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ONE-DIMENSIONAL SHORT-RANGE NEAREST-NEIGHBOR
INTERACTION AND ITS NONLINEAR DIFFUSION LIMIT

M. FISCHER, L. KANZLER, C. SCHMEISER

Abstract

Repulsion between individuals within a finite radius is encountered in numerous applica-
tions, including cell exclusion, i.e. an overlap of cells to be avoided, bird flocks, or micro-
scopic pedestrian models. We define such individual based particle dynamics in one spatial
dimension with minimal assumptions of the repulsion force f and prove their characteristic
properties. Moreover, we are able to perform a rigorous limit from the microscopic- to
the macroscopic scale, where we could recover the finite interaction radius as a density
threshold. Specific choices for the repulsion force f lead to well known nonlinear diffusion
equations on the macroscopic scale, as e.g. the porous medium equation. At both scal-
ing levels numerical simulations are presented and compared to underline the analytical
results. We discuss the possible applications of this new diffusion term.

Keywords: agent-based models, repulsive force, cell-exclusion, nonlinear diffusion limit,
porous medium equation

Mathematics subject classification: 82C22, 35R37, 35K55, 92C15

1. Introduction

We consider a chain of particles keeping their order along a straight line and interacting
with their neighbors by distance dependent repulsive forces, which vanish above an equilib-
rium distance. For a finite number of such particles the distance between the first and the
last particle will remain finite for all time. Our goal is to derive a macroscopic continuum
model sharing this property, i.e. for an initial particle density with bounded support there
should be a finite upper bound for the length of the support at later times. Such a model,
in the form of a nonlinear diffusion equation, will be derived from the particle model by a
continuum limit. The macroscopic model is diffusive since we choose a friction dominated
(overdamped) microscopic model, being motivated by the dynamics of bacterial colonies
living in viscous environments.

Repulsive effects with a finite radius are often used in microscopic particle systems and
their corresponding kinetic and macroscopic models. In flocking models, most important
the Cucker-Smale- and the Vicsek-model, see [12, 42], they appear as part of an inter-
action between attraction and repulsion. Examples occur in the modelling of collective
behaviour within sheep-herds [32], fish schools [10] and bird flocks [9]. In our setting, only
neighbouring particles interact, therefore we have a mixture between a metric interaction
radius and a topological one as used in [4] or [20] in a kinetic context. A deterministic,
Lagrangian many-particle system was also investigated in [13].

Repulsion forces between individuals is also highly relevant in modelling size exclusion
effects. On the microscopic level, this has been studied for the pattern formation in bac-
terial colonies [14, 15, 44]. In general, this new term of size exclusion is a macroscopic
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alternative to models based on e.g. cellular automata, compare [35], or microscopic asym-
metric exclusion process, see [6], in which size exclusion has no influence on the diffusive
term, typically a linear diffusive-term is derived.

This diffusive term can be microscopically interpreted as particles trying to reach a
desired density. The desired density is similar to the desired velocity, an important topic in
pedestrian dynamics, see [1, 19], gaining new focus in the context of social distancing [26],
and cannot be calibrated in other macroscopic models, see [19].

On a macroscopic level this diffusion on a compact support leads to a moving boundary
problem. It is closely related to the Stefan-problem, see classical books [27, 34]. Ana-
lytically exact solutions are an ongoing topic, see [11, 18] and also numerically challenges
occur e.g. also in cancer research, see [38, 22]. On an agent-based level, cancer growth
was investigated in [29].

Rigorous limits from microscopic to macroscopic scales can serve to extend the theory
of existence of solutions at the PDE level, see [13]. For e.g. the continuous version of the
Vicsek-model a rigorous limit to a PDE was performed in [5], transferring regularity results
to the macroscopic level. A bounded total variation is a common tool in numerical analysis
to show convergence of a discretisation against the solution of a model, see [3, 21, 31, 39].

The modelled repulsion can also be seen as a cut-off potential. On a microscopic level
this is often used for better computational speed and e.g. steadier movement of pedestrians
as in the optimal-step-model, see [36].

This work is structured as follows. In Section 2 the microscopic model in the form of an
ODE system is formulated and its characteristic properties are derived. Section 3 contains
a formal derivation of the macroscopic model and a discussion of its qualitative properties.
This includes the derivation of a Eulerian formulation of the model, which is originally
written in terms of Lagrangian coordinates. Some of the formal results are illustrated
by numerical simulations in Section 5. In Section 4 the macroscopic limit is carried out
rigorously, providing also a existence of solutions for the continuum model. Finally, some
conclusions and an outlook are contained in Section 6.

2. The microscopic model – individual based dynamics

Consider a chain of N + 1 point particles with time dependent positions xi(t) ∈ R,
0 ≤ i ≤ N , such that

x0(t) ≤ x2(t) ≤ · · · ≤ xN (t) .

Neighboring particles i and i+ 1 interact by a distance dependent repulsive force
F (xi+1−xi), written as F (r) = F0f(r/R) in terms of the dimensionless function f , which
satisfies

f : [0,∞)→ [0, 1] is Lipschitz and nonincreasing, supp(f) = [0, 1] ,(1)

i.e. there is no interaction between neighbors further apart than the equilibrium distance
R > 0. Balancing these interaction forces with friction against a nonmoving environment
(with friction coefficient µ > 0) leads to the ODE system

µẋ0 = −F (x1 − x0) ,

µẋi = F (xi − xi−1)− F (xi+1 − xi) , 1 ≤ i ≤ N − 1 ,

µẋN = F (xN − xN−1) .

(2)

We introduce a nondimensionalization by

x→ NRx , t→ N2µR

F0
t .
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This is a diffusive macroscopic rescaling (by the factors N and, respectively, N2) of the
natural microscopic scaling. The scaled system reads

ẋ0 = −Nf (N(x1 − x0)) ,

ẋi = N (f (N(xi − xi−1))− f (N(xi+1 − xi))) , 1 ≤ i ≤ N − 1 ,

ẋN = Nf (N(xN − xN−1)) .

(3)

We shall mostly work with a reformulation in terms of the new unknowns

ωi := N(xi − xi−1), 1 ≤ i ≤ N ,(4)

satisfying

ω̇1 = N2 [2f (ω1)− f (ω2)] ,

ω̇i = N2 [2f (ωi)− f (ωi−1)− f (ωi+1)] , 2 ≤ i ≤ N − 1 ,

ω̇N = N2 [2f (ωN )− f (ωN−1)] .

(5)

This system will be considered subject to initial conditions

ωi(0) = ωi,0 ≥ 0 , 1 ≤ i ≤ N .(6)

We start with stating global existence and boundedness of the solution.

Theorem 1. Let f satisfy (1). Then there exists a unique global solution (ω1, . . . , ωN ) ∈
C1,1 ([0,∞))

N of (5), (6), which satisfies

ωmin := min
1≤j≤N

ωj,0 ≤ ωi(t) ≤ max

{
1, max

1≤j≤N
ωj,0

}
=: ωmax , t ≥ 0 , 1 ≤ i ≤ N .

Proof. Global existence and uniqueness follow from the Lipschitz continuity of f . The
upper bound is an obvious consequence of the facts that f ≥ 0 and f(ωmax) = 0.

Now assume that ωi(t0) = ωmin and ωj(t0) ≥ ωmin, 1 ≤ j ≤ N . In the case 2 ≤ i ≤ N−1
we then have

ω̇i(t0) = N2 [2f (ωmin)− f (ωi−1(t0))− f (ωi+1(t0))] ≥ 0 ,

by the monotonicity of f , and similarly for i = 1, N . �

The following results for the particle positions show that they expand around their
center of mass, but not too much.

Theorem 2. Let (x0, . . . , xN ) be a solution of (3), satisfying (4), (6). Then
1) the center of mass

x̄ :=
1

N + 1

N∑
i=0

xi

is conserved, i.e. dx̄/dt = 0,
2) the variance

Vx(t) :=
1

N

N∑
i=0

(xi − x̄)
2

is a nondecreasing function of time, and
3) the distance between the leftmost and the rightmost particle remains bounded:

xN (t)− x0(t) ≤ ωmax , t ≥ 0 .
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Proof. The scalar product of (3) with (ϕ0(t), . . . , ϕN (t)) gives, after summation by parts,

N∑
i=0

ẋiϕi =

N∑
i=1

f(ωi)N (ϕi − ϕi−1) .(7)

This immediately implies 1) with ϕ0 = · · · = ϕN = 1. The choice ϕi(t) = 2
N (xi(t) − x̄),

i = 0, . . . , N , gives

V̇x(t) =
2

N

N∑
i=1

f(ωi)ωi ≥ 0 ,

proving 2). Statement 3) is a consequence of

xN (t)− x0(t) =
1

N

N∑
i=1

ωi(t) ,

and of the upper bound in Theorem 1. �

3. The macroscopic model

The continuum model in Lagrangian coordinates: Interpreting the particle index as
a discrete Lagrangian variable, the connection to the continuum is made by the definitions

∆s :=
1

N
, si := i∆s , 0 ≤ i ≤ N ,

a discretization of the Lagrangian coordinate s ∈ [0, 1]. Assuming the existence of a
function ω(s, t), such that ωi(t) ≈ ω(si, t) as N → ∞, the formal limit of the second
equation in (5) gives

∂tω = −∂2
sf(ω) , 0 < s < 1 ,(8)

a nonlinear diffusion equation with the diffusivity −f ′(ω) ≥ 0, which is bounded by the
Lipschitz continuity of f . The limits of the first and third equation in (5) lead to

f(ω(0, t)) = f(ω(1, t)) = 0 ,(9)

equivalent to

ω ≥ 1 , s = 0, 1 .(10)

This looks like incomplete information on the boundary. However, it is sufficient in view
of the degenerate diffusivity. If, on the one hand, ω > 1 next to the boundary, then the
diffusivity vanishes there, the solution does not change with t, and the boundary condition
is satisfied. If, on the other hand ω(0+, t) ≤ 1 (or, respectively, ω(1−, t) ≤ 1) then the
solution needs to take the boundary value 1.

Similarly, the continuum limit of the particle positions x(s, t), satisfying ∂sx = ω, solves
the Neumann type problem

∂tx = −∂sf(∂sx) , 0 < s < 1 ,(11)
∂sx ≥ 1 , s = 0, 1 .
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Eulerian coordinates – the particle density: Our next goal is to write the equation
(8) in terms of the Eulerian coordinate x instead of the Lagrangian coordinate s. This pro-
duces a moving boundary problem posed on the x-interval [X0(t), X1(t)] := [x(0, t), x(1, t)].
The coordinate transformation can be written as

x = X0(t) +

∫ s

0

ω(σ, t)dσ ,(12)

implying

∂s → ω∂x, ∂t → ∂t − ω∂xf(ω)∂x ,

where (11) at s = 0 and (8) have been used. Consequently the Eulerian version of (8)
reads

∂tω = −ω2∂2
xf(ω) , X0 < x < X1 .

This is equivalent to the conservation law

∂tρ = ∂2
xf

(
1

ρ

)
, X0 < x < X1 ,(13)

for the macroscopic particle density ρ := 1/ω, which is complemented by the boundary
conditions

ρ ≤ 1 , x = X0, X1 ,

and by the dynamics of the moving boundaries, determined from (11):

Ẋ0,1 = −1

ρ
∂xf

(
1

ρ

) ∣∣∣
x=X0,1

.(14)

Jump discontinuities: As a consequence of the degeneracy of the diffusivity D(ρ) :=
−ρ−2f ′(1/ρ) for ρ ≤ 1, the nonlinear diffusion equation (13) supports jumps between
values ρ(x∗−, t) = 1 and ρ(x∗+, t) < 1. The velocity of the jump location x∗(t) is given
by the Rankine-Hugoniot condition

ẋ∗ =
−∂xf(1/ρ)|x=x∗−

1− ρ|x=x∗+
.(15)

With the obvious changes also the case ρ(x∗−, t) < 1 and ρ(x∗+, t) = 1 can be considered.
Such jumps typically separate regions where ρ ≥ 1 from regions where ρ < 1. Note that
with the natural assumption ∂xρ(x∗(t)−, t) ≤ 0, the formula above implies ẋ∗ ≥ 0, i.e. the
jump moves towards the region of lower density. In the case ρ(X0,1(t), t) = 1, the moving
boundary equation (14) can be seen as a special case of (15), with ρ continued by zero
outside of [X0, X1]. Otherwise, i.e. when ρ(X0,1(t), t) < 1, the boundary does not move.

Special cases: The statements above do not cover the situation of initial data with a
smooth transition between ρ > 1 and ρ < 1. Consider an initial datum ρ0(x) = 1 − cx,
c > 0, and the choice f(ω) = (1 − ω)+. We expect that a discontinuity develops with
location x∗(t) starting at x∗(0) = 0. Approximating the denumerator on the right hand
side of (15) by its value at t = 0, we obtain

ẋ∗ ≈
1

x∗
,

and therefore x?(t) ≈
√

2t for small t. This behavior with infinite initial velocity also
occurs in the Stefan-problem, see e.g. [2, Chapter 1, Example 1]. It can also be seen on a
microscopic level in Figure 1a for x0 and xN .

Another special case is initial data with ρ0 > 1 in a bounded interval, ρ0 = 1 outside of
it, and f(ω) = (1/ω − 1)m+ , m ∈ R. For m ≥ 1 the shifted density ρ− 1 solves the porous
medium equation with initial data with bounded support, a problem very well studied (see
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e.g. [41]). In particular, in that case supp(ρ − 1) will grow, and the long-time behavior
of the solution is given by an explicitly computable self-similar Barenblatt profile. For
m ∈ [0, 1) we are in the case where ρ − 1 solves the fast diffusion equation, which also
is well investigated, see e.g. [8]. For m < 0 this phenomenon is known as super-fast
diffussion. For a survey of results regarding these types of nonlinear diffusion we refer
the reader to [40]. If the initial data are such that the flux ∂xf(1/ρ) initially vanishes at
the boundary of the support, then a waiting time phenomenon occurs, where the edges of
the support start moving at a positive time. Indeed, for initial data where the right-most
point is given by x∗(0), such that ρ(x∗(0)−) > 1 and ρ(x∗(0)+) = 1, we can calculate
under consideration f (1/ρ) = (ρ− 1)m+ similar to (15) the velocity of the jump location

ẋ∗(t) = m
(
ρ(x∗(t)−, t)− 1

)m−2

∂xρ(x, t)|x=x∗(t)−
.

One can see clearly that the smaller the exponent m and the closer the left-sided limit
ρ0(x∗(0)−) is to the value 1, the flatter has to be the initial density ρ0 left of the boundary
point x∗(0) in order to observe the aforementioned waiting time phenomenon.

Less clear is the situation with initial data of the form ρ0(x) = 1 − cx, c > 0 and a
general nonlinearity f . We conjecture that, on the one hand, a discontinuity develops with
infinite initial speed as above, whenever x = o(∂xf(1/ρ)) as x → 0−, and on the other
hand, the discontinuity only appears after a waiting time for ∂xf(1/ρ) = o(x) as x→ 0−.
However, we are not aware of any rigorous results on these questions.

Decay to equilibrium: The dynamics of (13) dissipates the L2-norm. After continuation
of ρ by zero outside of [X0, X1], we obtain

d

dt

∫
R
ρ2dx = 2

∫
R

1

ρ2
f ′
(

1

ρ

)
(∂xρ)2dx ≤ 0 .

The dissipation vanishes for ρ < 1 or ρ independent from x. During the evolution we
expect to see intervals I+(t), where ρ ≥ 1, separated from intervals I−(t), where ρ < 1,
by moving jump discontinuities, where ρ = 1 are the boundary conditions for the intervals
I+. Therefore we expect that equilibria have intervals I+,∞, where ρ ≡ 1, separated by
intervals I−,∞, where ρ < 1 and otherwise arbitrary. The number of I+,∞-intervals might
be smaller than that of I+(0)-intervals, since these intervals might merge by collisions of
the moving jump discontinuities. As soon as this coarsening process is over, the limit
I+,∞ = [a, b] of each interval I+(t) can be predicted. Let [c, d] be big enough to contain
[a, b] with ρ(c, t) = ρ0(c), ρ(d, t) = ρ0(d) < 1. Then a and b can be computed from the
conservation of mass and of the center of mass:∫ d

c

ρ0dx = b− a+

∫
[c,d]\[a,b]

ρ0dx =⇒ b− a−
∫ b

a

ρ0dx = 0 ,(16) ∫ d

c

xρ0dx =
b2 − a2

2
+

∫
[c,d]\[a,b]

xρ0dx =⇒ b2 − a2

2
−
∫ b

a

xρ0dx = 0 .(17)

4. The rigorous macroscopic limit

The macroscopic limit will be carried out in the individual based model in terms of the
unknowns ωi, as in (5). However, boundary conditions will be avoided by considering a
countable number of particles distributed over the whole real axis. Therefore we consider
the initial value problem

ω̇i = − f (ωi−1) + f (ωi+1)− 2f (ωi)

∆s2
,

ωi(0) = ωi,0 , i ∈ Z ,
(18)



REPULSIVE PARTICLES 7

with initial data satisfying

0 ≤ ωmin := inf
i∈Z

ωi,0 , sup
i∈Z

ωi,0 =: ωmax <∞ .(19)

Note that under the assumption (1) on the nonlinearity f the results of Theorem 1 remain
valid, i.e. the existence and uniqueness of a global solution of (18), satisfying

ωmin ≤ ωi(t) ≤ ωmax , i ∈ Z , t ≥ 0 .

The connection to the continuum is made by the definition of the piecewise constant
interpolant

(20) ω∆s(s, t) := ωi(t) for (i− 1/2)∆s ≤ s < (i+ 1/2)∆s , t ≥ 0 .

The uniform bound already provides weak convergence (of an appropriate subsequence)
as ∆s → 0, which is however not sufficient for passing to the limit in the nonlinearity.
Therefore we additionally assume a uniform bound on the total variation of the initial
data, which we enforce by assuming a finite number of changes of monotonicity. More
precisely, with ∆ωi(t) := ωi+1(t)− ωi(t), i ∈ Z, we consider sets of indices

i1 < . . . < iK such that ∆ωik(t)∆ωik−1
(t) < 0 , k = 2, . . . ,K ,

and denote by M(t) ∈ N ∪ {∞} the maximum of all such K. The additional assumption
on the initial data is

M(0) <∞ .(21)

With (19) this immediately implies a bound of the total variation:

TV (ω∆s(·, 0)) =
∑
i∈Z
|ωi+1,0 − ωi,0| ≤M(0)(ωmax − ωmin) .

Lemma 3. Let (ωi, i ∈ Z) be a solution of (18). Then M(t) as defined above is non-
increasing.

Proof. A change of the monotonicity behavior at time t requires the existence of an index
i such that ∆ωi(t) = 0. Additionally ∆ωi−1(t)∆ωi+1(t) ≥ 0 is necessary, i.e. there
is monotonicity of the sequence ωi−1(t), . . . , ωi+2(t) of 4 points. Otherwise, i.e. for
∆ωi−1(t)∆ωi+1(t) < 0, there is one local extremum at ωi(t) = ωi+1(t), and this will
be preserved at least for short time.

Thus, w.l.o.g. we assume

ωi−1(t) ≤ ωi(t) = ωi+1(t) ≤ ωi+2(t) .

This implies
d

dt
(ωi+1 − ωi)(t) =

f(ωi−1(t))− f(ωi+2(t))

∆s2
≥ 0 ,

by the monotonicity of f . Therefore the monotonicity of the 4 points is preserved and no
additional extremum can be created. �

Actually the total variation could be expected to be non-increasing with time, but for
our purposes the consequence

(22) TV (ω∆s(·, t)) ≤M(t)(ωmax − ωmin) ≤M(0)(ωmax − ωmin) , t ≥ 0 ,

of the lemma will be sufficient. It provides a bound on ω∆s ∈ L∞((0,∞);BV (R)) uni-
formly in ∆s > 0. Moreover, the TV -bound can be used to also get some regularity in
time.

Lemma 4. With the assumptions of Lemma 3, ∂tω∆s ∈ L∞((0,∞);W 1,−∞(R)) uniformly
in ∆s > 0.
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Proof. Considering a test function ϕ ∈W 1,∞(R), we define

(23) ϕi :=
1

∆s

∫ (i+1/2)∆s

(i−1/2)∆s

ϕds , Ji(t) :=
f(ωi(t))− f(ωi−1(t))

∆s
,

and compute∫
R
∂tω∆sϕds =

∑
i∈Z

ω̇iϕi∆s = −
∑
i∈Z

Ji+1 − Ji
∆s

ϕi∆s =
∑
i∈Z

Ji
ϕi − ϕi−1

∆s
∆s

This leads to the estimate∣∣∣∣∫
R
∂tω∆s(s, t)ϕ(s) ds

∣∣∣∣ ≤ ‖ϕ′‖L∞(R)

∑
i∈Z
|f(ωi(t))− f(ωi−1(t))|

≤ ‖ϕ′‖L∞(R)M(0)(ωmax − ωmin) , t ≥ 0 ,

where we have used the Lipschitz continuity of f and (22). �

As a consequence of our results, for a bounded interval Ω ⊂ R we have

ω∆s ∈ L∞((0,∞);BV (Ω)) and ∂tω∆s ∈ L∞((0,∞);W 1,−∞(Ω)) .

Since, for 1 ≤ q <∞, BV (Ω) ⊂ Lq(Ω) ⊂ W−1,∞(Ω), where the first inclusion is compact
[25, Corollary 3.49], we conclude from [37] that {ω∆s,∆s > 0} is relatively compact in
Lploc ((0,∞)× R) for every p <∞.

For a test function ϕ ∈ C∞0 ([0,∞) × R) we test (18) against ϕi(t), defined as in (23).
After an integration by parts with respect to t ≥ 0 and summation by parts with respect
to i ∈ Z we obtain∫

R
ω∆s(s, 0)ϕ(s, 0)ds+

∫ ∞
0

∫
R
ω∆s∂tϕds dt

=

∫ ∞
0

∑
i∈Z

f(ωi)
ϕi+1 − 2ϕi + ϕi−1

∆s2
∆s dt =

∫ ∞
0

∫
R
f(ω∆s)∂

2
sϕds dt+O(∆s) ,(24)

where the last equation follows from

ϕi+1 − 2ϕi + ϕi−1

∆s2
=

1

∆s

∫ (i+1/2)∆s

(i−1/2)∆s

∂2
sϕds+O(∆s) .

Restricting to appropriate subsequences we have ω∆s → ω in Lploc ((0,∞)× R) as ∆s→ 0,
and we may pass to the limit in (24):∫

R
ω0(s)ϕ(s, 0)ds+

∫ ∞
0

∫
R
ω∂tϕds dt =

∫ ∞
0

∫
R
f(ω)∂2

sϕds dt ,(25)

where ω0(s) is the limit of the initial data ω∆s(s, 0), which exists by the BV -assumption
(21). This is the weak formulation of the initial value problem

(26) ∂tω = −∂2
sf(ω) , in (0,∞)× R , ω(s, 0) = ω0(s) , s ∈ R .

Theorem 5. Let (1), (19), and (21) hold. Let ω∆s be defined by (20) in terms of the
solution of (18). Then lim∆s→0 ω∆s = ω in Lp((0,∞)×R) for any 1 ≤ p <∞, restricting
to appropriate subsequences. The limit ω ∈ L∞((0,∞)× R) is a weak solution of (26).

Remark 6. An existence theory for the continuous problem written in terms of x(s, t) (see
(11)) can also be carried out by interpreting the problem as gradient flow for the energy
functional

E[x] := −
∫ ∞
−∞

∫ ∂sx

0

f(p)dp ds .
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The basic theory (see e.g. [16]), however, only gives x ∈ C([0,∞);L2(R)) and not much
information on ω = ∂sx.

5. Numerical simulations

5.1. Microscopic model: We illustrate the previous statements with numerical experi-
ments in x and ω. We solve the systems (3) and (5) for the choice

f(·) := (1− ·)+ ,

with an implicit Euler algorithm to conserve the characteristic properties. We discretize
as follows,

xn+1
i = xni +

∆t

∆s

[
−

(
1−

xn+1
i+1 − x

n+1
i

∆s

)
+

+

(
1−

xn+1
i − xn+1

i−1

∆s

)
+

]
, i ∈ {1, . . . , N − 1},

(27)

including the boundary values x0, xN , based on classical ideas as in e.g. [7]. Also system
(5) is treated similaraly.

We simulate N = 20 agents and chose a time-stepping of ∆t = 0.1∆s2 with ∆s = 0.1
using a typical parabolic CFL-condition. The non-linearity f is solved with a fixed-point
approach over n = 40 iterations as proposed in [23]. The results can be found in Figure 1.

The Min-Max-principle in Theorem 1 shows the relation with a parabolic system which
has in general a smoothing effect, as can be seen in Figure 1b. However, this effect does
not occur if the points xi are too far apart, which is visualized in Figure 1c. Indeed, in
that case groups of particles remain, which do not interact with each other. This fact will
later motivate us to consider subproblems individually. Figure 1d visualizes the Min-Max-
principle in Theorem 1, whereas also the time-dependent version stated Theorem 2 can be
seen.

5.2. Macroscopic model. We investigate problem (13) on an open domain R with ρ0 > 0

and discretize it as ρ(i∆x, j∆t) = ρji explicit in time via

ρj+1
i = ρji +

∆t

∆x3

[
(1− 1/ρji+1)+ − 2(1− 1/ρji )+ + (1− 1/ρji−1)+

]
.(28)

Here we discretized the Laplacian as usual.
We choose ∆x = 0.001 for a sharp visualisation of the shock and ∆t = 0.1∆x2 in

compliance with typical CFL-conditions, following classical literature, see [24]. In Figure
(2a) we see the smoothing-effect for discontinuous initial data of system (13) for the spatial
positions, where ρ0 > 1.

In Figure 2b we furhter plot the position of the jump x∗ calculated by (15). We used
for the discretization of (15) an explicit Euler algorithm for solving the ODE. Knowing x∗
is monotone increasing and considering the left- and right-handed limits, we used in the
numerator a downwind- and for the denominator an upwind-approach. We see that the
discretisation (28) creates the correct shock-speed. Additionally continuous initial data
lead to satisfying results since as mentioned, the discontinuity only occurs for t = 0 and
x∗ is Lipschitz for t > 0.

In Figure 3 we visualized a simulation showing two colliding plateaus, i.e. two intervals,
where the density ρ is greater than one, merge. The shocks move towards each other until
the collision at time t = 0.031, where the two patches merge. The dynamics stop, once
the final interval-length [a, b] is reaches, where the boundaries a and b are calculated by
(16)-(17).
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-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
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0.2

0.3

0.4

0.5

t

(a) The trajectories xi over time, we see the
agents moving away from each other. The
initial values are chosen so that xi− xi+1 <
∆s for all i, so all agents are in interaction.
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s

0.2
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0.8
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ω

t=0

t=0.1

t=1.5

(b) The simulation associated with Figure
1a in ω, we see a smoothing effect with long
term behavior ωi → 1.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.6

0.8

1.0

1.2

ω

t=0

t=0.1

t=1.5

(c) Simulations in ω. The smoothing effect
stops before all ωi reach the value 1. This
can be related to the fact that initially the
threshold 1 is exceeded by a critical amount
of ωi, hence some plateaus will not interact
since the points in between already reached
the value 1.

0.00 0.02 0.04 0.06 0.08 0.10

t

0.8

0.9

1.0

1.1

1.2

1.3

ω

ωmax

ωmin

(d) The Min-Max-principle in Theorem 1
visualized for the dynamics associated to
Figure 1c. Each black line corresponds to
the time-evolution of a ωi.

Figure 1. Time evolution of the discrete systems in ω and x for different
initial values.

t=0

t=0.001

t=0.05

t=0.1

-0.4 -0.2 0.2 0.4
x

0.5

1.0

1.5

ρ

(a) Discontinuous initial data.

x*(0)

x*(0.015)

t=0

t=0.015

-0.4 -0.2 0.2 0.4
x

0.5

1.0

1.5

ρ

(b) Smooth initial-data and the position of
the shock x? calculated from (15).

Figure 2. Macroscopic simulations for two-sided problems.

5.3. Comparison of the Microscopic and the Macroscopic Model. We conclude
the numerical simulations with an experiment, which compares the microscopic and the
macroscopic dynamics in order to show consistency between the two scales. We start with
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S2 S1

0.5

1.0

1.5

2.0

ρ

A2=∫ρ2dx A1=∫ρ1dx

a b
t=0

t=0.031

tend

Figure 3. Two plateaus moving towards each other until they collide.
The dynamics come to an end as soon the equilibrium size [a, b] of the
interval is reached.

a continuous initial density

ρ0(x) :=

{
3 exp

(
0.09

x2−0.09

)
, x ∈ (−0.3 , 0.3)

0.5 , x /∈ (−0.3 , 0.3)

and calculate the corresponding discrete values xi via (12). In Figure 4 we see the solutions
of the corresponding microscopic dynamics (5), solved numerically by (28), and the one
of the corresponding macroscopic dynamics (13), solved via (27), which are plotted beside
each other.

-0.4 -0.2 0.0 0.2 0.4

t=0.01

t=0.03

(a) Discontinuous initial data.

-0.4 -0.2 0.0 0.2 0.4

t=0.01

t=0.03

(b) Smooth initial-data and the position of
the shock x? calculated from (15).

Figure 4. Solution of microscopic system (28) and the macroscopic equa-
tion (??) showing the same dynamics.

6. Conclusion and Outlook

6.1. Applications and open questions. In the following, we mention two possible com-
binations for the new diffusion term ∂2

x

(
1− 1

ρ(x,t)

)
+
, which we obtain from our consid-

erations above with the choice f(·) = (1 − ·)+. The authors assume that both suggested
models can presumably be derived microscopically.
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Bacterial Growth. A classical growth term is exponential growth, which is well known to
describe bacteria, see [28],

∂tρ(x, t) = ρ(x, t).

This new diffusive effect needs to be investigated in the context of cell-exclusion, occurring
in bacterial growth. This was done on a microscopic level by e.g. [14]. In a well known
biological experiment, see [43], quite natural a version of a one-sided problem is investi-
gated. Bacteria divide, and can leave a one-dimensional channel only on one side. The
other has mathematically seen No-Flux boundary conditions. The experiment was done
to investigate a growth-rate α > 0. In our case, this corresponds to a one-sided problem
with a source-term, e.g. in

∂tρ(x, t) = ∂2
x

(
1− 1

ρ(x, t)

)
+

+ αρ(x, t).

From a mathematical perspective, questions regarding the existence of solutions and blow-
ups are natural. The biological problem was investigated already with different technics,
see [33], and this new diffusive term can broaden the perspective.

Alignments within a drift. We have shown how our diffusive term results in a desired
density at the microscopic level. In addition, this term can be studied in systems with
drift, for example, due to an external potential φ. If we motivate the drift term similar to
a linear Fokker-Planck equation, it leads us to the following equation

∂tρ(x, t) = ∂x

(
∂x

(
1− 1

ρ(x, t)

)
+

+ ρ(x, t)∂xφ(x)

)
,

with φ being a suitable potential depending on x. This model has applications in 1D and
2D, see e.g. the self-organising system of birds during their travels.

The diffusion term D leads to a desired density ρ of 1, scaled here, but unlike macro-
scopic models based on cellular automata with cell exclusion, this can be exceeded and solve
problems in modelling and calibration in the context of pedestrian dynamics, see [17, 19].
This new diffusion allows to introduce a parameter for the desired density ρd quite simply
via

∂2
x

(
1− ρd

ρ(x, t)

)
+

.

2D-setting. In the case of two or higher dimensions even the formal derivation of the
macroscopic model is an open question. What makes the 1D case more solvable is the fact
that one can define discrete gradients of the density in the following way

ρi :=
∆s

xi+1 − xi
.

Hence, an equidistant partition of the Lagrangian variable suggests the natural structure
including the discrete gradient, while in higher dimensions the choice of the reference grid is
non-unique and non-trivial. Nearby ideas of the authors is investigating the problem in 2D
using e.g. Delaunay- and or Voroi-diagramms in combination with Lagrange-coordinates
as in Figure 5. The latter are typical in measuring density in pedestrian dynamics, see [1],
while the dual graph, the Delaunay-triangulation, see [30], can be used to define the
interacting particles.
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(a) Voronoi-diagram of random initial
data in 2D.

(b) Corresponding Delaunay-diagram,
it is the dual graph.

Figure 5. The Voronoi-diagramms partitions the plane into sets si where
xi is the closest, while the Delaunay-diagram connects interacting parti-
cles based on the first.

6.2. Summary and Conclusion. In this work we modelled particles interacting in a
certain radius. We introduce the scaled distance ω, which can also be seen as a derivative in
Lagrangian coordinates s. From this interpretation, it was possible to define a microscopic
density ρ by inverting ω.

For the microscopic systems (3) and (5) we could establishe an existence and uniqueness
result, together with a maximum-principle (Theorem 1). This result as well as observations
of the particle’s positions (Theorem 2) are underlined with simulations in Section 5.1.
Properties of (5) for x and ω can be transferred to the density ρ.

On a macroscopic level our main focus was on (13), a conservation law for which we
could derive jump conditions for discontinuous initial data, which can be related to the
moving boundary of a Stefan problem. Moreover, we discussed specific choices for the
repulsive force f , which lead to well known nonlinear diffusion equations as the porous
medium equation or the fast diffusion equation. A rigorous limit from (5) to (26) could
be established. Due to the non-linearity f , passing to the limit is non-trivial. In order
to conclude by finding a weakly convergent sequence for system (5), we used bounds on
the total variation with respect to the spatial variable of the solution and a compact
interpolation theorem [37].
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