

From voltage sensing to gene expression in the control of muscle mass homeostasis

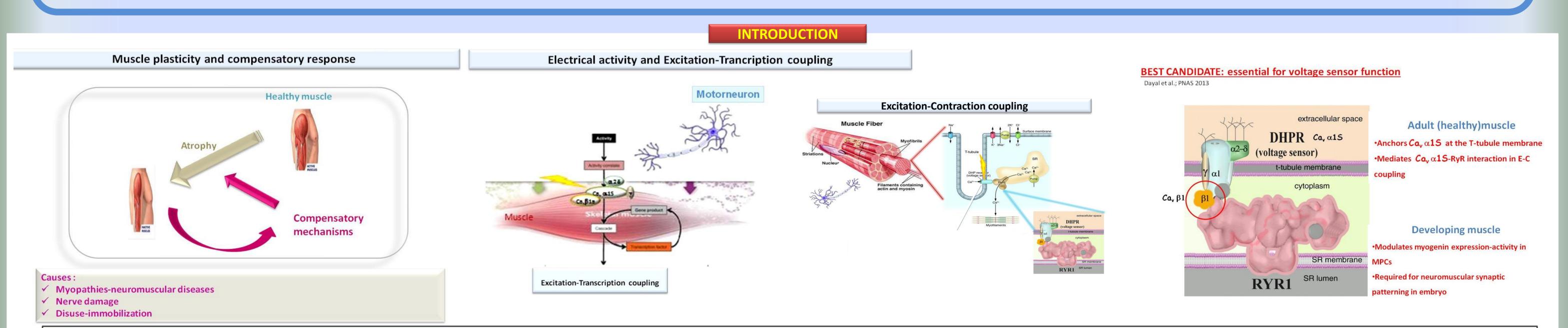
Sestina Falcone, C. Benedetto, M Traoré, P. de la Grange, A. Ferry, F.

Piétri-Rouxel

► To cite this version:

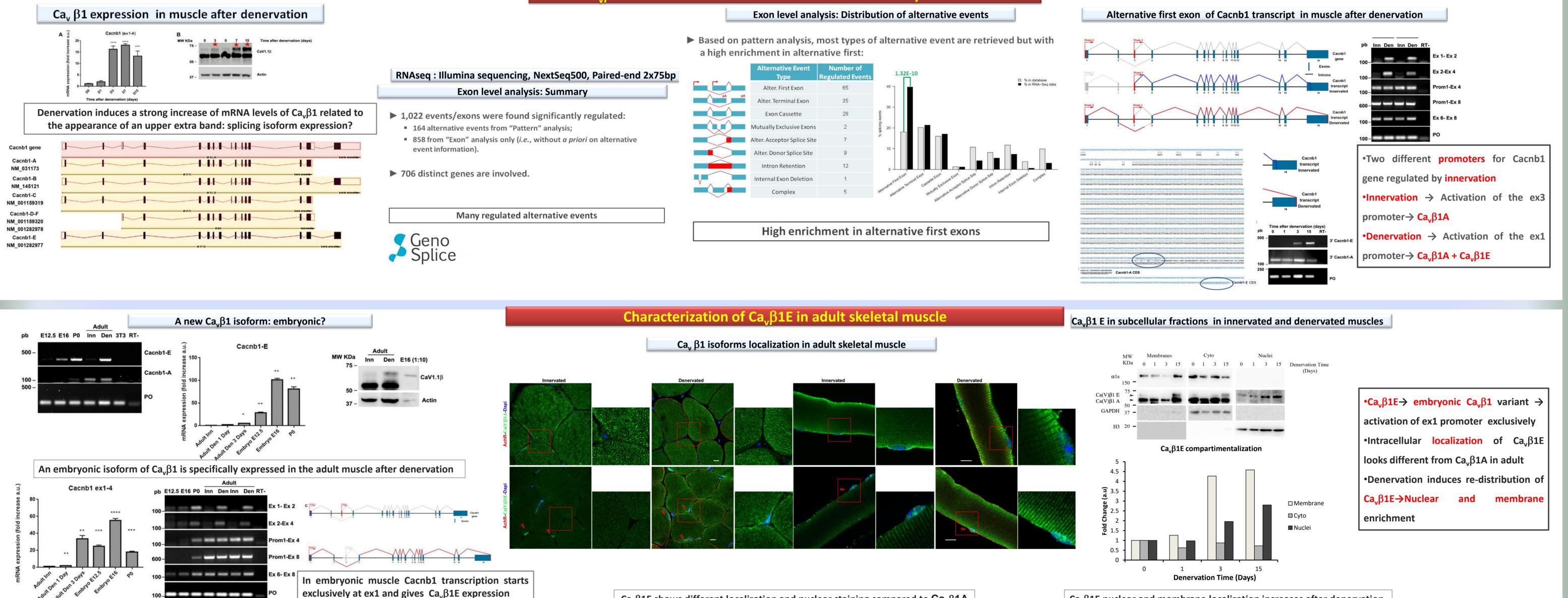
Sestina Falcone, C. Benedetto, M Traoré, P. de la Grange, A. Ferry, et al.. From voltage sensing to gene expression in the control of muscle mass homeostasis. 22nd World Muscle Society Congress, Oct 2017, Saint-Malo (France), France. hal-04002388

HAL Id: hal-04002388 https://hal.science/hal-04002388v1


Submitted on 2 Mar 2023

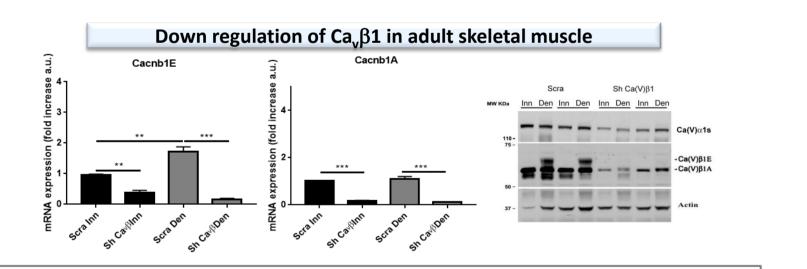
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

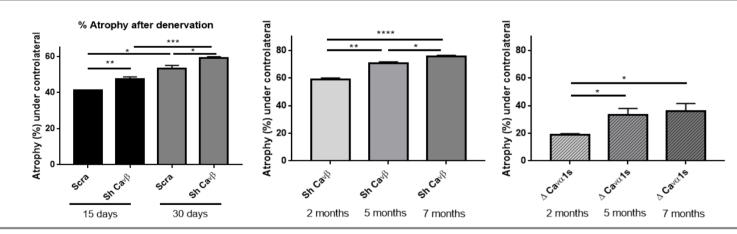
From voltage sensing to gene expression in the control of muscle mass homeostasis


Falcone, S.*, Gentil, C*., Benedetto C*. Traoré M°, De la Grange P.⁺, Ferry, A.* and Piétri-Rouxel, F. *

*Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center, UM76 /INSERM U974 Institut de Myologie, F-75013, Paris, France; ° Inovarion F-75013; Paris, France, +Genosplice, Institut du Cerveau et de la Moelle épinière ICM, Paris, France

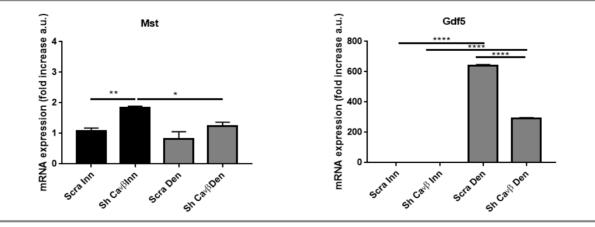
Muscle mass and fiber size undergo to rapid and significant changes according to environmental and pathological conditions. Among the various trophic signals, intrinsic muscle contractile activity, neurotransmission and neurotrophic factors are crucial components regulating the integrity of muscle mass. Alterations in the pattern of nerve-evoked electrical activity convey in a modulation of the signal, due to modification transcription (E-T) coupling is crucial for isotypic determination of muscle fibers but also for plastic adaptation and compensation after the loss of muscle mass. When electrical activity is impaired, such as during neuromuscular diseases, disuse or aging, massive muscle atrophy is observed. Few components of this compensatory response have been identified; in particular, a crucial role is played by the GDF5/Smad4 pathway. Nevertheless, it is still unknown which protein acts as first trigger of the atrophic-compensatory response after an electrical activity alteration. Good candidates could be molecules implicated in the muscle voltage sensing, and we focused our study on the beta subunit of the L-type of calcium channel complex CaV1.1. CaVb1,

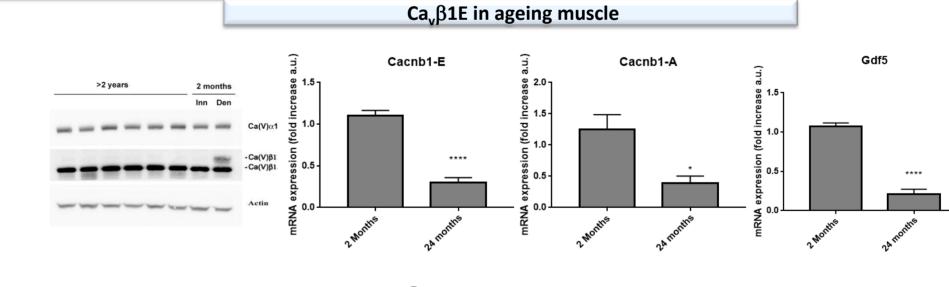

$Ca_{\mu}\beta 1$ in adult skeletal muscle after electrical activity alteration

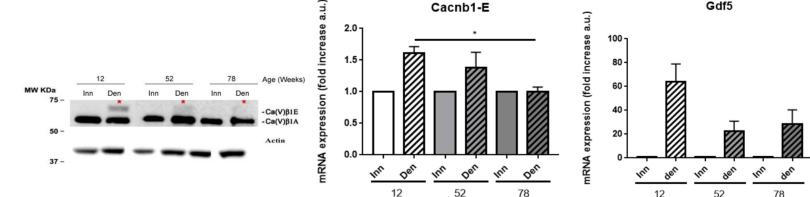

Ca, β 1E shows different localization and nuclear staining compared to Ca, β 1A

Fonction of Ca. β 1E in adult skeletal muscle

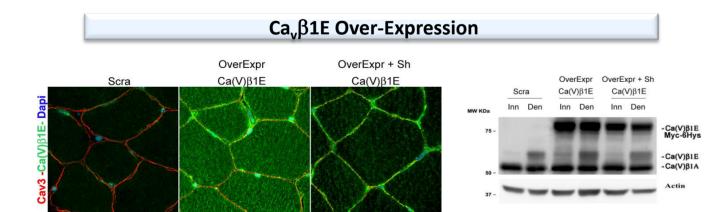

Ca. B1E nuclear and membrane localization increases after denervation

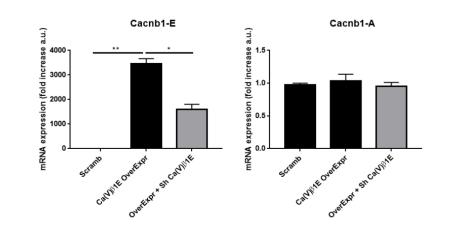

Targeting Cacnb1A transcript down regulates both isoforms in adult skeletal muscles


 $Ca_{\nu}\beta 1$ ablation dramatically exacerbates denervation atrophy and induces massive muscle mass loss independently of $Ca_{\nu}\alpha$ 1s reduction



Myogenin-dependent signaling is altered by $Ca_v\beta 1$ down-regulation


The loss of compensatory response to muscle waste in the absence of $Ca_{\nu}\beta 1$ is probably dependent on increased myostatin and decreased Gdf5/BMP14 signaling



In ageing muscle Ca_v β 1 is strongly downregulated in parallel to decreased Gdf5/BMP14 expression: the origin of sarcopenia?

•Ca, β 1A shRNA \rightarrow down-regulation of $Ca_{\nu}\beta 1E$ and $Ca_{\nu}\beta 1A$ •Ca, β 1 KO \rightarrow muscle mass loss and exacerbation of atrophy • Ca_v β 1 KO \rightarrow myogenin signaling altered; Gdf5/Gdf8 signaling altered •Ageing muscle \rightarrow physiological Ca_v β 1 KD

Ca, β 1E over-expression does not modify Ca, β 1E endogenous expression in adult

Conclusion and perspectives

What we know:

- •<u>Electrical activity alteration</u> \rightarrow embryonic Ca_v β 1E expression by alternative first exon event
- •Ca, β 1A shRNA \rightarrow down-regulation also Ca, β 1E and splicing \rightarrow Ca, β 1E expression depends on Ca, β 1A

•Ca_v β 1(A/E)KO \rightarrow muscle mass loss and exacerbation of atrophy

• <u>Ca_v β 1A/E KO \rightarrow myogenin signaling altered; Gdf5/Mst signaling altered</u>

•<u>Ageing muscle</u> \rightarrow physiological Ca_v β 1 KD and splicing; Gdf5 signaling altered

•<u>Overexpression of Ca_v β 1E \rightarrow no impact on Ca_v β 1A expression</u>

What we must know:

•<u>Ca, β 1E effector of compensation</u>? \rightarrow overexpression of Ca, β 1E + sh Ca, β 1A (ongoing in aging model)

•<u>Ca_vβ1A effector of compensation</u>? \rightarrow overexpression of Ca_vβ1A in sh Ca_vβ1A

•<u>Role of alternative promoter</u> in Ca_v β 1 fonction and expression \rightarrow sh Ca_v β 1 ex2 versus sh Ca_v β 1E

•<u>Is Gdf5 the key mediator of Ca_vβ1 effect on muscle mass?</u> \rightarrow overexpression of Gdf5/BMP14 in sh Ca_vβ1

•<u>Can Ca_v β 1A act on its own promoter and/or Gdf5 promoter</u>? \rightarrow Luciferase-based assay

	Perspectives:	
• Role of <u>Ca_v β1 in sarcopenia</u> \rightarrow overexpression of Ca _v β 1 in aging model (ongoing for <u>Ca_vβ1E)</u>		
• <u>Ca_vβ1 in reinnervation and disease models (ALS, SMA)</u>		
• <u>Ca_vβ1 in human neuromuscular disease/sarcopenia</u>		
• <u>Ca_vβ1 in myogenesis /embryogenesis</u>		

muscle and can be rescued by a specific shRNA targeting the 3' end

Institut national de la santé et de la recherche médicale

PRÉSENTS POUR VOTRE AVENIR

