
HAL Id: hal-04002231
https://hal.science/hal-04002231

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Identification of Thermokarst Lakes Using
Machine Learning in the Ice-Rich Permafrost Landscape

of Central Yakutia (Eastern Siberia)
Lara Hughes-Allen, Frédéric Bouchard, Antoine Séjourné, Gabriel Fougeron,

Emmanuel Léger

To cite this version:
Lara Hughes-Allen, Frédéric Bouchard, Antoine Séjourné, Gabriel Fougeron, Emmanuel Léger.
Automated Identification of Thermokarst Lakes Using Machine Learning in the Ice-Rich Per-
mafrost Landscape of Central Yakutia (Eastern Siberia). Remote Sensing, 2023, 15 (5), pp.1226.
�10.3390/rs15051226�. �hal-04002231�

https://hal.science/hal-04002231
https://hal.archives-ouvertes.fr


Citation: Hughes-Allen, L.;

Bouchard, F.; Séjourné, A.; Fougeron,

G.; Léger, E. Automated

Identification of Thermokarst Lakes

Using Machine Learning in the

Ice-Rich Permafrost Landscape of

Central Yakutia (Eastern Siberia).

Remote Sens. 2023, 15, 1226. https://

doi.org/10.3390/rs15051226

Academic Editors: Ulrich Kamp,

Dmitry Ganyushkin and Bijeesh

K. Veettil

Received: 14 December 2022

Revised: 1 February 2023

Accepted: 12 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automated Identification of Thermokarst Lakes Using Machine
Learning in the Ice-Rich Permafrost Landscape of Central
Yakutia (Eastern Siberia)
Lara Hughes-Allen 1,2,* , Frédéric Bouchard 1,3,4 , Antoine Séjourné 1, Gabriel Fougeron 5

and Emmanuel Léger 1

1 Géosciences Paris-Saclay (GEOPS), Université Paris-Saclay, 91190 Orsay, France
2 Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Université Paris Saclay, 91190 Orsay, France
3 Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
4 Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, VIC J1K 0A5, Canada
5 ESI Group, 3 Rue Saarinen, 94150 Rungis, France
* Correspondence: lara.hughes-allen@universite-paris-saclay.fr

Abstract: The current rate and magnitude of temperature rise in the Arctic are disproportionately high
compared to global averages. Along with other natural and anthropogenic disturbances, this warming
has caused widespread permafrost degradation and soil subsidence, resulting in the formation of
thermokarst (thaw) lakes in areas of ice-rich permafrost. These lakes are hotspots of greenhouse
gas emissions (CO2 and CH4), but with substantial spatial and temporal heterogeneity across Arctic
and sub-Arctic regions. In Central Yakutia (Eastern Siberia, Russia), nearly half of the landscape
has been affected by thermokarst processes since the early Holocene, resulting in the formation of
more than 10,000 partly drained lake depressions (alas lakes). It is not yet clear how recent changes
in temperature and precipitation will affect existing lakes and the formation of new thermokarst
lakes. A multi-decadal remote sensing analysis of lake formation and development was conducted
for two large study areas (~1200 km2 each) in Central Yakutia. Mask Region-Based Convolutional
Neural Networks (R-CNN) instance segmentation was used to semi-automate lake detection in
Satellite pour l’Observation de la Terre (SPOT) and declassified US military (CORONA) images
(1967–2019). Using these techniques, we quantified changes in lake surface area for three different
lake types (unconnected alas lake, connected alas lake, and recent thermokarst lake) since the 1960s.
Our results indicate that unconnected alas lakes are the dominant lake type, both in the number
of lakes and total surface area coverage. Unconnected alas lakes appear to be more susceptible to
changes in precipitation compared to the other two lake types. The majority of recent thermokarst
lakes form within 1 km of observable human disturbance and their surface area is directly related to
air temperature increases. These results suggest that climate change and human disturbances are
having a strong impact on the landscape and hydrology of Central Yakutia. This will likely affect
regional and global carbon cycles, with implications for positive feedback scenarios in a continued
climate warming situation.

Keywords: Mask R-CNN; remote sensing; Yedoma permafrost; thermokarst; greenhouse gas emissions

1. Introduction

Permafrost landscapes cover 20 million km2 of the northern hemisphere and are
particularly abundant in Siberia, Alaska, and northern Canada [1,2]. Regional and local
hydrological and geological factors influence its spatial distribution, thickness, and ground
ice content [3]. An important feature of permafrost is its storage of enough organic carbon
(OC) to significantly impact global climate if released into the atmosphere as greenhouse
gas (GHG) [4]. This feature has recently propelled permafrost into the spotlight as a key
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component of the global cryosphere. The concern is that as climate warming causes per-
mafrost to thaw, the OC which was previously been sequestered by freezing temperatures
will be mineralized and released as carbon dioxide (CO2) and methane (CH4) [5,6]. The
warming effects of these two GHGs will amplify current warming trends, causing more
permafrost thaw, subsequent OC release, and so on [5]. It is estimated that permafrost
landscapes currently store approximately 1600 Gt of Carbon, more than twice the amount
that currently exists in the atmosphere today [7].

Climate change and other human activities have already had measurable impacts
on permafrost landscapes. Researchers have recorded deepening of the active layer (the
surface layer of soil on top of permafrost which freezes and thaws annually) [8], increased
thawing and slumping [9], as well as increases in the number and surface area extent of
thaw lakes [10]. In addition to carbon emission, permafrost thaw destabilizes infrastructure
and transportation and can render farmland unusable, a concern that is likely to become
even more pressing by the middle of this century, with considerable costs [11]. Areas of
continuous permafrost (where permafrost underlays 90–100% of the landscape) and high
ground-ice content (50–90% by volume) are particularly sensitive to changes in temperature,
precipitation, and other human disturbances like forest clearing for agriculture [12,13].
Not only are permafrost landscapes particularly sensitive to climate warming, but the
magnitude and rate of temperature rise across the Arctic are 2–3 times higher compared to
global averages [14]. Mean annual air temperature in the Arctic is predicted to rise by as
much as 5.4 ◦C within the coming century in the absence of significant and directed global
efforts to reduce GHG emissions [15].

However, like most natural Earth systems, permafrost landscapes are spatially het-
erogeneous and complicated. For example, landscape type (waterbody, forest, grassland,
etc.) greatly affects the GHG emissions from a particular area. Desyatkin et al. [16] found
large differences in CH4 emissions when comparing forest, dry grassland, wet grassland,
and pond surfaces. Pond surfaces were found to have CH4 emissions more than two
orders of magnitude greater than the other landscape types. The type of waterbody and
season can also cause significant differences in GHG emissions. Hughes-Allen et al. [6]
found that recent thermokarst lakes (lakes formed within the last few decades mostly from
anthropogenic climate change and other human activities) released consistently higher
levels of CO2 to the atmosphere in all seasons compared to the other lake types. Small,
hydrologically unconnected alas lakes (residual lakes that exist in former lake depressions)
acted as CO2 sinks during fall and spring, but acted as CO2 sources during summer. All
lake types released CH4 to the atmosphere during all three ice-free seasons. Such striking
temporal and spatial heterogeneities in GHG dynamics have also been observed elsewhere
across the Arctic region, for example in Northern Canada (e.g., [17,18]). The relationship be-
tween permafrost thaw and GHG emissions is complicated and nuanced by local hydrology
and geomorphology.

Thermokarst processes are generally linked to disturbances such as warming tem-
peratures or forest removal for agriculture or by wildfires, which cause deepening of the
active layer [12]. When such deepening induces melting of ground ice, which is often
the case in areas of ice-rich permafrost, then thermokarst processes may start. Ground
surface subsides, collecting meltwater, followed by pond inception and coalescence, and
ultimately lake development. These lakes profoundly change the local ground thermal
regime, sometimes increasing surrounding sediment temperatures by as much as 10 ◦C
above the mean annual air temperature [12]. Lake expansion and deepening will generally
continue until the accumulation of lake sediments over time creates an insulating layer
between the lake water and surrounding permafrost and/or the lake becomes deeper than
the layer of ice-rich permafrost [12,19]. Once the lake is no longer expanding, its size and
depth are controlled by surface and subsurface inflows/outflows, as well as the balance be-
tween precipitation and evaporation. Drainage (progressive or catastrophic), evaporation,
terrestrialization, and infilling will eventually result in lake disappearance [12,16,20].
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While thermokarst lakes are known to be important contributors to the global carbon
cycle, global lake inventories used in Earth system modeling are strongly biased toward
larger lakes and generally only include lakes greater than 10 ha [21]. The results from
Hughes-Allen et al. [6] and others [22,23] show how important small unconnected alas
lakes (mean area = 5 ha) and recent thermokarst lakes (mean area = 0.5 ha) are to the carbon
cycle in permafrost landscapes. Also important is understanding long-term changes in the
number, distribution, and size of thermokarst lakes in permafrost landscapes. The limited
studies which have conducted long-term analyses of thermokarst lake distribution in
permafrost landscapes have found that the number and size of lakes in areas of continuous
permafrost have generally increased in recent decades [24]. Nitze et al. [10] found that
lake area in a Central Yakutian study site increased by nearly 50% between 1999 and 2014
based on Landsat analysis. Boike et al. [25] recorded an average increase of 17.9% in the
total area covered by lakes between 2002 and 2009 in the central part of the Lena River
catchment in the Yakutian region of Siberia (minimum lake size = 0.3 ha). Some areas
of continuous permafrost, including the lower Mackenzie River, Canada and northern
Alaska, have experienced declines in lake number and areas [26,27], whereas some other
sites in the discontinuous zone did not show significant trends in lake number/area but
rather a substantial increase in vegetation cover (e.g., [28]). Remote sensing techniques
using satellite images have become a powerful tool for analyzing lake area change in the
expansive regions of continuous permafrost found in Eastern Russia.

Until recently, remote sensing studies of permafrost lakes have been limited to com-
parisons of imagery spanning relatively narrow time frames (ex. [25,29]) and/or small
spatial areas (ex. [23,30]). This has been due, in large part, to the lack of high-resolution
imagery available at sufficient and regular time intervals, as well as the substantial time
investment involved in traditional (i.e., manual or semi-supervised) mapping approaches.
A combination of SPOT (Satellite pour l’Observation de la Terre) imagery and declassified
American surveillance satellite imagery, can provide a lengthy, high-resolution record of
permafrost landscapes in Central Yakutia. Deep learning techniques, such as Mask R-CNN,
can be superior to traditional methods for studying permafrost response to climate change
because they can automate the detection and mapping of permafrost features with high
accuracy and efficiency. For example, Zhang et al. [31] used Mask R-CNN to identify
ice-wedge polygons in Northern Alaska with an overall classification accuracy of ~80%
(using multispectral imagery). Bhuiyan et al. [32] achieved more than ~90% detection
accuracy of ice-wedge polygons by considering contextual information such as edges,
vegetation, shape area, and the consistency of feature distributions (using multispectral
imagery). Yang et al. [33] measured ~80% detection accuracy of regular and irregularly
shaped waterbodies in multispectral images. Deep learning models can also process large
amounts of data quickly, which is useful for monitoring changes in permafrost over time.
Additionally, deep learning models can handle image variations, such as different lighting
and weather conditions, better than some traditional methods [34].

While deep learning techniques, such as Mask R-CNN, have many advantages for
studying permafrost response to climate change, there are also some potential drawbacks to
consider. These methods require large amounts of labeled data for training and validation,
which can be difficult and time-consuming to acquire. Additionally, deep learning models
can be sensitive to the quality of the data, and errors or biases in the training data can
result in inaccurate or unreliable predictions [34]. Deep learning models can be complex
and difficult to interpret, making it challenging to understand the underlying reasons for
their predictions. Additionally, deep learning models are computationally intensive, which
can be a limitation in areas with limited computational resources. Finally, deep learning
models can be prone to overfitting, which can lead to poor generalization performance
when applied to new, unseen data [32,34].
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In this study, we present a long-term (1967–2019) analysis of lake surface area change
within two ~1200 km2 areas of Central Yakutia (Sakha, Russian Federation) based on a
machine learning methodology. The identified lakes are also classified based on the lake
type designation developed by [6]. The main objectives of this study are to (1) quantify
changes in lake surface area (overall and for the three different lake types) through the
1967–2019 timeframe, (2) compare changes in surface area to historical precipitation and
temperature data, (3) identify trends in the spatial distribution of lake types and lake
development over time, and (4) test the hypothesis that unconnected alas lakes are more
susceptible to changes in precipitation than the other two lake types.

2. Materials and Methods
2.1. Study Site

Central Yakutia experiences an extreme subarctic continental climate with long, cold,
and dry winters (January is the coldest month with a mean temperature around −40 ◦C)
and warm summers (July mean temperature around +20 ◦C), causing strong seasonal
variability [32]. The winter season (defined by the presence of ice cover on lake surfaces)
usually lasts from early October until early May. Between 150–250 mm of precipitation
accumulates each year, mostly during the summer months. Average snow depth for winter
ranges from 24 cm in January to a maximum of 30 cm in March and then decreasing to 10
cm at the end of April (1980–2020 recorded values from Yakutsk weather station). The snow
which falls in this region generally has very low water content due to cold temperatures [35]
and yearly evaporation rates exceed total precipitation [35]. Central Yakutia, like other
high latitude regions, is warming disproportionately faster than lower latitudes. Between
1996 and 2016, the mean annual air temperature of Central Yakutia increased by 0.5–0.6 ◦C
per decade [36]. Spring snow cover has been disappearing 3.4 days earlier per decade
(1972–2009) over the pan-Arctic terrestrial region and climate models predict decreases
in snow cover duration between 10–20% by 2050 [37]. Changes in average snow depth
and precipitation, however, are highly spatially heterogeneous with some areas of Eurasia
experiencing increasing snow depth totals and precipitation [37].

Permafrost in Central Yakutia is generally continuous (Figure 1), thick (>500 m deep),
and the upper 30–50 m (Pleistocene-age fluvial and aeolian sediments called ‘Yedoma’)
can be extremely rich in ground ice (50–90% by volume) [38]. The amount of OC stored in
Yedoma varies widely. For example, deep cores from Northern Siberia and Alaska yielded
OC pool estimates of approximately 10 +7/−6 kg/m3 [39]. A 22 m deep core in Central
Yakutia (Yukechi) on the Abalakh terrace yielded a much lower value of OC content of
~5 kg/m3 [40], while another Central Yakutian study (Spasskaya Pad/Neleger site) of a
shallow core (2 m) showed a considerably higher OC content of 19 kg/m3 for the top two
meters of larch forest covered Yedoma deposits [41].

The study site (62.55◦N; 130.98◦E) lies approximately 130 km north-east of the city of
Yakutsk on a lowland plain between the Lena River to the west and the Aldan River to
the east (Figure 1). The region is covered mostly by late Pleistocene sediments, including
silty clays and sandy silts of fluvial, lacustrine, or aeolian origin [38]. Since the Pleistocene,
numerous fluvial terraces have been formed from the activity of the Lena and Aldan rivers,
and their smaller tributaries [42]. Two Pleistocene-age fluvial terraces underlay this region:
the Tyungyulyu terrace, which covers the western section of the study area, 50–200 m above
sea level (asl), dated 14–22 kyr BP, and the higher Abalakh terrace in the eastern sector of
the study area, 200–280 m asl, dated 45–56 kyr BP [38,42]. This region is dominated by
larch, pine, and birch forests and is characterized as a middle taiga landscape regime [35].
Grasslands are abundant in unforested areas, including land previously cleared for farming
or ranching, or in the remnant depressions of old thaw lakes known as ‘alases’. They consist
of halophytic steppe-like and bog plant communities [43].
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Figure 1. The general study area location is outlined by the black rectangle on the globe. The study
area is located within the continuous permafrost zone of Eastern Siberia, about 120 km from the city
of Yakutsk. The center study site is outlined in blue on the OSM standard basemap. In the center
study site, the City of Borogontsy is indicated by the blue star and Syrdakh Village is indicated by
the orange star. The south study site is outlined in orange. The City of Balyktakh is indicated by
the gray star. The Lena River runs south to north. The Aldan River runs east to west. The base
map is OpenStreetMap standard (the green color is ‘natural grassland’). Permafrost distribution
map from [1].

Yedoma silty loams, which are common to the Lena-Aldan interfluve, underlay much
of the study site, with abundant ground ice in the form of 1.5–3 m-wide ice wedges. Active
layer depth in the region generally ranges between ~1 m below forested areas to >2 m
in exposed grassland areas [44]. Zones of unfrozen ground (or taliks) exist underneath
major rivers and lakes whose depth exceeds that of the ice cover in the winter. Nearly
half of the landscape has been affected by thermokarst since the early Holocene, resulting
in the formation of ~16,000 partly drained alas depressions [42,45,46]. However, recent
thermokarst activity related to natural landscape evolution, increasing air temperatures,
and/or human-induced landscape modifications (agriculture, clear-cutting, and infrastruc-
ture) is also widespread in the region. There are numerous small, recently developed, and
expanding lakes and retrogressive thaw slumps along lake shores [47,48].

The thermokarst lakes in this region are divided into three categories based on field
observations, past radiocarbon dating of lake sediments, geochemical signatures of lake
waters, morphology, and a multiple-stage development model [6,16,39]. An illustrative
example from the area is presented in Figure 2. Lakes of each type have strong differences
in lake physiochemistry, dissolved GHG concentration, and GHG fluxes. The characteristic
morphology of each lake type was determined from lakes with in-situ measurements and
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then applied to lakes in the remote sensing images. The morphology of each lake type is
easily identifiable in the field and from remotely sensed images. The three lake types are as
follows (illustrated in Figure 2):

1. Unconnected alas lakes: These are residual lakes located within hydrologically closed
basins [16], which are represented in clear blue in Figure 2. Most of these lakes likely
formed during the transition between the Pleistocene and Holocene, approximately
10–8 cal kBP or during the Holocene Thermal Maximum (~6.7–5 cal kBP) [43,49].
These lakes can be up to a few meters deep but are typically very shallow (1 m deep
or less) and are usually completely frozen in winter. The ancient lake depressions
surrounding the small residual lakes of this type can be up to several kilometers wide
and several meters deep and are relatively easy to distinguish on satellite images.
These alas lakes have already undergone much of the thermokarst processes and
very little ground ice typically remains beneath the residual lake. Therefore, the thaw
potential and resulting input of stored carbon to these lakes are low compared to
recently formed thermokarst lakes [50].

2. Connected alas lakes: These lakes, represented in magenta in Figure 2, are hydrologically
connected to the watershed by streams or rivers. These lakes are consistently several
hundreds of meters across and up to ~10 m deep. Most of them were probably formed
during the mid-Holocene, approximately 5–3.5 thousand years ago, although detailed
chronology about their inception is still incomplete [43,51].

3. Recent thermokarst lakes: These lakes, in red in Figure 2, formed over the last several
decades mostly from human activities (e.g., forest fire and forest removal for agricul-
ture, pipelines, or road construction) and rising temperature [35,52]. These lakes are
generally small (meters to tens of meters across) and relatively shallow (one to two
meters deep) and are still expanding downwards and laterally due to active layer
deepening and thermokarst processes. Compared to the other lake types, they have
notably higher concentrations of dissolved OC [53].
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2.2. Image Data Sources

In this study, we leveraged the entire archive of SPOT data available for the study
region between 1986 and 2016 thanks to the SPOT World Heritage program. Developed
by the Centre National d’Études Spatiales (CNES), the SPOT family includes five decom-
missioned satellites that operated between 1986 and 2015 (SPOT 1–5) and two operational
satellites, SPOT 6 and SPOT 7, which were launched in 2012 and 2014, respectively (spatial
resolution between 2–10 m) (Supplementary Table S1). The SPOT images were filtered
to include only months between June and early October and a cloud cover of less than
70 percent. Many of the images which were taken between June and early October had
very high percent cloud cover and could not be used for analysis. Frequent high percent
cloud cover combined with a satellite return rate of 26 days resulted in a surprisingly small
subset of exploitable scenes (maximum 10 images for any given area). Only single band,
black and white SPOT images were available for use in this study.

We were able to augment this dataset slightly by including declassified military
intelligence photographs (Supplementary Table S1). The declassified military satellite
systems code-named CORONA, ARGON, LANYARD, and Hexagon operated between
1960–1986 collecting photographs of the USSR and China. The data were downloaded from
the USGS website (EarthExplorer). These black and white images were not georeferenced
(spatial resolution ~2.5 m). Manual georeferencing was done in QGIS 3.16 [54].

2.3. Defining Lake Boundaries and Lake Types

It was often clear which pixels belonged to the lake surface or to the surrounding dry
land. In the instances where the water/land boundary was ambiguous, every effort was
made to include all liquid water associated with the lake. However, it was sometimes un-
clear whether darker pixels surrounding a lake were liquid water or heavily saturated mud
(Figure 3). In these cases, best judgment was used to include all pixels which correspond to
the lake area. Some subjectiveness is inherent in this process. Frequently, unconnected alas
lakes develop into a half moon shape or a peripheral ribbon of liquid water surrounding
dry ground (Figure 4). In these cases, only the liquid water was included in the lake area.
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Figure 2). Some CA lakes experienced such significant surface area reduction in some 
years that they were reclassified as Unconnected Alas lakes (UCA) for those particular 
scenes. UCA lakes were identified based on their characteristic surrounding dry depres-
sion (Figure 2). The size of these depressions varies from year to year and from lake to 
lake depending on precipitation levels, the lake’s phase in the multiple-stage development 
model, and surrounding topography. Recent Thermokarst (RT) lakes were generally small 
and directly surrounded by forest or other vegetation cover (Figure 2). For a small number 
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Using QGIS, lake type classification was manually assigned to the lake outlines. In
the absence of in-situ measurements, lake type classification was determined based on the
characteristic lake morphology determined from lakes where in-situ measurements exist.
Connected Alas (CA) lakes were easily identified based on their generally large size and
the presence of inflow and/or outflow rivers and streams (see the CA lake in magenta
in Figure 2). Some CA lakes experienced such significant surface area reduction in some
years that they were reclassified as Unconnected Alas lakes (UCA) for those particular
scenes. UCA lakes were identified based on their characteristic surrounding dry depression
(Figure 2). The size of these depressions varies from year to year and from lake to lake
depending on precipitation levels, the lake’s phase in the multiple-stage development
model, and surrounding topography. Recent Thermokarst (RT) lakes were generally small
and directly surrounded by forest or other vegetation cover (Figure 2). For a small number
of lakes (<10 in each scene), it was difficult to determine whether it was an UCA lake or a
RT lake. In these cases, lake morphology and the surrounding environment were carefully
considered, and the best guess decision was made.

2.4. General Deep Learning Workflow
2.4.1. Machine Learning Model

This project used deep learning techniques, specifically Mask Region-Based Convo-
lutional Neural Networks (R-CNN) instance segmentation, to automate lake detection in
satellite images of Central Yakutia. Mask R-CNN is a deep learning instance segmentation
method that is used to identify different objects in an image (i.e., pedestrians on a sidewalk,
animals in a field, etc.) [34]. Our implementation builds on top of the existing reference
PyTorch implementation [55]. The backbone of the neural network is ‘resnet50’ [56].

The neural network can receive an input image between 800–1333 × 800–1333 pixels.
Each satellite image, however, is approximately 30,000 × 30,000 pixels. Therefore, every
satellite image was split into ~900 smaller images (depending on the original image size)
and the neural network treated every image separately. This resulted in lake predictions
which exhibited undesirable artifacts. For example, a lake spanning two or more small
images was artificially divided into smaller polygons. To alleviate this problem, each scene
was split a second time into ~900 smaller images. These images were positioned in a
staggered overlap of the ‘base’ images such that the corners of these ‘overlapping’ images
were in the middle of each of the base images (Figure 5). Each of the image sections (base
and overlapping) were treated identically by the model. This process facilitated the fusing
of lake polygons which spanned multiple small images into single polygons.
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2.4.2. Fine Tuning and Training

The workflow for fine-tuning and training of the deep learning model included a
three-step process of initial fine tuning using a very limited data set, a second round of fine
tuning using a substantially larger dataset, and lastly, the full model training using four
complete scenes (Figure 6). The first step was the fine tuning of the model using a limited
amount of data to get preliminary results. The fine-tuning dataset was created using a
SPOT 7 image (11 September 2016). The original image was split into 160 smaller images
(1024 × 1024 pixels), hereafter referred to as ‘mini-tiles’. Ten of the mini-tiles were chosen,
and all lake polygons in the image were manually digitized. The digitized lake polygons
were then used as a preliminary fine tuning of the model. After fine tuning, the model was
run to generate lake polygons for the mini-tiles. Thirty mini-tiles were randomly chosen,
manually corrected, and used as a second round of fine tuning of the model. The twice
fine-tuned model was then used to generate polygons for four complete SPOT images. The
lake polygons for the four images were then manually corrected and used to complete a
full training of the neural-network (Table 1).

Table 1. Description of scenes used for full training. The ‘number of lakes’ was determined by a
combination of automatic polygon generation and manual corrections.

Scene Date Satellite Scene Area (km2) Pixel Area (m2) Number of Lakes

2016-09-11 Spot 7 35 × 43 1.5 2525
2012-09-25 Spot 5 60 × 60 2.5 4197

2010-10-03 N Spot 5 60 × 46 2.5 1210
2010-10-03 S Spot 5 60 × 14 2.5 1413
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input for a full training of the model. Three of the 50 checkpoints of the model are saved as version 1,
version 2, and version 3. The dials to the right of each
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.n represent the different neural network
parameters of each version. The ‘Inference’ panel describes the process of using the model to generate
lake polygons for all of the satellite images used in the study. Because the satellite images are so
big, they need to be split into smaller images before they can be used as input to the model. The
satellite images are split twice into base and overlap images to reduce unwanted artifacts at the edges
of the small images. After running the model, one lake polygon shapefile is saved for each of the
three versions for every satellite image. The three versions are combined using ensembling. All lake
polygons are manually corrected before the final lake area change analysis.

From the four fully annotated SPOT images, a training dataset of 8286 training sam-
ples was created. Each training sample consisted of a 1-megapixel image. Standard data
augmentation practices were followed (random rotation, scaling, and brightness adjust-
ment). The Adam optimization algorithm was used to train the model [57]. For each of
the 8286 1-megapixel images, the training of the neural network spanned 50 epochs, and
checkpoints were saved after every epoch. Each checkpoint is a set of neural network
parameters (‘weights’).
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2.4.3. Accuracy Assessment of Model

In order to assess the accuracy of the predicted lake outlines, the lake outlines gener-
ated by the 50 checkpoints were compared to the manually corrected lake outlines. The false
positive rate (a lake polygon was predicted where no lake exists) and false negative rate
(no lake polygon was predicted where a lake exists) were calculated. The false prediction
rate is the sum of the false positive rate and the false negative rate. The relative error in
the total predicted lake area is the difference between the false positive and negative rates,
which is therefore less than the false prediction rate. Figure 7 shows the evolution of these
errors as the training progresses. The training can be divided into two phases: a first phase
(epochs 0–20) where the prediction error decreases from a >50% rate to a ~20% rate, and a
second phase (epochs 20 and up) where it stabilizes in the 17 to 20% range.
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2.4.4. Ensembling

In order to improve the error rate of the initial model, an “ensembling” technique was
developed which leveraged the variability in predictions of the different training states.
This technique enhanced the accuracy and robustness of the model. Three sets of weights
were manually chosen from the second half of the training (epochs 25–50 in Figure 7 and
used to generate the three final lake polygon versions using ensembling. The weights
were chosen from epochs after 25 because this is where the predicted area with respect
to ground truth levels off at ~20% and remains stable for the subsequent training epochs
(Figure 7). Ensembling is the aggregation of the three manually chosen prediction layers
as follows: the first lake polygon prediction contains all polygons generated by all three
saved weights (herein called ‘version 1’; least conservative). The second lake polygon
prediction contains all polygons predicted by at least two of the saved weights (‘version 2’).
The third lake polygon prediction contains only polygons which were predicted by all
three of the saved weights (‘version 3’; most conservative). The three polygon versions
are ‘nested’. Version 1 includes all the polygons which are also included in version 2 and
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version 3. Version 2 contains all polygons which are also included in version 3. The lake
outlines generated by the ensembling technique improved slightly upon the initial model
predictions (Figure 8). However, three lake outline shapefiles (spatial dataset file which
holds all of the lake outlines for each of the three ‘versions’) generated by the ensembling
technique made manually correcting the lake outlines simpler and more efficient. Lakes
which were not predicted in one of the ensemebled shapefiles could generally be found
in one of the other two shapefiles, eliminating most instances of manually digitizing an
entire lake.
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2.4.5. Comparison of Total Surface Area for Prediction and Corrected Lake Outlines

To determine whether one of the ensemble versions could be used for lake surface
change analysis without manual correction of the lake outlines, three entire lake outline
shapefiles (2011-09-08; 2011-09-21; 2013-07-14) were manually corrected to assess the dif-
ferences between the predicted total lake surface area of each of the three versions to
the manually corrected total lake surface area. The manual corrections utilized the lake
polygons generated by the neural network, but were rectified where needed. Manual
digitizing, as was done in the first stage of fine-tuning the neural network, is extremely
time-consuming and tedious. Manually digitizing one 60 × 60 km2 scene without the aid
of the polygons generated by the neural network takes at least one full week of motivated
work. Correction of the polygons generated by the neural network for one scene could
be completed in two–three hours or less. Version 1 consistently over predicted total lake
surface area (+2.7–+8%; +556–+1648 ha false prediction rate). Version 2 under predicted
the total surface area for two out of the three corrected scenes (−9–+4%; −1853–+824 ha
false prediction rate). Version 3 under predicted two out of the three corrected scenes
(−12–+0.5%; −2471–+103 ha false prediction rate). Based on these results and the reduced
time to manually correct the neural network lake outline shapefiles, the decision was
made to manually correct all the lake outline shapefiles used in the lake surface area
change analysis.
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2.5. Surface Area Change Analysis

The available scenes were separated into two study areas to facilitate lake surface area
change analysis: center and south (Figure 1). These study sites were drawn to maximize
the temporal and spatial coverage of available scenes and to include all three lake types.
All lakes with available in situ measurements (as presented by [6] and compiled in [51] are
within the center study site (Figure 1). Lake type assignment followed the same method as
described above. Lake outlines generated by the neural network were manually corrected
and used to calculate lake surface area for all analyzed scenes. Overall lake surface area
and lake surface area by lake type were then compared between scenes for each study
site. Changes in lake count are not discussed in this study because it does not necessarily
reflect an actual increase in lake number. This is particularly true for UCA lakes as a lake
which was digitized as a single polygon in one scene may be represented by several smaller
polygons in a subsequent scene if the lake has experienced a reduction in surface area and
the smaller residual waterbodies are no longer connected.

2.5.1. South Study Site

Lake surface area was compared between seven scenes spanning 1989–2019. The
scenes are not evenly distributed in time and there is a large gap between 1989 and 2005.
Image acquisition months range from mid-June to early October. The south study site
covers an area of 1220 km2 and there is substantial human activity present in the scene,
particularly in the western half of the scene (pastoral practices, villages, and numerous
roads) (Figure 1). The City of Balyktakh (Бaлыктaх) (population ~900 from 2010 census)
is located in the lower half of the scene near the middle. Approximately 80 percent of
the study site lies on the Tyungyulyu terrace and the rest on the Abalakh terrace [9,13,42].
Lake surface area comparison is based on seven scenes from 1989–2019. The scenes are not
evenly distributed in time and there is a particularly large gap between the 1989 scene and
the next scene in 2005 (Table 2).

Table 2. Dates of scenes and satellite platform used in each study site.

South (1220 km2) Satellite Center (1150 km2) Satellite

1989-07-12 Spot 1 1967-09-20 KH-4 Corona
2005-09-25 Spot 5 1980-09-20 KH-9 Hexagon
2007-08-02 Spot 5 2010-09-23 Spot 5
2010-10-03 Spot 5 2011-09-21 Spot 5
2011-09-08 Spot 5 2012-07-25 Spot 5
2012-07-25 Spot 5 2016-09-11 Spot 7
2019-06-17 Spot 6 2019-06-17 Spot 6

2.5.2. Center Study Site

Lake surface area was compared between seven scenes spanning 1967–2019 in an
1150 km2 study area (Figure 1; Table 2). The scenes are not evenly distributed in time and
there is a large gap between the 1980 (September 20) scene and the 2010 (September 9)
scene (Table 2). Image acquisition months range from mid-June to September. The City of
Borogontsy (population 5222 from 2010 census) and the Village of Syrdakh (population ~800
from 2010 census) are the largest populated areas in the scene. Approximately 80 percent
of the study site lies on the Magan terrace and the rest on the Tyungyulyu terrace [9,13,36].
The large UCA lake near the City of Borogontsy (indicated by the blue star in Figure 1) was
not included in these analyses. The water level of this lake are manually controlled by the
inhabitants of Borogontsy and is therefore not representative of the natural response of lakes
to changes in temperature and precipitation (A. Fedorov (Melnikov Permafrost Institute)
pers. comm.). Additionally, the complex morphology of this lake was not well predicted
by the algorithm for any scene and manual correction of the lake was time-consuming
and laborious.
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2.6. Temperature, Precipitation, and Evapotranspiration

An exceptionally long record of temperature and precipitation data is available from
the meteorological station of Yakutsk (World Metrological Organization Index: 24,959;
62.0866◦N, 129.7500◦E) (1888–present). These data were compiled from daily records to
monthly sums (precipitation) and monthly averages (temperature) from 1960–2020. To
account for all precipitation that might have influenced lake surface area (e.g., snowfall),
we used the hydrologic year, i.e., the year start date was shifted to 1 October of the previous
year. For example, for a scene taken on 1 September 2000, the yearly precipitation would
have included precipitation data from 1 October 1999 to 31 September 2000. These data
were then compared to a 30-year moving average (minimum window 10 years). Reference
evapotranspiration was calculated using the Blaney-Criddle Method [58], which uses
daily mean temperature and mean daily percent of annual daytime hours. The Mann-
Kendall Trend test was used to determine whether any trend existed in the temperature,
precipitation, and evapotranspiration data. All analyses were completed using the Python
programming language (Python Software Foundation, http://www.python.org/, accessed
on 1 February 2023).

3. Results
3.1. Trends in Temperature, Precipitation, and Evapotranspiration since 1900

Temperature records from the Yakutsk station (62.0866◦N, 129.7500◦E) show an in-
creasing frequency of years with above average annual temperatures, especially after
the late 20th century, and an overall trend of increasing temperature (Mann Kendall test:
trend = increasing; p = 1.31 × 10−11) (Figure 9). The mean annual air temperature (MAAT)
in 1900 was −14.6 ◦C and the MAAT in 2019 was −5.3 ◦C. The years after 1990 exhibit
particularly consistent above average MAAT (average MAAT 1951–1980: −10 ◦C; average
MAAT 1990–2019: −8 ◦C). The temperature records from Yakutsk station and other sites
(e.g., [37]) indicate a decadal temperature increase of 0.7 ◦C since 1900. There is no observ-
able trend in yearly precipitation in Central Yakutia (Mann Kendall test: no trend; p = 0.813)
(Figure 10). Yearly average evapotranspiration in Central Yakutia shows an increasing
trend (Mann Kendall test: trend = increasing; p = 1.69 × 10−12) (Figure 11).
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3.2. Spatial Distribution of Lake Types

Based on the 2019 (June 17) scene, the limnicity of the center and south study sites were
9% and 5%, respectively. A large proportion of the center study site (~80 percent) is situated
on the lower-lying and younger Tyungyulyu terrace while the remaining ~20 percent lies
on the higher and older Abalakh terrace. The south study site has approximately the inverse
proportions on the Tyungyulyu and Abalakh terraces, likely contributing to the differences
in limnicity between the two study sites. Ulrich et al. [13] also found a higher density of
lakes on the Tyungyulyu terrace compared to the Abalakh terrace.
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In both study sites and every scene, unconnected alas (UCA) lakes were by far the
dominant lake type in both count and total surface area (Table 3). The mean surface area
for UCA lakes in the center study site was 3.0 ha, which is consistent with the findings of [6]
(Table 3). The mean surface area for UCA lakes in the south study site was 17.4 ha (Table 3).
There are approximately five lakes in each study site which transition from CA to UCA,
and vice versa, between some years. These lakes were widely distributed throughout each
scene. UCA lakes in both study sites have a nearest neighbor index value slightly lower
than the value expected for randomly distributed objects (south study site UCA nearest
neighbor index: 0.73, z-score: −17.6; center study site UCA nearest neighbor index: 0.79,
z-score: −14.9). The nearest neighbor index is the ratio between the observed and expected
average nearest neighbor distance. A nearest neighbor index close to zero indicates point
clustering. A nearest neighbor index near or greater than one suggests random or uniform
distribution, respectively. The z-score indicates the level of confidence, with the higher
absolute value being more significant.

Table 3. Lake type statistics based on the 2019 (June 17) scene.

Lake Type Min Area (ha) Max Area (ha) Median Area (ha) Mean Area (ha) Count

So
ut

h UCA 0.01 1816.4 5.1 17.4 1212
CA 7.9 2178.7 179.5 517.7 28
RT 0.1 17.7 1.0 1.8 165

C
en

te
r UCA 0.01 94.5 0.9 2.9 1486

CA 0.02 237.7 7.1 44.7 43
RT 0.01 13.9 0.2 0.4 323

Connected alas (CA) lakes were the least numerous, but second in terms of total
surface area. The average surface area of CA lakes was 517 ha and 48 ha for the south and
center study sites, respectively. CA lakes were generally much larger than either RT lakes
or UCA lakes (Table 3). The center study site had the most CA lakes (~45), while the south
study site had ~30. These lakes also have a nearest neighbor index value slightly lower than
the value expected for randomly distributed objects (south study site CA nearest neighbor
index: 0.79, z-score: −2.1; center study site nearest neighbor index: 0.68, z-score: −3.2).

Recent thermokarst (RT) lakes were the second most abundant lake type in terms
of count, although they accounted for proportionally less of the total surface area due
to their generally small size (Table 3). The mean surface area for RT lakes in the center
study site was 0.4 ha and 1.8 ha in the south study site (Table 3). RT lakes exhibited the
strongest spatial clustering based on the nearest neighbor analysis (south study site nearest
neighbor index: 0.52 z-score: −11.8; center study site nearest neighbor index: 0.53, z-score:
−16.0). Although some RT lakes do appear to have formed in the absence of any human
disturbance (Supplementary Figures S1–14), most of these lakes form within 1–2 km of
roads or cleared land for pastoral practices or infrastructure development. Clusters of RT
lakes can be seen, for example, near the City of Borogontsy and the village of Syrdakh (in
the center study site).

3.3. Lake Surface Area Change: South Study Site

The 1989 (July 12) and the 2005 (September 25) scenes had the lowest overall lake
surface area with 2005 being slightly lower than 1989 (Figure 12 and Figures S1–S7). To-
tal surface area increased substantially from 2005 to 2007 (August 2) and decreased in
the next three available scenes (2010-10-03, 2011-09-08, and 2012-07-25). The 2019 scene
(June 17) had nearly the same total surface area as the 2012 (July 25) scene. Changes in
UCA lake surface area drive the trend in overall lake surface area, as they are the most
numerous lake type and make up the largest proportion of the total surface area. UCA lake
surface area is significantly negatively correlated to yearly average precipitation (Spearman
coefficient = −0.82, p value = 0.02; Table 4). This is likely due to several large UCA lakes
changing lake type designation from UCA lakes to CA lakes during years of high precip-
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itation and the re-establishment of inflows and outflows (see discussion section below).
RT lake surface area peaked in 2007 and decreased slightly in subsequent scenes before
a higher peak in the 2019 (June 17) scene. RT lake surface area is significantly positively
correlated to temperature (Spearman coefficient = 0.86, p value = 0.01; Table 4). The surface
area of CA lakes peaked in 2007 and decreased in 2010, with the surface area remaining
stable in subsequent scenes. CA lake surface area is not significantly correlated to any of the
three weather variables (Table 4). It is important to note that the datasets used in this study
are smaller than generally acceptable for robust correlation testing (>30 samples) and the
results of the Spearman correlation test should be considered only as possible indications
of significant or insignificant correlation.

Table 4. Spearman coefficient values and p values related to the correlation of lake surface area with
precipitation, temperature, and evapotranspiration. p-values < 0.05 are in bold. The datasets used are
smaller than generally acceptable for robust correlation testing (>30 samples).

Lake Type Precipitation Temperature Evapotranspiration

Coefficient p-Value Coefficient p-Value Coefficient p-Value

So
ut

h UCA −0.82 0.02 0.46 0.29 0.61 0.15
CA −0.46 0.29 0.71 0.07 0.68 0.09
RT −0.36 0.43 0.86 0.01 0.89 0.01

C
en

te
r UCA −0.29 0.53 0.04 0.94 0.18 0.70

CA −0.29 0.53 0.29 0.53 0.29 0.53
RT 0.54 0.22 0.82 0.02 0.79 0.04
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At a smaller scale (i.e., <10 km2), we see that the surface area of some lakes can change
drastically from year to year. Between some scenes in the south study site, a significant
reduction and/or disappearance of lakes is observed. For example, two large UCA lakes
(surface area lake a = 212 ha, b = 280 ha) which are visible in the image from 1989 (July 19)
experience significant surface area reduction in the 2005 (September 25) image (Figure 13).
Lake a in Figure 13, disappeared almost completely while lake b lost approximately 50 % of
its surface area: from 268 ha in 1989 to 134 ha in 2005. A proximal CA lake (lake c) however,
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maintained an almost equal surface area between 1989 (403 ha) and 2005 (446 ha). It is
likely, based on field observations of similar lakes, that lake c is deeper than either lake
a or b. In situ measurements from [6] of lakes in the center study site showed that CA
lakes are generally much deeper than UCA lakes (mean CA depth = 5.7 m; mean UCA
depth = 2.2 m). As soon as 2007 (August 2), the two UCA lakes had regained their previous
extents (surface area lake a = 403 ha, b = 309 ha, lake c = 461 ha) (Figure 13). Lake a even
merged with the UCA lake slightly to the northwest. CA lake c maintains a consistent
surface area compared to the two UCA lakes.
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Figure 13. Comparison between 12 July 198925 September 2005, 2 August 2007, and 25 July 2012
images (south study site (the center of the image is 62.270N 130.651E). Two large unconnected alas
lakes are outlined in blue (lakes a, b) and one connected alas lake is outlined in purple (lake c) (1989
scene). Lakes a and b changed designation to CA lakes in the 2007 scene. The inflows to the lakes are
indicated by the blue squares.

A slightly different trend is visible approximately 13 km north in the south study site
during the same period. A comparison of approximately 30 small UCA lakes between 1989
(July 12) and 2005 (September 25) indicates a negligible change in surface area (surface area
UCA lakes 1989 = 44 ha, 2005 = 43 ha; Figure 14). There is an increase in the number of RT
lakes from five in 1989 to 11 in 2005 and an increase in RT lake surface area from 2.5 ha
in 1989 to 4.0 ha in 2005. Three small RT lakes appear north of the road which bisects the
left corner of the 2005 image in what appears to be a newly cleared field. A fourth RT lake
appears parallel to the straight road just north of the meandering road. By 2007 (August 2),
the surface area of UCA lakes had increased to ~100 ha and the number of RT lakes had
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increased to 12 and surface area to 5 ha. In 2011 (September 8), UCA lake surface decreased
slightly to 62 ha and RT lake surface area increased to 5.2 ha.
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3.4. Lake Surface Area Change: Center Study Site

The 1967 (September 20) scene had substantially lower total lake surface area com-
pared to the other six scenes (Figure 15 and Figures S8–S14). In the 1967 scene, many alas
basins are occupied only by a very small, residual lake or no lake at all (Figure 16). 1967
CA lake surface area values are closer to those of the other six scenes. By the 2010 (Septem-
ber 23) scene, many of these alas depressions are again occupied by more substantial lakes
compared to the 1967 scene (Figure 16). Total lake surface area peaks in 2010 and decreases
throughout the subsequent scenes. UCA lake surface area follows the same trend as overall
lake surface area. CA lake surface area remains mostly stable except for an exceptionally
high value in 1980 (September 20). The high CA lake surface area value for this scene is
related mostly to a single large lake (indicated by the black arrow in Supplementary Figure
S9). By 2010, this lake had lost approximately half its surface area (becoming an UCA lake)
and is relatively non-existent in subsequent scenes. There is an overall trend of increasing
RT lake surface area through time, in contrast to UCA lakes, which display a decreasing
trend through time. RT lake surface area in this study site is positively correlated with
temperature and evapotranspiration, while UCA and CA lake surface areas do not show a
statistically significant correlation with any of the three weather variables (Table 4).
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Figure 16. 1967 (September 20) scene (left) and 2010 (September 23) scene (right). In the 1967 scene,
there are many UCA basins which have no lake or only a small residual lake. In the 2010 scene, most
of these lake basins are occupied by more substantial UCA lakes.
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4. Discussion

The results of this multi-decadal lake surface area change analysis indicate that there
are strong differences in the spatial distribution of the three lake types and their responses to
changes in temperature, precipitation, and evapotranspiration. In general, there are slight
trends of decreasing UCA lake surface area, stable CA lake surface area, and increasing
RT lake surface area. At a smaller scale (i.e., <10 km2), the surface area of some lakes can
change drastically from year to year, which has implications for local hydrology and water
availability for surrounding populations.

4.1. Alas Lake Dynamics and Environmental Variables

The observed trend of decreasing UCA lake surface area compared to increasing RT
lake surface area and stable CA lake surface area is likely related to differences in lake
morphology and related dynamics between the three lake types. Lake type response to
changes in temperature, precipitation, evapotranspiration, and possibly other variables
that are beyond the scope of this study likely also play a role in the observed surface area
trends. UCA lakes are generally no longer surrounded by ice-rich permafrost [47,48,59].
After the initiation of thermokarst processes, the active layer beneath a lake can reach
substantial depths as heat absorbed into the lake during the summer is transferred into
the surrounding ice-rich permafrost, perpetuating permafrost thaw even during winter
months. Eventually, a talik (an area of constantly thawed ground) forms beneath the
lake. Heat transfer between the lake, talik, and surrounding permafrost creates a positive
feedback cycle of lake expansion and permafrost thaw [59]. Once all the surrounding
permafrost has been thawed, the lake’s surface area is controlled primarily by evaporation
and precipitation, as is the case for UCA lakes in the study areas. Both evapotranspiration
and precipitation rates have increased in Central Yakutia since 1960, but evapotranspiration
substantially exceeds precipitation in this region (Figure 11) (this study and [35]). Although
no strong statistical correlation was observed between UCA lake surface area and any
climate variable, it is likely that increasing evapotranspiration is contributing to decreasing
UCA lake surface areas. Crate et al. [46] found that the water level of an unconnected
alas lake (Tyungyulyu alas lake) was correlated with the warm season (May to September)
air temperature and corresponding evapotranspiration. UCA lakes are more susceptible
to evapotranspiration since they are generally larger and shallower than RT lakes. UCA
lakes are also generally surrounded by a large residual lake depression covered by low
albedo landcover such as grasses [6,44] likely contributing to the susceptibility of UCA
lakes to evapotranspiration. Some studies have also suggested that a deepening active
layer associated with temperature increases may lead to precipitation being more readily
absorbed into the soil, rather than flowing into existing lakes [10]. CA lakes, on the other
hand, are buffered from changes in temperature, precipitation, and evapotranspiration due
to their greater depth and hydrological inflows/outflows [6].

For example, the CA lake identified in Figure 13 (lake c) (south study site) maintained
consistent surface area between the scenes while the UCA lakes experienced drastic surface
area changes during the same time period. An inflow to lake c is visible in both images
(Figure 13), likely helping to regulate the surface area of the lake. The study region experi-
enced several years of exceptionally low average precipitation from 2001–2005 (Figure 10),
which might have contributed to the drying out of lakes a and b in 2005. 2005, 2006, and
2007 all experienced above average precipitation and it is possible that this enabled the
refilling of lakes a and b. The three lakes maintain approximately 2007 lake levels in the
remaining available scenes, which eliminates the 2005 image being from late summer rather
than mid-summer as a possible explanation for the low UCA lake levels. It is important to
reiterate that the image acquisition months range from mid-June to early October (south
study site)/September (center study site). While this is consistent with other, similar remote
sensing studies of lakes in Central Yakutia [13,60], it is possible that including a relatively
wide range of image months affects the observed lake surface areas. As demonstrated in



Remote Sens. 2023, 15, 1226 22 of 26

Hughes-Allen et al. [6] both lake type and season can have a significant impact on carbon
and GHG dynamics.

In the center study site, the 1967 scene had exceptionally low UCA lake surface area.
The 1967 scene follows five years of below average precipitation (Figure 10), possibly

contributing to low UCA lake levels. The 2010 scene follows several years of above average
precipitation, which is likely reflected in the high lake surface area values (particularly UCA
lakes). The CA lake surface area peak in 1980 is controlled almost exclusively by a single
large lake (indicated by the black arrow in Supplementary Figure S9). In the 1967 scene, this
lake is designated as an UCA lake and has about half the surface area compared to the 1980
scene. In the 1980 scene, the lake is designated as a CA lake due to the establishment of an
inflow on the west side of the lake. This lake is essentially non-existent in subsequent scenes
(UCA designation). This large lake is surrounded by substantial agricultural activities, and
it is possible that it is used to irrigate nearby fields. The proliferation of agriculture in the
area might have caused the drainage and eventual demise of this large lake [46].

These results and comparison with similar studies indicate that lake dynamics in areas
of continuous permafrost can be highly variable. Nesterova et al. [60] recorded increasing
lake area (all lake types) between 2000–2018 in small study sites in the basins of the Suola
and Taatta rivers and the basin of the Tanda River (Central Yakutia). Their study uses
Landsat images and has a minimum lake size threshold of 1 ha. In their analysis of lakes
in the western part of the Taatta River basin, they observed an increase in lake number
(20 lakes in 2000; 76 lakes in 2018) and lake area (93 ha in 2000; 323 ha in 2018). Using
Landsat images, they were able to include an image for every year between 2000–2018,
and while there is an overall trend of increasing lake area, there is strong variability from
year to year. For example, 2008 has nearly the same total lake surface area as 2018. Ulrich
et al. [13] studied lake area change dynamics of 7 alas lakes (which correspond to UCA
lakes in this study) and 15 Yedoma lakes (which correspond to RT lakes in this study)
in a 1.4 km2 site near Yukechi between 1944 and 2014. They observed frequent dramatic
fluctuations in UCA lake surface area, although UCA lake surface area is higher in 2014
(~100 m2) compared to 1944 (~30 m2).

4.2. Recent Thermokarst Lake Dynamics and Environmental Variables

In both study sites, there is a trend of consistent RT lake area increase throughout the
study period. These results are consistent with Ulrich et al. [13] who observed a steady
increase in the surface area of 15 RT lakes (termed ‘Yedoma lakes’ in [13]) near Yuketchi.
RT lakes have generally formed within the last few decades and are still expanding into
the surrounding ice-rich permafrost. Warming temperature during the study period likely
contributed to the increased rates of RT lake expansion into surrounding permafrost
through thermal erosion and thaw slumping [48]. In Central Yakutia, every year after
1989 had above average MAAT (Figure 9). In both study sites, RT lake surface area was
significantly positively correlated to temperature and evapotranspiration, which, when
calculated using the Blaney-Criddle method, is itself a derivative of temperature. It is
also critical to reiterate that while correlation coefficients and p values are presented in
this paper, the datasets used are smaller than generally acceptable for robust correlation
testing (>30 samples). All correlation coefficients and p values which are presented in
this paper should be understood with this in mind. Warm temperatures cause permafrost
degradation that can lead to thermal erosion, soil compaction, and thaw slumping, which
results in RT lake formation and expansion [12,13,48]. In their study of a small number of
lakes approximately 25 km south of the study site presented in this study, Ulrich et al. [13]
identified increasing ground temperature and winter precipitation as contributing factors
to observed increases in thermokarst lake number and surface area. In their analysis of
the dynamics of a single thermokarst lake in the Lena Basin, Fedorov et al. [35] found
that melting ground ice accounted for about one-third of the total water input to the
lake (precipitation and lateral water flow accounting for the remaining total water input).
Although RT lake surface area is not significantly correlated with precipitation, similar
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dynamics likely contributed to increasing RT lake surface area in our study. It is possible
that the importance of certain climatic variables varies as the thermokarst processes progress
and the lake evolves. Ulrich et al. [13], for example, found a small inverse relationship
between lake age and expansion rate for 15 thermokarst lakes in their study.

RT lakes exhibited the strongest spatial clustering of the three lake types and these lakes
frequently formed adjacent to roads and in recently cleared land. Removal of forest cover
causes a rapid deepening of the active layer and can quickly induce permafrost thawing
and thermokarst lake formation in areas of ice-rich permafrost [12,61]. Direct impacts of
land cover removal and infrastructure development are usually limited to within 100 m of
the disturbance, but the effects can last for decades despite revegetation [62]. Increasing
human activity in the region may be partly responsible for the increasing number and
surface area of RT lakes.

These results indicate that both regional and local factors can affect short and long-term
lake development. Individual and regional lake dynamics might be related to consecutive
dry/wet years as well as human activities (road building, clearing of land for agriculture,
and using lake water for irrigation). Our study considered only temperature, precipitation,
and evapotranspiration as driving factors of lake surface area change, but it is likely that
other factors (ex. ground temperature) also play an important role.

Although there is only one year of dissolved GHG measurements available from
lakes in the study area [6], the present spatiotemporal analysis can provide some broader
scale, qualitative insights into the regional carbon cycle and the controlling impacts of lake
type (i.e., local geomorphology) on GHG emissions. RT lakes in particular have a high
mean CO2 flux compared to other reported values from arctic and sub-arctic regions [63].
However, due to their relatively small total surface area, they account for proportionally
less of the total CO2 emissions from all three lake types. It is possible that continued
warming temperatures and human activities will increase RT lake number and surface
area in the coming decades, increasing the total CO2 emissions from similar permafrost
landscapes. Considering CH4 emissions, UCA lakes have high CH4 flux rates compared to
other waterbodies in the arctic and sub-arctic [17,55–57], while RT and CA lakes exhibit
average CH4 emissions. Considering the abundance of UCA lakes in this region, these
lakes have a strong impact on CH4 emissions from similar permafrost landscapes. The
surface area extents of these lakes can change dramatically from year to year (at least
locally), complicating estimations of CH4 emissions from this region. The observed trends
of slightly decreasing UCA lake surface areas compared to increasing RT lake surface area
will likely have implications for GHG emissions from permafrost landscapes in the context
of continued climate warming.

5. Conclusions

• Mask R-CNN instance segmentation method is an effective and efficient way to
delineate the lake polygons of large satellite images.

• Correction of the polygons generated by the Mask R-CNN was much less time-
consuming than manual digitization. Manual digitizing one 60×60 km2 scene without
the aid of the polygons generated by the neural network takes at least one full week of
motivated work. Correction of the polygons generated by the neural network for one
scene can be completed in two–three hours or less.

• The limited availability of clear, cloud free scenes and the single band nature of the
images made automatic detection of lake polygons difficult. More fine tuning can
likely improve this process.

• The detection accuracy of our model using single band images is comparable to
similar studies of permafrost features and waterbodies which utilize multispectral
images (80–90% detection accuracy [31–33]). Comparison of the model predicted and
manually corrected overall lake surface area indicate error rates between 0.5–12%.

• UCA lakes appear to be particularly sensitive to increasing evapotranspiration and
changes in precipitation. These lakes are hydrologically isolated, and their surface area
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is controlled only by evaporation and precipitation. RT lakes and CA lakes were less
affected, and their lake levels are controlled by expansion into surrounding permafrost
and connecting streams and rivers, respectively.

• RT lakes exhibited the strongest clustering of the three lake types. Many RT lakes
formed adjacent to human disturbance (forest removal, road building, etc.). Some RT
lakes, however, formed in the absence of any disturbance, likely because of climate
warming. RT lake surface area is significantly positively correlated to temperature and
evapotranspiration for both study sites.
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