Relative Age Effect Among French Swimmers

Audrey Difernand, Quentin de Larochelambert, Robin Pla, Juliana Antero, Jean-François Toussaint, Adrien Sedeaud

To cite this version:

Audrey Difernand, Quentin de Larochelambert, Robin Pla, Juliana Antero, Jean-François Toussaint, et al.. Relative Age Effect Among French Swimmers. ECSS Sevilla 2022, Aug 2022, Séville, Spain. hal-04002132

HAL Id: hal-04002132

https://hal.science/hal-04002132

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Relative Age Effect Among French Swimmers
Audrey Difernand ${ }^{1,2}$, Quentin De Larochelambert ${ }^{1,2}$, Robin Pla ${ }^{2,3}$, Juliana Antero ${ }^{1,2}$, Jean-François Toussaint ${ }^{1,2,4}$, Adrien Sedeaud ${ }^{1,2}$

${ }^{1}$ Institute for Research in Medicine and Epidemiology of Sports (IRMES - URP 7329), University of Paris Cité, Paris , France. ${ }^{2}$ National Institute of Sports, Expertise and Performance (INSEP), Paris, France. ${ }^{3}$ French Swimming Federation, Paris, France. ${ }^{4} \mathrm{CIMS}, \mathrm{AP}-\mathrm{HP}$, Hôtel-Dieu, Paris, France

Context
Relative age is defined by the exact age as a precision of the integer age which does not consider the day and month of birth ${ }^{1}$. Thus, within the same age category, there can be up to 365 days difference between two athletes. This age difference can also be translated into differences in height, weight, strength, experience and agility. For this reason, older athletes within the same age group may be favored in selections compared to younger ones: this is called relative age effect (RAE) ${ }^{2}$. The RAE has been shown for both sexes 3 and in multiple sports like ice hockey, football, volley-ball, basket-ball, baseball, rugby, tennis, track-and-field ${ }^{4}$ and swimming ${ }^{5}$. This phenomenon can have several consequences. The older, taller, bigger and more experienced athletes have a non negligeable advantage ${ }^{4}$ as selections are based on current performances ${ }^{6}$. Also, the motivation of younger athletes is negatively impacted ${ }^{7}$.

References : ${ }^{1}$ Helsen \& al, 1998, ${ }^{2}$ Musch \& al, 2001, ${ }^{3}$ Smith \& al, 2018, ${ }^{4}$ Cobley \& al, 2009, ${ }^{5}$ Costa \& al, 2013, ${ }^{6}$ Post \& al, 2020, ${ }^{7}$ Delorme \& al, 2010

Objectives
1- To test the presence of RAE in all individual swimming events and performance levels
2- To determine and apply corrective adjustment procedures for all disciplines and age categories
3- To rebalance individual performances
Data

- 62610 swimmers between the ages of 10 and 16
- 100 m Male Freestyle in Olympic pool
- Competition between 2000 and 2020
- All performances from local to international level were collected by the French Swimming Federation
- Date of birth, date of competition

Methods
1- Birth quarters distribution
In the first part, we kept only the season best performance for each swimmer. Swimmers were divided into birth quarters (Q1: January, February, March, Q2: April, May, June, Q3: July, August, September, Q4: October, November, December). To test for a significant difference between the birth quarters, chi-square test, odds ratios and 95% confidence intervals were calculated.
2- Corrective adjustment procedures
To better visualize the differences between swimmers, we defined the relative age gap. It is the time between the last birthday and the competition date.
Within each age category, we used the relative age gap and performance in order to reveal the nature of the relationship between these two variables. Then, using the regression coefficient, we calculated the rebalanced performance,
where:

$$
\mathrm{T}_{\mathrm{r}}=\mathrm{T}_{0}-\mathrm{c} * \mathrm{~m}
$$

T_{r} : rebalanced performance time, T_{0} : initial performance time, c : slope coefficient, m : time until the next birthday
3- Validation
In the second part, in order to validate our rebalancing method, we used a database composed of swimmers having achieved 2 performances in the season with a minimum of 6 months difference. The rebalancing method is applied to the first performance considering the difference with the second performance.
where:

$$
T_{r}=T_{1}-c *\left(T_{2}-T_{1}\right)
$$

T_{r} : rebalanced performance time, T 1 : initial performance time, T 2 : second performance time, c : slope coefficient Thus, it has been possible to compare the rebalanced performance with the second performance achieved with significance tests (Friedman test and Wilcoxon test).

Table 1: Distribution by birth quarters with respect to age groups and level of competitiveness

Figure 1: Average of performances (in seconds) by relative age gap (in months)

Figure 2: Pre-rebalanced performances VS Post-rebalanced performances

Figure 3: Boxplots of first, rebalanced and second performances by age
Conclusion and Discussion :

- First study to demonstrate the relative age effect among French swimmers, particularly among males' 100 m Freestyle in 50 m pools.
- RAE increases when the level of competitiveness increases.
- Thanks to the rebalancing method, it is possible to objectify swimmers' performances in relation to their exact age in order to better appreciate their potential and improve talent identification processes.
- To go further, other variables as maturity could be included and improve the method.

