1605 R. heights o RMSH R. heights o RMSH

1606
1607 Ds 0.08 0.02 0.09 0.59 0.36 0.15

1608 D 0.00 0.04 0.00 0.64 0.45 0.19

1609 Dy 0.01 0.04 0.01 0.68 0.58 0.28
1610

1611 Dso 0.26 0.35 0.12 0.89 0.66 0.45
1212 D 057 0.43 0.22 0.86 0.58 0.32
1614 Des 054 0.35 0.19 0.83 0.51 0.28

1615 Dos  0.35 0.10 0.09 0.73 0.28 0.27
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CAPTIONS

Fig. 1. (A) Location of the study site in France. B) Location of the Vénéon River in the Ecrins Massif
(French Alps). (C) Detailed view of the study site, with positions of Wolman samples and GCPs.

Fig. 2. Data set of GSD measured in the field during this study. (A) All GSD data. (B) Truncated (<8
mm) GSD data.

Fig. 3. Steps followed in Agisoft PhotoScan to derive SfM point clouds from UAS imagery.

Fig. 4. Workflow for estimating grain size from UAS-SfM point clouds, using a regression model

calibrated with a few conventional Wolman pebble counts.

Fig. 5. Median GSD value versus the median roughness value. In the upper row, median GSD values
are plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm)

GSDs.

Fig. 6. GSD 84" percentile versus roughness 84" percentile. In the upper row, GSD 84" percentiles are

plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm) GSDs.

Fig. 7. GSD 16th percentile versus the roughness 16th percentile. In the upper row, GSD 16th percentiles
are plotted for the nontruncated GSDs; in the lower row, they are plotted for the truncated (<8 mm)
GSDs.

Fig. 8. (A) Results of the analysis concerning how many pebble counts are required to calibrate the
regression model. An increasing number of roughness-Dsy data were randomly selected, and then we
repeatedly ran the regression to analyze how may pebble counts would be required for calibration. In
the figure, the maximum and minimum values obtained for the slope coefficient of the regression
equation are plotted (after resampling 1000 times for each sample size). (B) Effect of UAS-SfM point

cloud density on the correlation coefficient (%) between grain size and roughness median percentiles.

Fig. 9. (A) Regression fit between the 8-mm lower truncated Dsy and the roughness height (#/) obtained
for April (solid line) and July (dashed line) data subsamples. (B) Predicted vs. observed Ds values.

Fig. 10. Workflow for extracting the grain size maps from the UAS-SfM point clouds.

Fig. 11. Surface GSD chart derived from UAS-SfM point clouds (right). Left, the ortophotograph (2-

cm pixel size). Visual inspection shows correspondence between GSD chart and ortophotograph.

Fig. 12. Areal extent of the different grain size classes determined from surface GSD charts.
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Fig. 13. Discharge record of the Vénéon River during the period including UAS flights and grain size
field sampling. The arrows represent the dates of UAS surveys, and the grey dashed lines represent the

period during which Wolman pebble counts were done.
Fig. 14. DoD model (right) and model of roughness changes (left) built for the study site.

Fig. 15. Roughness and grain size data obtained in the current study are compared to TLS data compiled
from the scientific literature. (A) Comparison with studies that used the standard deviation of elevation

as the roughness descriptor; (B) comparison with data sets that used the detrended standard deviation.
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Figure 10



Figure 11

[ | sand tofine gravel (<8 mm)
[ | Medium gravel (8-16 mm)

[ | Coarse gravel (16-32 mm)

[" | Very coarse gravel (32-64 mm)
[ Cobble (64-256 mm)

[ Boulder (>256 mm)
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Figure 12
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Coarsening : 200 mm

Fining : -200 mm

Figure 14
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