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Abstract: The fabrication of nano reinforced metal matrix composites (MMCs) is scientifically
essential to further upgrade the thermal, electrical, and mechanical properties of current MMCs.
Here, we present a green molecular mixing (MLM) of silver (Ag) and graphene (G) to overcome
these challenges. Experimental results show that the green MLM allows to homogeneously mix 3
vol.% of G as observed with traditional MLM while adding a control on the oxidation steps. Metal
and GO reductions can be precisely control by varying the solution temperature. Highly thermal
conductivity and strong elastic modulus nanocomposites are fabricated making it an eco-friendlier

mixing process.

Keywords: Composite; Ag; Graphene; Powder metallurgy; Microstructure
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Introduction

The high thermal conductivity (TC) of silver (Ag, 429 W/m.K) makes it a predominant material for
electronic applications. However, Ag suffers from low mechanical properties thus, withdrawing its
prospective applications. A common way to promote its mechanical properties is to fabricate metal
matrix composites (MMCs). The fabrication of Ag composites is often made via a metallurgic powder
route owing to its simplicity, cost-effectiveness, net shaping, and ability to manufacture anisotropic
materials [1]. Oxides and graphite reinforcement have been extensively studied to enhancement the
mechanical and thermal properties of Ag matrix. However, it was reported that the addition of oxides
lowers the thermal conductivity (TC) [1-5] while the presence of graphite degrades the mechanical
properties [1, 6-8].

Therefore, the creation of multifunctional composed of nano-carbon reinforcement such as graphene
(G) or reduced graphite oxide (rGO) may fulfill these unmet needs [9-15]. Nonetheless, the size
difference between the matrix powder (i.e., micrometer, Ag) and the carbon reinforcement (i.e.,
nanometer, G, rGO) cause several issues during the mixing step and heterogeneous mixture are often
observed. Naturally, aggregation of the nano-reinforcement led to severe degradation of the resulting
nanocomposites' mechanical and thermal properties [12, 13, 16]. Hence, the mixing appears to be a
crucial step to manufacture functional Ag-based nanocomposites.

Mechanical mixing e.g., balling or wet mixing have been extensively used to form homogeneous
mixture of micro and nano composites [17-22]. However, mechanical mixing is a harsh process where
heating, deformation, crystallization, and perception co-occurs leading to the degradation of the
graphene [16, 19, 20, 22-24]. Molecular level mixing (MLM) was recently introduced as a alternative
mixing method to homogeneously mix G-rGO and metal matrix powders [12, 13, 25-27]. The MLM
approach consists of forming a colloidal suspension of graphene oxide (GO) in an aqueous solution
with metal salt precursors. After precipitation and reduction, a homogeneous dispersion of rGO in
metal powder is obtained [12, 13, 26-28]. Although the promising results observed with the MLM,
this method require the use of hydrazine as the reducing agent making the MLM hard to scale up
due to the environment and health concerns [12, 13, 26-28].

In this work, we developed a green MLM process to fabricate Ag/rGO using ascorbic acid (AA)
instead of hydrazine. AA is known as a green harmless chemical component for the environment and
health [29-31]. In addition, the used AA enables to tailor the MLM process as compared to
conventional MLM. Especially, the metal and GO reductions can be separated and precisely control
by only varying the solution temperature. It is demonstrated that for an rGO concentration below 3
vol.% monodisperse Ag particles are synthesized with a uniform dispersion of nano-reinforcements.
Additionally, the reduction rate of GO using AA and hydrazine had been monitored by Raman

spectroscopy and X-ray diffraction (XRD). It is shown that both reducing agents conduct to the same
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reduction rate, making AA an excellent substitute to the hydrazine. Then, nanocomposites were
fabricated by hot pressing using the synthesize powders via the green MLM. It is shown that 1 vol.%
of rGO in the Ag matrix lead to a 16% increase of the elastic modulus with no degradation of the Ag’s
TC (395 W/m.K). The research results demonstrated that substitution of hydrazine by AA allows
developing a green MLM process and add a control on the metal and GO reduction. Therefore, the

developed greed MLM process enables can be easily scale up.

Methods

Synthesize of nano-composite powders

Ag and reduced rGO were synthesized via a green MLM process. For that, a Ag nitrate solution (Alfa
Aesar, ACS, 99.9+ %) and graphite oxide (Knano Co., Ltd., China) were reduced using L+ ascorbic
acid (AA, Acros Organics, 99%). The average lateral size and thickness of the graphite oxide are 5 pm
and 5 nm, respectively. The green MLM process is the following {a}. First, a desired amount of
graphite oxide was added to 100 ml of deionized water to a concentration comprise between 5.4 10-2
g/l and 5.6 10-1 g/l to obtain a concentration of rGO in the composite powder from 0.25 to 5 vol.%.
Then, the solution was then mixed with a magnetic stirrer for 5 min and placed in a tip sonicator for
1 h (Bandelin SONOPULS®) with a pulse width, frequency, and power of 0.1 s, 1 Hz and 100 W
respectively, to prevent reinforcement deterioration and heating. Once the solution turn into a brown
color, the suspension was diluted with AA to reach a GO concentration between 6.8 10-3 g/l to 1.4 10-
1 g/1. After a maturation step of 1 h, an aqueous solution of Ag nitrate (c=2.35 10-1 mol/l) was quickly
added to the GO suspension. Once the Ag reduction by AA was completed (~ 5 min), the Ag / GO
suspension was heated to 90 °C for 1 h; reduction of GO occurred by the excess of AA in solution (c
=7.8 10-2 mol/l). Then, the Ag+rGO mixture was filtrated and washed three times with 100 ml
deionized water and three times with 50 ml ethanol. Finally, the composite mixture was air-dried in
an oven at 60 °C for 24 h. In order to evaluate the reducing power of ascorbic acid towards GO,
reference powder was synthesized using hydrazine hydrate as reducing agent. The synthesis
conditions of this powder are identical to the previous ones but the hydrazine hydrate was

substituted to ascorbic acid (in the same concentrations).

Fabrication of Ag/rGO nanocomposites

The densification of the nanocomposite powders was carried out by hot pressing under primary
vacuum (~ 1.5 10-1 mbar). The nanocomposite powders were placed in a 10 mm diameter graphite
mold and sintered under a uniaxial pressure of 60 MPa and temperature and time of 650 °C and 25
min respectively. The pressure was applied when the sintering temperature was reached. After

sintering, the composite materials were machined and polished for characterizations.
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Characterization

The reduced GO by AA and hydrazine was characterized by XRD (PANalytical X'pert PRO MPD ®,
Cu-Ka) and Raman spectroscopy (Horiba spectrometer, A = 532 nm, 10 mW). Powder XRD
diffractograms were acquired from 20 = [3° - 38°] with a scanning speed of 0.15°/min. The density of
the composite materials was measured using the Archimedes method (Sartorius Analitic® balance
(d =0.1 mg)). A scanning electron microscope (SEM, Tescan VEGA ®) was used to characterize the
morphology of the composite powders and fractures of the bulk composite materials. Microstructural
characterization was carried out by electron backscatter diffraction (EBSD, EDAX®, probe size 330
nm, and step of 0.1 um). The microstructure of the nanocomposites was revealed by electro-etching
in 100 g/l citric aqueous acid solution for 10 to 20 s with a DC voltage and an intensity of 6 V and 0.5
A, respectively. The deep etching was performed using the same electro-etched parameters but using

0.65 wt.% nitric acid solution as the electrolyte for 1 min.

The thermal diffusivity (TD) of the materials was measured by the laser flash method (NETZSCH
LFA 457®, MicroFlash) on composites cylinders of 10 mm and 6 mm in diameter with a thickness of
5 mm at 70 °C. A graphite film was spray (KONTAKT CHEMIE graphite 33® aerosol) on the
samples before measurement to reduce the laser back reflection. The TD was converted into TC

using the following equation [32]:

k(T)=a(T)*Cp (T)xo(T) D

where k is the TC (W/m.K), a is the TD (mm?/s), o the density, and Cp the heat capacity (J/Kg.K) of
the sample. The Cp of rGO, and Ag, used in this work, are the following: Cp(rGO) = 836 J.Kg-1.K-1
Cp(Ag)=237].Kg-1.K-1 at 70 °C.

Hardness and apparent elastic modulus of materials were measured by micro-hardness
measurement in the transverse direction. An indentation force of 1 N, a charging and discharging
speed of 500 mN/min, and a pause time of 20 s was used for all samples. Oliver and Pharr's theory
[33] [34], was used to derive the elastic modulus from the load/discharge curves of the tested

composite materials.

Results & Discussion
This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be

drawn.

Green molecule mixing of silver and reduced graphene oxide
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The size difference between the Ag particles and the GO nano reinforcement makes the mixing of
these two components an essential step to produce nanocomposites. A green MLM process was
developed by using AA to obtain a homogeneous powder mixture at GO concentration ranging from
0.1 to 5 vol.%. The substitution of hydrazine by AA enables us to work with a green component but
also to separate the precipitation/reduction of Ag particles and GO Figure 1 presents the SEM
micrographs of the Ag/rGO composite powders for different rGO concentrations. It can be observed
that the nucleation and growth of Ag in the aqueous suspension conducts to monodisperse particles

(~2 um) for an rGO concentration up to 3 vol.% (Figure 1 (a) to (c)).

@) S (b)

(c) (d)

Figure 1. SEM micrographs (SE, E = 5 KV) of the Ag/rGO nano-composite powder at different rGO
concentration: (a) 0.5 vol.%; (b) and (c¢) 1 vol.%; and (d) 5 vol.%. Yellow arrows show rGO nano-
reinforcements.

For higher concentration (i.e., 5 vol.%), the Ag particle size decreases down to 1 um and presents a
less spherical shape (Figure 1 (d)) in comparison with Ag particles fabricated with smaller rGO
concentration (1 vol.% in Figure 1 (b)). One explanation of this evolution is linked to the nucleation
rate of Ag at high GO concentration. When the GO concentration becomes important, heterogeneous
nucleation of Ag on GO becomes predominant over homogenous nucleation. Also, the Ag reduction

by AA is an auto-catalytic reaction, which means that a higher amount of Ag nucleus increases the
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reaction rate. Both effects can explain the morphology change of the Ag particles with rGO
concentration. Once, the Ag particles precipitated, the aqueous suspension was heated to 90 °C for 1
h to induce the GO reduction. As can be seen in Figure 1 (a) to (c) a concentration comprises between
0.5 to 1 %.vol allows a homogenous dispersion of the nano-reinforcements in the Ag matrix (yellow
arrows). However, above 1 vol.% of rGO, a network of interconnected rGO sheets surround the Ag
particles Figure 1 (d).

The effect of GO reduction using hydrazine or ascorbic acid has been studied by Raman spectroscopy
Figure 2 (a) displays the Raman spectrum of the as-received GO and rGO reduced by AA or

hydrazine, respectively.
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Figure 2. (a) Raman spectrum of pristine GO provided by KNANO® (black curve), rGO reduced by
ascorbic acid at 90 °C for 1 h (red curve) and rGO reduced by hydrazine (blue curve) and (b)
diffractograms of pristine GO (black curve), GO reduced by ascorbic acid at 90 °C for 10, 30, 60 and
120 min (grey and red curves) and graphite (blue curve).

On each spectrum, a D-band is observed at a wavenumber of 1350 cm!, which is related to defect or
disorder in the carbon structure (sp3 carbon) and a G-band at 1580 cm™ which results from order
graphite (sp2 carbon) [35]. Due to the fact that the intensity of the Ip peak in related to “number” of
defect (sp3 carbon) and the Ic peak to the number of order carbon (sp2 carbon) the Ip/Ic ratio is
commonly used to evaluate the quality of the reduction of GO (the higher the ratio the higher the
quality of the graphite). It can be observed that the Io/Ic ratio is 1.01 for GO and increase after GO
reduction to 1.34.

The same increase was reported in previous work on the chemical reduction of GO [30, 31, 36, 37].

The Ip/Ic increases resulted from a decrease in the average size of Csp? domains [38, 39] and to an
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increase in the distance between the Csp? defect domains [39]. Moreover, the Ip/Ic ratio of the rGO
reduced by either ascorbic acid or hydrazine are equivalent implying similar reduction level, as
reported in other studies [30, 31, 36, 37]. Furthermore, the GO reduction rate by AA was monitored
by measuring the inter-layer distance via XRD at different times. Figure 2 (b) presents the
diffractograms of the GO, the rGO from 10 to 120 min at 90 °C and the graphite. The diffractogram of
the as-received GO shows a peak at 20 =11° and has an interlayer distance of 8.3 A. The rGO has a
diffraction peak around 20 = 22.5 to 24 ¢ depending on the reduction time, which corresponds to the
(002) plane of the hexagonal carbon structure. Note that the low signal-to-noise ratio observed on the
rGO is due to the presence of only a few G layers after the exfoliation steps. The interlayer distance
measured on the GO rapidly decrease from 8.3 A down to 4.2 A after only 10 min of reduction (i.e.,
20 shift toward high angles), then slowly decreases to 3.6 A after 60 min. No change was observed
after 120 min of reduction which implies that 60 min is the optimal reduction time. The diffractogram
of pure graphite shows a diffraction peak at 20 = 26°, which corresponds to an interlayer distance of
3.4 A. The disparity between the graphite and rGO interlayer distance can be explained by the fact
that the reduction of GO is never completed, and some residual oxygen will remain on it, thus
inducing a variation on the interlayer distance. These results are comparable with the one obtained
for a conventional MLM using hydrazine as reported by others [44]-[46], [50]-[52], and demonstrate

that AA is a suitable reducing agent to form rGO by a green MLM process.

Fabrication of Ag/rGO nanocomposites
After the green MLM process, the Ag/rGO composites powders were consolidated by hot pressing at
625 °C for 25 min and with a pressure of 60 MPa. No evolution of the composite material density is

observed for a rGO concentration between 0 to 5 vol.% with a density of about 98.5%.

The nanocomposites were cut and polished for SEM analysis, as present in Figure 3(a) to (d). The
microstructure analysis reveals that the concentration of agglomerate increases in respect to the
concentration of rGO in the materials. Besides, composites synthesis by hot pressing often results in
a preferential orientation of the reinforcement perpendicular to the compression axis [40-42]. The
same tendency is observed here, as shown in Figure 3 (e). The SEM micrographs after deep etching
demonstrate a preferred orientation of the rGO agglomerates perpendicular to the compression axis.
Nonetheless, as shown in Figure 3 (f), individual rGO sheets are located at the Ag grain boundary

and therefore have the same orientation as the boundaries.
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Figure 3. SEM micrographs (SE, E = 10 kV) of the cross-section of Ag/rGO composite material loaded
to (a) 0.25 vol.%, (b) 0.5 vol.%, (c) 2 vol.%, (d) 5 vol.% in rGO and (e)-(f) SEM micrograph (SE, E =5
KV) of the cross-section of an Ag/rGO composite material with 2.5 vol.% rGO concentration. The

white axis corresponds to the compression axis of material, the yellow arrows correspond to (e) rGO
micro agglomerates and (f) individualized rGO sheets.

The presence of nano reinforcements in the matrix may influence the Ag grain growth and their
orientations, which could affect the thermal and especially the mechanical properties. The influence
of rGO sheets on the microstructure of Ag was investigated by EBSD on pure Ag and Ag containing
0.5 and 2.5 vol.% of rGO. Figure 4 (a) displays the EBSD image of the pure Ag sample.

It can be seen that the Ag grains have an ellipsoidal shape and are randomly oriented with an average
size of about 1.2 um. Also, the size disparity is comprised of 0.1 to 2 um. The addition of 0.5 vol.% of
rGO does not influence the average size (1.18 um), but a more significant size disparity is observed
and comprise between 0.1 to 5 pm. An rGO concentration greater than 1% conducts to a decrease of
the average grains size of 0.5 um with a homogenous grains size disparity (Figure 4 (c)). The evolution
of the Ag microstructure at a low rGO concentration (i.e., 0.25 and 0.5 vol.%) can be explained by two
phenomena. First, due to a preferential recrystallization of Ag grains around the rGO, known as the
particles simulated nucleation effect (PSN) [43-45]. Then, during the cooling stage the Ag matrix
undergoes deformations which are induced by a coefficient of thermal expansion mismatch between
Ag and rGO. Both effects individually or combined, could explain the grains size evolution at low

rGO concentration. At higher rGO concentrations, above 1 vol.%, the refinement of the Ag
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microstructure can be induced by a recrystallization delay due to a small distance between rGO
agglomerates and defined at the Zener effect [43]. Besides, the large amount of rGO, located at the
grain boundary between Ag grains, will limit the growth of the Ag grains by surface diffusion, and

a finer microstructure is observed.
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Figure 4. Inverse pole figure mapping and associated grain size of (a) pure Ag produced by MLM

and composite material Ag/rGO concentrated at (b) 0.5 vol.% and (c) 2.5 vol.%.

Mechanical and thermal properties of Ag/rGO nanocomposites

To go further, the mechanical properties of the Ag/rGO nanocomposites were investigated at
different rGO concentrations. First, the fracture behaviors of nanocomposites were studied for an
rGO composition comprise between 0.5 to 5 vol.%. The SEM micrographs of the fractured composite
containing 0.5 vol.% of rGO show a typical transgranular fracture, which is related to ductile behavior
(Figure 5 (a) and (b)). The Ag/rGO composite having 1 vol.% of rGO shows a mixture of trans and
intergranular fracture, which is assimilated to an intermediate state between ductile and brittle
behavior (Figure 5 (c) and (d)). At higher rGO concentration (2.5 vol.%), an intergranular fracture is
observed, as shown in Figure 5 (e) and (f), which is characteristic of a brittle behavior. Additionally,
rGO sheets can be observed for an rGO concentration of 1 and 2.5 vol.% and result from the
intergranular fracture of the Ag.

Hence, the introduction of rGO in the Ag matrix affect the grains sizes and morphology of Ag and
thus change the Ag fracture behavior from ductile to brittle with an intermediate state for an rGO

concentration of 1 vol.%.
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Figure 5. SEM micrographs (SE, E = 5 KV) of fracture surfaces of Ag/rGO composite materials with
different rGO concentrations (a)-(b) 0.5 vol.%, (c)-(d) 1 vol.%, and (e)-(f) 2.5 vol.%. Yellow arrows
show rGO nano-reinforcements.

Then, the apparent elastic modulus (E) and Vickers hardness (HV) were measured on pure Ag and

on composite materials with an rGO concentration between 0.25 to 5 vol.% (see Figure 6). The

evolution of the E shows that, for a low rGO concentration (0.25 to 0.5 vol.%), a decrease of the

modulus down to 65 GPa is observed. At higher rGO concentration, the elastic modulus increases

and reaches a maximum of 93 GPa and then decreases to 85 GPa for rGO concentration of 1 vol.%

and 5 vol.%, respectively.

Moreover, the hardness of the nanocomposite follows similar trend for low concentrations comprises

between 0.25 to 0.5 vol.% (decreased of HV) but differs for higher concentration. A maximum of 93

HYV is reached at 2.5 vol.% of rGO, and then, the HV decreases as saw for the elastic modulus.
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Fig. 6: Mechanical properties of Ag/rGO composite materials as a function of rGO

concentration (a) elastic modulus and (b) Vickers micro-hardness.

These results were expected based on the previous microstructural and fracture behaviors analysis.
As seen in the previous section, a low rGO concentration (0.1% to 0.5 vol.%) induced preferential
recrystallization of the Ag grains around the rGO, which led to a broad distribution of Ag grains and
a softening of the matrix. At higher concentration (0.75 to 1 vol.%), a homogenous and fine Ag
microstructure was observed with the presence of rGO sheets in Ag grains and grain boundaries. The
rGO sheets, located at the Ag grain boundaries, inhibit the boundary diffusion phenomena necessary
for the recrystallization of the Ag matrix and harder the materials. On the other hand, the rGO located
inside the grains promotes the elastic modulus by inducing a load transfer from the matrix to the
rGO. However, when the reinforcement concentration becomes too important (> 2.5 vol.%), a large
number of rGO agglomerates formed in the matrix and degrade the mechanical properties.[9, 13, 17,
21].

It must be mentioned that the elastic modulus reaches its maximum value for an rGO concentration
of 1 vol.% (93 GPa) while the hardness is maximum for a concentration of 2.5 vol.% (91 Hv). These
values have to be correlated with the morphology of the fracture surfaces. Indeed, for an rGO volume
fraction of 2.5%, the rupture behavior, linked with granular debonding and the absence of a cup, have
to be associated with the decrease of the ductility and the increase of the hardness of the Ag/rGO
composite material, compared to pure Ag. For an rGO volume fraction of 1%, a ductile fracture
surface is observed associated with a cup like structure. Besides, the cup size is smaller than those
observed in materials with a lower concentration of rGO.

In addition, the presence of rGO sheets at the bottom of the cups (yellow arrows in Figure 5 (d)) may
explain the increase in the elastic modulus of the materials associated with a load transfer between
the matrix and the reinforcements. Thus, granular refinement of the matrix would be the main cause
of the increase in hardness of Ag/rGO materials, while load transfer between the matrix and the rGO
would be the cause of the increase in their elastic modulus. This would explain why the maximum
of these two parameters is not reached for the same rGO concentration. It should also be noted that
the maximum hardness of 91 HV is obtained for a concentration of 2.5 vol.% of rGO, which is close
to the optimal rGO volume fraction reported Hao and al. [9] with a hardness of 76 Hv at 2.3 vol.%
rGO.

Additionally to the mechanical measurements, the thermal properties of Ag/rGO nanocomposite
were studied in the longitudinal and transverse directions. It can be observed that for a low rGO
concentration (0.1 to 1 vol.%) the longitudinal TC is close to pure Ag with a value of 395 W/m.K but

the transversal TC decreases down to 375 W/m.K. The decrease of the transverse TC is may be
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associated with the alignment, during the HP process, of the rGO perpendicular to the compassion
axis, leading to the fabrication of an anisotropic composite. At higher rGO concentration (> 1 vol.%),
the TC decreases linearly with respect to the amount of rGO and the TC anisotropy increases. As seen
before, the number of agglomerates increases when the rGO concentration increases and these
agglomerates are oriented perpendicularly to the compression axis of the materials. In this case, the
heat transfer in the composite is governed between the Ag matrix and the rGO agglomerates resulting

from degradation of the thermal properties.

Conclusions

In this paper, a green MLM process is developed to synthesize Ag/rGO nanocomposites. It has been
demonstrated that the substitution of hydrazine by AA allows obtaining the same experimental
results in terms of reduction rate and mixture homogeneity. Also, the used of AA enables us to
separate the Ag and rGO reduction/precipitation by merely varying the solution temperature (i.e.,
ambient to 90 °C). The synthesized Ag powders by green MLM appeared to be spherical and
monodispersed for a GO concentration below 3 vol.%.

The fabrication of Ag/rGO composite by hot pressing led to dense composite materials with
homogenous dispersion of the nano-reinforcement for an rGO concentration lower than 1 vol.%. The
fracture behavior of Ag can be tailored from a ductile to brittle fracture depending on the amount of
rGO in the matrix. Besides, the preferential orientation of the nano-reinforcement conducts to an
improvement of the elastic modulus up to 16% while being as hard as pure Ag. Also, it was shown
that the TC of the Ag/rGO containing 1 vol.% of rGO is almost not affected in the longitudinal
direction compare to pure Ag with a value of 395 W/m.K.

The process developed in this work has the potential to be used on a large scale and reduced the
environmental impact of toxic chemical components. The fabrication of nanocomposites by green
MLM followed by hot pressing enables to tailor the mechanical properties and fracture behavior of

Ag/rGO composite materials without degrading the high TC of Ag.

Data available statement: The datasets generated during and/or analyzed during the current study

are available from the corresponding author on reasonable request.
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