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Main text 17 

The distinction between imitation and emulation has gained popularity and attracted 18 

much interest and enthusiasm since its introduction by Tomasello and his colleagues three 19 

decades ago [1–3]. Imitation describes social learning in which the observer reproduces both 20 

the model’s actions (i.e., the means) and the result (i.e., the end). By contrast, emulation occurs 21 

when the observer reproduces only the result. As stressed by Whiten [4] (see also, e.g., [5]), the 22 

tricky question is, what do “model’s actions” mean, particularly in the case of instrumental 23 

activities such as tool use? The first possibility is to consider that model’s actions refer to the 24 

mechanical actions performed by the model (i.e., the interaction between the tool and other 25 

objects). The second is to consider that model’s actions refer to the motor actions performed by 26 

the model (hereafter called bodily action to follow Whiten’s [4] terminology). In line with 27 

Byrne and Russon’s [6] concept of ‘program level imitation’, Whiten [4] argues that the bodily-28 

action level is not really relevant – if not misleading – for studying the transmission of technical 29 

behavior between individuals and suggests to reorient the focus towards the mechanical-action 30 

level (for a similar view, see [7–10]). Interestingly, the same debate between bodily-action-31 

centered versus mechanical-action-centered explanations has also occurred in the cognitive 32 

science literature to describe the cognitive processes at work when humans use tools (for 33 

reviews, see [11,12]). Recent evidence suggests the existence of a mechanical-to-motor cascade 34 

mechanism, which gives priority to mechanical actions over bodily actions. Said differently 35 

and to paraphrase Bernstein [13], a pioneer in the study of motor control, one must concentrate 36 

on the ‘what’ of the action (i.e., the mechanical action), the ‘hows’ (i.e., bodily actions) come 37 

later by themselves. Here we briefly present the work that supports this perspective before 38 

discussing how this finds echo in Whiten’s [4] perspective. 39 

Most of our understanding of human tool-use behavior in the cognitive science literature 40 

comes from research on brain-damaged patients with tool-use disorders, also called apraxia of 41 
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tool use [14]. These patients show difficulties in selecting the familiar tools and in performing 42 

the mechanical actions appropriate for a given activity. These difficulties are not due to 43 

sensorimotor deficits (e.g., hemiplegia, hemiparesis) or, said simply, to a kind of clumsiness 44 

[15,16]. Since the last century, these disorders have been interpreted as reflecting the loss of 45 

tool-use motor programs [17–20], which contain information about the bodily actions 46 

associated with the use of familiar tools (e.g., broad oscillation of the elbow and a power grip 47 

for a hammer). As apraxia of tool use is common after damage to the left inferior parietal lobe, 48 

it has been hypothesized that tool-use motor programs are stored within this brain region. Yet, 49 

as Whiten [4] argued, “… in acquiring much of our ‘cultural know-how’, such as widespread 50 

technologies like cooking, weaving, basket-making, pottery and weapon-making, any bodily 51 

imitative element is typically intimately meshed with copying resulting movements of objects, 52 

including the actions of tools on other objects” (p. 227). The same is true here. Why would 53 

these patients’ difficulties necessarily reflect a deficit at the “bodily-action” level and not at the 54 

“mechanical-action” level? Answering this question necessitated an epistemological shift. 55 

This shift was initiated by a series of studies, particularly Goldenberg and colleagues’ 56 

ones, in which left- and right-brain-damaged patients were asked to select, use and even 57 

sometimes make novel tools to solve mechanical problems [21–24]. These studies found a 58 

strong behavioral link between performance in these novel tool-use tasks and performance in 59 

the classical familiar tool-use tasks commonly used to characterize tool-use disorders. Brain-60 

lesion studies also revealed that a same cerebral network involving the area PF within the left 61 

inferior parietal lobe was critical for both novel and familiar tool use (e.g., [22,25]; for review, 62 

see [26]), thus implying that the same cognitive processes were at work in both tasks. As 63 

claimed by Goldenberg and Spatt [22], “[w]e found that parietal lesions interfered even more 64 

with Novel than with Common Tools and, among the subscores of Novel Tools, even stronger 65 

with their selection than their actual use. These results support the conclusion that the parietal 66 
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lobe contribution to tool use concerns general principles of tool use rather than knowledge of 67 

the prototypical use of common tools and objects, and the comprehension of mechanical 68 

interactions of the tool with other tools, recipients or materials rather than the selection of grip 69 

formation and manual movements” (p. 1653). The role of the left area PF in the understanding 70 

of mechanical actions and, more generally, of physical principles was confirmed by 71 

neuroimaging studies, which demonstrated that this brain region is preferentially activated 72 

when healthy participants (1) focus on mechanical actions and not on bodily actions in tool-use 73 

tasks [27], (2) observe others performing tool-use actions but not non-tool-use actions (e.g., 74 

grasping an object) [28], and (3) reason about physical events (e.g., a tower that falls) [29]. The 75 

cortical thickness of the left area PF also predicts performance in psychotechnical tests [30]. To 76 

sum up, the left area PF plays a key role in a more general cerebral network dedicated to the 77 

understanding of our physical world and of the techniques we, humans, have developed over 78 

time. Contrary to the tool-use motor programs hypothesis, this perspective stresses that we do 79 

not use tools because we are able to manipulate them, but because we understand the underlying 80 

physical principles. The selection of the appropriate bodily actions to use tools “comes only 81 

later by themselves”. Evidence for this mechanical-to-motor cascade mechanism has been 82 

provided recently by a series of eye-tracking studies, which have shown that healthy 83 

participants tend to fixate first the functional part of a tool (e.g., the head of a hammer) and then 84 

the manipulative part (e.g., the handle of a hammer) when a pair of tools are presented on a 85 

screen ([31]; see also [32]). Also consistent with this cascade mechanism, this pattern is 86 

observed only when the mechanical action between the two objects is easy to infer mechanically 87 

(e.g., salami–steel knife). However, when the mechanical action between the tool and the object 88 

is not easy to infer mechanically (e.g., alarm clock–bottle opener), participants spend more time 89 

looking at the functional part of the tool and almost no time at the manipulative part, suggesting 90 

that the cascade mechanism does not take place [31,33,34]. 91 
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Taken together, these findings support the same conclusions as the one drawn by Whiten 92 

[4] with respect to cultural phenomena: How technological know-how is transmitted between 93 

individuals and how individuals use this know-how to use tools seem to be first and foremost 94 

driven by mechanical-action-centered cognitive processes. This conclusion does not imply that 95 

this is true in domains other than the technological one (e.g., communicative gestures, dance), 96 

for which bodily-action-centered cognitive processes could play a primary role (for a similar 97 

view, see [4,7,8,10]; see also [4]). This is also in accordance to the idea that witnessing a model 98 

acting can lead to social learning, which is true not only for humans [35] but also for nonhuman 99 

species such as chimpanzees [36]. Simply, moving the focus to the mechanical-action level 100 

inevitably incites us to envisage that non-social cognitive processes (e.g., causal understanding; 101 

see [37,38]) have a greater role to play in cultural phenomena than commonly thought 102 

[4,9,10,39–43]. This in turn raises new questions such as, why do some species extract more 103 

information from observing conspecifics’ technical behavior than others? What are the 104 

cognitive processes that allow an individual to assimilate novel improvements to its repertoire 105 

[44,45]? These new avenues can lead us, as suggested by Whiten [4], to explore new fruitful 106 

pathways not only in the comparative study of cultural cognition, but also more generally in 107 

cognitive sciences. 108 
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