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ABSTRACT
Despite the freedom Additive Manufacturing (AM) offers when manufac-
turing organic shapes, it still requires some geometrical criteria to avoid
a part’s collapse during printing. The most synergetic design approach to
AM is Topology Optimization (TO), which finds an optimal free-form given
mechanical constraints. However, it is hard for TO to integrate these lay-
out geometry-related constraints and it seldom proposes printable shapes.
Therefore, this work leverages the Deep Learning (DL) capability to han-
dle spatial correlationswithin themechanical designprocess by integrating
the layout and mechanical constraints at the conceptual level. It proposes
a DL-layout-driven solution (DL-TO) trained via a triple-discriminator Gen-
erative Adversarial Network (GAN) framework. The DL-TO’s performance
is demonstrated by generating mechanically valid 2D designs conforming
with layout constraints in a fraction of a second. DL-TO’s creativity is illus-
trated by its capability to generate designs with unseen input constraints
(passive/active elements) and to propose several shapes for the same input
mechanical constraints, a task that is hard for a traditional TO to achieve.

KEYWORDS
Topology optimization; Deep
learning; Generative
adversarial networks

1. Introduction

The growing need for fast, organic, versatile and cost- and material-efficient products in the indus-
trial world drives research to develop design approaches accounting for all these criteria. Topology
Optimization (TO) falls in the category of these design approaches. It allows the generation of shapes
with curvatures and fine details, given a set of parameters such as loads, boundary conditions and
volume fraction.

Complementary to the above comes Additive Manufacturing (AM), which allows the printing of
any form. However, this synergy is not as idealistic as it looks. Indeed, AM requires the design’s shape
to comply with some geometrical criteria that are hard to integrate into TO’s formulation (Adam
and Zimmer 2014). Thus, designing optimal printable parts requires the intervention of experts to
interpret the shapes proposed by TO. Nonetheless, this reinterpretation phase can compromise the
initial design’s optimality, is time-consuming and depends on the engineer’s expertise.

Consequently, with the flourishing role of AM in industry, it is further interesting to find amethod
that simultaneously considers mechanical constraints (boundary conditions, loads and volume frac-
tion) and geometrical constraints (overhangs, complexity, lengths and thicknesses) at the conceptual
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level. A recent survey conducted by Subedi, Verma, and Suresh (2020) has shown that half of TO
practitioners regret the absence of layout- and manufacturing-related plugins in TO’s software.

Thus, research is recently focusing on integrating both these constraints into TO’s formulation.
Z. Zhang and Zhou (2018), Han et al. (2019) and Bi, Tran, and Xie (2020) adapted TO approaches
to account for overhang limitations and to deliver self-supporting designs. Xu et al. (2021) integrated
AM support structure and thin feature constraints into bidirectional evolutionary structural opti-
mization to obtain AM-friendly designs. Li et al. (2020), CunfuWang and Quian (2020) and Matos,
Rocha, and Costa (2021) focused on including the build orientation into TO, especially since the AM
part’s accuracy and cost are affected mainly by its build orientation.

Nonetheless, TO is an iterative, Finite-Element-based (FE-based) method, hence computation-
ally expensive. While it converges for simple input constraints in a few seconds, its efficiency drops
remarkably when the input design space (e.g. the mesh size) increases and input conditions complex-
ify. Moreover, integrating geometric/manufacturing constraints into its formulation, when possible,
adds computational costs and often compromises its convergence (Ranjan, Samant, andAnand 2017).

For that reason, other research has turned tomachine andDeep Learning (DL) techniques to accel-
erate the TO process. DL architectures have proven efficient and robust in learning complex spatial
correlations and extracting high-level spatial shape-related features from real-world images (Aloysius
and Geetha 2017).

The overall DL-based TO approaches found in the literature can be divided into two parts.
On the one hand, the first part partially replaced FE by substituting sensitivity analysis with Neu-

ral Networks (NNs) (S. Bi, J. Zhang, and G. Zhang 2020; Chandrasekhar and Suresh 2021) by using
super-resolution NNs to enhance the resolution of intermediate FE-TO’s outputs (Sosnovik and
Oseledets 2019, Kallioras, Kazakis, and Lagaros 2020, ChunpengWang et al. 2021) by creating a deep
NN-based TO that is trained and penalized using a quality function based on FE (Halle, Campanile,
and Hasse 2020), etc.

On the other hand, the second part opted to eliminate FE from TO using a Prinicipal Component
Analysis (PCA) followed by a shallow NN (Ulu, R. Zhang, and Kara 2016) or directly using deep
NNs (Abueidda, Koric, and Sobh 2020; Rade et al. 2020) and Generative Adversarial Network (GAN)
frameworks (Behzadi and Ilies 2021; Yu et al. 2019; Sharpe and Seepersad 2019; Rawat and Shen 2019;
Malvia 2020).

Nevertheless, none of these DL-based methods included any layout-geometry-related constraints
except that of Chandrasekhar and Suresh (2021). On the contrary, they were left to the reinterpreta-
tion phase, knowing that significant modifications might be made in the shape during this phase. In
other words, the TO phase was accelerated, and not the whole Design for AM (DfAM) process.

This work’s main contribution is not only accelerating the TO phase but also identifying a way to
tailor the design’s layout to accelerate the design phase in theDfAMprocess. Thus, the authors benefit
from DL’s ability to learn spatial correlations to elaborate a DL approach that simultaneously inte-
grates mechanical and layout conditions at the conceptual level and generates 2D designs validating
the input conditions.

The layout is the material arrangement in a design space, which induces a modification in the
geometry when changed, in other words, a relaxed geometry condition. The layout condition con-
sidered in this work is the total number of components in a 2D design (Nbrbars). As a matter of fact,
the training dataset consists of 2D truss-like structures, each being a collection of three types of beam
(Figure 5). The outer shape of a structure is delimited by the clamped and loaded bars, which makes
the inner bars a target variable that an engineer can alter, simplify or complexify so as to make the
design the design comply with the input constraint. Furthermore, the Nbrbars is an example of lay-
out constraints that are scarcely controllable using FE-TO where the design’s geometry is unknown
beforehand; hence creating an analytical formula to extract and count beams is hardly feasible.

The DL-layout-driven solution (DL-TO) paves the way to handling and tailoring different shapes
during design generation. DL-TO always suggests designs, and even when the proposition is sub-
optimal, it still offers the engineer a good starting point.



Figure 1. An example of the mesh-dependency setback of TO. SIMP outputs two different layouts for two different mesh sizes for
the same input mechanical conditions.

This work improves on the work of Almasri et al. (2021), in which the authors trainedDL-TO via a
dual-discriminator GAN and reported that the generated designs showed poorer mechanical perfor-
mance (higher compliance values) than their FE based counterparts. Therefore, a third discriminator,
a DL-based compliance predictor, is added to the GAN framework penalizing the generator over the
compliance during the training.

It is worth mentioning that conditional GANs have recently captured the interest of researchers.
Its applications are spread amongst all fields, in computer vision (image synthesis, image-to-image,
text-to-image) (Z. Wang, She, and Ward 2021), video generation (Aldausari et al. 2022), medi-
cal (Jeong et al. 2022), agriculture (Bird et al. 2022), cybersecurity (Yinka-Banjo and Ugot 2020) and
engineering (Kusiak 2020), particularly inverse design applications (Achour et al. 2020; Yilmaz and
German 2020; Nobari, Chen, and Ahmed 2021; Jing et al. 2022).

The use of the GAN training framework has the advantage over other generative approaches
in its flexibility. Additional knowledge is incorporated into the generator via new discriminators
appended during training; here, the compliance predictor. In the future, thermal distortion and
buckling predictors can be added as discriminators to generate designs accounting for these con-
straints. Additionally, these discriminators can also be used separately (to predict the design’s thermal
distortion or buckling).

This article’s significant contributions can be summarized as follows.

(1) The integration of mechanical and non-mechanical layout constraints simultaneously at the
conceptual level via a data-driven TO.

(2) The ability to tailor a design’s shape easily by a simple change of the input layout condition
(Nbrbars in this case), a challenging task to formulate analytically.

(3) The creation of a DL compliance predictor.

The rest of the article is organized as follows: Section 2 provides a theoretical overview of TO
and GANs, respectively, formulates the problem and outlines the solution. Section 3 details the con-
solidation of the training and test datasets used to train and evaluate DL-TO. Section 4 depicts the
counter-discriminator and compliance-predictor’s performance and evaluates the generated designs.
Finally, Section 5 summarizes the methodology and its outcomes, and presents future perspectives.

2. Materials

2.1. Topology optimization

Structural Optimization (SO) is defined as the process of finding the optimal material distribution
within a physical volume domain to support the applied loading conditions and other constraints,
e.g. increasing stiffness, reducing stress, reducing displacement, etc. There are three major SO
approaches: (i) size; (ii) shape; and (iii) TO.



TO is the most general form of SO. It simultaneously addresses topology, shape and sizing
problems, and ensures efficient material use.

The increase in rawmaterial cost, the environmental challenges (like energy consumption), the rise
of computational power and the development of advanced programming methods have made TO a
prevalent discipline in industrial design (Querin et al. 2017; Sigmund andMaute 2013). The topmost
common commercial approach is Solid Isotropic Material with Penalization (SIMP), also called the
power-law approach (Bendsøe 1989; Sigmund and Petersson 1998). SIMP is a density-gradient-based
iterative method that uses the penalization scheme of the intermediate non-binary values of density
material x to converge to an optimal binary design. SIMP represents a design as a distribution of
discretized squarematerial elements e (material properties are assumed constant within each e). They
are modelled as the relative material density raised to some power times the material properties of
the solid material. In this work, the objective function to minimize is the energy of deformation or
compliance C(x) in Joules (J):

min
x

:= UTKU =
N∑

e=1
xpeuTe keue (1)

subject to :

V(x)
V0

≤ f

KU = F

0(absence of material) < xmin ≤ x ≤ 1 (presence of material),

(2)

where U and ue are the global and element-wise displacements, F the forces vector, K and ke are the
global and element-wise stiffness matrices,N the number of elements e, xmin the minimum density x
(non-zero to avoid singularity), and p the penalization power (typically 3).V0 andV(x) are the design
domain and material volumes, respectively, and f the volume fraction.

To solve the problem stated above efficiently, Sigmund and Petersson adopted the optimality
criterion approach. A mesh-independency filter is applied to the element sensitivities to avoid
checkerboard patterns.

In this study, a modified version of the numerical solution of SIMP written by Sigmund (2001) is
used to generate a sufficient database of 2D designs.

2.2. Problem definition and solution outline

Despite the previously listed advantages of TO, it suffers from one principal drawback. The gen-
eral shape is usually identified in the very early iterations, making it difficult for TO to modify it
to account for other changes imposed by other constraints; hence, the output shape ends up a local
minimum (Allaire, Dapogny, and Jouve 2021). Furthermore, for density-based TO, geometry cannot
be defined clearly as it depends on themesh size (Figure 1). Hence, any layout-related constraint con-
trolling the design’s geometry cannot be incorporated easily within TO’s formulation. Last but not
least, TO suffers from a convergence problem despite the penalization scheme; the grey regions in the
output designs are hard to interpret physically (Figure 2).

To compensate for these limitations, the authors propose a data-driven approach to explore the
DL capability, particularly ConvolutionalNN (CNN), to integrate a first layout constraint, theNbrbars,
concurrently at the same level as themechanical constraints. CNNs have demonstrated their potential
in learning spatial correlations, and DL outputs converged to crisp black-and-white designs if trained
on converged training designs.

Since the problem is to generate designs, a data-driven generative method, in particular GAN, is
chosen for its flexible framework in incorporating additional knowledge into the generator.



Figure 2. Diagram of a Conditional GAN.

As mentioned previously, this work improves on the work of Almasri et al. 2021 and further
explores and interprets the results.

2.3. Convolutional conditional GAN (convolutional cGAN)

The approach adopted is based on the convolutional conditional GAN framework detailed in the
following subsections.

2.3.1. Generative adversarial networks
GAN is amethod that learns tomimic any input data distribution. Its advantage is that it can generate
new samples following the same input data distribution. It consists of two neural networks, each
working against the other: the generatorG(z, θg), with θg its parameters and z a latent random vector
following a noise prior distribution pz; and the discriminator D(x, θd), with θd its parameters and x a
real sample.G(z, θg) tends to output samples with a distribution pg similar to the real data distribution
pdata. However, D(x, θd) tries to discriminate real samples (i.e. from pdata) from synthesized ones
(i.e. from G(z, θg)). Both networks are trained in a minimax framework to improve the same loss
function: the cross-entropy loss L(G,D). This loss, as defined in the original article (Goodfellow et al.
2014) is

L(G,D) = min
G

max
D

Ex∼pdata(x)[log(D(x, θd))]

+ Ez∼pz(z)[log(1 − D(G(z, θg)))]. (3)

The solution of this function is pg = pdata, i.e. when the generator starts to output data samples
following the same distribution as the real ones.

2.3.2. Conditional Generative Adversarial Networks (cGANs)
On the other hand, a cGAN (Mirza and Osindero 2014) is a GAN’s extension enabling the genera-
tion to be oriented by a specific input condition c. In this framework (Figure 3), the basics of cGAN
become the conditional generator as G(z|c, θg), the conditional discriminator as D(x|c, θd) and the
loss function as

L(G,D) = min
G

max
D

Ex∼pdata(x)[log(D(x|c, θd))] + Ez∼pz(z)[log(1 − D(G(z|c, θg)))]. (4)



Figure 3. Training Procedure. (From left to right). 1) Themechanical constraints (Boundary conditions BC, loads configuration F and
volume fraction V) are concatenated with the layout condition (Nbrbars) and then input into the generator (DL-TO), which outputs
the Generated Designs. The latter are concatenated with BC, F, V and Nbrbars and fed to the traditional discriminator, which predicts
a score (the adversarial loss). Then they are concatenated with only the mechanical conditions and fed to the counter discrimina-
tor, which predicts their Nbrbars . The counting loss is the MSE between the input and predicted Nbrbars . Afterwards, the generated
designs’ compliance (C) is predicted by the C discriminator. Finally, the generated design’s quality is evaluated (the Reconstruction
error). All four losses are summed (a weighted sum), and the final score is fed-back to DL-TO to update its weights. 2) The Traditional
discriminator is trained at two levels: first with the real designs and the second with the generated designs. The adversarial loss is
used to update its weights. 3) The counter and compliance discriminators are pre-trained ahead with the real designs and used as
evaluators during the training.

2.3.3. Convolutional Neural Networks (CNNs)
CNNsdiffer from traditionalNNs in thewayneurons between successive hidden layers are connected.
In a hidden layer, a neuron is only connected to a subset of neurons in the previous layer. This sparse
connectivity allows CNNs to learn feature maps implicitly and reduce the network’s complexity.

CNNs have proven robustness in learning spatial correlations in images (Aloysius and
Geetha 2017), making a CNN-based architecture the adequate generator’s architecture.

To sum up, a convolutional cGAN is a cGAN with G(z|c, θg)’s andD(x|c, θd)’s architectures being
based on CNNs.

2.4. Themethodology

This work aims to create a DL-TOmethod that simultaneously integrates mechanical and layout con-
straints. In other words, the training must ensure that DL-TO’s network is penalized on both input
constraints. The input constraints are formulated as images (Figure 4). Therefore, a conditional con-
volutional triple-discriminator GAN (Mirza and Osindero 2014) is chosen to train DL-TO. Before
the training, the counter and compliance predictors are pre-trained with real data. These discrimina-
tors are only used as evaluators during the training of DL-TO. The training procedure is outlined in
Figure 3.

2.4.1. Architecture of the generator (DL-TO)
The generator (DL-TO) is a deep Res-U-net network (Z. Zhang, Liu, and Wang 2018). It is
an encoder–decoder CNN-based architecture with residual (Res) and skip-connections (U-net).
DL-TO’s encoder encodes the six input conditions formulated as a six-channel-image (the boundary
conditions and loads along the x- and y-axes, the volume fraction and the Nbrbars) and decodes the
2D design (Figure 4). The architecture is justified and detailed in the online supplemental data, which
can be accessed at https://doi.org/10.1080/0305215X.2022.2144847.



2.4.2. Architecture of discriminators
The first one, the traditional discriminator, takes the design, along with all its conditions, and out-
puts the probability that it comes from the real data distribution to ensure the generator learns it.
The second one, the DL-counter, takes the design, and only its mechanical conditions, and outputs
its Nbrbars to ensure the generator respects the input layout condition. Finally, the DL-compliance
predictor takes the design and predicts its compliance to boost the generated designs’ mechanical
performance.

2.4.2.1. Architecture of the traditional discriminator. The traditional discriminator’s network con-
sists of DL-TO’s encoder followed by a dropout, then a fully connected layer. It outputs a probability
p regarding the design being real (p ≈ 1) or fake (p ≈ 0). It helps DL-TO learn the mapping from
constraints to designs (quality) and capture various constraints (diversity).

2.4.2.2. Architecture of the counter discriminator. The counter architecture is detailed in the online
supplemental data.

In this work, the counter is used at three levels: (1) to augment the training dataset; (2) to train;
and (3) to evaluate DL-TO.

It is pre-trained onmanually labelled SIMP-designs (4347 samples) before the GAN’s full training;
the Nbrbars present in each design are counted manually (Figure 5).

This pre-trained counter is used to predict theNbrbars on unlabelled training designs (to augment
the labelled training dataset). This pre-training hack improves DL-TO’s convergence.

At each training iteration, this discriminator is used to predict the generated designs’ Nbrbars and
penalize DL-TO.

At inference time, it is used to predict the Nbrbars on generated designs to evaluate DL-TO’s
conformity to the layout constraint (Section 4).

The counter’s performance is detailed in Section 4.1.

Figure 4. Input of the DL-TO. The boundary conditions along the x- and y-axes (BCx , BCy ), load configurations (Fx , Fy), volume
fraction V and layout constraint Nbrbars are formulated as a six-channel image.

Figure 5. Types of bars in a design. The design shown here is clamped from the upper-left edge and loaded with two punctual
external forces located in the bottom corners and tilted by 7 and 38 degrees. Indeed, It has 5 clamped (red) bars, 2 externally loaded
(green) bars outgoing from two nodes corresponding to the forces locations and 6 internal-transmission (blue) bars, thus, a total of
13 bars.



2.4.2.3. Architecture of the compliance discriminator. The compliance predictor’s architecture is
detailed in the supplemental data. It takes an image-like 2D design as input and outputs an estima-
tion of the compliance value. It is pre-trained on real 2D designs (output by SIMP). Its performance
is detailed in Section 4.2. It is interesting to highlight that an FE-based compliance evaluator could
conduct the training instead of a DL-based one. However, this is disadvantageous in terms of train-
ing time. An FE-compliance computation is thousands of times slower than its DL-counterpart
(Section 4.2).

2.4.3. Loss function
This triple-discriminator GAN strives to train DL-TO to generate 2D designs of good quality and
compliant with the input mechanical and layout conditions. Thus, the original adversarial loss func-
tion (Ladv) used to train the generator (Equation 4) is adjusted by adding the reconstruction (Lr),
counting (Lcount) and compliance (LC) losses. The modified generator loss function LG adapted in
training is the following:

LG = λ1Lr + λ2Ladv + λ3AcccountLcount + λ4LC, (5)

where Lr = 1
n

∑n
i=1(xi − x̂i)2, Lcount = 1

n
∑n

i=1(ŷi − yi)2, LC = 1
n

∑n
i=1 |Ci − Ĉi| with xi, x̂i being

the true and predicted 2D design, yi the inputNbrbars, ŷi the predictedNbrbars of the generated design,
Ci the compliance of the real design, Ĉi the compliance predicted over the generated one and n the
batch size. The accuracy of the counter discriminator Acccount = 1

N
∑N

i=1(t̂i == yi) with yi, t̂i the
true and predicted Nbrbars in the real designs and N the total number of training samples.

The adversarial loss encourages creativity and diversity in the generated 2D designs. The recon-
struction loss boosts their aesthetics and conformity with the volume fraction constraint; the design’s
volume fraction is the average of the pixel values. The counting loss assures the generator respects
the input layout constraint. Finally, the compliance loss compensates for the weak mechanical
performance exhibited in the work of Almasri et al. (2021).

It is worth noting that the relative error is used to compare the generated designs’ compliance
versus the SIMP’s in the work of Almasri et al. (2021), which is the L1-norm between the compliances
of the DL and SIMP designs divided by the SIMP designs’ compliance. Thus, using the L1-norm in
the loss function penalizing DL-TO’s training is the best choice, especially since the objective is to
generate designs with lower compliance. However, the L2-norm was also tested. With L2, the DL
designs always showed higher compliance than their SIMP counterparts. Consequently, the L1-norm
is chosen for the LC.

The stable-GAN-training challenges and hacks and regularization terms (λi; i ∈ [1, 4]) used are
justified in the supplemental data.

3. Data generation

To train the model, 21,538 2D designs were generated following the SIMP method (Section 2.1) via
a Python version of the academic open-source TO code written by Sigmund (2001).1 The layout
constraint (Nbrbars) is added by manual labelling over 4347 samples (which are used to pre-train the
counter discriminator), and then theNbrbars of the remaining samples are predicted using the counter
discriminator.

A 2D design of size nx × ny is discretized into a mesh of (nx + 1) × (ny + 1) nodes and is sub-
ject to two major constraints: the boundary conditions (BC), i.e. the clamped nodes, and the load
configurations (F), i.e. the loaded nodes (Figure 5). Thus, input conditions (BC, F,V andNbrbars) are
concatenated as a six-channel image i.e. of dimension 6 × nx × ny (Figure 4).

The dataset was separated into a training (80%) and a test (20%). The test set is used to evaluate
the generator’s performance.

The data generation strategy is further detailed in the supplemental data.



4. Results and discussion

An optimal design is a trade-off between mechanical performance and layout constraints. Thus, this
section conducts a quantitative mechanical evaluation of the generated designs’ mechanical perfor-
mance via the relative error of compliance and volume fraction and a layout one to validate the
designs’ conformity with the input layout constraint Nbrbars.

Most state-of-the-art GANs evaluations are subjective, based on the creativity and aesthetics of the
generated samples. In this study, generated designs are assessed qualitatively and quantitatively.

The relative error eX% = (Xg − Xo)/Xo × 100 is the metric used for the volume fraction V and
compliance C, where g and o refer to generated and original, respectively, and {X ∈ {V,C}}, such that
V is themean of density-pixels andC is computed via an FE formula. For theNbrbars, themetric is the
bar-count difference �Nbrbars = Nbrbarsg − Nbrbarso , such that Nbrbars is predicted via the counter
discriminator.

4.1. Counter-discriminator’s performance

As previouslymentioned, the counter discriminator is pre-trained onmanually labelled SIMPdesigns
(4347 samples) before the GAN’s full training.

The 2D designs in the dataset consist of structures with 3 to 31 components, which is a wide
range for the Nbrbars variable. An admissible prediction falls within an interval |�Nbrbars| ≤ 2. The
counter’s performance on the training (3885 designs) and test (462 designs) sets:

(1) on the training set: 99.8% of the predictions fall within |�Nbrbars| ≤ 1 bar;
(2) on the test set: 85.4% of the predictions fall within |�Nbrbars| ≤ 1 bar while 94.9% of them

within |�Nbrbars| ≤ 2 bars.

In conclusion, the counter-discriminator is validated.

4.2. Compliance-predictor’s performance

The DL compliance predictor’s performance is evaluated by two metrics, the computation time
(Figure 6(a)) and the prediction error e%, which is the relative error between the true and predicted
compliance values on the real designs (Figure 6(b)). Eighty-seven percent of the test predictions fall
into a 5% error margin, and 93% of them are made within a 10% error margin. Moreover, it com-
putes the compliance of one design 16 times faster (on the CPU) and 56 times faster (on the GPU)
than the FE-based calculator, and 400 (on the CPU) to 5000 (on the GPU) times faster for a batch
of designs (Figure 6(a)). Thus, the DL compliance predictor’s advantage over its FE counterpart is its
prediction speed, especially in batch prediction, allowing faster GAN training within an acceptable
level of precision.

4.3. DL-TO’s performance

This section summarizes the overall performance of DL-TO and compares the results obtained versus
those reported in the work of Almasri et al. (2021). The generated designs are thresholded to damp
any intermediate density values.

Table 1 clearly shows that C is improved by 21.3% with the integration of the compliance pre-
dictor as a third discriminator without any loss of generality. Moreover, this improvement increases
remarkably, by 45.4%, if the error is restrained to 5% (15.4% versus 60%).

For a better visualization, Figure 7 plots the eV%, eC% and �Nbrbars distributions of the test set
using DL-TO’s previous and improved version. The improvement over C is clear, the median eC%



Figure 6. This figure shows the relative prediction error of the DL-compliance-predictor and compares its computational efficiency
versus the traditional FE-based-compliance-calculator. (a) Computation time in seconds (s) and (b) Relative prediction error, e%.

Table 1. Comparison of DL-TOs trained without/with a compliance predictor as a third discriminator. MSE is the average mean
squared error; eV% ≤ 5% is the percentage of DL-designs showing a volume fraction less than 1.05 of the SIMP-designs’ one; |eC% | ≤
10% and |eC% | ≤ 5% are the percentages of DL-designs within ±1.1; and ±1.05 the compliance achieved by SIMP, respectively.
|�Nbrbars| ≤ 2 is the percentage of DL-designs conforming with the Nbrbars constraint within an error margin of ± 2 bars. Adding
a compliance predictor improves the generated designs’ compliance by 21.3% and 45.4% for an error margin of 10% and 5%,
respectively.

Aesthetics Mechanical performance (%) lLayout performance (%)

Training method MSE eV% ≤ 5% |eC% | ≤ 10% |eC% | ≤ 5% |�Nbrbars| ≤ 2

Without compliance
(Almasri et al.)

0.063 97.7 52.4 15.4 82.4

With compliance (the proposed
approach)

0.065 93.6 73.7 60 73.7

is 2.52% versus 9.3% from the work of Almasri et al. The distributions of eV% and �Nbrbars remain
similar.

In other words, the addition of the third discriminator enhanced the compliance without deterio-
ration of the initial performance.

Finally, the computational performance of DL-TO and FE-TO (SIMP) are compared. DL-TO gen-
erates a design 3500 times faster on the CPU and 47,000 times faster on the GPU (see Table 2 in the
supplemental data). Furthermore, DL-TO has the advantage over SIMP in terms of layout control at
the conceptual level; it takes into consideration not only mechanical but also layout constraints, for
which SIMP needs post-processing. This aspect is demonstrated in Section 4.4.

A sample of the designs generated by the DL-TO trained in this work compared to those generated
by Almasri et al. is illustrated in Figures 8(a) and 8(b), respectively; a global threshold is applied
over the generated designs. As expected, those generated by the new DL-TO version show lower
deformation energy (C). It is essential to underline that applying a threshold is critical to a design’s
mechanical performance and its layout; the lower the threshold, the higher the V; the higher the
threshold, the lower theNbrbars with possibly the appearance of discontinuities in the design. Hence,
the optimal approach is to privilege a local threshold.

To sumup, the overall performance ofDL-TO is promising. It generatesmechanically valid designs
while respecting layout constraints, indistinguishable to the naked eye from those generated by SIMP
while being thousands of times faster.

Thus, it offers the designer an alternative way to explore designs faster and easily adjust their lay-
out (here defined by Nbrbars). Tuning the mechanical and layout conditions is accomplished fast and
effortlessly. Furthermore, the choice of GANs is justified. The addition of discriminators is advanta-
geous, and when the right balance between their losses is found, transferring new knowledge to the
generator is possible and is demonstrated here.



Figure 7. The distributions of the relative errors of volume fraction and compliance (eV% and eC% ) and the difference between the
number of design components (�Nbrbars) computed over the test set for the DL-TO trained with two (Almasri et al. 2021) versus
three discriminators.

Figure 8. Comparison between the generated designs from twoDL-TOmodels. The designs in Figure 8(a) are generated by a DL-TO
trained with an additional DL compliance predictor. The generated designs’ mechanical performance (the compliance) is improved
after integrating the DL compliance predictor as a third discriminator. (a) Generation by the DL-TO trained with an additional
compliance predictor and (b) Generation by the DL-TO of Almasri et al. (2021).



4.4. Tailoring the design’s layout via DL-TO

To validate DL-TO’s understanding of layout, the mechanical conditions (BC, F and V) were
prepended, only Nbrbars is varied (Figure 9(a)). Indeed, the Nbrbars in the design increases with the
input variable.

However, the supplementary bars are blurry, and DL-TO struggles to conform with the input
Nbrbars, especially for the lower and upper extreme values (7 and 30).

Moreover, V andNbrbars of a design are correlated. Thus, a better approach would be to vary them
together (Figure 9(b)).

Modifying V andNbrbars simultaneously improves DL-TO’s conformity with the input layout and
V constraints (�Nbrbars and eV% decreased in Figure 9(b)), and most importantly demonstrates DL-
TO’s creativity in adding/removing internal bars to/from the design. Nevertheless, while C improved
for Nbrbars = 20 and 30, it exploded for Nbrbars = 7. This phenomenon implies a minimum Nbrbars
for every set of mechanical conditions to guarantee the design’s integrity and resilience.

To identify this minimum value, a set of mechanical constraints are fixed, and Nbrbars is varied
between 3 and 30 bars. Then, the designs are generated and evaluated (Figure 10). C and Nbrbars
are inversely correlated, and the minimum admissible Nbrbars of the considered example is 15, after
which C does not show any remarkable improvement. This information implies that the designer can
choose any design with 15 to 30 components and guarantee that its mechanical performance will not
deteriorate, knowing that this process takes a fraction of seconds, thanks to DL.

Figure 9. Tailoring the layout of a design: (a) themechanical constraints (BC, F and V) are fixed and theNbrbars condition is variable;
(b) BC and F are fixed while Nbrbars and V are variable. (a) Varying Nbrbars and (b) Varying Nbrbars and V proportionally.

Figure 10. Compliance versus Nbrbars variation for a set of fixed mechanical constraints. The maximum admissible compliance is
450 J (the dashed line). The minimum admissible Nbrbars here is 15 bars, and the lowest compliance is achieved at Nbrbars = 30.



4.5. Generating designs with a new unseen constraint

Some spatial constraints can be enforced on the design area’s boundaries. These boundaries can be
defined by the V matrix.

This section examines DL-TO’s potential to propose new designs accounting for this constraint.
It should be noted that it was trained using only input V without any design area boundaries.

Since the input V is formulated as a matrix of (nx + 1) × (ny + 1) elements, the existence/absence
of material in particular locations of the design space is obtained by increasing/decreasing the values
in these locations.

This formulation allows many layout constraints to be integrated into the design, like passive ele-
ments (e.g. a hole for a pipe) or active elements (e.g. a filled shape for an external pillar). It also allows
the addition of boundary and load conditions on these elements bymodifying the BC and Fmatrices.
This aspect is not explored in this research.

Figure 11 illustrates a sample of constraints without/with different design area’s boundaries and
the corresponding generated threshold designs. In all three cases, DL-TO filled/emptied the loca-
tions with/from material where extra/no material is forced; it reshaped the internal truss-like shape
creatively to maintain the design’s integrity while preserving the original design’s outer shape. In
other words, it respected the input BC and F configurations. As for compliance, it decreased in 4 out
of 15 cases, its increase was modest (eC% ≤ 10%) in 5 cases, and its increase was more than 10% in
the remaining 6 cases (Figures 11 and 12).

Finally, this experiment was replicated using SIMP (Figure 12). As can be seen clearly, SIMP does
not always comply with the constraint. In Figure 12(a), the additional material is on the left side
of the domain space; SIMP responded with thicker-bars designs instead of adding extra material
only to the left side; in other words, the volume fraction constraint is considered globally and not
locally. It is worthmentioning that these designs, while not conforming with the constraint, benefited
from lower compliance. In Figure 12(b) where a hole was enforced, SIMP failed to converge to a
solution.

To sum up, DL-TO shows an encouraging result in creatively conforming to layout constraints,
and its convergence is not easily compromised, especially when trained on converged designs.

To the best of the authors’ knowledge, DL-TO is the first strategy that allows for the natural han-
dling of active and passive elements while not explicitly being trained on such samples, demonstrating
its generalization capability.

4.6. Discussion

Data-driven TO requires three challenging and time-consuming steps: data preparation,model archi-
tecture and training. Thus, the acceleration advantage of DL-TO over FE-SIMP can seem moderate
in the short term but will definitely pay off in the long run.

This article addresses the problem of handling spatial correlations via a cGAN architecture. cGAN
allows the incorporation of a layout constraint, Nbrbars, into the mechanical constraints without
the need for explicit formulas for bars. It is essential to highlight that this work does not handle
any manufacturing constraint yet, only a simple geometry-related constraint. Further work will try
to generalize over more concrete manufacturing constraints. The Nbrbars condition is not a major
manufacturing constraint. However, it is used to validate the approach, which is that DL can com-
pensate for the difficulties faced by TO when dealing with mechanical and layout-related constraints
concurrently.

Arguably, the level-set approach resolves the principal drawback of density TO mentioned
in Section 2.2. Nevertheless, density-TO, SIMP mainly, is the most implemented in industrial-
commercial software, which justifies developing a DL approach trained on SIMP designs. Indeed,
the asset of DL-TO is that, unlike FE-TO, the initial guess can be easily tailored to account for a lay-
out constraint. Moreover, it increases the domain space of potential designs, which can be leveraged



Figure 11. Sample of DL-TO designs generated without versus with constraints on the design area’s boundary as input (Vinput). All
designs are threshold: (a) additional material is added on the right edge; (b) a hole (passive element) of radius r = 30 is enforced
at the bottom left of the design space; (c) an active element of radius r = 15 is enforced at the centre of the design space. The BC
(dashes in red) and F (arrows in green) conditions are only shown on the first row. The computed compliance C in Joules (J) is shown
under the design.

by a shape/size optimization afterwards and provides creativity and rapidity to the DfAM. Finally,
the FE-TOmesh-dependency problem can be overcome by a pre-trained DL-based super-resolution
model.



Figure 12. Sample of SIMP designs generated without versus with constraints on the design area’s boundary as input (Vinput). All
designs are threshold: (a) additional material is added on the right edge; (b) a hole (passive element) of radius r = 30 is enforced at
the bottom left of the design space; and (c) an active element of radius r = 15 is enforced at the centre of the design space. The BC
(dashes in red) and F (arrows in green) conditions are only shown on the first row. The computed compliance C in Joules (J) is shown
under the design.

Moreover, SIMP is chosen to create the dataset in this work. SIMP is the simplest and most easily
implemented TO algorithm. Thus, the designs driving the training are created to validate the pro-
posedmethodology. Indeed, any new data coming from other TO algorithms can be used to train the
proposed model.



Finally, it is essential to highlight that the layout constraint used in this work (Nbrbars) might
not be the most demonstrative example because Nbrbars is more precisely controllable by the primi-
tives/supershapes methods (Smith and Norato 2021, 2019; Norato 2018). However, it is proof that a
layout constraint requiring seeing the design as an image, typically an aesthetic constraint (filling the
design space) can be integrated via DL.

5. Conclusion

This article improves the DL-TOmodel proposed in Almasri et al. (2021). DL-TO generates topolog-
ically optimized designs, similar to those generated by SIMP and a thousand times faster. Moreover,
it tailors the design’s layout by increasing/decreasing the input number of components. A structure
can easily be refined towards a simpler or more sophisticated structure, as the first step towards accel-
erating the design phase in the DfAM process. Furthermore, DL-TO generates creative designs with
previously unseen input conditions, in particular the boundary of the design area (passive and active
elements).

This work shows that DL architectures can learn the correlation between mechanical and non-
mechanical constraints, such as Nbrbars, a layout-related constraint. Its main objective is not to
replace robust TO methods but to compensate for their difficulties in accounting for layout-related
constraints. With DL-TO, the mechanics and layout-related are managed concurrently at the con-
ceptual level and not sequentially, increasing the potential designs’ space and accelerating the DfAM.
Moreover, DL-TO’s training strategy is flexible. The adaptability and effectiveness of upgrading the
training framework from two to three discriminators to incorporate additional knowledge (here, the
compliance constraint) to DL-TO without compromising its initial performance are demonstrated.

It is worth noting that the current method does not alleviate the engineering work necessary but
does accelerate the search for the optimal print-ready design.

In the future, this strategy paves the way to facilitate the integration of more complex geometri-
cal/manufacturing constraints via new discriminators (geometry-evaluators) appended in the GAN
framework (to account for overhangs, maximum/minimum length/thickness, bar curvatures, etc.).
Another future perspective is to adapt this approach to 3D designs. Finally, it is interesting to men-
tion that DL-assisted TO algorithms will be good candidates as lighter and faster modules to be
implemented in CAD software.

1. This code is available on the GitHub repository: https://github.com/dbetteb/TOP_OPT.git.
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