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Abstract: Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during
obesity and constitutes a major public health problem worldwide. A strong link has been established
between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic in-
flammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular
mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study
aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and
targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the peri-
odontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues,
including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, peri-
odontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate
inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. More-
over, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic
antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation
and oxidative stress contributes to disruption of the insulin signaling pathway and promotes in-
sulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and
deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly,
therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates
insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and
antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based
therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria
and improve insulin resistance.

Keywords: insulin resistance; diabetes; obesity; periodontal bacteria; inflammation; oxidative
stress; polyphenols

1. Introduction

Diabetes is a metabolic disease characterized by chronic hyperglycemia and constitutes
a major global health problem since its progression can lead to multiple complications
impacting the blood vessels, heart, nerves, kidneys and eyes. According to the International
Diabetes Federation, 537 million adults currently suffer from diabetes [1]. Type 2 diabetes
accounts for 90% of diabetes and results from impaired glucose homeostasis and insulin
resistance. Insulin resistance can be associated with multiple etiologic factors and refers to
a complex pathological condition in which insulin-dependent cells have an inappropriate
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cellular response to insulin. Overweight and obesity are the strongest risk factors of insulin
resistance and type 2 diabetes [2].

A bidirectional relationship has been established between type 2 diabetes and oral
infections such as periodontitis. Periodontitis is a periodontal disease characterized by
chronic inflammation of the tooth-supporting tissue called the periodontium, leading to
its destruction [3] and designated as the sixth complication of diabetes. It is well known
that diabetes is associated with an increased risk of periodontitis [4–6]. However, growing
literature data and clinical studies report that the reverse relationship is also true: people
with severe periodontitis have a higher probability of developing type 2 diabetes [7–9].
Furthermore, a recent meta-analysis of cohort studies also confirmed this bidirectional
association [10]. This is supported by several in vivo studies demonstrating that exposition
to periodontal bacteria is associated with the development of insulin resistance and glu-
cose intolerance in mice [11–13]. Interestingly, therapeutic management of periodontitis
improves metabolic parameters of type 2 diabetic patients [14,15].

Although there is increasing evidence of an association between periodontal bacteria
and insulin resistance, the molecular mechanisms involved are still unknown [16]. One of
the most mentioned hypotheses involves the translocation of periodontal bacteria compo-
nents into the bloodstream through inflammatory lesions of the periodontium [17]. These
bacterial components might contribute to systemic inflammation and reach distant tissues,
including adipose tissue, skeletal muscle and the liver [18]. Locally, molecular events
involving inflammatory and redox alterations may impair the insulin signaling pathway,
leading to insulin resistance. Given the causal roles of oxidative stress and inflammation
in several pathologies, including obesity and diabetes, there is a high interest in the bi-
ological activities of plant polyphenols able to exert antioxidant and anti-inflammatory
effects. Moreover, polyphenols may exhibit insulin-sensitizing and anti-bacterial properties
that may counteract the deleterious effects of periodontal bacteria and improve insulin
resistance [19].

The aim of this study is to review the current knowledge about the possible molecular
mechanisms linking insulin resistance and periodontal bacteria. Firstly, the molecular
events responsible for the insulin signaling pathway and glucose uptake are presented.
Secondly, the parameters characterizing periodontal infections and their impact on the
disruption of insulin response in target tissues comprising adipose tissue, skeletal muscle,
and the liver, as well as insulin production by pancreatic β-cells, are described. Furthermore,
plant polyphenol-based strategies to reduce inflammatory and redox alterations caused
by periodontal bacteria during insulin resistance are discussed as possible innovative
pharmacological approaches.

2. Molecular Events Related to Insulin Signaling Pathway and Insulin Resistance
2.1. Insulin

Insulin is an anabolic peptide hormone consisting of 51 amino acids organized in two
chains: an α chain and a β chain linked by two disulphide bridges [20]. This hormone is
produced by the pancreatic β-cells of the Langerhans islets and is essential for the regulation
of blood glucose levels. Insulin mediates its effects by binding to specific receptors on the
plasma membrane of target cells and activating intracellular signaling pathways leading to
glucose uptake.

After a meal, the glucose contained in the food bolus is absorbed by enterocytes,
translocated into the liver via the portal vein and released into the bloodstream. The pan-
creas, which detects an increase in blood glucose levels, secretes insulin, which acts on
various tissues and organs to induce glucose uptake and maintain blood glucose levels at a
physiological concentration close to 1 g/L. The main targets of insulin are the liver, skeletal
muscle and adipose tissue [21]. Insulin also acts on the pancreas to inhibit the secretion of
glucagon by the pancreatic α-cells.

Skeletal muscle cells and adipose cells are called insulin-dependent cells. In these
cells, glucose uptake is ensured by glucose transporter type 4 (GLUT-4), whose presence
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on the cellular plasma membrane is dependent on insulin (Figure 1). In the absence of
insulin, GLUT-4 is retained in the cytoplasm in storage vesicles [22]. The binding of
insulin to its receptor induces a signaling cascade involving the phosphoinositide 3-kinase
(PI3K)/serine/threonine protein kinase (Akt) pathway and leads to the exocytosis of these
vesicles and the translocation of GLUT-4 transporter at the cellular plasma membrane,
allowing the entry and storage of glucose in the cell.
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Figure 1. Insulin signaling pathway mediating glucose uptake. Insulin binds to its receptor (IR) and
activates its tyrosine kinase activity. IR catalyzes the phosphorylation of tyrosine residue of IRS-1
protein, which in turn activates PI3K. Subsequently, PI3K metabolizes PIP2 to PIP3, leading to PDK1
activation. PDK1 activates Akt by phosphorylation on threonine residue. Activated Akt inhibits
AS160 protein. Under basal condition, AS160 hydrolyses Rab-GTP to its inactive form Rab-GDP via
its Rab GAP domain. Inhibition of AS160 by Akt promotes the translocation of GLUT-4 transport
vesicles to the cell plasma membrane, allowing glucose uptake.

In the liver, unlike in skeletal muscle cells and adipocytes, glucose uptake is carried
out by the GLUT-2 transporter, which is non-insulin-dependent. Thus, glucose uptake by
hepatocytes is not dependent on or directly influenced by insulin. In these cells, insulin
stimulates glycogen synthesis from glucose through activation of glycogen synthase and
inhibition of gluconeogenesis, leading to a reduction of blood glucose levels.

2.2. Insulin-Stimulated Glucose Uptake Signaling Pathway

The insulin receptor (IR) is a tetrameric complex belonging to the tyrosine kinase
receptor superfamily, composed of two extracellular α-subunits that bind insulin and
two transmembrane β-subunits carrying tyrosine kinase activity, linked together by disul-
phide bonds.

Upon arrival at the target cell surface, insulin binds to the α-subunits of the IR and
induces conformational changes in the receptor, leading to the autophosphorylation of the
tyrosine residues of the β-subunits (Figure 1). Then, the IR activates a substrate from the
insulin receptor substrate (IRS) protein family called IRS-1 through the phosphorylation of
specific tyrosine residues. These phosphorylated residues form docking sites for proteins
with an Src homology 2 (SH2) or protein tyrosine-binding (PTB) domain [23]. Activated
IRS-1 binds to PI3K via its p85 subunit through its SH2 domain, leading to the activation



Biomolecules 2022, 12, 378 4 of 27

of its p110 catalytic domain. This event allows PI3K to catalyze the conversion by the
phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-
3,4,5-triphosphate (PIP3), which recruits both the phosphoinositide-dependent kinase-1
(PDK1) and Akt, also known as protein kinase B (PKB), to the cellular plasma membrane.
Subsequently, PDK1 activates Akt by the phosphorylation of threonine residue, which
phosphorylates the protein Akt-substrate of 160 kDa (AS160).

AS160 carries a Rab GTPase activating protein (GAP) domain, which, under basal
condition, hydrolyses Rab-bound GTP to its inactive Rab-bound GDP form, resulting in
the retention of the glucose transporter GLUT-4 in the cytoplasm [24]. Phosphorylation of
AS160 by Akt leads to the inactivation of its Rab GTPase activity and increased formation
of Rab-GTP, which promotes translocation and subsequent fusion of GLUT-4 transport
vesicles to the plasma membrane for glucose uptake (Figure 1).

2.3. Insulin Resistance

Insulin resistance refers to a condition in which insulin-sensitive cells have a sub-
normal response to physiological concentrations of insulin. This occurs when the insulin
signaling pathway engaged downstream of the IR is impaired. A defect of the insulin re-
sponse impairs glucose uptake by adipose tissue and skeletal muscle and reduces glycogen
synthesis by the liver, leading to the establishment of a hyperglycemic state.

As a result of this insulin resistance, the pancreas first enters into a “compensatory
period” in which β-cells hypertrophy and produce more insulin [25]. However, this
hypersecretion of insulin cannot be maintained and will lead to a failure of the secretory
function of β-cells and insulinopenia. Chronic hyperglycemia due to insulin resistance will
also lead to glucotoxicity, inducing the loss of β-cells through apoptosis.

From an etiologic point of view, insulin resistance has been mainly related to high-fat
and high-carbohydrate diets leading to fat mass gain in overweight and obese patients.
Nevertheless, the mechanism explaining how excessive adiposity promotes insulin resis-
tance, pancreatic β-cell dysfunction, hyperinsulinemia and hyperglycemia still needs to be
investigated due to conflicting evidence [26]. On the one hand, some authors proposed that
increased insulin resistance and insulinemia in obese patients are related to the ability of
pancreatic β-cells to sense the need to secrete more insulin, in parallel with the capacity of
tissues such as the liver, kidney and skeletal muscle to sense the need to clear less insulin
to maintain normoglycemia [27,28]. On the other hand, other authors reported that insulin
resistance is higher in people with obesity than in people who are lean, even when both
groups are matched by basal glycemia and hepatic and muscle insulin sensitivity [29]. This
raises the possibility that excessive fat mass per se causes unique alterations in the crosstalk
between glycemia and insulin resistance independent of insulin sensitivity. Accordingly,
it was demonstrated that increased adiposity could induce insulin secretion in obese pa-
tients, and the associated deterioration of β-cell function is a determinant of impaired
fasting glucose leading to type 2 diabetes [30].

Interestingly, clinical trials reporting that insulin resistance and body weight are
closely correlated also show that weight-loss diet interventions time-dependently lead to
a decrease in fat mass, insulin resistance and major associated disorders such as blood
pressure or β-cell dysfunction [31,32]. The study from Bondonno et al. [33] conducted on
54,787 participants investigated the association between diabetes and the consumption
of diets rich in flavonoid micronutrients from the polyphenol family. It was found that
participants with the highest total flavonoid intake had a 19% lower risk of diabetes, in part
through a reduction of body fat. Likewise, the association of a lifestyle intervention with
an energy-restricted Mediterranean diet and exercise program was reported to promote
weight loss, improve glycemic control and insulin sensitivity, and reduce the inflammatory
status and lipid profile markers related to cardiovascular risk factors [34]. Insulin resistance
and hyperglycemia control in obese patients were also reported to be improved by bariatric
surgery known to promote significant fat mass loss [35,36]. A recent study comparing the
glycemic control in patients with obesity and type 2 diabetes who underwent bariatric
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surgery (BS) to those receiving medical treatment (MT) indicated a diabetes remission rate
at 1 year, reaching 59% in the BS group and 0.4% in the MT group [37].

Overall, from a technical point of view, clinical biomarkers mostly explored to in-
vestigate insulin resistance in clinical trials include the measurement of fasting glycemia
and insulinemia, oral glucose tolerance and circulating glycated hemoglobin A1c (HbA1c),
and the calculation of parameters such as HOMA-IR index reflecting insulin resistance or
HOMA-B index reflecting β-cell function [30–32,37].

2.4. Mechanisms of Insulin Signaling Disruption

Insulin resistance results from the impairment of the signaling cascade downstream of
the insulin receptor (IR). Different mechanisms might contribute to the dysregulation of
the insulin signaling pathway, but many insulin resistance inducers activate IRS kinases
targeting the IRS-1 protein (Figure 2). Indeed, IRS-1 has many potential sites of serine
phosphorylation that downregulate its activity. Many of these kinases are activated along
insulin-unrelated pathways, as in the case of the inhibitor of nuclear factor kappa B kinase
subunit beta (IKKβ), c-Jun NH2-terminal kinase (JNK) [38] and AMP-activated protein
kinase (AMPK) [39]. It was reported that the mutation of IRS-1 serine phosphorylation
sites protects mice against fat-induced insulin resistance [40]. Other mechanisms of insulin
resistance include the reversion of the insulin-induced tyrosine phosphorylation of IRS-1,
IRS degradation and decreased GLUT-4 expression [41]. Even though insulin resistance
can be associated with multiple molecular mechanisms and has not been fully elucidated,
two major phenomena are clearly related to insulin resistance, namely inflammation and
oxidative stress.
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Figure 2. Molecular mechanisms impairing insulin signaling. Periodontal bacteria components
and free fatty acids bind to TLRs at the plasma membrane of the target cell. TLRs recruit MyD88
and induce the activation of IRAK and TRAF6 proteins. This leads to the induction of NF-κB and
MAPK pathways involving the transcriptional factors NF-κB and AP-1, respectively. These pathways
promote the secretion of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β. At the cell
plasma membrane, cytokines bind to specific receptors and induce the activation of JNK and SOCS3.
IKK and JNK are involved in signaling pathways downstream of TLRs, and SOCS3 induces insulin
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resistance by serine phosphorylation of IRS-1. Inactivation of IRS-1 impairs insulin signaling, resulting
in the retention of GLUT-4 in the cytoplasm. In parallel, NF-κB/AP-1 pathway activates the expression
of genes encoding ROS-producing enzymes like NOX and iNOS. Excessive intracellular ROS levels
contribute to insulin resistance by activating IKK and JNK, which directly inhibit IRS-1, and by
inducing NF-κB and MAPK pathways that lead to the production of pro-inflammatory cytokines.

2.4.1. Inflammation

Inflammation has always been associated with insulin resistance. Numerous inflam-
matory cytokines and mediators, including tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6) and monocyte chemoattractant protein 1 (MCP-1), are upregulated during insulin
resistance [42]. Moreover, the inhibition of these mediators is associated with improving
insulin sensitivity [43]. This impact of inflammatory mediators on insulin sensitivity can be
mediated by various molecular mechanisms.

Two major signaling pathways are activated during inflammation and linked to in-
sulin resistance: the nuclear factor-kappa B (NF-κB) pathway and the JNK/AP-1 pathway
(Figure 2). Importantly, the activation of these pathways also mediates the activation
of IKKβ and JNK1 serine kinases in the NF-κB and JNK/AP-1 pathways, respectively,
and these kinases phosphorylate IRS-1 on serine, leading to its inactivation [38]. Interest-
ingly, the absence of both JNK1 and IKKβ pathways results in improved insulin sensitivity
and enhanced insulin receptor signaling in mouse models of obesity [44,45]. These path-
ways can be activated by numerous stimuli and lead, in turn, to inflammatory mediators
involved in insulin resistance. Among inflammatory mediators, TNF-α and interleukin-1β
(IL-1β) have been reported to mediate insulin resistance by IKKβ and JNK1-induced IRS-1
serine phosphorylation [46,47].

These signaling pathways are also involved downstream of Toll-like receptors (TLRs)
and mediate the production of pro-inflammatory cytokines and chemokines like TNF-α,
IL-6, IL-1β and MCP-1 (Figure 2) [48]. TLRs and TLR4, in particular, are known to be
activated by free fatty acids (FFA) and the bacterial endotoxins called lipopolysaccharides
(LPS). Subsequently, the NF-κB pathway is induced by the TLR-mediated signaling pathway
and mediates a pro-inflammatory response. Indeed, after activation of TLR, the adaptor
MyD88 binds to TLR and induces a signaling pathway involving interleukin-1 receptor-
associated kinase (IRAK)-1 and 4, and TNF receptor-associated factor 6 (TRAF6), leading to
the activation of the transcriptional factors NF-κB and AP-1 by phosphorylation of the IKK
complex and JNK, respectively (Figure 2). Of note, these pro-inflammatory mechanisms
have already been associated with periodontal bacteria LPS [49].

Inflammatory mediators are also associated with non-IRS-1 related insulin resistance.
IL-6 induces the activation of the suppressor of cytokine signaling proteins SOCS1 and
SOCS3 (Figure 2), which promote IRS ubiquitylation and degradation [50]. IL-1β downreg-
ulates IRS-1 gene expression [51]. In parallel, nitric oxide (NO) has been reported to reduce
PI3K-Akt activity by s-nitrosylation of Akt [52].

Notably, the adipose tissue plays a key role in inflammation-induced insulin resistance
as a massive source of inflammatory cytokines and specific adipokines, including leptin,
resistin and adiponectin [53]. Both leptin and resistin are pro-inflammatory adipokines
overproduced during obesity and associated with insulin resistance. Inversely, adipokine
adiponectin is an anti-inflammatory adipokine that exerts pleiotropic anti-inflammatory,
antioxidant and insulin-sensitizing effects. However, adiponectin production is down-
regulated during obesity and is inhibited by pro-inflammatory mediators such as IL-6
and TNF-α.

2.4.2. Oxidative Stress

Oxidative stress is defined as an imbalance between the production of highly reactive
species and antioxidant molecules. Reactive oxygen species (ROS) can be classified into
free radicals that contain at least one unpaired valence electron, such as superoxide ion
(•O2

−) and hydroxyl (•OH), and a non-radical such as hydrogen peroxide (H2O2) [54].



Biomolecules 2022, 12, 378 7 of 27

The mitochondria are the main intracellular source of ROS as the mitochondrial respiratory
chain produces ROS during cell respiration. ROS are also generated during enzymatic
reactions involving NADPH oxidase (NOX), xanthine oxidase, cytochrome p450 and perox-
idases [55]. These reactive species are continuously produced at low levels in the course
of biological reactions and are essential for several physiological processes, including
protein phosphorylation, cell signaling pathways, differentiation, activation of transcrip-
tional factors, apoptosis, immunity and defense against infections by microorganisms [56].
In physiological situations, cells deploy antioxidant defenses to balance ROS production
and keep it at low levels. This antioxidant defensive system is mainly based on antioxidant
enzymes such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx),
whose production is mediated by the redox-sensitive transcriptional factor, nuclear factor
erythroid 2-related factor 2 (Nrf2) [57]. Oxidative stress emerges when this antioxidant
defense system is not enough to counterbalance the production of ROS.

Numerous cellular and metabolic dysfunctions can contribute to ROS overproduction
and oxidative stress, including endoplasmic reticulum stress and increased advanced gly-
cation end-product (AGE) formation. During obesity, excessive intracellular accumulation
of fatty acid content in adipose cells leads to mitochondria dysfunction and increases ROS
production. In parallel, the hyperglycemic condition leads to an AGE increase [58]. Of note,
the activation of TLRs mediated by intestinal and periodontal bacterial stimuli also results
in oxidative stress [49].

Oxidative stress exerts a deleterious impact on glycemic control by impairing glucose
uptake. Cellular models of insulin resistance are characterized by elevated ROS levels,
and treatment with antioxidant species improves insulin resistance [59]. Indeed, during
oxidative stress, high intracellular ROS levels activate NF-κB, JNK and mitogen-activated
protein kinase (MAPK) pathways [44] (Figure 2). As described above, the involvement
of these pathways results in the activation of the serine kinases JNK1 and IKKβ, which
impair insulin signaling pathways by serine-phosphorylation of IRS-1 [47]. Concomitantly,
the activation of such pro-inflammatory signaling pathways enhances the secretion of
pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β, which in turn contribute to
altered insulin signaling (Figure 2). In parallel, the expression of genes coding for ROS-
producing enzymes such as NOX and inducible nitric oxide synthase (iNOS) is induced by
the pro-inflammatory NF-κB/AP-1 pathway (Figure 2). Excessive ROS react with other
cellular components such as proteins, lipids and DNA, damaging molecular structures
and cellular functions [55]. In particular, ROS can cause lipid peroxidation, leading to
damaged cellular membranes and circulating lipoproteins. These reactive species can
also damage proteins, inducing conformational modifications and loss or impairment of
function/enzymatic activity, and damage DNA, possibly leading to mutagenesis. These
damages contribute to cellular dysfunctions. Importantly, there is real crosstalk between
inflammation and oxidative stress since excessive ROS levels promote the secretion of
various pro-inflammatory cytokines that induce oxidative stress [59]. Both mechanisms
maintain each other, and their synergistic action may contribute to insulin resistance onset
and aggravation.

3. Molecular Players Linking Insulin Resistance and Periodontal Bacteria
3.1. Periodontitis and Associated Main Periodontal Bacteria

Periodontitis is a multifactorial oral disease characterized by chronic inflammation of
the tissues supporting the tooth. The development of this condition results from a dysbiosis
of the oral microbiota, which induces a deleterious inflammatory response by the host,
leading to progressive destruction of the periodontal tissues and, ultimately, to the loss of
teeth. Periodontitis is epidemiologically linked with several diseases such as cardiovascular
diseases, obesity, diabetes, neurodegenerative pathologies and non-alcoholic fatty liver
disease [60,61].

Oral dysbiosis is characterized by the development of anaerobic Gram-negative bacte-
ria within the dental plaque in the depths of periodontal pockets, where oxygen levels are
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very low. Even if there is great inter-individual variability in the microbiota found within
periodontal pockets, some bacteria are statistically abundant during periodontitis. This is
the case for the three bacteria of Socranski’s red complex: Porphyromonas gingivalis (P. gingi-
valis), Tannerella forsythia and Treponema denticola. Other bacteria such as Prevotella intermedia,
Fusobacterium nucleatum and Campylobacter rectus are also abundant during periodontitis.
These periodontal bacteria have various virulence factors that can negatively impact the
host and participate in the pathogenesis of periodontitis. Indeed, several constituents of the
outer membrane of these gram-negative bacteria, such as fimbriae, LPS, flagellin and outer
membrane vesicles (OMVs), can participate in and influence the inflammatory response of
the host [62].

Among these constituents, particular attention is paid to LPS, recognized as major
constituents of the wall of these bacteria and highly immunoreactive molecules. In humans,
the action of LPS is mainly mediated by the TLRs family such as TLR4 and TLR2 [63], which
are expressed, on the one hand, by immune cells and, on the other hand, by many cell
types, including adipocytes [64], skeletal muscle cells [65], hepatocytes [66] and pancreatic
β-cells [67]. Activation of these receptors induces NF-κB and MAPK pathways [63], leading
to the secretion of pro-inflammatory cytokines, such as TNF-α and IL-6, and promoting
oxidative stress [49], which is particularly demonstrated by LPS from P. gingivalis. Fimbriae
play a key role during biofilm formation, bacterial attachment to host tissues and invasion
into host cells. As a late colonizer of the subgingival biofilm, P. gingivalis fimbriae play an
important role in its establishment by allowing it to interact and aggregate with earlier
colonizers already present within the biofilm [68,69]. Fimbriae are also thought to play
a crucial role in the invasion of oral epithelial cells by periodontal bacteria [70]. OMVs
are small vesicles released into the extracellular environment by Gram-negative bacteria
carrying multiple biomolecules, including adhesion molecules and virulence factors [71].
P. gingivalis OMVs have been reported to mediate the transport of proteases [18]. Among
periodontal pathogens, P. gingivalis has the characteristic to produce specific proteases
called gingipains, which highly contribute to making it a major periodontopathic pathogen.
Gingipains are cysteine proteases highly conserved among P. gingivalis strains. There are
two types of gingipains, comprising arginine-specific gingipains (Rgp) and lysine-specific
gingipains (Kpg), that collectively account for 85% of the extracellular proteolytic activity
of P. gingivalis [72]. These proteases are able to inactivate pro-inflammatory mediators
and make the bacteria able to evade innate immunity [73]. Kadowaki et al. [74] have
nicely demonstrated that using inhibitors of gingipains can suppress the pathogenicity of
P. gingivalis.

Periodontal pathogens have been associated with multiple metabolic diseases, in-
cluding cardiovascular diseases, liver diseases, dyslipidemia, obesity and diabetes [61].
The common hypothesis proposed involves the translocation of periodontal pathogens
and related components into systemic circulation due to the breakdown of oral epithelium
integrity. Indeed, severe periodontitis is associated with the destruction of the surrounding
and supporting tissues of the teeth, including the gums, cementum, periodontal ligament
and alveolar bone. This degradation results from chronic inflammation mediated by a
complex immune response from the host to the dysbiotic microbial biofilm [75]. However,
some periodontal bacteria also play a direct role in the loss of gingival epithelial integrity.
Recent work has highlighted that gingipains secreted by P. gingivalis degrade tight junction-
associated proteins, resulting in the permeability of the gingival epithelium to gingipains,
LPS and proteoglycans [76]. These findings are in agreement with previous results from
Katz et al. [77], showing that the same proteases degrade epithelial junction proteins such
as E-cadherin, occludin and β1-integrin. This loss of integrity may contribute to the translo-
cation of bacterial components into the bloodstream and periodontium distant tissues.
Concordantly, in humans, periodontal bacteria DNA has been detected in abdominal aortic
aneurysm, atherosclerotic plaques and aortic tissue [78–80]. In vivo, periodontitis models
of the oral application of P. gingivalis in mice exhibit alveolar bone resorption associated
with the detection of P. gingivalis bacteria and gingipains in the brain [81] and pancreas [82].
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3.2. Impact of Periodontal Bacteria on Insulin Sensitivity and Secretion

The presence of a periodontal infection elevates the plasma levels of TNF-α, IL-6 and
C-reactive protein (CRP) [83,84] and insulin resistance markers such as HOMA-IR [85] in
periodontitis patients. Moreover, periodontitis is associated with increased oxidative stress
as evidenced by lower plasma small molecule antioxidant capacity (pSMAC) and higher
levels of plasma protein oxidation in type 2 diabetic patients [86]. Interestingly, numerous
studies report that the therapeutic management of periodontitis is associated with reduced
glycated hemoglobin (HbA1c) and systemic inflammation and improved glycemic control
in diabetic patients with periodontitis [87–89].

To investigate the link between periodontal disease and insulin resistance, various
in vivo models have been developed. These models include the oral application of whole
periodontal bacteria [90] or LPS to the gingival sulci [91], silk ligature with [92–94] or
without [95] the application of periodontal bacteria components, and intravenous injection
of sonicated bacteria [96]. Each of these models exhibits insulin resistance and impaired
glucose metabolism, which was demonstrated by a glucose tolerance test (GTT) and insulin
tolerance test (ITT), and systemic inflammation characterized by elevated plasma IL-6 [11]
and TNF-α [95] levels. Watanabe et al. [93] reported that periodontitis accelerates the
onset of severe insulin resistance and impaired glucose homeostasis in Zucker diabetic
fatty rats. Interestingly, Blasco-Baque et al. [12] demonstrated that adaptative immune
response developed against P. gingivalis prior to periodontal infection protects mice from
the deleterious effects of periodontitis on glucose tolerance.

Considering these profound metabolic alterations, it is essential to understand the
molecular mechanisms linking insulin resistance and periodontal bacteria by focusing
on insulin-dependent tissues, including adipose tissue, skeletal muscle, the liver and
pancreatic β-cells responsible for insulin secretion.

3.2.1. Adipose Tissue

The deregulation of adipose tissue physiology plays a central role in various diseases,
including cardiovascular diseases and diabetes. Obesity is strongly associated with dia-
betes [2]. During obesity, excessive fat accumulation in adipocytes impairs their secretory
and metabolic functions. Adipose cells overproduce pro-inflammatory adipokines, leading
to a chronic low-grade inflammatory state [53]. Obesity also promotes the overproduction
of ROS and a deficit in endogenous antioxidant defense, leading to oxidative stress [58].
These disorders contribute to the development of insulin resistance and type 2 diabetes.

The literature data report a positive correlation between obesity and the prevalence of
periodontal diseases [97]. During obesity, periodontal bacterial components may induce
chronic inflammation and oxidative stress, contributing to the development of insulin
resistance. Of note, a mouse model co-exposed to high-fat diet (HFD)-induced obesity
and experimental periodontitis exhibits worsened inflammation and insulin resistance
compared to obese mice without periodontitis [12].

There is still no evidence that periodontal bacteria can reach adipose tissue during
periodontitis. However, a previous in vivo study demonstrated that oral administration of
P. gingivalis in mice induces insulin resistance associated with macrophage infiltration on
epididymal adipose tissue. Moreover, this tissue exhibited upregulation of the expression
of genes encoding TNF-α, IL-6, MCP-1 and IL-1β, and in parallel, downregulation of
the expression of genes coding for IRS-1 and Sirt1 involved in insulin sensitivity [11].
A decrease in IRS-1 phosphorylation involved in the insulin signaling pathway was also
reported in the adipose tissue of rat models with ligature-induced periodontitis [95].

In vitro studies on the murine 3T3-L1 adipose cell line have further investigated
the impact of periodontal bacteria exposure on adipocyte metabolism. In this cell line,
P. gingivalis bacteria exert pro-inflammatory action by activating TLR2/4 receptors and
recruitment of NF-κB, p38 MAPK, JNK and extracellular signal-regulated kinase (ERK)
signaling pathways [49,98]. These signaling pathways promote increased secretion of
the pro-inflammatory cytokines IL-6, MCP-1, TNFα and leptin and decreased release
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of adiponectin. Accordingly, Yamaguchi et al. [99] reported a dose-dependent increase
in IL-6 secretion in response to LPS of P. gingivalis and Fusobacterium nucleatum in 3T3-
L1 adipocytes.

In the study by Le Sage et al. [49], we demonstrated that the exposition of 3T3-L1
adipocytes to P. gingivalis LPS induces oxidative stress by increasing intracellular ROS levels
and altering the expression of genes encoding redox enzymes. In particular, P. gingivalis
LPS enhances the expression of genes coding for NOX2, NOX4, iNOS and the antioxidant
enzyme catalase, suggesting an activation of the antioxidant defense system in response
to oxidative stress. Singh et al. [98] reported similar results during adipocyte exposure to
P. gingivalis whole bacteria and demonstrated downregulation of the expression of genes
encoding heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1-α). Interestingly, previous studies reported that the suppression
of HO-1 gene expression in adipose tissue is associated with a decrease in PGC1-α, leading
to mitochondrial dysfunction and increased inflammation [100].

In 3T3-L1 adipocytes, P. gingivalis LPS also alters adipogenic and insulin sensitivity-
related markers. Indeed, P. gingivalis LPS exposure leads to increased secretion of resistin
and leptin involved in insulin resistance and decreased secretion of adiponectin recognized
as an insulin-sensitizing molecule [49]. In mice isolated primary adipocytes, infection with
P. gingivalis reduces levels of the insulin receptor and Akt phosphorylation [99]. P. gingivalis
also increases the mRNA levels of CCAAT/enhancer-binding protein alpha (CEBPα),
fatty acid synthase (FAS) and peroxisome proliferator-activated receptor gamma (PPARγ),
and enhances the accumulation of lipid droplets in 3T3-L1 adipocytes [98].

Together, these studies support the deleterious impact of periodontal bacteria on
adipocyte metabolism, which may contribute to the development of insulin resistance
associated with periodontitis, and link obesity to type 2 diabetes and periodontal disease.

3.2.2. Skeletal Muscle

In humans, anti-P. gingivalis antibody tiers are positively correlated with intramuscular
adipose tissue content (IMAC), fasting blood glucose and HOMA-IR insulin resistance
index [13]. However, to date, there are little data regarding the impact of periodontitis on
skeletal muscle tissue and glucose metabolism.

Watanabe et al. [13] demonstrated impaired glucose tolerance, insulin resistance and
marked fat infiltration in skeletal muscles of C57BL/6J mice fed an HFD and exposed
to P. gingivalis by oral administration (HFPg) when compared to control animals (HFco).
The soleus muscle of HFPg mice exhibits fat infiltration and lower glucose uptake resulting
from impaired insulin signaling by decreased Akt phosphorylation. These alterations were
associated with higher expression levels of TNF-α, IL-6 and MCP-1, enrichment of gene
sets including the IL-6/JAK/STAT pathway, and gene sets related to TNF-α signaling via
NF-κB. Concordantly, in vitro exposition of C2Cl2 myoblasts to TNF-α decreases glucose
uptake. In parallel, in mice fed a normal chow diet, administration of P. gingivalis also
induces insulin resistance associated with decreased Akt phosphorylation and increased
TNF-α expression in the soleus muscle.

Even if there is currently no data regarding the impact of periodontal components
on muscle cells’ insulin pathway, a previous study demonstrated that the exposition of
human muscle cells to Escherichia coli LPS increased MCP-1 and IL-6 gene expression
and JNK phosphorylation. Consequently, insulin-stimulated IRS-1, as well as Akt and
AS160 phosphorylation, were reduced. Interestingly, this deleterious impact of LPS was
counteracted by using a TLR4 antagonist [65]. These results raise the possibility of the
same impact of periodontal bacteria LPS, which mediate pro-inflammatory action via
TLR4 activation.

3.2.3. The Liver

A growing number of studies show the involvement of periodontitis in the dysregula-
tion of liver metabolism and progression of liver diseases [101,102]. In vivo studies have
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demonstrated that periodontitis increases fat accumulation and exacerbates non-alcoholic
fatty liver disease (NAFLD) in mouse livers. Sasaki et al. [96] reported increased liver
steatosis with elevated triglycerides and glycogen accumulation in HFD-exposed mice
when intraperitoneally administered with sonicated P. gingivalis. Similar results were
obtained in HFD-induced obese rats with periodontal ligature [94] or orally administrated
with P. gingivalis [11]. This fat accumulation is associated with a significant increase in
hepatic CD36 mRNA levels [94,96]. Hepatic CD36 is a fatty acid transporter that acts as a
transcriptional regulator of PPARγ. Its depletion from hepatocytes attenuates fatty liver
and improves insulin sensitivity in obese animals [103]. Accordingly, it was demonstrated
that P. gingivalis exacerbates the progression of fatty liver disease through the CD36-PPARγ
pathway [104]. Interestingly, Ni et al. [94] showed that periodontal scaling and root planing
decrease the mRNA levels of hepatic CD36 and CRP levels and improve insulin resistance
in obese rats. In addition to altered lipid metabolism and enhanced fatty liver disease,
periodontal bacteria also impact glucose metabolism. In vitro studies using HepG2 human
hepatocytes treated with P. gingivalis showed that the bacteria internalizes into hepato-
cytes and reduces glycogen synthesis by attenuating the phosphorylation of IRS-1 and the
Akt/glycogen synthase kinase-3β (GSK-3β) signaling pathway [105]. Similarly, Seyama
et al. [18] recently demonstrated that P. gingivalis OMVs carrying gingipains translocate
into the liver and attenuate glycogen synthesis in mice. Exposing HepG2 hepatocytes to
these OMVs provided evidence for an attenuation of the insulin-induced Akt/GSK-3β
signaling pathway.

In the liver, P. gingivalis bacteria induce increased production of IL-6 and TNF-α and
upregulate gene sets related to TNF-α signaling via NF-κB [11,96]. The same effect is
observed in in vitro Hepa-1.6 hepatocytes cell line in response to P. gingivalis exposure [106].
Of note, in experimental mouse models of periodontitis, TLR4 loss of function inhibits
the deleterious effect of periodontitis on the insulin signaling pathway, evidenced by the
increased ratio of pAkt/Akt and decreased levels of TNF-α [92].

Metabolomic analyses of the liver of animals with an oral application of P. gingi-
valis revealed a marked increase in biomarkers of oxidative stress, such as methionine
sulfoxide and S-methylcysteine [90], suggesting that P. gingivalis also deregulates redox
homeostasis, resulting in the production of free radicals and peroxides that may contribute
to inflammation and insulin resistance in the liver.

3.2.4. Pancreatic β-Cells

The presence of periodontal bacteria from Fusobacterium species has been reported
in pancreatic cancer [107]. Recent data from Ilievski et al. [82] demonstrated the presence
of P. gingivalis bacteria and gingipains in pancreatic β-cells in both human and animal
models of periodontitis, indicating that periodontal bacteria translocate into pancreatic
islets. However, while in mice, gingipains are found only in β-cells, in humans, they are
also found in α-cells at a lower proportion. In animal models, periodontitis induction is
associated with hyperinsulinemia [90], suggesting a direct impact of periodontal bacteria
on the function of pancreatic β-cells, the only known source of circulating insulin. In the
murine pancreatic β-cell line MIN6, P. gingivalis and its LPS induce an increase in insulin
secretion [108] associated with the elevation of SerpinE1 gene expression [109]. The serpinE1
gene encodes the plasminogen activator inhibitor-1 (PAI-1), which is known to increase
during obesity, insulin resistance and diabetes [110].

The translocation of P. gingivalis in the pancreatic islet is associated with changes in
islet architecture, upregulation of SerpinE1 and β-cells apoptosis [111]. Whereas in control
animals exposed to P. gingivalis, α-cells are only located in the mantle zone surrounding
the β-cell core, in experimental animals, α cells are found in the mantle zone as well as
inside the β-cell core. Consistent with this observation, in vitro exposure to P. gingivalis
induces apoptosis of MIN6 β-cells, which is reduced by SerpinE1 inhibition. In the study
by Ilievski et al. [82], it was demonstrated that gingipains that translocate into β-cells in
human pancreatic samples and experimental mice are located at the nuclear or peri-nuclear
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levels. Moreover, the presence of bihormonal cells was detected in pancreatic islets. It was
found that these bihormonal cells are more prevalent in diabetic patients and positively
correlate with P. gingivalis invasion in both human and mouse samples. Interestingly, only
a low proportion of these bihormonal cells show an intracellular presence of gingipains.
Bihormonal cells are glucagon and insulin-producing cells and are considered to be at
an intermediate α- to β-cell differentiation step [112]. The emergence of bihormonal cells
has already been reported following the near-total loss of β-cells in animal models [113].
In parallel, in humans, a higher percentage of bihormonal cells has been reported in
pancreatic samples from an insulin-resistant group, as compared to an insulin-sensitive
group [114]. This process is thought to be adopted to compensate for insulin resistance
and insulinopenia.

4. Current Management of Periodontal Infection and Diabetes

Since daily home care enables dental biofilm removal, establishing an effective oral
care routine is an essential component of periodontal infection prevention and treatment.
This should be associated with the correction of aggravating factors [115]. The objective of
periodontal treatment is to mechanically remove bacterial deposits and calculus from the
subgingival plaque to stop periodontitis and, when possible, to regenerate the periodontium
lost as a result of the disease. This treatment can be surgical or non-surgical, according to the
severity of periodontal lesions. Non-surgical treatments consist of scaling and root planing
and allow the removal of supra- and subgingival calculus to facilitate the re-attachment
of the gums to the roots. Systemic antibiotics can also be prescribed as a supplement
and are associated with significantly improving scaling and root scaling outcomes [116].
However, for the most advanced periodontitis with deeper periodontal pockets (i.e., 6 mm
or deeper) and bone lesions, periodontal surgery needs to be performed. Surgical therapies
include resective surgery to reduce and eliminate inflammatory lesions and regenerative
surgery, such as guide tissue regeneration and bone grafts, to re-establish lost periodontal
tissues [117]. Guide tissue regeneration is accomplished using a barrier membrane with or
without bone grafting materials. Various biological factors can also be used to enhance the
outcome of periodontal regeneration. Systematic review and meta-analysis reported greater
clinical attachment when certain biological factors are added to regenerative treatment.
This is the case for enamel matrix derivatives, which promote bone formation, periodontal
ligament cell proliferation [118], and recombinant human platelet-derived growth factor-
BB (PDGF-BB), a wound healing growth factor [119]. Interestingly, a recent randomized
trial showed that intensive periodontal treatment, consisting of whole mouth subgingival
scaling and surgical periodontal therapy, reduced fasting plasma glucose concentrations,
reduced systemic inflammation, and improved vascular and kidney function as well as
quality of life [87].

Currently, managing diabetes includes lifestyle changes with a nutritional approach
and regular practice of physical exercise and pharmacological therapies when lifestyle
measures alone are unable to sustain glycemic control. Various pharmaceutical compounds
with different modes of action are available to treat type 2 diabetes [120,121]. Insulin-
sensitizers, such as biguanides and thiazolidinediones, act by improving tissue sensitivity
to insulin, while insulin secretagogues, such as meglitinides and sulfonylureas, stimulate
insulin secretion by pancreatic β-cells. Another class of antidiabetics includes glucagon-
like peptide-1 (GLP-1) receptor agonists, which mimic GLP-1 activity, and inhibitors of
dipeptidyl peptidase-4 (DPP-4) [122]. Indeed, the incretin hormone GLP-1 exerts anti-
hyperglycemic activity by regulating appetite and satiety, inhibiting glucagon secretion
and promoting insulin production but is rapidly degraded by DPP-4 in physiological
conditions. Inhibitors of α-glucosidase aim to limit carbohydrate digestion and absorption
in the intestinal tract and reduce postprandial hyperglycemia [123]. Lastly, inhibitors of
sodium-glucose co-transporter (SGLT)-2 facilitate the excretion of glucose in the urine by
inhibiting its reabsorption in the proximal renal tubules [124]. In the gastrointestinal tract,
SGLT-1 is responsible for glucose and galactose absorption. A dual SGLT1/2 inhibitor
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has already demonstrated promising efficacy for controlling glycemia [125]. Importantly,
in patients with advanced type 2 diabetes, these medications fail to effectively regulate
hyperglycemia, and these patients have to be placed on insulin replacement therapy.

Although current therapies for type 2 diabetes control hyperglycemia and reduce
diabetes symptoms, they also exert undesirable side effects. Moreover, they do not target
the molecular mechanisms responsible for the development of insulin resistance and related
diabetes, including inflammation and oxidative stress. Thus, there is very high interest
in validating innovative anti-inflammatory and antioxidant strategies such as those using
plant polyphenols.

5. Polyphenol-Based Therapies
5.1. Structures and Sources of Polyphenols

Polyphenols are defined as plant secondary metabolites with nutritional and phar-
macological potentials. They are naturally found in different plant compartments such
as flowers, leaves, stems, barks and roots, and different sources including fruits, vegeta-
bles, cereals, medicinal plants and derived beverages, in variable proportions [126]. Plant
polyphenols are generated from primary metabolites and intermediates thanks to biosyn-
thetic pathways [127]. They are involved in the defense system of plants against different
types of environmental stress like ultraviolet rays and pathogenic attacks, and plant de-
velopment and growth. In addition, polyphenols are responsible for the color, smell and
taste of plants, such as bitterness and astringency [126]. These phenolic compounds are the
most abundant antioxidant micronutrients the human diet provides. In most cases, food
contains complex mixtures of polyphenols, but some classes of phenolic compounds are
specific to certain plants.

Chemically, polyphenols are characterized by a structure comprising one or several
aromatic rings with at least one hydroxyl (OH) group able to neutralize a free electron
while remaining stable. This phenolic structure gives them an antioxidant property. Rice-
Evans et al. [128] showed a relationship between the structure of polyphenols and their
antioxidant capacity. In particular, the polyphenols carrying an aromatic nucleus with
two OH groups (catechol group) may exert stronger antioxidant effects than those with
only one OH group. Currently, nearly 8000 polyphenols have been identified and clas-
sified into major chemical families according to the structure of their carbon skeleton
and the number of phenolic rings (Figure 3). There are the phenolic acids, comprising
hydroxybenzoic acids (derivatives of benzoic acid) and hydroxycinnamic acids (derivatives
of cinnamic acid); the flavonoids that gather more than 5000 molecules, which share a
common structure formed by two aromatic rings bound together by three carbon atoms
forming an oxygenated heterocycle subdivided into different subclasses called flavones,
isoflavones, flavonols, flavanones, flavanols (monomers, proanthocyanidin polymers) and
anthocyanins; the stilbenes, with two phenyl groups joined together by a methylene bridge;
and the lignans, with two phenylpropane units [129].

Concerning the phenolic acids, edible plants contain few hydroxybenzoic acids,
whether in free or esterified forms. However, they are found in large quantities in hydrolyz-
able tannin forms such as ellagitannins detected in certain red fruits such as strawberry
(20–90 mg/kg fresh weight) or blackberry (80–270 mg/kg fresh weight) [130]. They are
also found in onions and tea leaves containing molecules such as gallic acid in a significant
quantity (4.5 g/kg fresh weight) [129]. Otherwise, among the hydroxycinnamic acids,
the most frequently found compound is caffeic acid, which alone accounts for 75–100%
of the total hydroxycinnamic acids from most fruits. Caffeic acid is abundant in cere-
als (0.8–2 g/kg in wheat grains), certain vegetables such as eggplant (600–660 mg/kg),
and kiwi (0.6–1.0 g/kg fresh weight), coffee beans, peanuts, apples, oranges and pineapples.
Hydroxycinnamic acids are generally present as glycosylated derivatives or esters [129].
Chlorogenic acid, an ester of caffeic and quinic acids, is the most common conjugate found
at very high concentrations in many fruits and coffee (a cup of coffee can contain 50 to
150 mg). The methylated derivative of caffeic acid called ferulic acid is mainly present in



Biomolecules 2022, 12, 378 14 of 27

wheat seeds (0.8–2 g/kg weight). Furthermore, the most ubiquitous dietary flavonoids
are flavonols, particularly quercetin and kaempferol, generally found at concentrations
ranging from 15 to 30 mg/kg fresh weight in onions (up to 1.2 g/kg fresh weight), curly
kale (300–600 mg/kg fresh weight), leeks (30–225 mg/kg fresh weight) and blueberries
(250–5000 mg/kg fresh weight). According to Scalbert and Williamson [126], the daily con-
sumption of polyphenols is estimated at around 1 g with major consumption of flavonoids
(60%) comprising 460 mg of proanthocyanidins, 200 mg of catechins, 180–215 mg of an-
thocyanins and 115 mg of flavones and flavonols [126,131]. Stilbenes are found in low
quantities in the human diet, except for resveratrol, widely present in various quantities
in dark chocolate (350 µg/kg), red grapes (92–1604 µg/kg fresh weight) and white grapes
(59–1759 µg/kg fresh weight) [132]. Linseed is the richest dietary source of lignans contain-
ing secoisolariciresinol (up to 3.7 g/kg dry weight) and low quantities of matairesinol [133].
Notably, our previous studies demonstrate the abundance of different polyphenols compris-
ing caffeic acid esters, quercetin and kaempferol glycosylated derivatives, and ellagitannins
or curcuminoids in various sources such as tropical fruits [134], medicinal plants [135] and
Curcuma longa turmeric [136].
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and hydroxycinnamic acids, derivatives of benzoic and cinnamic acids, respectively. The stilbenes
are composed of 2 phenyl groups joined together by a methylene bridge. The lignans are composed
of 2 phenylpropane units.

5.2. Bioavailability of Polyphenols

The biological properties of dietary polyphenols are strongly dependent on their
bioavailability, namely their extent of absorption, distribution, metabolism and elimination.
The bioavailability extent of polyphenols and related metabolites governs their ability to
reach target tissues and exert local biological effects. Three major factors modulate the
polyphenol bioavailability, establishing the nature and concentrations of the metabolites
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circulating in the body and target tissues. They are (i) the rate of intestinal absorption,
(ii) the magnitude of metabolism by enterocytes and hepatocytes, and (iii) the degradation
extent by the gut bacterial microbiota [137,138]. Notably, polyphenols found in foods are
not necessarily those that lead to the most active metabolites in the target tissues. Indeed,
chemical structure, concentration, nature of metabolites, rate and degree of absorption
are important parameters to take into account [139]. Polyphenol’s biological properties
greatly differ from one polyphenol to the next. The process of polyphenol bioavailability
begins when the polyphenols are released from the food matrix, absorbed through the
intestinal barrier, deconjugated in the gastrointestinal tract and colon, and then transported
into the bloodstream to reach the target tissue. Of the total intake of polyphenols ingested
through food in the form of esters, glycosides or polymers, only 5 to 10% can be directly
absorbed in the form of aglycones in the small intestine after deconjugation reactions, such
as deglycosylation by bacterial glycosidases and esterases, before being transported in a less
complex form to the portal vein [129]. There are two enzymes essential for the hydrolysis,
release and transport of aglycones, namely lactase-phlorizin hydrolase and cytosolic β-
glucosidase, found in enterocytes of the small intestine [140]. Subsequently, the metabolites
formed and the catabolites originating from colonic microbial metabolism are metabolized
in the liver. Indeed, polyphenol metabolites may undergo phase I associated with oxidation,
reduction and hydrolysis reactions, followed by phase II conjugation characterized by
reactions such as methylation (in the gut), sulfation (in the liver) and glucuronidation (in
both the gut and the liver) [141]. The conjugation reactions depend on the nature of the
substrates and the dose of polyphenols ingested. In addition, the biological properties of
polyphenols may depend on the degree of conjugation/deconjugation of polyphenols at
the hepatic level [141]. When they leave the liver, a part of the tissue metabolites can be
excreted in the bile and undergo an enterohepatic cycle transporting them back to the small
intestine. When polyphenols are not absorbed and metabolized in the intestine, they enter
the colon and are degraded by colonic bacteria [127,138,141]. We contributed to identifying
several microbial metabolites of polyphenols that include derivatives of phenylvaleric,
phenylpropionic, phenylacetic and phenylbenzoic acids, with evidence of a high level
of hippuric acid [142–144]. Interestingly, Brial et al. [145] recently reported that hippuric
acid administration improved glucose tolerance and insulin secretion in mice exposed
to HFD-induced obesity. A positive link between the urinary concentration of hippuric
acid and glucose homeostasis was established in volunteers consuming a high-meat diet
rich in saturated fats, highlighting hippuric acid as a new mediator and biomarker of
metabolic health. In parallel, some specific microbial metabolites originating from the
catabolism of certain types of polyphenols have been described, such as equol deriving
from soy isoflavones [146] or urolithins from ellagic acid and ellagitannins abundant
in pomegranate [147]. If they are not used, the low molecular weight metabolites are
eliminated in the bile or urine [129,142]. Currently, data concerning the bioavailability
of polyphenol metabolites in tissues are still very scarce. However, polyphenols such
as quercetin, epigallocatechin gallate, resveratrol, caffeic acid and ferulic acid have been
detected in a wide range of tissues in mice and rats, including the brain, endothelial
cells, heart, kidney, stomach, intestine, liver, spleen, pancreas, prostate, uterus, ovaries,
mammary glands, testes, bladder, bone and skin [139,148–152] in low concentrations,
depending on the dose administered and the tissue considered. Considering that the
kinetics of penetration and elimination of polyphenols or metabolites in tissues remain
poorly understood, it is important to determine the suitable time of tissue sampling.

Recently, some authors reported an important notion regarding polyphenol bioavail-
ability, namely the crucial impact of gut bacterial microbiota, which makes it possible to
define people who produce or do not produce a particular type of microbial metabolite.
They showed the need, in nutritional interventions, to better consider the existence of
different types of metabolism or “metabotypes” that depend on interindividual variability
in terms of the absorption, metabolism and biological effects of polyphenols [153,154].
Nowadays, robust analytical tools such as mass spectrometry can provide the metabolomic
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fingerprint associated with consuming a particular type of polyphenol or food. Thus,
biomarkers of consumption of/exposure to polyphenols are sought to correlate their biolog-
ical effects [155,156]. The bioavailability rate already depends on the polyphenol amount
consumed and the plasma concentration found [137]. Notably, polyphenol plasma concen-
tration rarely exceeds 1 µM despite reaching 7–10 µM for some polyphenols, depending
on the interindividual variability of absorption and metabolism related to gut microbiota
composition, the type of polyphenol, the ingested dose and food source [153,154].

5.3. Biological Effects of Polyphenols

The consumption of polyphenol-rich foods may play a role in preventing certain
pathologies such as cancer, osteoporosis, neurodegenerative diseases, type 2 diabetes and
cardiovascular diseases [157]. Polyphenols may exert pleiotropic health benefits, but they
are of particular interest in managing type 2 diabetes due to their anti-inflammatory,
antioxidant, insulin-sensitizing and anti-bacterial properties [19].

5.3.1. Anti-Inflammatory Properties of Polyphenols

The anti-inflammatory effect of polyphenols is widely described in the literature. Polyphe-
nols can reduce the production of various pro-inflammatory cytokines and chemokines, such
as IL-6, IL-8, TNF-α and MCP-1, due to their ability to inhibit NF-κB and MAPK signal-
ing pathways [158–160]. Mice fed with curcumin experienced less massive macrophage
infiltration in the adipose tissue and inhibited NF-κB pathway, increased adiponectin pro-
duction, and decreased hepatic NF-κB activation induced by HFD [161]. Many existing
studies display the anti-inflammatory properties of polyphenols, including resveratrol [162],
quercetin [163] and tea [164].

5.3.2. Antioxidant Properties of Polyphenols

Polyphenols were first described for their potent antioxidant capacity, which may
strengthen cellular defense against oxidative stress and its consequences. It is suggested
that the antioxidant properties of polyphenols, linked to their free radical-scavenging ability
and antioxidant enzyme modulation capacity, could reduce oxidative stress. Several dietary
polyphenols, including resveratrol, quercetin, tea catechins and curcumin, upregulate the
redox-sensitive transcriptional factor Nrf-2 and several antioxidant enzymes (SOD, cata-
lase and GPx), which downregulate ROS production and limit oxidative stress [159,165].
Polyphenols are able to target various proteins, including enzymes, receptors and trans-
porters both at the cytosolic and mitochondrial levels, keeping in mind that mitochondria
constitute a major source of ROS. The inhibition of free radical-generating enzymes such
as NOX is an important mechanism of the antioxidant effect for polyphenols. Several
works have reported that flavonoids are the molecules most likely involved in this effect by
inhibitor-enzyme complex formation and/or by direct scavenging of ROS [166].

5.3.3. Insulin-Sensitizing Properties of Polyphenols

Numerous studies highlight the anti-diabetic properties of various polyphenolic com-
pounds. Anthocyanins present in bilberries and other berries enhance the insulin secretion
of pancreatic β-cells and insulin sensitivity of 3T3-L1 adipocytes [167,168]. In db/db or
HFD-induced obese and diabetic mice models, resveratrol and curcumin lowered fasting
blood glucose levels and increased insulin sensitivity. These polyphenols were also able to
raise the level of phosphorylated AMPK in skeletal muscles leading to improved insulin
response and preserving pancreatic β-cell mass against oxidative stress and elevated pan-
creatic insulin content [169–173]. While the insulin-sensitizing properties of polyphenols
are promising on cell and animal models, results from clinical trials remain controversial.
In a meta-analysis, Raimundo et al. [174] reviewed the effects of polyphenol intervention in
human randomized controlled trials. Briefly, the main polyphenols used in human studies
are green tea catechins, resveratrol, curcumin and quercetin. Polyphenol consumption
lowered fasting blood glucose levels in type 2 diabetic patients, except for curcumin. Never-
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theless, curcumin was able to decrease the risk of developing type 2 diabetes and improved
HOMA-IR values and pancreatic β-cell function in prediabetic patients [175]. In patients
with prediabetes or diabetes, curcuminoid treatment for three months improved fasting
blood glucose, HbA1c levels and insulin resistance [176,177]. Overall, the literature data
suggest that polyphenol interventions in clinical trials are promising for lowering blood
glucose and could enhance insulin sensitivity. However, clinical and preclinical studies
are still required to better understand the mechanisms underlying polyphenol benefits for
diabetes management and to elucidate controversial data.

5.3.4. Anti-Bacterial Properties of Polyphenols

A close link between gut microbiota dysbiosis, obesity and type 2 diabetes has been
reported. A prominent role of gut microbiota dysbiosis in contributing to inflammation,
oxidative stress and insulin resistance was evidenced [178]. Given their various beneficial
health properties, such as those described above, polyphenols could act efficiently against
gut microbiota dysbiosis due to their anti-bacterial properties. Beyond their anti-bacterial
effect, polyphenols act specifically against bacterial pathogens, while beneficial bacteria
remain unaffected if not stimulated. Tzounis et al. [179] demonstrated that epicatechin and
catechin increased the count of probiotics and inhibited foodborne pathogens. In parallel,
the newly emerging concept is related to the prebiotic properties of polyphenols able to
shape the gut microbiota composition and attenuate gut dysbiosis during obesity and
diabetes [180]. For a comparative analysis of polyphenols with other plant metabolites,
prebiotic activities have been largely attributed to some dietary fermentable fibres or non-
digestible oligosaccharides that act as non-viable substrates and serve as nutrients for
selective beneficial microorganisms within the gut microbiota, conferring a net health
benefit [181]. In the recent study by Belda et al. [182], we found that supplementation with
fructo-oligosaccharides and biotin (vitamin B8) in high-fat diet-fed mice improved gut
microbial diversity and bacterial production of biotin and other B vitamins and reduced
fat mass gain, fasting glycemia and the HOMA-IR index indicating insulin resistance.
Concerning polyphenols, it is also suggested that phenolic metabolites, especially ones
with an aromatic ring in their structure resulting from the gut bacterial transformation
of polyphenols, often exhibit different and/or enhanced biological activity than their
parent forms [183]. Due to anti-bacterial properties that promote beneficial bacteria growth,
polyphenols could also be used to manage periodontitis resulting from oral dysbiosis.

5.4. Polyphenol-Based Therapy for Periodontitis Management

Current periodontal treatments are invasive and do not allow a basal return of the
inflammatory and metabolic status of diabetic patients. Accumulating evidence highlights
the use of polyphenols as an innovative natural therapy to improve oral dysbiosis-worsened
pro-inflammatory and metabolic status and insulin sensitivity in diabetic patients. Concern-
ing oral dysbiosis, resveratrol can reduce P. gingivalis LPS-induced TNF-α, IL-6 and IL-1β
production in human periodontal ligament cells aggravating destructive tissue processes in
periodontitis and promoting systemic inflammation [184]. Concerning periodontal bacteria
and insulin sensitivity, we previously showed that medicinal plant polyphenols increased
the production of adiponectin and PPARγ, key anti-inflammatory and insulin-sensitizing
mediators, and exerted antioxidant properties by reversing oxidative stress on adipose
cells exposed to P. gingivalis LPS [185]. Therefore, polyphenols could act (1) locally to treat
periodontitis by favoring bacterial communities and downregulating inflammation, and (2)
downstream or through phenolic metabolites to counteract inflammatory and metabolic
disorders during diabetes. Figure 4 proposes an overview of the detrimental effects of
periodontal bacteria on key tissues related to insulin resistance, including the adipose
tissue, skeletal muscle, liver and pancreas, and the therapeutic potential of plant-derived
polyphenols able to exert anti-inflammatory, antioxidant and insulin-sensitizing activities.
However, there is still a lack of evidence regarding the benefits of polyphenols against
periodontitis during obesity/diabetes. Likewise, the evaluation of polyphenol’s effects on
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glucose-related and insulin-dependent organ functions, such as the liver, pancreas, adipose
tissue and skeletal muscle, remains to be investigated.

As mentioned above, polyphenols are recognized as the most abundant antioxi-
dants provided by the human diet. Interestingly, other natural micronutrients, including
carotenoids and vitamins, exhibit antioxidant properties and act as anti-inflammatory
mediators. Their actions may synergize with those of polyphenols in nutritional con-
texts or as additional potential therapeutic agents. Regarding the carotenoids, β-carotene,
serving as a precursor of vitamin A, has been reported to suppress P. gingivalis LPS-
induced pro-inflammatory cytokine production by monocytes cultured in high glucose
conditions [186]. The same effect was detected in human periodontal ligament cells treated
with β-cryptoxanthin [187]. In a rat model of experimental periodontitis, treatment with
fucoxanthin led to a decrease in blood levels of TNF-α and IL-6 [188]. Concerning the
vitamins, vitamin E, also known as α-tocopherol, reduced the secretion of pro-inflammatory
cytokines and increased cell proliferation and migration in human gingival fibroblasts [189].
Vitamin C was also reported to provide protective effects against inflammation and ox-
idative stress in periodontal tissues of the ligature-induced periodontitis rat model [190].
Nevertheless, similar to the effects of polyphenols, the protective role of compounds such as
carotenoids or vitamins E and C on insulin-targeted tissues and insulin resistance associated
with periodontal disease still needs to be elucidated.
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Figure 4. Overview of periodontal bacteria detrimental effects related to insulin resistance and
therapeutic potential of polyphenols. Periodontitis results from oral microbiota dysbiosis and leads
to the progressive destruction of the periodontal tissues. During periodontitis, periodontal bacteria
components disseminate into systemic circulation and may reach distant tissues, including adipose
tissue, skeletal muscle, liver and pancreas. Locally, periodontal bacteria enhance the production of
pro-inflammatory cytokines such as IL-6, TNF-α and MCP-1 and promote oxidative stress. Crosstalk
between players of inflammation and oxidative stress induces insulin resistance. Moreover, in the
liver, periodontal bacteria alter glucose and lipid metabolism by decreasing glycogen synthesis and
increasing fat accumulation. In the pancreas, periodontitis is associated with changes in the islets’
architecture and alteration of insulin secretion. Altogether, these detrimental effects of periodontal
bacteria contribute to type 2 diabetes. Interestingly, polyphenols able to exert anti-inflammatory,
antioxidant, insulin-sensitizing and anti-bacterial properties may help to counteract the deleterious
action of periodontal bacteria and improve insulin resistance.



Biomolecules 2022, 12, 378 19 of 27

6. Conclusions

The growing literature data support a bidirectional link between diabetes and peri-
odontitis. During periodontitis, periodontal bacteria translocate into systemic circulation
and reach distant tissues, resulting in increased systemic inflammation and insulin resis-
tance. In the adipose tissue, skeletal muscle and liver, these bacteria activate pivotal players
of inflammation and oxidative stress by elevating the secretion of pro-inflammatory cy-
tokines including IL-6, TNF-α, MCP-1 and redox markers. The activation of such molecular
mediators promotes the disruption of the insulin signaling pathway, mainly by serine
phosphorylation of IRS-1 that leads to insulin resistance and a glucose uptake blockade.
In addition, periodontal bacteria alter insulin secretion by pancreatic β-cells, aggravating
insulin signaling deregulation and hyperglycemic status.

Periodontal bacteria may also contribute to insulin resistance through gut microbiota mod-
ifications. Indeed, several studies reported that periodontitis alters gut microbiota [11,12,96].
Nakajima et al. [191] demonstrated that oral administration of P. gingivalis in mice in-
duces gut microbiota dysbiosis characterized by the enhanced proportion of the Firmicutes
phylum and reduced proportion of the Bacteroidetes phylum. This was associated with
increased serum endotoxin levels and decreased expression of intestinal tight junction
proteins. Given the already well-described link between intestinal bacteria and insulin
resistance [178], swallowed periodontal bacteria-induced microbiota dysbiosis may be
another mechanism linking periodontitis and type 2 diabetes.

Therapeutic management of periodontitis improves the systemic inflammation and
insulin resistance markers in diabetic patients with periodontitis [192]. Thus, establishing a
daily home care routine and regular dental care should be integrated with type 2 diabetes
prevention and treatment. Moreover, severe periodontitis is associated with elevated insulin
resistance markers in non-diabetic subjects who have a higher probability of developing
type 2 diabetes when compared to periodontally healthy people [8,85,193]. This suggests
that the presence and severity of periodontitis may be involved in the early detection
of diabetes and could serve as useful clinical biomarkers. Thus, it will be interesting to
institute a transdisciplinary communication between dentistry and metabolic diseases [194].

Current management of type 2 diabetes aims to control hyperglycemia and reduce dia-
betes symptoms. However, antidiabetic pharmaceutical compounds have undesirable side
effects. None of these compounds specifically target the key molecular players highlighted
in this review and are responsible for inflammation and oxidative stress contributing to
insulin signaling pathway disruption. In this regard, plant polyphenols able to exert anti-
inflammatory, antioxidant, insulin-sensitizing and anti-bacterial properties are of relevant
interest to counteract the deleterious impact of periodontal bacteria and improve insulin
resistance. Further studies will be needed to understand the precise impact of polyphenols
in tissues targeted by bacteria in animal models and to assess their benefits in clinical trials.
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