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Abstract

A scalable problem to benchmark robust multidisciplinary design optimization algo-
rithms (RMDO) is proposed. This allows the user to choose the number of disciplines,
the dimensions of the coupling and design variables and the extent of the feasible do-
main. After a description of the mathematical background, a deterministic version of
the scalable problem is defined and the conditions on the existence and uniqueness of
the solution are given. Then, this deterministic scalable problem is made uncertain by
adding random variables to the coupling equations. Under classical assumptions, the
existence and uniqueness of the solution of this RMDO problem is guaranteed. This
solution can be easily computed with a quadratic programming algorithm and serves
as a reference to assess the performances of RMDO algorithms. This scalable prob-
lem has been implemented in the open source software GEMSEO and tested with two
techniques of statistics estimation: Monte-Carlo sampling and Taylor polynomials.

1 Introduction

Multidisciplinary design optimization (MDO) aims at designing complex systems composed
of several coupled subsystems called disciplines. The resolution of a MDO problem depends
on both an optimization algorithm and a mathematical formulation of the optimization
problem, also called architecture (Martins and Lambe, 2013). One of the main characteristics
of a formulation is how it ensures the coupling between the disciplines. The performance of
these techniques can be assessed with popular problems whose dimensions (e.g. the sizes of
the variables or the number of disciplines) are either fixed (Sobieszczanski-Sobieski et al.,
1998; Sellar et al., 1996), or chosen by the user (Vanaret et al., 2017; Tedford and Martins,
2010); in this second case, the problem is said to be scalable.

Uncertainty-based MDO (UMDO), also called multidisciplinary robust design optimization
(MRDO) or robust MDO (RMDO), is an active and recent MDO research topic (Brevault
et al., 2020; Yao et al., 2011) for which there are only few references problems (Liu et al.,
2020). Thus, in this paper, we propose a scalable problem to benchmark UMDO algorithms,
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revisiting and extending the deterministic one proposed by (Tedford and Martins, 2010).
We first give the existence and uniqueness conditions of the solution for the deterministic
scalable problem. Then, we extend this problem to the UMDO framework by adding random
variables in the coupling equations. Under classical assumptions, we obtain the existence
and uniqueness of the solution for the scalable UMDO problem, which can be computed by
quadratic programming (QP).

The paper is organized as follows. Section 2 describes the mathematical formalism of
MDO and UMDO. The scalable problem is presented and studied mathematically in Section
3. In Section 4, we illustrate how this problem can be used in practice by comparing the
performances of two techniques for statistics estimation: Monte-Carlo sampling and Taylor
polynomials. We give concluding remarks in Section 5.

2 MDO background

2.1 MDO problem

A general optimization problem consists in minimizing a cost function f : X ⊂ Rd → F ⊂ R
while satisfying an inequality constraint associated with a function g : X → G ⊂ Rm:

min
x

f(x)

s.t. g (x) 4 0
(1)

where 4 is the component-wise inequality operator. The optimization variable x is often
called design variable or control variable and f is a particular objective function.

When the objective and constraint values result from N interdependent sets of equations,
the optimization problem (1) can be replaced by the general MDO problem (Balesdent et al.,
2012)

min
x,y,s

f(x,y, s)

s.t. g0 (x,y, s) 4 0

gi (x0,xi,yi, si) 4 0, ∀i ∈ I
yi = hi (x0,xi,y−i)

ri (x0,xi,y−i, si) = 0

(2)

with I = {1, . . . , N}, x = (x>0 ,x
>
1 , . . . ,x

>
N)>, y = (y>1 , . . . ,y

>
N)> and s = (s>1 , . . . , s

>
N)>. The

discipline
hi : X0 ×Xi × Y−i → Yi

x0,xi,y−i 7→ hi(x0,xi,y−i)

representing the ith set of equations depends on the design variables x0 ∈ X0 ⊂ Rd0 common
to all the disciplines and the local design variables xi ∈ Xi ⊂ Rdi specific to hi. Moreover,
its output variable yi ∈ Yi ⊂ Rpi is constrained to be an input of the other disciplines and it
is then called a coupling variable. hi depends in turn on all the coupling variables but yi:

y−i = (yj)j∈I\{i} ∈ Y−i.
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The design and coupling variables are independent degrees of freedom of the MDO problem
(2). Figure 1 illustrates the input-output definition of hi.

Figure 1: Input-output relationship for two coupled disciplines in a MDO problem.

Lastly, hi depends on specific state variables si through the state equation ri(x0,xi,y−i, si) =
0 representing the equations of the discipline in their residual form (Martins and Ning, 2022).

Remark 1. From a numerical point of view, the MDO problem (2) implies that the coupling
equations yi = hi(x0,xi,y−i), i ∈ I, must be verified at the end of the optimization process.

Remark 2. A discipline is named so because it rep- resents either a specific model involved
in the optimization problem, such as a structural analysis or Navier-Stokes equation, or a
version of f or g fixing some design variables to handle the remaining ones with a suitable
optimizer. These disciplines can vary greatly in complexity and scale.

2.2 MDF formulation

Solving the MDO problem (2) is almost impossible analytically and is often expensive numeri-
cally for real-life applications. Reformulating the problem by taking advantage of disciplinary
knowledge (gradient, convexity, sub-optimizer, coupling dimension, etc.) is a common prac-
tice in MDO. Several formulations of the MDO problem (2) have been proposed to make its
numerical resolution as efficient as possible (Yi et al., 2008; Martins and Lambe, 2013). In
this article, we will focus on standard multidisciplinary feasible (MDF) formulation (Lewis
et al., 1997; Balling and Sobieszczanski-Sobieski, 1996).

One of the challenges of MDO is to solve the system of coupling equations

{yi = hi(x0,xi,y−i), i ∈ I} (3)

This process is called multidisciplinary analysis (MDA) in the MDO community (Coelho
et al., 2010) and is made possible by the implicit function theorem, here expressed in its
scalar form for the sake of readability:

Theorem 1 ((Allendoerfer, 1974), (Sobieszczanski-Sobieski, 1990)). Let F a mapping from
X × Y to Y such that F : x, y 7→ F (x, y) = h(x, y)− y and h ∈ C1. Let (x, y) ∈ X × Y such
that F (x, y) = 0, and ∂F

∂y
(x, y) = 0.

Then, there exists a C1-function c defined on an open neighborhood of (x, y) such that
y = c(x).
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The main characteristic of the MDF is that the coupling equations are assumed to be
verified. In practice, this results in performing a MDA at each iteration of the optimization
algorithm addressing the MDO problem. The simplicity can be balanced by a high com-
putational cost, in particular when the gradients are missing. Furthermore, in the MDF
formulation, the state equations are removed, because it is assumed that they have been
already solved in a specific optimization problem depending on a single discipline. Therefore,
the MDF formulation allows to rewrite the MDO problem (2) as:

min
x

f(x0, c(x))

s.t. g0 (x0, c(x)) 4 0

gi (x0,xi, ci(x)) 4 0, ∀i ∈ I
(4)

where ci is the ith component of the function c introduced in Theorem 1.

Remark 3. For the sake of simplicity, we keep the usual notations f , g0 and gi considered
in the original problem (2) for the cost and constraint functions even if they are different
mathematical objects, no longer depending on the state variables s.

In practice, solving the system of equations (3) at a given x is done with an iterative
scheme. Fixed-point iteration techniques and sub-optimization processes minimizing ‖y −
h(x,y)‖2 over Y are classical kinds of MDA methods (Tedford and Martins, 2006). Notice
that fixed-point methods do not always converge but it is sufficient that h defines a contraction
mapping according to the Banach’s attractive fixed-point theorem (Ortega, 1973).

2.3 Robust MDO problem

We consider a MDF-formulated MDO problem where the disciplines depend on a random
vector U defined over a probability space (Ω,A,P). We denote by U = U(Ω) ⊂ Rn its image
set. We assume that U is square integrable and we denote µ = E[U] its expectation and
Σ = Cov[U] its covariance matrix. Similarly, for a function ψ : X × U → Rm, we denote
µψ = E[ψ(x,U)] and Σψ = Cov[ψ(x,U)]. For a given matrix M,

√
M denotes the matrix

obtained from M by computing the square root element-wise (Hadamard root), and diag(M)
is the vector of diagonal terms of M. Finally, σ denotes the element-wise standard deviation:
σ(U) =

√
diag(Cov[U]).

Remark 4. In this work, we do not make any other assumption about the probability distri-
bution of U.

2.3.1 Robust optimization problem

A general robust optimization problem consists in minimizing a cost function F[f(·,U)] :
X → F subject to an inequality constraint on a function G[g(·,U)]:

min
x

F[f(x,U)]

s.t. G[g(x,U)] 4 0
(5)

where F and G are statistics to be chosen according to the uncertainty quantification study.
Recall that 4 is a component-wise operator. Thus, G[g(x,U)] 4 0 means that for all
components i = 1, . . . ,m we have G[(g(x,U))i] ≤ 0.
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2.3.2 Uncertainty quantification

The practitioners often consider the expectation E for F, which guarantees the robustness in
central tendency. Concerning the statistics for the constraints, their choice is often guided by
the will to ensure the feasibility of the optimum with a high confidence level. A conservative
statistics is the supremum. However, its estimation is often prohibitively expensive, because
it implies the resolution of a minimax problem. This worst-case statistics can be replaced by
the vectorial quantile of order 1− α for a small value of α ∈ (0, 1)

q1−α(x) = Q[g(x,U); 1− α]

defined componentwise with the usual quantile:

P[[g(x,U)]i ≤ q1−α,i(x)] = 1− α (i = 1, . . . , n)

Similary, some users are interested by the vectorial probabilistic constraint (Agarwal et al.,
2004)

P[g(x,U) < 0] 4 1− ε
where ε > 0. To save computational time, the estimation of probabilities and quantiles may
be replaced by a combination of the expectation and the variance, sometimes called margin
(Giassi et al., 2004):

µg + κ
√

diag(Σg)

where κ ∈ R. This statistics can be viewed as an approximation of a quantile Q [g(x,U); 1− ακ]
where κ is the 1−ακ quantile of the standard normal distribution. This approximation may
be relevant when g(x,U) is close to a multivariate normal distribution, which happens for
instance when g is linear with respect to U and when U is normally distributed.

2.3.3 MDF-based robust MDO

The uncertainty-based version of the MDO problem (2) considers a random variable U0

common to all the N disciplines and a random variable Ui specific to the ith discipline. We
denote U = (U0,U1, . . . ,UN) the whole input random vector. The general UMDO problem
(Yao et al., 2011) can be written

min
x,Y,s

FU [f(x0,U0,Y, s)]

s.t. G0[g0(x0,U0,Y, s)] 4 0

Gi[gi(x0,xi,U0,Ui,Yi, si)] 4 0, ∀i ∈ I
Yi = hi (x0,xi,U0,Ui,Y−i) , ∀ω ∈ Ω

ri (x0,xi,U0,Ui,Yi, si) = 0, ∀ω ∈ Ω

(6)

where Y denotes the random coupling vector.

Remark 5. Solving the UMDO problem (6) is quite hard because the probability distribution
of Y is unknown. In practice, the problem is simplified with Y-based deterministic vari-
ables, e.g. realizations, statistical moments or distribution hyperparameters, combined with
consistency constraints.
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A robust version of the MDF formulation (4) can be written (Koch et al., 2002) as

min
x

F[f (x0,U0, c(x,U))]

s.t. G0 [g0 (x0,U0, c(x,U))] 4 0

Gi[gi (x0,xi,U0,Ui, ci(x,U))] 4 0,∀i ∈ I
(7)

where c : X ×U 7→ Y is a C1-function defined in an open neighborhood of (x,U(ω)), ω ∈ Ω,
such that c(x,U(ω)) = Y(ω) for all ω ∈ Ω.

As in the deterministic case, the MDF formulation is popular to solve MDO problems,
due to its ease of implementation. However, the statistics appearing in the problem (7) rarely
have analytical expressions and need to be estimated. In addition, the coupling equations
(3) must be satisfied over the whole probability space:

∀ω ∈ Ω, Y(ω) = h (x,Y(ω)) .

2.3.4 Statistics estimation with Monte Carlo sampling

Monte Carlo (MC) sampling is a classical technique to propagate the uncertainties through
the disciplines while performing an MDA for each realization of U (Oakley et al., 1998). Let
us consider U(1), . . . ,U(M) a M -sample of U; these random variables are independent and
identically distributed as U. The unbiased estimators of the expectation and variance of
some function ψ : X × U 7→ R read

µ̂ψ(x) =
1

M

M∑
i=1

ψ
(
x,U(i)

)

σ̂2
ψ(x) =

1

M − 1

M∑
i=1

(
ψ(x,U(i))− µ̂ψ(x)

)2
.

µ̂ψ(x) and σ̂2
ψ(x) converge slowly in distribution to Gaussian distributions with O (M−1) rate,

involving a hundred times more samples to improve the estimation accuracy by a factor of ten.
Costly in general, MC sampling may become prohibitive with the MDF formulation whose
numerical implementation implies three nested loops: a MDA loop in a sampling loop itself
in an optimization loop. By denoting γkL the MDA loop length at the kth iteration of the
optimizer and ρkM the sample size, the number of evaluations of ψ is equal to

∑K
k=1 γkρkLM

where K is the size of the optimization loop and (γk, ρk) ∈]0, 1]2. Thus, the required number
is bounded by KLM which may not be so pessimistic in some cases (Haldar and Mahadevan,
2000).

MC sampling may also be used to estimate the probability P[ψ(x,U) < 0] (Sobol, 2018):

P̂ψ =
1

M

M∑
i=1

1ψ(x,U)<0.

It demands a tremendous budget to assess a small probability. For instance, a 10k+2-sample
is needed to guarantee a 10−k estimation of P with 10% of variation (Silverman, 1988).
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Despite these limitations, we choose MC sampling because in addition to its simple im-
plementation in the Python library GEMSEO on which we worked, its precision can be
theoretically controlled by increasing the sample size, which is useful for building UMDO
benchmarking problems and for comparing it to advanced statistics estimation methods.

2.3.5 Statistics estimation with Taylor polynomials

To drastically reduce the computational cost, we propose to perform a unique MDA, approach
it with a Taylor polynomial (TP) and deduce analytical statistics.

The first-order TP of some function ψ(x, ·) : U 7→ R around µ is

ψ̂(x,U) = ψ(x,µ) + (U− µ)>∇Uψ(x,U).

Then, the estimators of the first and second central moments of ψ̂(x,U) read

µ̂ψ(x) = ψ(x,µ)

Σ̂ψ(x,U) = ∇Uψ(x,U)>Σ∇Uψ(x,U)

and the vector of variances of the components of ψ(x,U):

σ̂2
ψ(x,U) = diag

(
Σ̂ψ(x,U)

)
.

The counterpart of the cheapness of this method is that the polynomial approximation
is only correct locally, making the accuracy of the estimators collapse as the variances of
the components of U increase (Arras, 1998). Moreover, it requires the evaluation of partial
derivatives which can be costly if the analytical gradients are missing. Higher order TPs
would improve the quality of the approximation of ψ(x, ·) but would need the evaluation of
the Hessian which is rarely available. Moreover, the final goal is not to estimate ψ(x, ·) but
the first and second moments of ψ(x, U) for which low order TPs can be sufficient, except in
case of very strong non-linearity.

3 A scalable problem to benchmark UMDO algorithms

In what follows, we start with a scalable MDO problem found in the literature. Then, we
propose a judicious rewriting to transform it into a classical quadratic optimization problem
under linear constraints whose solution can be determined analytically. From there, we
modify the scalable problem to take into account uncertain parameters. We show that under
certain conditions on the expressions of the constraints, it is always possible to obtain a
deterministic analytical solution.

3.1 A scalable MDO problem

(Tedford and Martins, 2010) proposed a scalable MDO problem over the unit design space
X = [0, 1]d whose number of disciplines and variable dimensions are chosen by the user:
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min
x∈X

x>0 x0 +
∑
i∈I

y>i yi

s.t. ti − yi 4 0, ∀i ∈ I

where yi = ai −Di,0x0 −Di,ixi +
∑

j∈I\{i}

Ci,jyj

(8)

with ti, ai ∈ Rpi . The coupling variables yi depend linearly on the shared design variables
x0 with coefficients Di,0 ∈Mpi,d0(R), on the local design variables xi with coefficients Di,i ∈
Mpi,di(R) and on the other coupling variables with coefficients Ci,j ∈Mpi,pj(R), j ∈ I\{i}.

Remark 6. This problem is said to be scalable because the user can set the number of disci-
plines and the dimensions of the design and coupling variables. This allows to compare the
efficiency of coupling algorithms or optimizers for different problem dimensions.

3.2 Rewriting as a quadratic programming problem

The problem (8) can be rewritten in a compact form as

min
x∈X

x>Qx0x + y>y

s.t. t − y 4 0, ∀i ∈ I
with Cy = a −Dx

where a and t are the block vectors in Rp obtained by stacking:

a = (a>1 , . . . , a
>
N)>,

t = (t>1 , . . . , t
>
N)>

and Qx0 ,D and C are the block matrices defined by

Qx0 =

(
Id0 0
0 0

)
∈Md(R),

D =

D1,0 D1,1 · · · 0
...

...
. . .

...
DN,0 0 · · · DN,N

 ∈Mp,d(R)

and

C =


I −C1,2 · · · −C1,N

−C2,1 I
. . . −C2,N

...
. . . . . .

...
−CN,1 −CN,2 . . . I

 ∈Mp(R).

The existence of a solution to the MDO problem (8) requires the invertibility of the
coupling matrix C, which corresponds to solving the MDA problem. This assumption leads
to y = α + βx where β = −C−1D and α = C−1a. The optimization problem can then be

8



expressed explicitly as a quadratic programming problem with a quadratic cost function and
linear constraints:

min
x∈X

1

2
x>Qx + c>x + d

s.t. Ax 4 b
(9)

with Q = 2
(
Qx0 + β>β

)
, c = 2β>α, d = α>α, A = −β and b = α− t.

As the matrix Q is symmetric positive semi-definite1, the optimization problem (9) is
convex and admits a global minimum when the feasible set {x ∈ Rd : Ax 4 b} is not empty.
A condition for this minimum to be unique is when Q is symmetric positive definite. This can
be achieved when for all the disciplines, the dimension of the coupling variable yi is greater
or equal to the dimension of the design variable xi. This result is true for any values of the
coefficients of a, t, D, C.

Proposition 2. Let a, t, D, C be uniform random matrices or vectors, i.e. whose elements
are independent realizations of a standard uniform variable on [0, 1]. If ∀i ∈ I, pi ≥ di and
p ≥ d, then Q is positive definite with probability 1.

Proof. For simplicity we use the notation (a.s.), standing for almost surely, to state that a
property is true with probability 1.
Let us temporarily admit that the rank of D is d = d0 +

∑N
i=1 di (a.s.). Then, as C is

assumed invertible, the rank of β is also equal to the rank of D (a.s.) which is equal to
d. By a standard property, this implies that the Gram matrix β>β is positive definite
(a.s.). Adding the positive semidefinite matrix Qx0 preserves positive definiteness. Thus
Q = 2

(
Qx0 + β>β

)
is positive definite (a.s.).

To show the result about the rank of D, we first prove that a p×d uniform random matrix M
has full rank (a.s.). Assume for instance that p ≥ d. The proof is by induction on d. If d = 1,
as M1,1 is drawn uniformly on [0, 1], P(M1,1 6= 0) = 1. Thus M has rank 1 (a.s.). Let us
assume that the property is valid for any uniform random matrix with d− 1 columns. Then,
the vector space V spanned by the last d−1 columns M2, . . . ,Md has dimension d−1 (a.s.).
Then by conditioning, in order to prove that M has rank d (a.s.), it is sufficient to show that
P(M1 /∈ V) = 1, when V is known (i.e. assumed deterministic). This latter property is true
because V has dimension d− 1 < p, and the law of M1 is absolutely continuous with respect
to the Lebesgue measure in Rp.
Using this result, and the assumption that pi ≥ di, each Di,i has rank di (a.s.). Consequently,
the block-diagonal submatrix of D

N =

D1,1 · · · 0
...

. . .
...

0 · · · DN,N


has rank

∑N
i=1 di (a.s.).

It remains to show that when we join the submatrix M := (D>1,0, . . . ,D
>
N,0)

> formed by the
first d0 columns of D, the rank of D = [M,N] increases by d0 (a.s.). The proof is by induction

1∀x ∈ Rd \ {0d},x>Qx = x>Qx0
x + x>β>βx = ‖x0‖2 + ‖βx‖2 ≥ 0.
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on d0 and uses the same arguments as above. For instance, when d0 = 1, it is sufficient to
show that P(M1 /∈ V) = 1 where V is the space spanned by the columns of N, supposed
fixed. This is true because dim(V) ≤ d − 1 < p and the law of M is absolutely continuous
w.r.t. the Lebesgue measure in Rp.

Quadratic programming problems of the general form (9) can be solved algorithmically in
polynomial time using a large-range of techniques, e.g. ellipsoid method, Lagrangian duality
or interior points (Kozlov et al., 1980; Delbos and Gilbert, 2005; Wright, 2004).

3.3 Tuning the domain of feasibility

The proposed benchmark is not directly usable in practice. Indeed, t being fixed, it might be
possible to have cases where either the constraints cannot be satisfied or either the problem
is always feasible which makes the constraints useless. An idea would be to set t from bounds
of yi. However, this is hardly doable because yi depends on the inverse of C.
To overcome this issue, we first define t with a single real parameter t ∈ R by t = (t, . . . , t) ∈
Rp. Then, we set t such that the fraction of the design space on which the constraints are
satisfied is equal to a given level αt:∫

x∈X
1∀i,j, yij(x)≥tdx = αt

Equivalently, this fraction is equal to the probability of satisfying the constraints yij ≥ t,
where X is uniform on X , and the feasibility condition is written :

PX

[
min
i,j

yij(X) ≥ t

]
= αt

Therefore, t is set as the 1− αt quantile of mini,j yij(X).

3.4 Extension to MDF under uncertainty

In this section, we propose an extension of the parametric MDO problem (8) by adding
uncertain terms in the expressions of the disciplines:

min
x∈X

F

[
x>0 x0 +

∑
i∈I

Y>i Yi

]
s.t. G[ti −Yi] 4 0, ∀i ∈ I

with Yi = ai −Di,0x0 −Di,ixi

+
∑

j∈I\{i}

Ci,jYj + Ui

(10)

where U1, . . . ,UN are independent random vectors with covariance matrices Σ1, . . . ,ΣN .
Without loss of generality, we assume that the Ui’s are centered (up to a replacement of ai
by ai + µi, and Ui by Ui − µi). The statistics F and G will be defined later.
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The robust MDO problem (10) can be rewritten in a more compact way:

min
x∈X

F

[
x>0 x0 +

∑
i∈I

Y>i Yi

]
s.t. G[t −Y] 4 0

with CY = a −Dx + U

(11)

where U = (U1 . . .UN) is a random vector with zero mean and block diagonal covariance
matrix:

Σ =

Σ1 · · · 0
...

. . .
...

0 · · · ΣN

 ∈Mp,p(R)

When C is invertible, the random coupling vector is written Y = C−1a−C−1D+C−1U.
Similarly to the computations of Section 3.1 and using the notations therein, we see that the
UMDO problem (11) becomes a robust optimization problem:

min
x∈X

F
[

1

2
x>Qx + c>x + d + U>(C−1)>C−1U

]
s.t. G[Ax− b−PU] 4 0

(12)

In the sequel, we consider the usual case of the expectation for the objective F and two
cases for the constraints G. For simplicity, we denote P = C−1.

The first one is a conservative margin defined from the expectation and the standard
deviation and parameterized by a factor κ ∈ R:

min
x∈X

1

2
x>Qx + c>x + d + E

[
U>P>PU

]
s.t. E[Ax− b−PU] + κσ [Ax− b−PU] 4 0

(13)

The second one is a probability of violating the constraints, and is parameterized by a
level ε ∈ [0, 1]:

min
x∈X

1

2
x>Qx + c>x + d + E

[
U>P>PU

]
s.t. P[Ax− b−PU < 0]− ε ≤ 0

(14)

Propositions (3) and (4) show that the robust optimization problems (13) and (14) are
equivalent to usual quadratic programming problems. Therefore, their solutions can be
computed efficiently with dedicated numerical optimizers.

Proposition 3. The robust optimization problem (13) reduces to the quadratic optimization
problem:

min
x∈X

1

2
x>Qx + c>x + d + E

[
U>P>PU

]
s.t. Ax 4 b− κ

√
diag (PΣP>)

(15)
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Proof. Let κ ∈ R and U a centered random variable with covariance matrix Σ. Then,

E[Ax− b−PU] + κσ [Ax− b−PU]

=Ax− b + κσ [PU]

=Ax− b + κ
√

diag(PΣP>)

Proposition 4. The robust optimization problem (14) reduces to the quadratic optimization
problem:

min
x∈X

1

2
x>Qx + c>x + d + E

[
U>P>PU

]
s.t. Ax 4 b + qε

(16)

where qε,i is the ε-quantile of the distribution of (PU)i.

Proof. Let ε ∈ [0, 1]. Then,

P [Ax− b−PU < 0] ≤ ε

⇔ P [PU 4 Ax− b] ≤ ε

⇔ Ax− b 4 qε

where qε,i is the ε-quantile of the distribution of (PU)i.

Corollary 1. When U is normally distributed, the robust optimization problem (14) reduces
to the quadratic optimization problem:

min
x∈X

1

2
x>Qx + c>x + d + E

[
U>P>PU

]
s.t. Ax 4 b +

√
diag(PΣP>)qε

(17)

where qε is the ε-quantile of the standard normal distribution.

4 Numerical experiments

In this section, we show how the problem (10) can be used to benchmark statistical estimators
in the frame of UMDO, namely MC-based estimators and TP-based estimators. We only
focus on solving the conservative margin problem (13) because the probability case (14) based
on MC sampling is too costly, as discussed in Section 2.3.4. Some efficient methods would
be more appropriate to estimate the probabilities, such as FORM/SORM (Madsen et al.,
2006) or importance sampling (Kroese and Rubinstein, 2012). However these techniques are
not available at the moment in the MDO software GEMSEO (see 4.2.3). Furthermore, an
exhaustive comparison of estimators is out of the scope of this work proposing a scalable
benchmark problem for MDO under uncertainty.

The solution of the QP problem (15) used as a reference is computed with the interior-
point method (Liu and Vandenberghe, 2009).
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4.1 Problem configuration

We consider the scalable problem (10) with N = 2 disciplines sharing d0 = 1 design variable.
Each discipline considers two local design variables and outputs three coupling variables, i.e.
d1 = d2 = 2 and p1 = p2 = 3. The dimensions satisfy the conditions of Proposition 2.

For the sake of simplicity, we consider the uncertain variables as independent and centered
Gaussian variables with a standard deviation equal to 0.01. This magnitude has a realistic
order, considering that the design variables belong to the unit hypercube.

In addition, the feasibility level αt is set to 0.5, which means that half of the design space
satisfies the constraints as explained in Section 3.3.

Lastly, regarding the constraints, we take κ = 2 in the definition of the margin (13).

4.2 Numerical aspects

4.2.1 UQ settings

For the MC-based estimators, the problem is solved with a sample of size M = 200. The
experience is repeated 20 times in order to assess the estimation error. The results are
expressed in terms of mean and standard deviation.

For the TP-based estimators, we consider first-order TP using the analytical gradients.

4.2.2 MDO settings

To solve the MDO problem, we consider the gradient-free optimization algorithm COBYLA
(constrained optimization by linear approximation) (Powell, 2007) with a maximum of 100
iterations, in combination with the MDF formulation. The latter uses the Jacobi algorithm
to perform the MDA, with a tolerance of 10−4 and a maximum of 30 iterations in order to
ensure the multidisciplinary feasibility at each iteration of the optimization. The relative
tolerance of COBYLA algorithm for design variables and objective function is set to 10−8,
and the tolerance applied on the inequality constraints is set to 10−4.

4.2.3 Software

We used and contributed to the open source Python library GEMSEO2 (Gallard et al., 2018).
This software allows to easily define a MDO scenario in terms of design space, disciplines,
objective and constraints, to choose a formulation and to solve the related optimization prob-
lem. We implemented the robust MDO framework and added new capabilities to instantiate
the scalable problem for both deterministic and uncertainty cases. To solve the equivalent
quadratic programming problem that serves as a reference, we rely on the quadratic pro-
gramming library CVXOPT that implements the interior-point method (Andersen et al.,
2011).
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∆x(%) ∆f (%) ∆g(%)

MC 0.370
(0.176)

0.592
(0.127)

0.877
(0.278)

TP 0.093 0.005 0.143

Table 1: Percentage errors of the numerical solutions to the problem (12) configured as stated
in Section 4.1 when using a constraint of type margin; expressed as 100 × ‖estimation −
reference‖/‖reference‖. The solutions have been obtained with M = 200 samples (MC) and
first-order Taylor polynomials (TP). For MC, the experience has been repeated 20 times and
the table displays the mean over these repetitions, together with the standard deviation (in
brackets).

4.3 Results

Table 1 compares the MC estimators and the TP ones in terms of percentage estimation
errors of the optimal design vector, objective and constraint, expressed as

100× ‖estimation− reference‖
‖reference‖

.

The estimation of these optimal quantities results from the MDO problem resolution
with GEMSEO while the reference solution is obtained with CVXOPT applied to its QP
counterpart problem (15).

Validation of the implementation The results show that the error of the MC-based
estimator is lower than 1% with an affordable sample size here M = 200. Thus, this es-
timator converges to the reference solution which confirms the theoretical result presented
in Proposition 3 and validates our implementation of the scalable problem. Thereby, this
scalable problem can be used to benchmark statistic estimation algorithms.

Comparison of the estimators As expected, the MC-based estimator method remains
costly as MDF-based robust MDO implies as many MDAs as new samples. Thus, when the
convergence of the MDA algorithm requires 10 iterations, increasing the sample size M by a
factor of 10 increases the number of discipline evaluations by a factor of 100. Yet, warm-start
methods implemented in GEMSEO have been used to speed up the convergence.

On the other hand, TP method performs better than the MC method. Furthermore this
technique requires only one resolution of the MDA per iteration of the optimizer. This makes
the robust MDO problem resolution as cheap as its deterministic counterpart.

5 Conclusion and future work

In this paper, we revisited a deterministic scalable problem in the literature and extended it
to the frame of uncertainty quantification. We rewrote it as a quadratic problem with linear

2https://www.gemseo.org/
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constraints and gave a sufficient condition for the existence and uniqueness of its solution.
This solution can be efficiently computed with QP algorithms. Thus, it can be used as a
reference to benchmark MDO algorithms. We showed that, when the constraints are either
probabilities or margins, the scalable problem under uncertainty collapses to a similar QP
problem with a unique and known solution. As an illustration, we used this scalable problem
to benchmark two techniques based on the MDF formulation: Monte-Carlo sampling, and
Taylor polynomials. The second method proved to be relevant to get a first idea of the
solution at a very low cost, namely the cost of solving the deterministic scalable problem.

More generally, the scalable problem can be used to benchmark any kind of algorithms
such as MDO formulations. In particular, this scalable problem could be useful to compare
the MDF formulation with multilevel ones, closer to the industrial design process involving
sub-optimization problems. The interest would be also to benchmark these methods by
varying the dimension of the problem. Concerning the scalable problem itself, we could
extend it to non-linear relations, by using non-linear regressors for instance.
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