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France
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Abstract

We exhibit a strong connection between the matchgate formalism introduced by
Valiant and the ZW-calculus of Coecke and Kissinger. This connection provides a natural
compositional framework for matchgate theory as well as a direct combinatorial interpre-
tation of the diagrams of ZW-calculus through the perfect matchings of their underlying
graphs.

We identify a precise fragment of ZW-calculus, the planar W-calculus, that we prove
to be complete and universal for matchgates, that are linear maps satisfying the match-
gate identities. Computing scalars of the planar W-calculus corresponds to counting
perfect matchings of planar graphs, and so can be carried in polynomial time using the
FKT algorithm, making the planar W-calculus an efficiently simulable fragment of the
ZW-calculus, in a similar way that the Clifford fragment is for ZX-calculus. This work
opens new directions for the investigation of the combinatorial properties of ZW-calculus
as well as the study of perfect matching counting through compositional diagrammatical
technics.

1 Introduction

A quantum computation mapping n qubits to m qubits corresponds to an isometric linear
map C2n

→ C2m

. Due to the exponential size of their matrix representation, those linear
maps are traditionally depicted as quantum circuits, an assemblage of elementary quantum
gates similar to the more common boolean circuits. Given a quantum circuit n → m,
evaluating a coefficient of the corresponding 2m × 2n matrix (i.e. evaluating the circuit
with a given input) typically requires an exponential time. However, there are some specific
classes of quantum circuits – or fragments –, that can be classically simulated in polynomial
time. Examples are the Clifford fragment (as asserted by the Gottesman-Knill theorem) as
well as the fragment that will particularly interest us in this paper, the nearest-neighbour
matchgates [24]. Investigating those tractable fragments allows a better understanding of the
computational advantage of quantum computing. The reference for all elementary results
on quantum circuits is [19].

Taking the diagrammatical circuit representation seriously led to developing graphical
languages for quantum computing [8]. Those languages are equational theories described
by elementary gates and local identities between diagrams. Such languages come with an
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interpretation into linear maps. A language is said universal for a class of linear maps if any
linear map in the class is the interpretation of a diagram in the language. A language is said
complete if two diagrams with the same interpretation are equivalent up to the equational
theory, which means that they can be rewritten from one to the other using the local rewriting
rules of the equational theory. In general, completeness is the most challenging property to
prove.

The first quantum graphical language to appear was the ZX-calculus in 2008 [8]. It
was rapidly known to be universal for all linear maps. However, providing a complete set
of rewriting rules took another ten years (see [26] for an history of completeness) and first
required a translation through another language, the ZW-calculus [18].

The ZW-calculus was introduced in [9] as a graphical representation of the two kinds
of tripartite entanglement for qubits, namely the GHZ-states and W-states. It then ap-
peared that this calculus had very nice algebraic properties allowing the internal encoding
of arithmetical operations. Those properties allowed the ZW-calculus to be the first proven
universal and complete language for linear maps [13]. Despite this historical importance, the
ZW-calculus gathered less attention than other languages, seen as more connected to quan-
tum computing. Still, we must mention interesting connections with fermionic quantum
computing [12], and recent works importing some ZW-calculus primitives into ZX-calculus
to exploit their algebraic properties [20, 28]. In this paper, we show that ZW-calculus has
very strong connections with a specific family of quantum circuits: the matchgates.

Matchgates were introduced in 2002 by Valiant [24]. They are linear maps defined by
counting the perfect matching of a graph from which we remove some vertices depending
on the inputs. This underlying combinatorial structure allows to classically simulate the
corresponding quantum circuits by using the Polynomial FKT algorithm for perfect match-
ings counting [1, 22]. The theory of matchgates was then developed further to the concept
of holographic algorithms [25]. We can notice that if some connections between graphical
languages and holographic algorithms have been investigated [3], we are not aware of any di-
agrammatical approach to the original concept of matchgate before the present work, except
a mention in [12].

The main contribution of this paper is the introduction of a fragment of the ZW-calculus,
that we call planar W-calculus. We show that this language is universal and complete for
the planar matchgate fragment of quantum computation. The completeness proof relies on
designing a normal form and a rewriting strategy to reach it. We also define a pro of match-
gate computations by showing the compositionality of the matchgate identities introduced
in [5]. The combinatorial characterisation of matchgate computations then directly follows
from the correspondence with the graphical language. Hence one can see this paper as a
reformulation of matchgate theory in a compositional framework.

The paper is structured as follows. Section 2 introduces our graphical primitives, their
interpretation as linear maps and their combinatorial properties: the interpretation of a dia-
gram can be deduced by counting the number of perfect matching of the underlying weighted
graph. We present the generators and elementary rewrite rules of the language as well as
an essential syntactic sugar: the fermionic swap that emulates the swap gate, which is not
part of our language. Section 3 introduces the normal form and proves the completeness
of the language. In Section 4, we properly define a pro of matchgates characterised as the
linear maps satisfying the matchgate identities. We show that our language is universal for
matchgates, i.e., that the interpretation of a diagram is always a matchgate and that all
matchgates correspond to a diagram. Finally, in Section 5, we sketch future directions of re-
search suggested by the connection we identified between ZW-calculus and perfect matching
counting.
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2 Perfect Matchings and Planar W-Calculus

We define our fragment of the ZW-calculus, the planar W-calculus, by defining its diagrams.
Any diagram with n inputs and m outputs D : n → m is interpreted as a linear map
JDK : C2n

→ C2m

inductively as follows:

t
D1 D2

|
:= JD1K ⊗ JD2K

u
wv

D1

D2

}
�~ := JD2K ◦ JD1K

q y
:= (1)

s {
:=

(

1 0
0 1

)

q y
:=
(

1 0 0 1
) q y

:=











1
0
0
1











In particular, note that we do not use the usual swap diagram , hence the name planar.

We do have, however, the so-called cup and cap satisfying the “snake equations”:

= =

In the following, with D : n → n, we may use the following notation: D⊗~b when ~b is a
bitstring, to represent Db1 ⊗ ... ⊗ Dbn with D0 = idn and D1 = D. We call a diagram D a
scalar if it has no input and no output, i.e. D : 0 → 0. In the category-theoretic terminology,
such a collection of diagrams defines a pro, a strict monoidal category whose monoid of
objects is generated by a unique element, and not a prop, which requires the category to
be symmetric, i.e. to have swap diagrams. Furthermore, the presence of the cups and caps
make the category a compact-closed pro. We define Qubit to be the prop whose n → m

morphisms are linear maps C2n

→ C2m

. Hence J·K : pW → Qubit is a pro morphism.
We add the two following generators: the black spider and the binary white spider, whose

interpretations are detailed in the next sub-sections.

2.1 Black Spider

To manipulate binary words α ∈ {0, 1}n and β ∈ {0, 1}m, we will denote α ⊕ β ∈ {0, 1}n the
bitwise XOR (if n = m), α · β ∈ {0, 1}n+m the concatenation, |α| ∈ {0, ..., n} the Hamming
weight, i.e., the number of ones in the word α, and |α|2 ∈ {0, 1} the parity of this weight, 0 if
even and 1 if odd. The black spider (or black node) is given by the following interpretation:

t

...

...n

m

|
:=

∑

u∈{0,1}m

v∈{0,1}n

|uv|=1

|u〉〈v|

In other words, the black spiders gives an output 1 if and only if exactly one of its legs (either
input or outputs) has value |1〉 and all the others |0〉. As inputs and outputs behave exactly
the same, one can use cup and caps in order to transform inputs into outputs and vice-versa:

=

Moreover, as input order do not matter, one can bend the wires and move black spiders
around, without altering the resulting linear map, we say that the black nodes are flexsym-
metric [7]. Flexsymmetry of the black spider allows us to see diagrams as graphs with fixed
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inputs and outputs edges. Fixing the input and outputs edges, any graph isomorphism
preserves the semantics.

With this graphical interpretation in mind, one can understand the interpretation of a
scalar diagram, composed of only black spiders, as counting the number of perfect matchings
in the underlying graph. To see this, one can use the interpretation of a single edge, which
simply is the identity |0〉〈0|+ |1〉〈1|. This interpretation gives a useful insight in the diagrams:
given an edge, one can partition the set of perfect matchings between those that have this
edge and those that don’t:

...

...

=

...

...

+

...

...

In the case where the graph is an actual graph, without half edges, the resulting map is
a scalar (no input or outputs). One can show by induction that this scalar corresponds to
the number of ways of choosing a set of edges such that each vertex is covered by exactly
one edge. In other ways, the number of perfect matchings of the graph.

2.2 Binary White Spider

The last generator of the planar W-calculus is the binary white spider, given, for any r ∈ C,
by:

s
r

{
:=

(

1 0
0 r

)

which corresponds to the usual binary white spider with weight r of the ZW-calculus. This
binary spider corresponds to having a weight r on an edge of the graph. When r ∈ N, the

interpretation is straightforward: the white spider can be replaced by r edges: r =
r... .

And in particular, 1 = .

Let us interpret the white spiders as weights on the edges of a planar graph G with
black spiders on their vertices. Consider one perfect matching of the same graph G′ without
weights and consider one perfect matching P of G′. If the edge e that belongs to P has a
weight r ∈ N, then it can be replaced by r edges. In other words, the single perfect matching
P is replaced by r perfect matchings when e has weight r. By doing this for every edges,
one can see that each perfect matching in G′ corresponds to a perfect matching of G with
a weight that is the product of all its edge weights, instead of weight 1 in G′. For r ∈ C,
one cannot replace a white spider by a given number of edges, but the interpretation is the
same: the edge contribute to the perfect matchings that contain it with a weight r.

Example 2.1. 2

−1

= 2 +

−1

= 2 − 1 = 1

Diagrams generated by the black and binary white node, within the framework described
at the beginning of the section, are called pW-diagrams.

2.3 The FKT Algorithm

In general, counting the number of perfect matchings in a graph is an #P-complete problem
[23]. However, for planar graphs the same problem turns out to be surprisingly easy, as
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Fisher, Temperley and Kastelyn showed that it is in P [14, 22]. The main idea behind the
algorithm is that for planar graphs, it is possible to find a good orientation of the edges
(called a Pfaffian orientation) in polynomial time such that the number of perfect matchings
is the Pfaffian of the adjacency matrix A (actually its skew-symmetric version, called Tutte
matrix) of the oriented graph. A result due to Cayley then shows that the Pfaffian is the
square root of the determinant of A.

Note that one can find such an orientation for any planar graph, even weighted with
complex weights, and the equality pf(A) =

√

det(A)) still holds. Therefore, computing the
total weight of perfect matchings in a complex-weighted graph is in P.

Proposition 2.2. Let D be a scalar pW-diagram. Then JDK is computable in polynomial
time in the number of black nodes.

2.4 Fermionic Swap

The usual ZW-calculus does have another generator that we did not explicitly include in our
fragment, called the fermionic swap:

r z
:=

∑

x,y∈{0,1}

(−1)xy |x〉〈y|

However, it turns out that the fermionic swap is just syntactic sugar, and it is actually in
our fragment:

:= -1-1

Notice that the previous equation also appears in [6] to relate planar and non-planar
matchgates. It is very useful to treat this piece of diagram as a generator of its own, especially
as a particular kind of swap, which shares a lot of (but not all) properties of the symmetric
braiding of props. In particular:

=
D

...

...

= (−1)|D| D

...

...

Where |D| is the number of black nodes in the diagram D.

3 Completeness

The planar W-calculus is introduced with an equational theory, given in Figure 1, relating
together diagrams with the same semantics. We write pW ⊢ D1 = D2 when one can turn
diagram D1 into diagram D2 by applying the equations of Figure 1 locally.

Proposition 3.1. The equational theory of Figure 1 preserves the semantics:

pW ⊢ D1 = D2 =⇒ JD1K = JD2K

In the following, we will show that the converse also holds, that is, that whenever two
diagrams have the same semantics, they can be turned into one another using the equa-
tional theory. Intuitively, this implies that the equational theory completely captures the
interaction of generators with one another in the fragment.
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...

...

=
...

...

=

...

...

=

...

...
... = ...

r

s
= rs 1 =

r

...
=

r 6=0
r · 1

r

...
1
r

r s

...

...

= r + s

...

...

r

=
r

...

...

... =
−1

...

...

... = 0 ·

...

=

...

= =

Figure 1: Axioms of the planar W-calculus.

To show this result, we give a notion of normal form, which we call W-graph-state
with X-gates (WGS-X for short), then a refinement of that normal form (reduced WGS-X
form) which can be shown to be unique, and we give a rewrite strategy (derivable from the
equational theory) to turn any pW-diagram into this form.

3.1 Normal Form

The first step we take towards defining a normal form is a simplification, making use of the
compact structure of the underlying pro, where we relate maps and states:

Proposition 3.2. There is an isomorphism between pW(n, m) and pW(0, n + m) defined
as such:

f
...

...

7→ [f ]
... ...

:= f
...

...

..

.

This isomorphism allows us only to consider states rather than maps in the following.
Then, we define W-graph-states, by first defining ordered weighted graphs:

Definition 3.1 (Ordered R-Weighted Graph). G = (V, E, w) is called an ordered R-weigthed
graph if:

⊲ V is a set endowed with a total order ≺ (or equivalently a sequence)

⊲ E ⊂ V × V is such that (u, v) ∈ E =⇒ u ≺ v

⊲ w : E → R \ {0} maps each edge to its weight

Definition 3.2 (W-Graph-State). Let G = (V, E, w) be an ordered weighted graph. Then,
WGS(G) is defined as the pW-diagram where:

⊲ Each vertex in V gives a W-spider linked to an output through an additional (the
order on V gives the order of the outputs)

⊲ Each (weighted) edge (u, v) gives a white dot with parameter w((u, v)) linked to the
W-spiders obtained from u and v

6



⊲ All wire crossings in WGS(G) are fermionic swaps

⊲ No output wire crosses another wire

⊲ There are no self-intersecting wires

When an edge has weight 1 we may ignore the white dot and represent the edge as a

simple wire, since 1 = . Notice that there are several ways to build WGS(G), but all of

them are equivalent thanks to
r

=
r

and the axioms on the fermionic swap ,

together with the provable identities in Lemmas 3.3 and 3.4:

Lemma 3.3.

= −1

Lemma 3.4.

=

Definition 3.3 (WGS-X form). We say that a pW-state D on n qubits is in:

⊲ WGS-X form if there exist s ∈ C, G = ([1, n], E, w) an ordered graph, and ~b ∈ {0, 1}n

such that D = s ·

(

⊗~b
)

◦ WGS(G).

⊲ pseudo-WGS-X form if it is in WGS-X form with potentially vertices linked to

several outputs, additional r (r 6= 0) on wires that do not correspond to edges in the

graph, and potentially fermionic swaps between outputs.

⊲ reduced WGS-X form (rWGS-X) if it is in WGS-X form and:

∀i, (bi = 0 =⇒ ∄j, (i, j) ∈ E)

i.e. bi = 0 is only possible if vertex i has no neighbour on its right.

Example 3.5. WGS









i

−1

2









=

i

2

−1

where in the starting

graph, vertices are ordered left to right, and edges with no indication of weight have weight
1.

If ~b = (0, 1, 1, 0, 1), then the obtained WGS-X state is:

s ·

i

2

−1

where we used the fact that is an involution to simplify the diagram. The WGS-X state

is however not reduced, as both the first and fourth qubits have additional applied to
them, but still have neighbours on their right.

Finally, the following diagram is an example of a pseudo-WGS-X state:

i

2

−1

−1

i

2

7



3.2 Rewrite Strategy

We define in this section a rewrite strategy, derived from the equational theory, that will
terminate in a normal form (WGS-X). Doing this naively is made difficult by the potential
presence of fermionic swaps wherever we are looking for patterns to rewrite. Thankfully,
the last 5 equations in Figure 1,together with the above Lemmas 3.3 and 3.4 essentially tell
us that we can treat those as usual swaps with the only catch that removing self loops or
moving wires past black nodes adds a −1 weight to the wires.

In the upcoming rewrite strategy, we will hence only specify the patterns without poten-
tial fermionic swaps inside. Should there be some present, it is understood that they will
be moved out of the pattern, before the rewrite occurs. The rules necessary for the rewrite
strategy are given in Figure 2.

r s

...

...

→ r + s

...

...

...

r

→ ... (⋆) 0 → r →
r 6=0

r · 1
r

...

r s
→

...

s r
(⋆)

r

s
→ rs r → −r

...

s

r

m

→ r · ...
m

...

...

s

r

n

m

n 6=1
m6=1
→
r 6=0
s 6=0 ...

...

r

s

r

s

n

m

(∗) r

...

...

n

m

→
n 6=1
m6=1

r ·

...

...

1
r

1
r1

r

1
r

n

m

→ 0 ·

Figure 2: Rewrite rules. All these rules except (⋆) are supposed to apply when any of the
white nodes are replaced by identity (i.e. when their weight is 1). Rule (∗) can only be
applied if at least one of the black nodes is internal, and if none of the other rules applies.

r

i j<

→ r ·

1
r

i j<

r

→ r ·

1
r

r

i j<

...

→ r ·

1
r

i j<

...
1
r

1
r

r

i j<

...

→ r ·

1
r

i j<

...
1
r

1
r

Figure 3: Rules for reduced WGS-X form, together with rule (∗) when the leftmost black
node is a type-0 boundary node.

Proposition 3.6. The rewrite rules of Figure 2 are derivable from the equational theory of
Figure 1 and hence are sound.

For the rewrite strategy to terminate, we need to distinguish between different types of
nodes:

8



Definition 3.4 (Boundary Node / Internal Node). A node is a boundary node of type 1 if
it is linked directly to an output. A node is a boundary node of type 0 if it is connected to
a binary boundary node of type 1.
We say that a black node of D is internal if it is not a boundary node.

The rewrite strategy is then laid out as follows:

Definition 3.5 (Rewrite Strategy). The rewrite strategy is defined in 3 steps:

1. Apply the rewrites of Figure 2 in any order but following constraints, until none apply
anymore. The diagram ends up in pseudo-WGS-X form.

2. First, whenever a type-1 boundary is linked to n > 1 outputs directly, apply → to

the n − 1 rightmost such outputs (the top black node then becomes a type-0 boundary
node, the bottom one a type-1 boundary node). Then, push all potential fermionic
swaps between outputs inside the graph part. Finally, move boundary weights up

into the edges of the WGS using
r

...
→ r · 1

r

...
1
r

. The diagram ends up in WGS-X

form.

3. Whenever a type-0 vertex in the graph has a right neighbour, depending on the arity
of the nodes, apply rule (∗) or one of the rules of Fig. 3 between the two nodes (and
apply any other possible rule before going on).

A claim was made in Definition 3.5 about the form of the diagram at the end of each
step. Those claims are going to be proven in the following (Proposition 3.7). At the same
time, we are going to show that the rewrite terminates.

Proposition 3.7 (Termination in rWGS-X form). The rewrite strategy terminates in poly-
nomial time. Moreover, after Step 1 of the rewrite, the diagram is indeed in pseudo-WGS-X
form, after Step 2, it is in WGS-X form, and after Step 3, it is in rWGS-X form.

An important operation on WGS-X states that has a simple graphical interpretation is
the following:

Lemma 3.8. For any diagram D in WGS-X form (s, G,~b), applying ◦
⊗(bi⊕1)

on the

ith output can be turned into the WGS-X form (s, G \ {i},~b \ bi), where G \ {i} is defined
as the graph G from which vertex i is removed (together with all edges linked to i and their
weights), and similarly ~b \ bi is defined as the sequence ~b from which ith element is removed.

This allows us to prove the following:

Lemma 3.9. For any diagram D in WGS-X form (s, G,~b):

JDK = 0 ⇐⇒ s = 0

We may then prove that 0-diagrams can be put in a very well-defined form:

Lemma 3.10. Let D be a WGS-X state such that JDK = 0. Then D can be put in the
WGS-X form (0, G = ([1, n], ∅, ),~0), i.e.:

pW ⊢ D = 0 · ...

9



We are now able to prove the completeness of the equational theory.

Theorem 3.11. Let D1 and D2 be two pW-diagrams. Then:

JD1K = JD2K ⇐⇒ pW ⊢ D1 = D2

This last theorem, together with the fact that the rewriting in rWGS-X form is polynomial
(Proposition 3.7) makes the problem of deciding whether two pW-diagrams are semantically
equivalent a P problem.

4 Matchgates

This section aims at characterising exactly the linear maps that W -diagrams represent.

4.1 Matchgate Identities

Valiant first introduced matchgate identities to characterise 2 → 2 matchgates, a family of
linear maps described in a combinatorial way [24]. In [5], the matchgate identities have
been extended to characterise matchgates of any size. In the literature, there is a close
link between matchgate identities and the Grassman-Plucker identities applied to Pfaffians.
It is not the case here, as the diagrammatic technics allow us to directly link matchgate
identities to matchings without the intermediate of the Pfaffian. We can fully recover the
connection with Pfaffians through the Fetcher-Kasteleyn-Temperley algorithm for counting
perfect matchings [1,22], more details on this are outlined in Section 5. Many of the proofs of
this section are inspired by the very useful clarification of matchgate theory presented in [6].
Notice that contrary to the literature that differentiates between matchgrids, matchcircuits or
matchnets, we will only use the term matchgate for any linear map satisfying the matchgate
identities.

Recall that for binary words α ∈ {0, 1}n and β ∈ {0, 1}m, α ⊕ β ∈ {0, 1}n is the bitwise
XOR (if n = m), α · β ∈ {0, 1}n+m the concatenation, |α| ∈ {0, ..., n} the Hamming weight,
i.e., the number of ones in the word α, and |α|2 ∈ {0, 1} the parity of this weight, 0 if even
and 1 if odd.

Definition 4.1 (Matchgate Identities). A tensor Γ ∈ C2n

satisfies the matchgate identi-

ties (MGIs) if for all α, β ∈ {0, 1}n:

|α⊕β|
∑

k=1

(−1)kΓα⊕epk
Γβ⊕epk

= 0

Where epk
∈ {0, 1}n is the binary word which is zero everywhere except in position pk,

which is the kth position in the set {p1, ..., p|α⊕β|} ⊆ {1, ..., n} of positions in which the words
α and β differs.

The matchgate identities are not linear, so the set of matchgates is not a subspace of the
vector space C2n

but an algebraic variety [5]. In general, those identities are not algebraically
independent, i.e. are not all strictly necessary to describe match-tensors.

Indeed, there are numerous symmetries in those identities. For example, the case α = β

directly gives empty sums and exchanging α and β gives the same identity. Interestingly,
one can replace half of the identities with a parity condition.

Proposition 4.1 (Parity condition [6]). If Γ satisfies the matchgate identities then it satisfies
the parity condition: for all α, β ∈ {0, 1}n, |α|2 6= |β|2 ⇒ ΓαΓβ = 0.

10



The parity condition splits match-tensors into two groups, the one with odd parity, such
that |α| even implies Γα = 0, and the one of even parity, such that |α| odd implies Γα = 0. In
particular, the parity condition directly implies that all terms in identities with |α|2 6= |β|2
are zero. Notice that the parity condition is not sufficient. We still need matchgate identities
in general.

However, the parity condition is sufficient for n ≤ 3, but not anymore for n = 4, the
original case considered by Valiant [24]. In particular, for n = 0, the matchgate identities
are trivially true; hence they are satisfied by all scalars (processes 0 → 0).

4.2 The Pro of Matchgates

We will now use the matchgates to define a pro. So far, matchgate identities have been
used to characterise vectors seen as tensors, without consideration of inputs and outputs. To
apply them to linear maps f : n → m, we will use the state form: [f ] : 0 → n + m described
in Proposition 3.2. It allows us to define matchgates.

Definition 4.2 (Matchgates). A matchgate is a linear map f : C2n

→ C2m

such that [f ]
satisfies the matchgate identities.

We would like to define a sub-pro of Qubit whose processes are matchgates, however,
there are a few properties to check before that. We start by showing stability by the tensor
product.

Lemma 4.2. Given two linear maps f : a → b and g : c → d whose state forms [f ] ∈

C2a+b

and [g] ∈ C2c+d

satisfy the matchgate identities, then [f ⊗ g] ∈ C2a+c+b+d

satisfies the
matchgate identities.

The next thing to check is stability by composition; this follows from the following result:

Lemma 4.3. If Γ ∈ C2n+2

satisfies the matchgate identities, then the tensor obtained by
contracting two consecutive indices satisfies the matchgate identities.

Notice that the consecutive indices assumption is essential here. Without it, we could
easily construct the swap gate that does not satisfy the matchgate identities. To be able
to contract consecutive indices is enough to show the stability by composition. The idea is
to iterate contraction on consecutive indices until we obtain enough cups to use the snake
equation, pictorially:

g ...

..

.

f

...

...

..

.

..

.

=
g
... ...

..

.

f
...

=

[f ◦ g]
... ...

Now that we have stability by tensor and composition, it only remains to show the
identities are matchgates. id0 is a scalar, so directly a matchgate. The state-form of id1 is
the cap which is a matchgate as it satisfies the parity condition (sufficient for n = 2). The
fact that all idn are matchgates follows from stability by the tensor product. We can now
state the main theorem of this subsection.

Theorem 4.4 (Match). The matchgates form a pro Match, which is a sub-pro of Qubit.

Notice that Match is compact closed since the cup and the cap are both matchgates.
Hence we can also use process/state duality in Match without any worry. As expected, all
W -diagrams represent matchgates.
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Lemma 4.5. The functor J K : pW → Qubit factorises through Match, i.e., the interpreta-
tions of diagrams in W are matchgates.

Match

pW Qubit
J K

Proof. We have to prove that the interpretation of any pW diagram is a matchgate. To do
so, as matchgates are stable by composition and tensor product we only have to check that
the interpretations of the generators are matchgates. The state forms of the generators have
at most three outputs (n-ary spiders can be decomposed into binary and ternary spiders), so
it is sufficient to check the parity condition, which is indeed satisfied by the interpretations
of the generators.

4.3 Universality

Now that we proved that all pW-diagrams represent matchgates, it remains to show that all
matchgates can be represented by a pW diagram, in other words, that pW is universal for
Match. This will require a few additional properties of matchgates, adapting some results
of [6].

Lemma 4.6. If Γ satisfies the matchgate identities and Γ0 = 1, where 0 is binary word full
of 0, then it is uniquely determined by its coefficients Γα where |α| = 2.

Proof. If |α| = 0 then we already know that Γα = 1 and the parity condition implies that
Γα = 0 if |α| = 1. We show that for all α with 3 ≤ |α|, we can express Γα from coefficients
Γβ where all βs have strictly smaller Hamming weights. Let i be the first position where α

and 0 differ, the matchgate identity corresponding to α ⊕ ei and 0 ⊕ ei is:

|α|
∑

k=1

(−1)kΓα⊕ei⊕epk
Γei⊕epk

= 0

Here the pk are exactly the position where α is 1, in particular i = p1 so:

Γα = ΓαΓ0 =

|α|
∑

k=2

(−1)kΓα⊕ei⊕epk
Γei⊕epk

For k ≥ 2, We have |ei ⊕ epk
| = 2 and |α ⊕ ei ⊕ epk

| = |α| − 2 so Γα is completely determined
by coefficients corresponding to strictly smaller Hamming weight. It follows that all Γα can
be expressed from the Γβs with |β| = 2.

We will now be able to reuse the normal form from Section 3 to construct diagrams
representing any matchgate.

Lemma 4.7 (Universality). pW is universal for Match.

Proof. Relying on process/state duality, we only consider states 0 → n. Given Γ satisfying
the matchgate identities, we will construct a W diagram D such that JDK = Γ. We start
by considering the case where Γ0 = 1. Then we construct a weighted graph G on n vertices
setting the weight of the edge (i, j) to Γei⊕ej

. We then take D to be the diagram in graph
form corresponding to G. By construction we then have JDK

0
= 1 and JDKei⊕ej

= Γei⊕ej
for

all i 6= j. Furthermore, by Lemma 4.5, JDK is a matchgate so by Lemma 4.6, JDK = Γ.
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Now if Γ0 6= 1: First if Γ0 6= 0 then Γ′ = 1
Γ0

Γ is of the right form so we can obtain D

by adding a floating edge of weight Γ0 to the diagram D′ representing Γ′. The last case is
Γ0 = 0, then if Γ = 0 we can represent Γ by any diagram and a floating black node, else let
β be such that Γβ 6= 0, then Γ′ defined as Γ′

α = Γα⊕β satisfies Γ′
0

6= 0 and there is a diagram
D′ representing Γ′. A diagram D representing Γ is then obtained by plugging binary black
nodes to the outputs of D′ corresponding to the positions where β is 1.

Notice that since Match is a sub-pro of Qubit, the completeness proof of Section 3
still holds in Match. It provides us with a universal and complete graphical language for
matchgates.

Theorem 4.8. pW is universal and complete for Match.

5 Further Work

The proper definition and axiomatisation of the pW-calculus pave the way to diverse in-
vestigations of the connection between combinatorics and quantum computing. We briefly
outline in this last section some very promising directions that are the subjects of ongoing
research.

5.1 New Simulation Techniques for Quantum Circuits

The identification of a fragment of the ZX-calculus exactly corresponding to the efficiently
simulable Clifford gate [4] allows to design new rewrite-based simulation technics for quan-
tum circuits introduced in [15]. Those algorithms have a parametrised complexity which is
polynomial in the number of Clifford gated but exponential in the number of T -gates (a gate
outside of the Clifford fragment sufficient to reach approximate universality).

Similarly, we have identified an efficiently simulable fragment of ZW-calculus: the pW-
calculus exactly corresponding to matchgates. Adding the swap gate to pW we obtain
another fragment of ZW which is exactly the fermionic ZW-calculus introduced in [12]. This
calculus is universal for Qubit modulo an encoding trick: the dual-rail encoding. Equiv-
alently, LFM is ZW where white nodes are contrived to have even arities, so adding arity
one white nodes (corresponding to preparing |+〉 states) is enough to recover the full ZW-
calculus, which is universal for Qubits. This situation suggests the possibility of designing
rewrite-based simulation algorithms with complexities parametrised by the number of swap
gates and/or |+〉 preparation. It would lead to a brand new kind of quantum simulation tech-
nics exploiting the combinatorial structure of matchgate and directly connected to classical
perfect matching counting algorithms.

5.2 Combinatorial Interpretation of Full ZW-Calculus

In Section 2, we provided a combinatorial interpretation of pW-diagrams via perfect match-
ings in planar graphs. This combinatorial approach directly extends to LFM-calculus via
perfect matchings in arbitrary graphs (which is #P-complete). Furthermore, we can also ex-
tend the interpretation to the full ZW-calculus, where white nodes can have arbitrary arities.
To do so, we must consider hypergraph matchings, i.e., subsets of hyperedges covering each
vertex exactly once. The arbitrary arity white nodes here play the role of hyperedges, and
the black nodes, the role of vertices. Thus, the interpretation of ZW-scalars is the number of
hypergraph matchings of the hypergraph underlying the diagram. Notice that hypergraph
matching is also presented as the set cover problem in the literature. The full ZW-calculus
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could offer new perspectives on set cover in the same way that pW does for perfect matchings.
In particular, some reduction results appear to have very clear diagrammatical proofs.

Aside from perfect matchings, it seems that graphical languages can encode other count-
ing problems on graphs or hypergraphs. Designing such languages could shed a new tenso-
rial/diagrammatical light on the corresponding combinatorial problems. Those approaches
are reminiscent of the recent ZH-based algorithm for #Sat, introduced in [16] and related
works linking graphical languages and counting complexity [10, 11]. Conversely, the ques-
tion of applying similar combinatorial interpretations to other graphical languages as ZX-
calculus [8], or ZH-calculus [2] is also worth being investigated.

5.3 Towards a Diagrammatic Approach of Perfect Matching Counting

In Section 2, we used the Fletcher-Kasteleyn-Temperley algorithm as a black box to compute
the interpretation of pW-scalars in polynomial time. However, it seems possible to achieve
the same result with purely diagrammatical technics. In fact, applying the rewriting strategy
described in Section 3 to a scalar reduces it to a normal form from which we can directly
read the interpretation. It seems very probable that this requires only a polynomial number
of rewrites.

This provides a way to count perfect matchings without referring to Pfaffian computation,
and conversely, it gives a new algorithm to compute Pfaffians based on rewriting.

The FKT algorithm only applies to a specific class of graphs, called Pfaffian graphs, i.e.,
the graphs admitting a Pfaffian orientation. In particular, all planar graphs are Pafaffian [14].
It seems that Pfaffian orientiation are directly connected to the behavior of fermionic swap
and their lack of naturality which introduces −1 weights in the edges. More generally, all
graphs not containing K3,3 are Pfaffian [17, 27] (we recall that planar graphs are precisely
the graphs not containing neither K3,3 nor K5 as minors). Moreover, there also exists a
polynomial time algorithm for K5-minor-free graphs [21] based on graph decomposition.
There is a large amount of work in perspective, re-expressing in diagrammatic terms those
different variations and understanding adequately how our rewriting rules could encode the
minor constraints.

Formalising and implementing those different algorithms is the object of ongoing work.
The main difficulty is to identify the suitable data structures to manipulate the topological
data of a given diagram, equivalently, the specific planar embedding of the corresponding
graph.
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Proof of Lemmas 3.3 and 3.4.
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Proof of Proposition 3.7. We take each big step of the rewrite strategy, and show that each
one terminates into the appropriate form.

1. We are going to define for every diagram a quantity, as a tuple, whose lexicographic
order will be strictly reduced by any of the rewrite step. The very first quantity needed
requires some focus.

We say that, whenever the following situation occurs (with ri 6= 0 and si 6= 0), the two
extremal black nodes are fusion-equivalent if they have degree ≥ 3:

... r0 s0rn sm

...

We define an equivalence relation ∼f between black nodes by taking the reflexive,
transitive closure of this relation. We say that an equivalence class is internal if all its
constituents are internal nodes.

For a diagram D, we define T (D) ∈ N6 as the quantity:

T (D) :=

(

#

(

internal
∼f -classes

)

, #
(

...
n

, n ≥ 3
)

, #

(

r

)

, #
( )

, #
( )

, #
( )

)

We can show that if D → D′ then T (D′) < T (D) in the lexicographic order:

⊲ r s

...

...

→ r + s

...

...

may reduce may reduce the first two values (if one of the black

nodes initially has degree 3), but it at least reduces the number of edges.

⊲
...

r

→ ... similarly may reduce the first two values, but at least the third one

(the number of edges).

⊲ 0 → can only reduce the third value (and does not change the others).

⊲

...

r s
→

...

s r
and r → −r both reduce the fifth value with-

out changing the other ones

⊲
r

s
→ rs can only reduce the third value.

⊲ r →
r 6=0

r · 1
r only changes the number of binary black nodes (in particular, it

cannot create new ∼f -classes).

⊲

...

s

r

m

→ r · ...
m

may decrease the two first values, but necessarily decreases the

third one.
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⊲

...

...

s

r

n

m

n≥2
m≥2
→
r 6=0
s 6=0 ...

...

r

s

r

s

n

m

: since n ≥ 2 and m ≥ 2, the two extremal black nodes are

necessarily in the same ∼f -class. In that case, the number of such classes does not
change, but the second value is decreased. Notice that, when applied repeatedly,
this rule eventually reduces every class to a single element.

⊲ → reduces the last value.

⊲ r

...

...

n

m

→
n 6=1
m6=1

r ·

...

...

1
r

1
r1

r

1
r

n

m

requires a case distinction. If n = m = 0, we reduce

the number of edges. If n = 0 and m ≥ 2 if the bottom black node is internal,
we decrease the first value, if not, the second value (similarly, the case n ≥ 2 and
m = 0 decreases T ). In the case where n ≥ 2 and m ≥ 2, let us focus on one
of the two black nodes. Since the rule can only be applied when none other can,
all its neighbours each constitute their own ∼f -class. After the rewrite, all the
top non-binary black nodes will join the ∼f -class of the neighbour they connect
to, so the number of internal ∼f -classes is either unchanged if the node was not
internal, or reduced by one if it was. Since at least one of the two nodes had to
be internal for the rewrite to apply, the overall number of ∼f -classes reduces.

At the end of these rewrites, the diagram does not have any internal node left (all
were removed by Rule (∗) or fused into boundary nodes). The only possible form of
a diagram with no internal nodes is the pseudo-WGS-X form. Notice that in between
applications of (∗), which decreases the number of internal ∼f -classes, there can only
be a linear (in the size of the diagram) number of rewrites that can be applied. When
(∗) is applied, there is no more than O(n2) generators (n being the number of black
nodes). This forces the step to stop after a polynomial amount of time.

2. Consider a boundary node that is not in the proper form for the diagram to be in WGS-
X form. In all generality, the node’s neighbourhood is in the form (up to rearranging
of the output wires):

a0 an

b0 bn

c1 cm

...
...

c0

...

We then apply two black nodes on the m rightmost outputs:

a0 an

b0 bn

c1 cm

...
...

c0

...

→∗
a0 an

b0 bn

c1 cm

...
...

c0

...

=

a0

an

b0 bn

c1

cm

...
...c0

...

Doing this for all “improper” nodes allows us to associate exactly one type-1 boundary
node to each output. At this point, we can move all up into the graph part of
the diagram. This changes the order of the vertices, and potentially adds −1 weights
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on some edges, potentially on output wires. The weights on output wires are precisely
handled by the last substep:

a0

an

b0 bn

c1

cm

...
...c0

...

→∗ c0b0...bn ·

a0

b0c0

an

bnc0

c1

c0

cm

c0

...
...

...
1

c0

1
c0

When all weights are moved up, the diagram ends up in WGS-X form. This step
obviously stops after a polynomial amount of time.

3. The rule (∗) together with that of Figure 3 cover all situations when a type-0 boundary
node has a right neighbour (notice that boundary nodes of arity 1 cannot have neigh-
bours). In the process of this step, we are rewriting the WGS-X state in an equivalent
one, with fewer type-0 nodes with a right neighbour. The step hence eventually ter-
minates, and in such a situation that none of the type-0 boundary nodes have a right
neighbour. This is exactly the form of a reduced WGS-X state. For the same reason
as in step 1, this step terminates in polynomial time.

Finally, you may notice that the rewrite strategy terminates in polynomial time, as each of
the three steps is polynomial.

Proof of Lemma 3.8. W.l.o.g. we can assume i = 1. We then get:

D

...( )b1⊕1
= ( ) ( )...

= ( ) ( )......
= ( ) ( )...

where dotted lines represent potential edges (potentially with weights), that cross with
fermionic swaps ; and where we used the following steps:

r
...

...
=

r
...

...
=

...
...

=
...

...

together with the fact that fermionic swaps do not interfere here as:

=

Proof of Lemma 3.9. The right to left implication is obvious. Now suppose s 6= 0. Then,

applying
⊗n

◦
⊗(~b1⊕1...1)

to the outputs reduces to the WGS-X state (s, G∅, ()) thanks to
Lemma 3.8 (where G∅ = ([], ∅, ) is the empty graph), whose interpretation is scalar s. Since
s 6= 0, JDK 6= 0.

Proof of Lemma 3.10. We can start by removing all edges from the WGS-X state thanks
to:

0 · r = 0 ·
r

= r = r = 0 ·

r

= 0 ·
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and then fusing black nodes together when possible (again, the fermionic swaps do not cause

issues here). When done, we end up with a tensor of s and s. It remains to show the
following:

0 · = = = 0 · = 0 · = 0 × 0 · = 0 ·

Proof of Theorem 3.11. The right to left implication is soundness of the rules, which is
obvious as the equational theory is a subpart of the equational theory for ZW-diagrams,
which is known to be sound [13]. Let us now assume that JD1K = JD2K. Using Propo-
sition 3.7 and Proposition 3.6, we can turn both D1 and D2 into respectively d1 and d2,
in rWGS-X form, and in a way that preserves semantics, i.e. Jd1K = Jd2K. Let us denote
(si, Gi = ([1, n], Ei, wi),~bi) the rWGS-X form of di.

Notice that if Jd1K = Jd2K = 0, Lemma 3.10 ensures that d1 and d2 can both be put in
the same form, which proves the result in that case. In the following, we can hence consider
that the diagrams have non-0 interpretation.

First, let us show that ~b1 = ~b2. Let us consider the first index i for which b1i 6= b2i. As
both d1 and d2 are in reduced form, for all j < i, b1j = b2j = 1. Suppose w.l.o.g. that b1i = 0
and b2i = 1. Again, since they are in reduced form, the ith vertex in G1 can only have
neigbours on its left. Let us apply to the first i qubits in d1 and d2. On the one hand:

d1

... ...
i

= s1 ·
( ) ( )......

i

= s1 ·
( ) ( )...i

= 0

where we used Lemma 3.8 for the first i−1 qubits and the black node fusion for the ith. The
map hence obtained from d1 is the zero map. On the other hand, using Lemma 3.8 again:

d2

... ...
i

= s2 ·
( ) ( )......

i

= s2 ·
( ) ( )...

which thanks to Lemma 3.9 is necessarily not zero. There is a contradiction, hence, if d1 and
d2 are in rWGS-X form with Jd1K = Jd2K, then ~b1 = ~b2.

We can then show that we can recover s1 = s2. Indeed, if we apply
⊗n

◦
~b1⊕1...1

on
both diagrams, we get (Lemma 3.8):

d1

...( )b11 ( )b1n

= s1 · ... = s1 ·

Similarly on d2, we get s2 · , which proves s1 = s2.
Finally, we can show that the weight between every pair (i, j) of vertices in G1 and G2

is the same, with the convention that having no edge between two vertices is equivalent to
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having an edge with weight 0:

...
...

=
...

...
=

0...
...

To that end, consider ~b′ := ~b1 ⊕ 1..1
i
01...1

j

01...1. We may now apply
⊗n

◦
~b′

on both
diagrams, to get on the one hand:

d1

...( )b1
′

( )bn
′

= s1 ·

i j

w
(1)
ij

= s1 ·
i j

w
(1)
ij

= s1w
(1)
ij ·

and similary on the other hand, we get s1w
(2)
ij from d2. This implies w

(1)
ij = w

(2)
ij . Doing so

for all pairs of vertices in Gi gives us G1 = G2.

Proof of Lemma 4.2. Given α ∈ {0, 1}a+c+d+b we write α = α1 · α2 · α3 with α1 ∈ {0, 1}a,
α2 ∈ {0, 1}c+d and α3 ∈ {0, 1}b. We have [f ⊗ g]α = [f ]α1·α3 [g]α2 . Pictorially:

[f ⊗ g]
... ... ... ...

=
f
...

...

..

.

g
...

...

..

.

We compute the matchgate identity corresponding to α, β ∈ {0, 1}a+c+d+b.

|α⊕β|
∑

k=1

(−1)k[f ⊗ g]α⊕epk
[f ⊗ g]β⊕epk

We start by splitting the sum into three terms, one for a, one for c + d and one for b. By
doing so, we also re-index the pk for each sum:

[g]α2 [g]β2





|α1⊕β1|
∑

k=1

(−1)k[f ](α1⊕epk
)·α3 [f ](β1⊕epk

)·β3





+(−1)|α1⊕β1|[f ]α1·α3 [f ]β1·β3





|α2⊕β2|
∑

k=1

(−1)k[g]α2⊕pk
[g]β2⊕pk





+(−1)|α1⊕β1|+|α2⊕β2|[g]α2 [g]β2





|α3⊕β3|
∑

k=1

(−1)k[f ]α1·(α3⊕epk
)[f ]β1·(β3⊕epk

)





The second term is zero as we recognise the matchgate identity satisfied by [g] for α2

and β2. Furthermore if |α2 ⊕ β2|2 6= 0 the parity condition on [g] implies that [g]α2 [g]β2 = 0
canceling the first and third terms. In the case where |α2 ⊕ β2|2 = 0, we can gather the first
and third terms to get:

[g]α2 [g]β2





|(α1·α3)⊕(β1·β3)|
∑

k=1

(−1)k[f ](α1·α3)⊕epk
[f ](β1·β3)⊕epk
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We now recognise the matchgate identity satisfied by [f ] for α1 · α3 and β1 · β3, which
evaluates to zero. So [f ⊗ g] satisfies the matchgate identities.

Proof of Lemma 4.3. Let i, i+1 ∈ {1, ..., n+2} be two consecutive indices. We write α[xy] ∈
{0, 1}n+2 for the binary word α ∈ {0, 1}n in which x, y ∈ {0, 1} have been respectively
inserted in position i and i + 1. Denoting Γ′ the tensor obtained by contracting the indices
i and i + 1 in Γ we have: Γ′

α = Γα[00] + Γα[11].
We now compute a matchgate identity:

|α⊕β|
∑

k=1

(−1)kΓ′
α⊕epk

Γ′
β⊕epk

=

|α⊕β|
∑

k=1

(−1)k
(

Γ(α⊕epk
)[00] + Γ(α⊕epk

)[11]

)(

Γ(β⊕epk
)[00] + Γ(β⊕epk

)[11]

)

Distributing and using (α ⊕ β)[xy] = α[xy] ⊕ β[00] gives us four terms:

|α⊕β|
∑

k=1

(−1)kΓα[00]⊕epk
[00]Γβ[00]⊕epk

[00]

+

|α⊕β|
∑

k=1

(−1)kΓα[00]⊕epk
[00]Γβ[11]⊕epk

[00]

+

|α⊕β|
∑

k=1

(−1)kΓα[11]⊕epk
[00]Γβ[00]⊕epk

[00]

+

|α⊕β|
∑

k=1

(−1)kΓα[11]⊕epk
[00]Γβ[11]⊕epk

[00]

The first and last terms correspond to matchgate identities respectively for α[00] and
β[00], and for α[11] and β[11], so they are zero as Γ is required to satisfy the matchgate
identities. We would like to say the same about the second and third terms. Sadly some
terms are missing to get complete matchgate identities since we have added new positions
where the words differ. The missing terms are (−1)ℓΓα[10]Γβ[01] and (−1)ℓ+1Γα[01]Γβ[10] for

the second line, and (−1)ℓΓα[01]Γβ[10] and (−1)ℓ+1Γα[10]Γβ[01] for the third line, where ℓ is
the index of the position i in the set of differing positions. We see that the four missing
terms altogether cancel each other. So we can safely add the missing terms in the sum and
get two complete matchgate identities, respectively, for α[00] and β[11], and for α[11] and
β[00]. Finally, the global sum is zero, and Γ′ satisfies the matchgate identities.
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