Asfand Yar

Promoting Near-Data Processing for Scientific Workflows

Keywords: Scientific workflows, Big Data, Near-data processing, Task scheduling

Scientific workflows are set of dependent computational tasks used by most of data-driven domains. The use of data-intensive tasks is increasing in scientific workflows as scientists are using multi-step complex computational tasks on Big Data to extract rich information that leads to the more data movement between cluster and backend storage infrastructure. In order to minimize the data movement, one solution is to move the processing power closer to the data which is known as near-data processing. Task scheduling in Big Data is responsible to run the tasks near the data as much as possible to promote near-data processing.

In this project, we proposed two task scheduling techniques "Minimum" and "Maximum" to see their impact. We integrated the scheduling techniques with "RepliSim" Simulator which is based on a framework having processing nodes in a cluster and a remote centralized storage. The framework uses a part of storage capacity of processing nodes to cache the files from remote storage. We evaluated the tasks scheduling techniques in the simulator with different file sizes, file reuses and number of file replications. In the end, we concluded that Maximum scheduling technique is not a suitable solution for the defined object replication strategy of the simulator as most of the tasks were accessing their required files from the remote storage.

Resumé

Les workflows scientifiques sont définis par des ensembles de tâches de calcul avec des dépendances utilisées dans de nombreux domaines applicatifs produisant de grandes masses de données. L'utilisation de tâches manipulant des grands volumes de données devient de plus en plus populaire et les scientifiques construisent des workflows complexes pour y extraire les informations pertinentes, ce qui peut provoquer des transferts de données entre les noeuds de calcul et l'infrastructure de stockage. Afin de minimiser ces mouvements de données, une solution est d'effectuer les traitements près des données, ce qui peut se traduite comme traitement proche des données. Dans ce projet, nous proposons deux techniques d'ordonnancement de tâches "Minimum" et "Maximum" et étudions leur impact. Nous avons intégré ces deux algorithmes d'ordonnancement dans le simulateur "RepliSim' qui est un environnement simulant des plates-formes basées sur des clusters de noeuds de calcul accédant à un système de stockage centralisé. Les configurations simulées considèrent qu'une partie du stockage local des noeuds de calcul est utilisée comme cache de fichiers provenant de noeuds distants. Avec le simulateur "RepliSIm', nous évaluons les strategies d'ordonnancement avec différentes tailles de fichier, taux de réutilisation des fichiers ainsi que le nombre de duplications. Enfin, nous concluons que la stratégie d'ordonnancement "Maximum" n'est pas la solution adaptée pour la stratégie de réplication définie par le simulateur parce que la plupart des tâches accèdent aux fichiers dans le système de stockage distant.

Introduction

Scientific workflows are set of dependent computational tasks used by most of data-driven domains. Scientific workflows use parallel computing techniques for treating huge amount of data in a specific time on distributed storages in order to get better performance. The Workflow Management Systems (WMS) provide a systemic way to handle the execution and the dependencies among the tasks in the workflows and schedule the individual tasks on the compute nodes of a cluster for processing. In scientific workflows, the use of data-intensive tasks is increasing as scientists are using multi-step complex computational tasks on Big Data to extract rich information that leads to the more data movement between cluster and backend storage infrastructure.

Scheduling is considered as one of the important areas in distributed computing and Big Data where it is responsible for the running and execution of tasks and effective resource utilization in the cluster. In a distributed environment, task scheduling techniques used to minimize cost, to enforce priorities and policies, maximize the throughput and to minimize the overall completion time of the tasks. Task scheduling in Big Data impacts the performance as it is responsible to run correct sequence of tasks near the data in cluster as much as possible to promote the near-data processing. Near-data processing is the solution to overcome the problem of processing power by moving the processing closer to data in order to minimize the data movement.

During this project, we considered a distributed framework which contains processing nodes in the cluster and a centralized remote storage. Users submit their tasks in the framework which execute them on the processing nodes. The files required by the tasks are accessed remotely from centralized storage. Accessing a file from remote storage is slower than accessing it locally in the cluster. If many tasks are accessing a file at the same time from remote storage, then there may be a network contention. The processing nodes also have storage devices that are often underutilized. The framework could use some storage part of processing node as cache where files are transferred from remote storage but using cache replacement requires replication and data-aware scheduling policies.

In this work, we proposed two task scheduling techniques to see their impact in a distributed environment having a cluster of processing nodes and a centralized storage. Task scheduling techniques are used with different number of replications and reuse of files while running on the node where data resides in order to promote near-data processing. To see the results of our proposed task scheduling techniques, we used an existing simulator which is based on framework to promote near-data processing for Big Data scientific workflows. This report is structured into different sections; the description of next sections is as follow:  Section 2: This is the background section in which I discuss the key terms and technologies that provides the base to understand the project like storage devices which store the data for computing and then the file systems which provides an abstraction for the data in storage devices. I also discuss the distributed storage and why we need distributed storage. We also define the data locality and how it is used in Big Data. In the last of this section, we discuss the scientific workflows, task scheduling and caching.  Section 3: State of the Art. This section contains of some of important works related to task scheduling, eviction, replication and caching in data-intensive workflows and distributed computing environment. In the end of section, we compare related ideas of these models with our work.  Section 4: This is the methodology section in which we explain the RepliSim simulator that we used for our experiments. We see the main components, constraints and the approaches used for eviction and replication. We also discuss the task scheduling techniques of simulator which are FIFO and Greedy technique. More in the section, we talk about approaches and parameters that we used in our experiments.  Section 5: In this section, we discuss the proposed Minimum and Maximum scheduling techniques and their implementation in the RepliSim simulator.  Section 6: Performance Evaluation. This section contains the evaluation of results taken with different approaches. In the end of this chapter, we also discuss the results.  Section 7: Conclusion. In this section, we define of our research project and the methodology of conducting our experiments.

2 Background

In the section, I discuss about the key terms and technologies that provide the base to understand the research project in the following sections. First I talk about the storage devices which store the data for computing and then the file systems which provides an abstraction for the data in storage devices. Further, I discuss the distributed storage and why we need distributed storage. I also define the data locality and how it is used in Big Data. In the last of this section, we discussed the scientific workflows, task scheduling and caching.

Storage devices

Generally, the applications in computing use data which can be stored in primary or secondary storage where the primary is main memory, and it is volatile whereas secondary is the storage device that is non-volatile and can be Hard Disk Drive (HDD) or Solid State Drive (SSD). Secondary storage is slower but with larger capacity and persistent.

HDDs have magnets to read and write data on rotating metal platters using a mechanical arm while SSDs have an integrated controller with flash based memory, a specific type of memory that can be written, erased and rewritten many times. Several HDDs or SSDs can be grouped together to form one or more virtual units called Redundant Array of Independent Disks (known as RAID array). Data is stored on multiple disks which enables parallel access hence improve the performance and provide availability and reliability [START_REF] Francieli Zanon | Transversal I/O Scheduling for Parallel File[END_REF].

SSDs do not have internal moving parts, so they produce less heat and noise than HDDs 1 . One problem with SSDs can be the lifespan and their replacement but now-a-days SSDs live even longer than HDDs. The lifespan of SSDs depends on write cycles (erase and program). The SSDs come up with three level of cell storage types. Single-Level Cell (SLC) that stores one bit per cell, Multi-Level Cell (MLC) two bit per cell and Triple-Level Cell (TLC) three bit per cell. Terabyte Written (TBW) value of SSD shows after how many total writes the SSD needs to be replaced [START_REF] Taylor | SSD Lifespan," 1 March Web Source[END_REF]). The companies like Intel and Samsung are releasing new SSDs with much more read and write speed along with higher storage capacity like Samsung X5 Portable SSD 2 which has read and write speed of 2800 MB/s and 2300 MB/s respectively. On the other hand Seagate's Mach.23 hard drive has demonstrated the highest ever throughput speed up to 480 MB/s.

File systems

To manage, store and retrieve the data on storage devices we need an abstraction which is file systems [START_REF] Andrew | Modern Operating Systems[END_REF]. The file systems are hierarchical structures that contain files and directories. [START_REF] Remzi | Operating Systems: Three Easy Pieces[END_REF] defines the file as an array of bytes which can be created, read, written, deleted and it has a lowlevel name that refers to it uniquely. A directory (also called folder) is a list of pairs, it contains files and other directories and it also has a low-level name. Each pair in directory contains a humanreadable name of the file and the low-level name of file or directory to which it maps. In file systems, the metadata of file may include the name, size, type, format, address on the device, access permission, and creation, accessed, last modified date. Operations performed on a directory are Create, Delete, Opendir, Closedir, Readdir, Rename and Link [START_REF] Andrew | Modern Operating Systems[END_REF]. The examples of file systems are File Allocation Table (FAT), Global File System (GFS) and New Technology File System (NTFS).

Distributed Storage

Since the last decade it has been observed that the amount of data produced in different formats from sensors, social media, scientific experiments and industrial research activities is significantly increased [START_REF] Zaslavsky | Sensing as a Service and Big Data[END_REF] and the requirement of storage space is also increased. For efficient storage, data is distributed on different storage devices. Distributed storage ensured parallelism, improved the reliability, provided fault tolerance and enabled scalability. When data is stored on a centralized storage: on the network failure, the data will be unavailable; on node crush, the data will be lost eventually affecting the availability and efficiency of the system. However, when data is stored on distributed nodes: it can be replicated on different nodes ensuring the fault-tolerance; provide parallelism; and more nodes will be added in system as data increased hence making the system scalable. With benefits over the centralized storage system, the distributed storage has curbs. Data replication and partitioning on the nodes, accessing and updating the data makes it more complex than the centralized storage system. To ensure the data integrity and to manage the complexity, cost, and security, different storage systems are designed with different standards. Examples of widely adopted distributed storage systems are Couchbase [START_REF] Couchebase | Couchbase Under the Hood: An Architechural overview[END_REF], GlusterFS [START_REF] Inc | Intoduction to Gluster Architecture[END_REF] and Amazon S3 [START_REF] Amazon | Amazon S3[END_REF].

Data Locality

Performance while accessing the data through a network from a remote storage node is comparatively slower than accessing data which is stored locally because fetching the data from a far node through a network leads to the increase of execution time. In addition, fetching the data through the network result in more network load. To avoid the congestion of network, for better performance and to increase the overall throughput, data locality can be used. Data locality can be promoted by sending the computation to the node or to a near one where data is stored instead of accessing the data from the remote storage and this approach eventually leads to faster execution time. [START_REF] Didem | Trends in Data Locality Abstractions for HPC Systems[END_REF] defines data locality as: "Data locality is indicative of how close data is to where it needs to be processed, shorter distance imply better data locality"

Data locality in Big Data

Big Data means the authentic and useful data of different formats being generated at a speed in a large amount. Some storage systems for Big Data, divide the data into blocks and store them in distributed nodes. In some systems, the data is replicated and stored on more than one node. To process and get useful results from such a data, distributed computing engines try to provide data locality. Let's take the example of Apache Hadoop [START_REF]Apache Hadoop[END_REF] which is an open source reliable and scalable distributed computing software for Big Data. At core Hadoop uses MapReduce [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF] as its processing part and HDFS as its storage part. HDFS has a cluster of slave Data Nodes. The data is divided into different data blocks and stored on these Data Nodes, every block has one or more replica according to the configuration. The master Name Node manages the whole file system and dataset into cluster, and also have the metadata of all data blocks residing into Data Nodes like their replicas and locations. Data Nodes ping the Name Node at a set interval to show their availability. If Name Node will not receive any ping after a defined time, it will make a replica of all the data blocks of that node on other Data Nodes. The Name Node enables the system to locate the available required data block for any MapReduce task in the cluster. When a user submits a job, the Name Node give all the information about data for the job and the nodes in the cluster. The task for which data reside on the available data node is selected by the task scheduler and run on that node to achieve the simple node level data locality. The rack level data locality is achieved when the task is scheduled on a node which is in the same rack where data resides. If it is not possible to run the task on same rack where data is located then task has to be scheduled on another rack and the data will be replicated on the node in another rack, this scenario is called inter-rack level data locality. Figure 1 illustrates the task 1 is scheduled on the Data Node where data resides hence promoting the node level data locality. The task 2 is scheduled on the node near the data in the same rack achieving the rack level data locality. In third case, scheduling of task 3 shows the inter-rack level data locality where data is on another rack [START_REF] Anshudeep | Data Locality in Hadoop[END_REF].

Scientific Workflows

The workflow can be defined as the sequence of dependent tasks. Scientific workflows are set of dependent computational tasks used by most of data-driven domains [START_REF] Garijo | Abstract, link, publish, exploit: An end to end framework for workflow sharing[END_REF]. Scientific workflows may involve small simple tasks or very large complex tasks represented as DAGs (Directed Acyclic Graphs). DAGs contain nodes and edges where nodes are considered as tasks and edges are known for the dependences between tasks. Figure 2 shows a simple example of a scientific workflow having nodes that are tasks (different color shows different type of tasks) and the nodes that are dependency among the task. The communication in workflow application is done by means of intermediate storage abstractions, normally the files [START_REF] Marozzo | A data-aware scheduling strategy for workflow execution in clouds[END_REF]. Scientific workflows use parallel computing techniques for treating huge amount of data in a specific time on distributed storages like grid and cloud in order to get better performance [START_REF] Liu | A Survey of Data-Intensive Scientific Workflow Management[END_REF]. The example of scientific workflows are Montage [START_REF] Berriman | Montage: A grid enabled engine for delivering custom science-grade mosaics on demand[END_REF], CyberShake [START_REF] Callaghan | Reducing Time-to-Solution Using Distributed High-Throughput Mega-Workflows -Experiences from SCEC CyberShake[END_REF] and Sipht [START_REF] Bharathi | Characterization of Scientific Workflows[END_REF]. The Workflow Management Systems (WMS) provide a systemic way to handle the execution and the dependencies among the tasks in the workflows. WMS also conduct transparent analysis of data on distributed and parallel computing platforms to achieve more efficiency and improve productivity [START_REF] Atkinson | Scientific workflows: Past, present and future[END_REF]. A traditional architecture of a WMS consists of a workflow engine that collect the workflows, handling the dependencies among tasks of the workflows and schedule the individual tasks on the compute nodes of a cluster for processing. The workflow engine uses the storage space of compute nodes as intermediate storage abstraction where it fetches the input files for the tasks from backend storage infrastructure and after processing the output is staged out to the backend infrastructure [START_REF] Al-Kiswanyl | A cross-layer optimized storage system for workflow applications[END_REF].

Over the last decade, data captured from different sources and scientific instruments involved in experiments become very extensive, diversified and valuable that significantly increased the use of enhanced data-intensive workflows with more usability, advanced capabilities, improved architecture and reliability. In scientific workflows, the use of data-intensive tasks is increasing as scientists are using multi-step complex computational tasks on Big Data to extract rich information that leads to the more data movement between cluster and backend storage infrastructure. Galaxy [START_REF] Goecks | Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences[END_REF], Kepler [START_REF] Ludäscher | Scientific workflow management and the Kepler system[END_REF], Pegasus [START_REF] Deelman | PEGASUS, A WORKFLOW MANAGEMENT SYSTEM FOR SCIENCE AUTOMATION[END_REF], Swift [START_REF] Wild | Swift: A language for distributed parallel scripting[END_REF] are some WMSs that are used in different scientific domains. [START_REF] Atkinson | Scientific workflows: Past, present and future[END_REF].

Task scheduling

Operations management is believed to be one of the first field where different policies of scheduling were originated that were lately applied in computing [START_REF] Remzi | Operating Systems: Three Easy Pieces[END_REF]. In operating system, scheduling of jobs and process is done by the scheduler to handle the workloads. Scheduler module decides a process to run, whether continue with the process or preempt it, which process to run next from the queue. The sequence and time of the process are the main concern for the scheduler in operating systems to take any decision. These decisions are made by the scheduling algorithms. Among the scheduling algorithms, to select one depends on the properties of the algorithm. The main properties considered for selecting a scheduling algorithm are fairness, efficiency, throughput, response time, waiting time, turnaround time, overhead, resource utilization. First-Come First-Served (FCFS), Shortest-Job-First(SJF), priority scheduling, Round-Robin (RR) are some scheduling techniques used in the operating system [START_REF] Silberschatz | Operating System Concepts[END_REF].

Scheduling is considered as one of the important areas in distributed computing and Big Data where it is responsible for the running and execution of tasks and effective resource utilization in the cluster. According to the paper [START_REF] Govindarajan | Task Scheduling in Big Data -Review, Research[END_REF], the scalability, dynamism, time and cost efficiency, and handling different types of processing models, data and jobs are the functional requirements of the task scheduling. In a distributed environment, task scheduling techniques assign each task to a resource in a proximate optimal way to utilize the resources fairly in an efficient manner to minimize cost, to enforce priorities and policies, maximize the throughput and to minimize the overall completion time of the tasks. Task scheduling in Big Data impacts the performance as it is responsible to run correct sequence of tasks near the data in cluster as much as possible to promote the data locality.

Caching

In computing, cache is used as temporary storage area for the frequently accessed data. Let's understand the concept of caching from the low level, for example, when a CPU fetches some instructions from the RAM it maintains some data that is to be needed in different level of caches L1, L2 and L3. L1 is the closest and smallest one, data will be searched in this level at the beginning. As it is the closest one so it is the faster one. L2 is the next level that is large and far than L1 hence slower. Same for L3 that is larger and farther than L2 but the slowest one. In the case of fetching the data from Hard disk, the data that is most frequently accessed is kept in the RAM and in distributed computing environments, the copies of the files that have to be used more can be cached on computing nodes to avoid remote transfers. In case of the secondary memory, the hard drive caching is called disk buffering. It is a temporary memory for the HDD that read and write the data from the platters. If any data that is accessed more frequently by a program, the HDD hold the data into its controller/ disk buffer to avoid the further pulling from its platters hence making the performance of the drive better. SSDs can be used as cache for other secondary storage device like HDD, for example HDDs are cheaper than SSDs so we can have big amount of HDD to store data and we can have small amount of flash based SSDs to keep copy of the frequently accessed data.

Conclusion

At the end of this section, first we got familiarized with two currently used secondary storage devices, HDD that is platter based available with large storage capacity and the SDD that is flash based and faster than the HDD. This section also described the use of file systems and clarified that distributed storage provides parallelism, reliability, fault tolerance and scalability and there are many distributed storage systems are designed with different replication, partitioning, file transfer, eviction and task scheduling standards to make sure the data integrity, and to manage the complexity, cost, and security. This section also get us understand the concept of scientific workflows and the requirement of more improved workflow managements systems as the use of data intensive workflows is increasing. In the next section, we will see the some of the important and recent state of the art work that proposed different caching, scheduling, eviction, replication and file transfer strategies in distributed computing environments to get high performance. We will also see the recent data-intensive workflow models that achieve data locality to reduce the data movement cost. Studying these works will help us to understand the approaches to achieve improved data locality for scientific workflows. We will also compare the eviction and replication policies of these work with our work.

State of the Art

In this section, we look at some of important papers that is related to caching in file systems for handling large amount of data. We also study the articles related to task scheduling, replication and eviction policies used in distributed computing and data intensive workflow models. During this section, locality aware scientific workflow models are also studied.

Scratch as a Cache: Rethinking HPC Center Scratch Storage

According to Monti et al. [START_REF] Monti | Scratch as a Cache: Rethinking HPC Center Scratch Storage[END_REF], Scratch is a file system that is used to provide very large temporary local storage in high performance computing (HPC) and it is used in supercomputing due to high throughput, job turnarounds and efficient data I/O. The HPC center's serviceability and storing of necessary data for jobs is effected by the scratch because scratch transfer large datasets that along with their results are stored on user and HPC destinations. To remove these datasets and output files that are no longer in use in the scratch space, HPC centers use "purge" mechanism. It is an exposure window that ranges from week to days. So this work introduced a scratch space management system to have a good impact on HPC centers that includes the redesign of scratch as cache and present data retention and eviction policies. In their management system, direct user operations are avoided on scratch, system is managed using cache management tools, the user jobs are translated into cache operations, and only the data required is retained in cache. The problem with purge mechanism is that they are not workflow aware and lack the integration with scratch, so in this work they also introduced a workflow-driven caching. The workflow-driven caching contains the information of user's job workflow that includes the input and output of data, all the intermediate files with their sources and destinations, the protocols to be used for the transfer of data and the dependencies between the data. They used two techniques for workflow-driven caching: collecting Information from job scripts and cache operations. The three main cache operations they mentioned in their work are populating the cache, evicting the cache and dataset retention. During the cache population, the input data is not staged until the job submission, the job has to wait in queue until all the resources become available. The eviction of temporary files is defined in job scripts and are configured instantly after the completion of job and their eviction policy remove the datasets that will not be used again and not at least in near future. The retention period of datasets is also defined in user's job script and the retention jobs are submitted to periodically touch the dataset to avoid the eviction unless the period for retention expires. The benefits of workflow-driven caching are to avoid un-coordinated data movement, to avoid wastage of scratch space and improve serviceability in HPC. This work introduced a workflow driven caching mechanism for HPCs. For evictions they use a time window mechanism. If a file in scratch is not used within a defined time, then it will be evicted. It means the file that stayed for a long period will be evicted in their work. And to retain any important data, their system periodically touches it to avoid the eviction.

3.2 Task Scheduling and File Replication for Data-Intensive Jobs with Batch-shared I/O Khanna et al. [START_REF] Khanna | Task Scheduling and File Replication for Data-Intensive Jobs with Batch-shared I/O[END_REF] proposed two scheduling approaches in their paper that is to solve the problem of efficient execution of data intensive tasks with batch shared I/O on a coupled storage and compute cluster. In batch shared I/O, a file can be used by more than one task. They divided their problem into three stages. The first stage is to partition the batch of tasks in sub batches that the addition of these sub batches would be smaller than the available storage capacity of node in the cluster. The second stage is to allocate sub batch of tasks on the nodes in such a way that execution time is minimized. The third stage is to dynamically find out which files need to be transfer for the on the nodes. Their first approach is based on 0-1 Integer Programming, by which they solved the three stage problem. During their IP based approach when there is unlimited disk space so the problem of sub selection is skipped because storage space will not be an issue. To minimize the execution time they set some rules for task scheduling and file replication, like: a file can only be replicated if it is available locally; if a task is scheduled on any node then only the file required by that task can be copied on the node; only once a file can be replicated on any node; a file can be either transferred remotely or replicated locally; a file cannot be both transferred remotely and replicated locally; a task can be scheduled once in cluster; once task is scheduled on to a node then after that all the required files for that task should be staged on that node; a file only once can be transferred remotely and if required by more than one sub batch of the batch so other sub batches will use the same file; a file transfer to a node can only start once a previous file transfer is finished and when a node is busy executing a task then no files can be staged. When disk space is limited during the IP based approach, it selects the sub batch of task with Maximum number of tasks for which the file size should not exceed the storage space on node and when disk size is a constraint so the total size of files staged on a node should not exceed the disk size of the node. And also when disk space is limited so there will be evictions, their file eviction policy is invoked every time when execution of a sub batch finishes. The eviction policy evict files with increasing order of popularity until there is enough space to execute a task and the popularity of file is defined as:

𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐴𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑓𝑜𝑟 𝑓𝑖𝑙𝑒 × 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 𝐶𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑓𝑖𝑙𝑒
If there is a same probability of access for two files, then file with less number of copies get the higher popularity. The reason behind to include the file size in their eviction policy is to avoid remote transfers of large file so the file with smaller size get evicted so they evict the file with smallest score which depends on factors like file size and number of copies. Their task ordering is based the earliest time completion means the task with less completion time is scheduled first. They calculated earliest completion time for a task as sum of three factors: transfer time of its required files, I/O time to read the files on the nodes and the processing time of files. In our work, we use an existing simulator, in which the file with lowest score get evicted in the node.

A data-aware scheduling strategy for workflow execution in clouds

Simulations and scientific instruments are producing huge of amount of data so increase in data generations require more portable and flexible system to achieve performance and workflows are best approaches for execution of such scientific applications to get better results and performance. Marozzo et al. [START_REF] Marozzo | A data-aware scheduling strategy for workflow execution in clouds[END_REF] proposed a data-aware scheduling strategy for workflow execution in clouds because there is lack of performance due to inappropriate use of resources and schedulers are unable to select the best node to execute the task depending on the characteristics the of tasks and inadequate I/O solutions. They suggested that workflows should use the techniques of Big Data like data locality. In their previous work [START_REF] Duro | Exploiting in-memory storage for improving workflow executions in cloud platforms[END_REF], they combined the Data Mining Cloud Framework (DMCF) [START_REF] Marozzo | A Workflow Management System for Scalable Data Mining on Clouds[END_REF] with Hercules [START_REF] Rodrigo | A hierarchical parallel storage system based on distributed memory for large scale systems[END_REF] and they improved that work by promoting data locality using a data-aware scheduling strategy during the current work. Their work consists of multiple worker nodes. Each worker in their system contains the daemons of DMCF and Hercules. Their framework contains two lists of tasks, 1) a local list in each worker node and task queue. After the submission of workflow, their system generates tasks and insert them in task queue. The local list contains task whose status is changed to "ready" by the worker. Their data aware scheduling strategy select the task from local list or task queue for which more input files are available on local storage of worker. Their previous work uses the FIFO policy to select the task.

A data handling system for modern and future Fermilab experiments

Illingworth [START_REF] Illingworth | A data handling system for modern and future Fermilab experiments[END_REF] discuss the modernization of the SAM (Sequential Access via Metadata) which is data handling system for Fermilab experiments. SAM which is originally developed to run on RUN II [START_REF] Stonjek | Deployment of SAM for the CDF Experiment[END_REF]. It has been integrated with modern technologies and now being used by multiple experiments. Original version of SAM required heavyweight client implementation CORBA [START_REF] Omg | CORBA[END_REF] and then replaced with the lightweight HTTP Rest [START_REF] Feilding | Principled design of the modern Web architecture[END_REF] based interface. SAM is integrated with the Fermilab Fabric for Frontier Experiments (FIFE) [START_REF] Kirby | The Fabric for Frontier Experiments project at Fermilab[END_REF] which provides tools and systems for scientific data processing. Integration with FIFE makes SAM possible to inter-operate with other services. SAM contains a metadata catalog in which most of fields consists of key-value pairs. SAM portion of task processing is called project. A project can be associated with more than one batch of job. Files are distributed dynamically to the jobs and each file is allocated to one job. SAM is also integrated with a location catalog that contains the location of the files. SAM is modified to work with Storage Resource Manager (SRM) or dCache (Disk Cache). The file locations in location catalog are mapped into access URLs that are linked to the jobs. When a job is submitted to the worker node for execution so at the same time SAM is notified about the required dataset for the job. The SAM requests the staging of dataset which is transferred to disk cache. Once a project (remember here the task processing is called project) started so it requests for the file. The SAM notify storage element where file is transferred from disk cache and the job file is accessed from storage element by worker node. In this work, the data for the job are transferred to the disk cache when job is submitted and data is transferred for the processing once the task starts.

Storage-aware Algorithms for Scheduling of Workflow Ensembles in Clouds

Bryk et. al [START_REF] Bryk | Storage-aware Algorithms for Scheduling of Workflow Ensembles in Clouds[END_REF] proposed a model that contains unlimited homogeneous virtual machines (VM) and a VM can execute one task at a time. Tasks are enqueued using FIFO policy and each task can have zero or more input and output files. The files required for any task are staged before the start of that task. A VM has a local cache and files are transferred into cache according to its dynamic state, the presence in the VMs, the configuration parameters and size. The transfer of input and out files from cache is sequential, one transfer starts only after the finishing of previous. Like tasks files are also staged in cache using the FIFO policy and staging out is done by selecting the least recent stored file. Their model evicts the file which is stored for a long period. Their replica policy is to make replica of the whole storage device which contains all the files for the staging.

Confuga: Scalable Data Intensive Computing for POSIX Workflows

Confuga [START_REF] Donnelly | Confuga: Scalable Data Intensive Computing for POSIX Workflows[END_REF] is a data-intensive workflow model with storage architecture providing full data locality. The architecture of Confuga includes a head node and several storage nodes. The users interact with Confuga head node that contains a namespace and metadata manager, a replica manager and a job scheduler. The replica manager is responsible to maintain a namespace for all the replicas. For each replica in namespace, there is an index which is a GUID (globally unique identifier) or hash of the replica. In Confuga, jobs are scheduled on storage nodes. The scheduler looks all input files and directories and make replica job dependencies on storage node where job is because one job is processed on only one storage node. Confuga uses FIFO for all of its configurations. The Confuga uses two replication strategies for file transferring among the nodes; synchronous where dependencies are replicated serially and no any other task is performed on the nodes until the transfer is finished and asynchronous where other tasks can be performed on nodes.

A Cross-Layer Solution in Scientific Workflow System

Dong et al. [START_REF] Dong | A Cross-Layer Solution in Scientific Workflow System for Tackling Data Movement Challenge[END_REF] proposed a heuristic locality aware workflow scheduler. The scheduler is priority based in which each task has a score. It first considers the length of path for the task. They calculated the length of paths for all the tasks from last to current task. Longer the path of the task, higher the priority because the performance of workflow may slow down due to the longer path. Secondly, their priority based scheduler considers the dynamic available workers and data movement cost. They also proposed a proactive scheduling algorithm that contains pre-scheduling of the task that are non-ready or a part of their inputs are ready because this pre-scheduling indicates the file system to send the data for the task to the target node for computation, so when task is ready, the data for the task will be already available.

Discussion

In this section, we saw tasks some scheduling policies. The task scheduling proposed by Khanna et al. [START_REF] Khanna | Task Scheduling and File Replication for Data-Intensive Jobs with Batch-shared I/O[END_REF] schedule the tasks on base of their earliest completion time. The earliest completion time of a task is calculated by the sum of transfer time of the required files by the task, I/O time to read the files on the node and processing time of files. Their scheduling algorithm is similar to the MinMin [START_REF] Maheswaran | Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems[END_REF] scheduling algorithm that schedule a task with minimum completion time that is divided into two steps. At first, it calculates the expected completion time of each task on the base of accessing the resource and then in second step, it selects the task that has minimum expected time. Locality aware workflow scheduler proposed by Dong et al. [START_REF] Dong | A Cross-Layer Solution in Scientific Workflow System for Tackling Data Movement Challenge[END_REF] is priority based in which each task has a score. At first, it considers the length of path of the task and the task with longer path get higher priority and secondly, the dynamic available workers and data movement cost is considered. The data-aware scheduling strategy for workflow execution in clouds by Marozzo et al. [START_REF] Marozzo | A data-aware scheduling strategy for workflow execution in clouds[END_REF] select the task for which more input files are available on the local storage. Our proposed task scheduling techniques are different from the above mentioned task scheduling techniques. In Minimum scheduling technique, those tasks are first selected for which the required file has less replicas in the cluster and in Maximum scheduling technique, the tasks got the first preference in scheduling for which the required file has more number of replicas in the cluster. The simulator that we will use to take results for our scheduling techniques follows an architecture where file with lowest score get evicted. The score of file is calculated as number of file access divided by number of existing replicas. Eviction policy by Khanna et al. [START_REF] Khanna | Task Scheduling and File Replication for Data-Intensive Jobs with Batch-shared I/O[END_REF] evicts the file with smallest score which depends on factors like file size and number of copies. Monti et al. [START_REF] Monti | Scratch as a Cache: Rethinking HPC Center Scratch Storage[END_REF] defined an eviction policy where file that stayed for a long period in the cache is evicted. Also in the model of Bryk et al. [START_REF] Bryk | Storage-aware Algorithms for Scheduling of Workflow Ensembles in Clouds[END_REF], the file that is stored for a long period in cache of VM get evicted and in their replication policy, they make replica of whole storage device making the files easily available for staging when required. In Confuga [START_REF] Donnelly | Confuga: Scalable Data Intensive Computing for POSIX Workflows[END_REF], a job is processed on only one node and all the required files of the job are replicated on that node. In the architecture of simulator, a task can be process on one node and can only process one file. The replication policy replicates the files with highest score. In the next section, we will discuss the constraints defined in the simulator and will also talk about the methodology that we use to get results.

Methodology

After studying some of the state of the art papers in previous section, we saw different task scheduling strategies. In this project, we proposed two scheduling techniques, the Minimum and the Maximum which will be discussed in section Task scheduling algorithms. The purpose behind proposing these techniques is to improve the task scheduling to see their impact on performance and amount of data written on the nodes and to adopt a better task scheduling technique to solve the problem.

To conduct the experiments, we used a simulator "RepliSim" that is already developed for framework to promote near-data processing for Big Data scientific workflows. We implemented our scheduling techniques in the simulator to take results with different parameters and approaches. We compared the results of our scheduling techniques with the results of scheduling techniques defined in the simulator. In this section, we discuss the "RepliSim" simulator and the different approaches that we used in our experiments.

RepliSim Simulator

The main components involved in the simulator are the files, nodes and tasks. The number of files and nodes in the simulator are defined before the start of simulation in the parameter file. Files are created using a normal distribution with a given average size and standard deviation. Each file has a reuse factor which indicate how many times file is to be used. Tasks are created and queued at the beginning of the simulation. Creation of number of tasks depends on the file. Each file create one or more tasks depends on its reuse factor. The simulator also has replication and caching strategies. The simulator is event based in which data is present at a centralized storage (remote storage). In simulator, the tasks are submitted to the framework and framework schedule them to the processing nodes in the cluster. The framework also uses the part of storage capacity of processing nodes as cache to store the data files. The caching strategy used in simulator is "score". Following are the constraints used in simulator:

1. Each task is supposed to run on an individual processing node, access a single input file, and there is no output. 2. All the processing nodes are homogenous that have same configuration and have local storage which cache the files. 3. All the nodes of the framework lie within one cluster. [START_REF] Zaslavsky | Sensing as a Service and Big Data[END_REF]. Each file will be used by one or more tasks. 5. If the file size is larger than what is available for cache, then there will be evictions. [START_REF] Inc | Intoduction to Gluster Architecture[END_REF]. By cache replacement policy the files with the lowest score in the node get evicted. 7. File scores are calculated using number of times file is accessed divided by the number of existing replicas at the movement. 8. In replication process, the files with highest scores are selected and their replicas are made on the nodes with lowest scores. 9. The score of a node is the average of the score of files in the node. 10. A free node can be taken by external jobs of the cluster. 11. The transfers can be only done between nodes that are not running external jobs. 12. During the file transfers, nodes can be available to run tasks 13. Tasks cannot use the files until they finish the transfer.

The input parameters for the simulation can be provided in the parameter file at the beginning and if there is no any parameter file provided then simulator will use the default parameters. The output of the simulator contains the total simulated time, amount of data written per node, amount of data erased per node, performance for each task and the usage of the interconnection between the centralized storage and cluster.

The details about the working and organization of code of the "RepliSim" simulator is available on the link: https://gitlab.inria.fr/frzanonb/replisim/ The polices used for the scheduling in simulator are FIFO (First in First out) and Greedy. FIFO policy takes the first task from the list, iterate through the nodes in the cluster and stop at the first node that have the file for the task. The Greedy algorithm is used by Big Data frameworks like Hadoop. Greedy technique checks for the local access to the file in cluster. If a file for a task is accessed locally then that task is selected from the queue and put forward for execution otherwise if there is no possible local access to a file for the tasks so it just takes the first from the queue using FIFO policy.

Experimental methodology

In this sub section, we discuss the experiments performed during the project. We compared the performance of our proposed scheduling techniques with the scheduling techniques used in the simulator.

To get the results, we did some changes in the simulator. We integrated Minimum and Maximum strategies in simulator alongside the FIFO and Greedy strategies. We also added a condition in the simulator, if the input from simulation parameters is the any of the strategies, do the simulation for that strategy. For all the strategies, we used same set of parameters. As the tasks shuffling is done randomly before the implementation of any scheduling policy, we wanted the same shuffling for all the techniques and for the shuffling to be same we used the same seed for all the techniques so the tasks are shuffled in the same order. We took results with different file average sizes that is responsible for randomly generating the file size. We also used seed to have same size of files for scheduling techniques with different file average size. During each simulation, same seed is used for task shuffling and file size generation. We took 100 total simulation time results for each scheduling strategy with seeds 0 to 99 so each time we have a different task order and we had 100 results to compare. For seeds, we added a new parameter of seed number in the simulation parameters. Having four scheduling techniques and each with 100 seeds, we needed 400 input files.

To create those input files, we wrote a script defined in Algorithm 1 that made 100 input files for each strategy with seed number 0 to 99 and our other parameters in simulation are:  There are 10 processing nodes.  The total storage capacity of processing nodes (cluster) for caching is 20480 MB (20 GB).  There are 200 files in simulation.  The replication strategy is set to the "object" in all the simulations.  The local bandwidth for accessing a file in a node is 100 MB/s.  The remote bandwidth for accessing a remote file is 10 MB/s.  The cluster bandwidth for transferring data between nodes is 128 MB/s.  The replication period to redo the replication decision is 600 seconds.

 Occupation rate of the cluster by external jobs is set to 0.  The cache replacement strategy used during the simulation is "score" that is only one used in the simulator.  Metrics reset parameter is set to a large number so during simulation it will not happen. The above mentioned parameters remained same throughout all experiments. We changed other parameters to see the results of scheduling strategy with different approaches.

 The average file size is kept at 512 MB in the beginning then we took results with different file sizes from 64 MB to 1024 MB with the multiples of 64.  The average standard deviation for creating the file sizes is kept at one but just for one case it is kept at 512 MB alongside 512 MB of average file size to make file with different sizes.  Initially the average reuse of file is set at 50 then for experiments with different file reuse it is changed.  Replica quota that is the fraction of number of files to be replicated during replication event is initially 0.2 then it is changed to 0.0 and 0.5 for experiments.  The debug messages during the simulation are kept off but for some experiments it is set to true to check the file transfers.  Keeping the remote file parameter that kept the file that is accessed from storage is set to false for all experiments except in one where replica quota was 0.0. The combination of parameters keeping the remote file as true and replica quota 0.0 causes a naive replication strategy as it is keeping the remote files into cluster and no any file is replicated during the replication event. To run each simulation with 400 input parameters files per tested configuration, we wrote another script defined in Algorithm 2 which read all the parameter files and run the simulations in a loop until the files finished. At the same time during the loop, the script also created an output file against each input file which contains all the output generated for that simulation. We also did a modification in the simulator to write the results of each strategy in a CSV file with the name of that strategy at the end of simulation. The results contain the seed number and corresponding total simulated time. for seed in seeds: 5:

for strategy in strategies: 6: filename = strategy + "strategy_seed" + str(seed) + ".param" 7:

os.system("cp parameters_base " + filename) 8:

os.system("echo task_scheduling_strategy="+strategy+">> "+filename) 9:

os.system("echo seed_number=" + str(seed) + " >> "+ filename)

Algorithm 2 Script to read the input files and to run the simulations 1: import os 2: import subprocess 3: input_files = subprocess.getoutput("ls parameter_folder/*.param").split('\n') 4: for param in input_files: 5:

os.system("python simulation.py "+param+">"+param.split('.')[0]+".out")

21
5 Task Scheduling Algorithms One purpose of task scheduling is to minimize the completion time of the simulation while fully utilizing the resources. In a cluster, if a scheduling technique schedules the tasks for which the files are not available then in case of limited disk space, it will lead to the eviction of some files from cluster in order to place the required ones. The files that were evicted can be required by other following tasks that force the framework to again bring back the file. This situation can maximize the overall computation time of simulation. Evictions, transfers and re-writes of files also increases the cost. So during the formation of new task scheduling techniques, it is considered that the tasks would be scheduled in an order to fully take advantage of available data in the cluster. The FIFO policy in simulator schedules the tasks in order as they are added in the task queue. Figure 3 shows the task ordering in FIFO policy where tasks are ordered as they are in the task queue.

Figure 3: Task ordering in FIFO scheduling technique

Our first proposed technique is the Minimum scheduling technique. In Minimum scheduling technique, those tasks are first selected for which the required file has less replicas in the cluster. The motivation behind selecting this technique is to utilizing the files before their eviction as they have less replicas in cluster. Figure 4 shows the task ordering in Minimum scheduling strategy where the tasks for which the required file has Minimum number of copies in the cluster are selected first.

Figure 4: Task ordering in Minimum scheduling technique

Our other scheduling technique is the Maximum scheduling that is opposite of Minimum scheduling technique. In Maximum scheduling technique, the tasks got the first preference in scheduling for which the required file has more number of replicas in the cluster. Task order in Figure 5 shows the tasks scheduled from task queue according to the number of replicas of the file that is required by the task. After integrating the Minimum and Maximum scheduling algorithms in the simulator, in next section, we explain how we took the results and see the comparison among FIFO, Minimum, Maximum and Greedy technique using different parameters. 6 Performance Evaluation

In this section, we discuss the performed experiments and evaluation of the results. After the integration of Minimum and Maximum scheduling algorithms, we did our first simulation with parameters: average file size of 512 MB, standard deviation 1, file reuse 50, replica quota 0.2 and keeping the remote files as false. Further we compare the execution time of scheduling techniques with different file average sizes.

Normality test

After getting the result from our first simulation, we wanted to check whether our obtained results are drawn from a population that has a normal distribution, so first we used to check the normal distribution by density curve on a histogram.

Histogram

We plotted the results of FIFO, Greedy, Minimum and Maximum techniques on histograms. The plots in Figure 6 show that most of results lies around the mean values. The line on histograms creates a bell curve (also called density curve) shape when the data points meets the criteria of normal distribution. We can see the that the results of all techniques are following a bell curve, hence we can assume that our results are drawn from a population that follows a normal distribution.

Figure 6: Results of all techniques on histogram, x-axis shows the execution time and the y-axis

shows the density of probability

Shapiro-Wilk Test

We also tested the normality with Shapiro-Wilk test [START_REF] Shapiro | An Analysis of Variance Test for Normalit[END_REF]. According to the Razali and Wah [START_REF] Razali | Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests[END_REF], for all sort of distribution and sample sizes, Shapiro-Wilk test is powerful among Anderson-Darling test [START_REF]A Test of Goodness of Fit[END_REF], Kolmogorov-Smirnov test [START_REF] Kolmogorov | Sulla Determinazione Empirica di Una Legge di Distribuzion[END_REF] and Lilliefors test [START_REF] Lilliefors | On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown[END_REF].

The Shapiro-Wilk test takes the data array as parameter and it is used to test a null hypothesis that the data has come from a population that form a normal distribution. It returns two float values, W and p-value (probability value). The null hypotheses is rejected if p-value is smaller than the significance level alpha [START_REF]JMP Statistical Discovery from SAS[END_REF]. The commonly used alpha level is 0.05 and we also used alpha as 0.05 because we considered error as 5% in our data normality test. The Table 1 shows the W and P-values for the results of strategies using Shapiro-Wilk test (We used the library from Scipy for Shapiro-Wilk test [START_REF] Scipy | SciPy.org[END_REF]). Our null hypotheses for the results of Greedy scheduling technique became false according to the Shapiro-Wilk test.

Scheduling

Q-Q plot

As in the previous section we did the normality test using Shapiro-Wilk test and our null hypotheses for results of Greedy scheduling strategy was rejected that the results of Greedy technique come from a population that is normally distributed. To further check the normality, we tested all the 100 results of each strategy using normal Q-Q plot (quantile-quantile plot). In Figure 7, we see that our plots produced straight lines and suggesting that results were drawn using a normal distribution.

After checking the results with normality tests, we assume that the simulation results are drawn from a population that is normally distributed so we use error bars to compare mean of the results. Error bar shows the confidence interval around the mean of results. We set the confidence level as 95% [START_REF] Rees | Foundations of Statistics[END_REF]. We calculate the error bar by formula:

𝐸𝑟𝑟𝑜𝑟 = 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎 √𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑎𝑡𝑎
We used the critical value as 1.96 for 95% confidence interval.

Comparison of execution times

Once we finished with normality tests, we compared the results of the scheduling techniques. Figure 8 shows the execution time of scheduling strategies with individual seed from 0 to 99 for file average size 512 MB, file reuse 50, replica quota 0.2 and keeping the remote files as false where the results of Greedy technique seems much better than other three scheduling techniques. In the Figure 9, the mean execution time of Greedy is the lowest among all while Minimum has the second highest execution time. Table 2 shows the average execution time of four techniques.

Comparison using different average file sizes

The previous results were taken from average file size as 512 MB and to compare the results with different file average sizes, we took more results with same parameters: standard deviation 1, file reuse 50, replica quota 0.2 and keeping the remote files as false. 64 MB was the smallest and 1024 was considered as large average file size. Figure 10 contains the average execution time of the task scheduling techniques with different file average sizes. It can be seen that with the increase in file sizes, the execution time is also increased. By looking at the plot, it can be observed that Greedy scheduling techniques is doing best with all file sizes. The Table 3 below contains the execution time for 64 MB (small), 512 MB (medium) and 1024 MB (large) file sizes of all the scheduling techniques. As already discussed that the Greedy has best execution time among all the techniques, for small file size the Greedy is 6.44, 5.67 and 6.46 times better than the FIFO, Minimum and Maximum respectively. However, for file size of 64 MB the Minimum scheduling technique has 12.08% and 12.31% shorter execution time than FIFO and Maximum technique respectively. For large files Greedy has 2.75, 3.20 and 3 times shorter execution time than FIFO, Minimum and Maximum scheduling techniques. Execution time of FIFO is 79762.63 seconds for 1024 MB file average size, that is less than the Minimum (89065.33 seconds) and Maximum (83274.42 seconds).

File Average

Execution time with different file reuse averages

The results with the above mentioned parameters showed that Greedy scheduling technique is the best scheduling technique for all kind of average file sizes. We also checked the execution time of simulation with change in file reuse average parameter. Figure 11 shows the average execution time of scheduling techniques with file reuse 75 where it can be seen that Greedy is good for small, medium and large file sizes. The Figure 12 shows the results of scheduling techniques with file reuse 100 where Greedy has good results. We compared the results taken with file reuse 50, 75 and 100 to see the difference.

The Table 4 shows the average execution time of all scheduling techniques for small, medium and large file average size with file reuse average of 50, 75 and 100. The result shows an increasing trend in execution time of simulation. The execution time of Minimum scheduling technique for small file sizes is increased 37.17% and 41.64% for file reuse 75 and file reuse 100 respectively and for large sizes, it is increased 48.73% and 109% respectively. For small size, the execution time of Maximum is increased 34.7% from file reuse 50 to file reuse 75 and it is increased 48% for file reuse 100. The reason behind the increase is because having more reuse of file generates more tasks during the simulation and the execution of more tasks increase the total simulated time.

Execution time with different replica quotas

Replica quota is the parameter to define the number of files to be replicated when replication period is triggered. It is the fraction, for example 0.2 that means 20% of the files in the cluster to be replicated during the replication period. For all of our previous simulations, we used replica quota as 0.2 and here we compared the execution time of replica quota 0.2 with replica quota 0.5. We used reuse factor as 50. Figure 13 shows the average execution time of replication strategies with file reuse 50 and replica quota 0.5. Execution time increase with increase in file size that can be seen in the Figure 13. The Table 5 shows the average execution time of scheduling techniques with replica quota 0.2 and 0.5. Replica quota 0.5 has less execution time for small file size (64 MB) in which Minimum technique has taken 24% shorter execution time than replica quota 0.2. Maximum scheduling technique with replica quota 0.5 for small file size has 31.50% shorter execution time. Using replica quota 0.2 for small file size, we are not fully utilizing the storage capacity of cluster. The reason behind having good execution time for small file size with replica quota 0.5 is that we have more number of replicas in the cluster still without fully utilizing the cluster. For medium and large file sizes, we are already fully utilizing the storage capacity and increasing the replica quota to 0.5 also evicts the files that are replicated in the same event. In all previous experiments we used standard deviation 1 to generate file size. Small standard deviation indicates that sizes have a tendency to be close to the average. In this experiment we used standard deviation 512 MB that is same as the file average size 512 MB that means we have more variation and a wider range of different file sizes. Our other parameters were file reuse 50 and replica quota 0.5 during this experiment. Figure 14 shows the execution times taken during this experiment in which Greedy has 2.1 times shorter execution time than the FIFO. The execution time of Maximum technique is 2.4% and 14.4% shorter than FIFO and Minimum scheduling technique. We compared the results of this experiment with results taken during the experiment with parameters: file average size 512 MB, standard deviation 1 MB, file reuse 50 and replica quota 0.5. In table 6 it can be seen that standard deviation with 512 MB has increased the execution time for all strategies. Execution time for FIFO has increased 42.7%. For the Greedy execution time is increased 72% that is the highest among all strategies while using standard deviation 512 MB. Execution time is increased 33.6% and 39.4% for Minimum and Maximum scheduling strategies respectively.

Amount of data written per node

It is the average amount of data written in MB on the cache storage of processing nodes during the simulation. We compared the average amount of data written per node for the scheduling techniques. The amount of data written per node is calculated during the simulation and was stored in the output files. We read the amount of data written per node from output files. The Figure 15 illustrates the average amount of data written per node for all scheduling techniques with small, medium and large file average sizes. The other parameters used are file reuse 50 and replica quota 0.2. It can be seen in the beginning that amount of data written per node is increasing with the increase in file average size. For small and medium file sizes, the amount of data written per node for Greedy is smallest and the Maximum scheduling technique is the second one. However, for the large file size the Maximum has even low score than Greedy. The average amount of data written per node for file size 1024 is 123.7 GB using Maximum technique while using the Greedy technique it is 207.3 GB that is 67.58% higher than the Maximum technique. Table 7 shows the amount of data written per node for all scheduling strategies. Further to find out the reason behind why Maximum technique has small amount of data written per node for large files than the Greedy, we decided to see the amount of data written after each replication event triggered during the simulation for Greedy and Maximum techniques. We read the debug messages for replication event in output files of seed number 0 for file average size 1024 MB that were taken using the parameters with file reuse average 50 and replica quota 0.2. Note that we set the replication period as 600 seconds during all the simulations. During the Greedy scheduling strategy with file average size 1024 MB, data written per event remains almost the same in all replication events which can be seen in Figure 16 where data written per events in 51 replication events is showing a straight line. On the other hand, Figure 17 shows that for Maximum scheduling technique there were 140 replication events occurred and after 18 th event there is no data written during the replication events.

As the score of files is calculated as the number of accesses of file divided by the number of existing replicas. In Maximum strategy, tasks select the file for which more replicas available in the cluster and accessing that file increase the score of the file. The files with the highest scores get evicted during the eviction and replaced with the replica of lowest score files in the node.

Having more replica of lowest score files that are not accessed make it lower and in the next replication event, the same lowest score files get replicated. This continues until the lowest score files have replicas in all the nodes and no more data will be written until the end of simulation. So that's why the amount of data written for large file sizes in Maximum strategy is smaller compared to other strategies. We took more results for the scheduling techniques using a naive replication strategy by changing the parameters keeping the remote file as true and replica quota to 0.0. In previous simulations, keeping the remote file was set to false that means we were not keeping the files that were transferred from remote storage during the simulation once they were used by the task. In this experiment, we kept the remote files by making the parameter true. We also changed the replica quota to 0.0 that means whenever the replication event triggered then 0% of files to be replicated. The file reuse average is kept at 50.

Figure 16: Average execution time of scheduling techniques with naive replication strategy

In Figure 16, the execution time of scheduling techniques can be seen where Greedy seems good. The Table 8 contains the average execution time of the scheduling techniques for small, medium and large file size where for small file size 64 MB, the FIFO, Minimum and Maximum strategy has 2.2 times higher execution time than the Greedy. For 512 MB file size, Maximum has 2.7 times higher execution time than Greedy but it has taken 2.1 times shorter execution time than FIFO and Minimum. For large file size, Greedy is 2.9 times shorter than Maximum. Maximum has 2.5 and 2.6 times shorter execution time than FIFO and Minimum respectively for large file size.

Table 8: Average execution time of the scheduling techniques using naive replication strategy

In previous simulation, we have seen that for large file sizes, the amount of data written per node for Maximum scheduling technique is smaller than the Greedy but with naive replication strategy Maximum has 10 times higher amount of data written per node than Greedy. The Table 9 shows the amount of data written per node for scheduling techniques for small, medium and large file size. We calculated the number of files with local access and remote access of Greedy and Maximum technique for file average size 1024 from output files. As the output file contain the information about local access that is 1.0 and remote access which is 0.1. We took the output files with seed number 0. Table 11 shows the local and remote file access of Greedy and Maximum technique for file size 1024 MB.

Scheduling

Table 11: local and remote file access of Greedy and Maximum technique for file size 1024 MB

There are total 10431 files accessed during the simulation. We can see that for Maximum strategy, the local access of files is 243 and remote access is 7993 with parameters replica quota 0.2 and keep remote files as false. In naive replication strategy the local access is increased to 8079 hence decreasing the remote access because a file that is not in cluster is transferred once from the remote storage so the next time when it is required by a task it is available locally. From the results of amount of data written per node we conclude that Maximum technique is not suitable for object replication strategy.

Discussion of Results

While comparing the execution time of all experiments, Greedy has outperformed the other scheduling techniques that were compared. After getting the results from our first simulation, we did the normality tests. We used error bars while showing all of our results because we assume that the simulation results are drawn from a population that is normally distributed.

Figure 10 shows average execution time of all scheduling techniques for file average sizes from small (64 MB) to large (1024 MB) with parameters: standard deviation 1, file reuse 50, replica quota 0.2 and keeping the remote files as false where for file size of 64 MB the Minimum technique has 12.08% and 12.31% shorter average execution time than FIFO and Maximum respectively.

To see the impact of file reuse during the simulation, we compared the results with 50, 75 and 100 file reuse average. It is observed that increase in file reuse average increased the simulation time for all the scheduling techniques because having more reuse of file generates more tasks during the simulation and the execution of more tasks increase the total simulated time. The Table 4 shows execution time where average execution time of Minimum technique for large sizes is increased 48.73% and 109% respectively.

We also took results with different replica quota to see how more replicas impact the performance of simulation. We compared execution times of file average 512 with standard deviation 1 and standard deviation 512 that is shown in Table 6 where execution time with standard deviation 512 has increased for all strategies. Execution time of Greedy is increased 72% that is the highest among all strategies.

We also compared the average amount of data written per node for the scheduling techniques with parameters replica quota 0.2 and Keep the remote files as false. For small and medium file sizes, the amount of data written per node for Greedy is lowest among all but for file average size of 1024 Greedy has 67.58% higher amount of data written per node than the Maximum technique which is shown in Table 7.

We compared the amount of data written per node of Greedy and Maximum technique for naive replication strategy in which Maximum has 10 times higher amount of data written per node than Greedy for large file size. Form the previous results with replica quota 0.2 and keeping the remote files as false, the amount of data written per node of Maximum is increased 2.07 times in naive replication strategy. We calculated the number of files with local access and remote access of Greedy and Maximum technique for file average size 1024 from output files. In object replication strategy with parameters replica quota 0.2 and keep remote files as false, the Maximum technique has 243 local access files against 7993 remote access files and this is because of the replication of low score files that were not accessed and tasks were accessing required files from remote storage. In naive replication strategy, no files were replicated and the files once transferred from remote storage are kept in cluster and locally accessed if required again. As Maximum strategy is accessing more remote files, we conclude that using Maximum strategy is not a good approach to use with the object replication strategy of the simulator.

Conclusion

In scientific workflows, the use of data-intensive tasks is increasing as scientists are using multi-step complex computational tasks on Big Data to extract rich information that leads to the more data movement between cluster and backend storage infrastructure. In order to minimize the data movement, near-data processing is considered as a solution. In Big Data, near-data processing is achieved by scheduling tasks near the data in cluster as much as possible. In this project, we proposed two task scheduling techniques "Minimum" and "Maximum" to see their impact in a framework that involves a cluster of processing nodes and a centralized storage.

During this work we also discussed some state of the art articles about scheduling in distributed and data-intensive workflow models where task scheduling are based on different approaches like completion time and number of available input files.

We used our task scheduling techniques with an event based simulator "RepliSim" where data files are placed on remote storage. The simulator uses a framework in which tasks are submitted by users and framework schedule the tasks on the processing nodes in the cluster and also uses the part of storage capacity of processing nodes as cache to store the data files. Simulator also includes replication and eviction policies. The scheduling policies used in simulator are FIFO and Greedy. Greedy selects the task for scheduling if file for task is accessed locally in cluster.

In Minimum scheduling technique, those tasks are first selected for which the required file has less replicas in the cluster and in Maximum scheduling technique, the tasks got the first preference in scheduling for which the required file has more number of replicas in the cluster. We integrated our scheduling techniques to see their performance on simulation and amount of data written on the nodes with different parameters.

We conducted our experiments with four scheduling techniques, FIFO, Greedy, Maximum and the Minimum. Greedy had the good average execution time than the other three techniques in all the experiments. We see from the evaluation that for small file sizes, Minimum technique had good average execution time than Maximum and for medium file sizes, Maximum was good. We also saw that increase in file reuse parameter increased the execution time as in the framework and more reuse of files generated more tasks during the simulation and the execution of more tasks increased the total simulated time. We also checked the effect of more replicas in cluster and we saw that changing the replicas from 20% to 50% for small file sizes had shorter the execution time to 24% and 31.50% for Minimum and Maximum scheduling strategy respectively. While comparing the average amount of data written per node for the scheduling techniques, Greedy had the smallest amount of data written per node for small file size (64 MB) and medium file size (512 MB) but for large file size (1024 GB) Maximum technique had smaller amount of data written per node. The reason behind the low amount of data written per node for Maximum with large file size is the replication of low score files that would never be used. Low score files are replicated in earlier events and in next events when they are selected for replication so no any replication was possible as they were already available in the nodes that leads tasks to access their required files from remote storage. We also observed that during the object replication strategy defined in the simulator, Maximum had accessed more remote files then local files so we concluded that Maximum scheduling strategy is not a suitable technique for object replication strategy.

Figure 1 :

 1 Figure 1: An illustration of Data locality in Big Data

Figure 2 :

 2 Figure 2: An Example of Scientific Workflow

Algorithm 1

 1 Script for creating input files 1: import os 2: strategies = ['FIFO', 'MIN', 'MAX', 'Greedy'] 3: seeds = [i for i in range(100)] 4:

Figure 5 :

 5 Figure 5: Task ordering in Maximum scheduling technique 5.1 Implementation in RepliSim simulator In the simulator, the tasks are created in TaskManager using the reuse factor of files from filestore and added in the list (queue) where they are shuffled before scheduling. Algorithm 3 shows the implementation of Minimum scheduling technique and Algorithm 4 shows the implementation of Maximum scheduling technique. In both algorithms, function next_task() is responsible to pop out and return the next task to be scheduled during the simulation.

Figure 7 :

 7 Figure 7: Normal Q-Q plot of results of average file size of 512 MB

Figure 8 : 2 Figure 9 : 2 :

 8292 Figure 8: Execution time for different strategies of individual seeds with average file size 512 MB, file reuse 50 and replica quota 0.2

Figure 10 :

 10 Figure 10: Average execution time of all techniques for different file average sizes with file reuse 50 and replica quota 0.2

Figure 11 : 2 Figure 12 :

 11212 Figure 11: Average execution time of scheduling techniques for 64 MB, 512 MB and 1024 MB file average size with file reuse 75 and replica quota 0.2

Figure 13 :

 13 Figure 13: Average execution time of replication strategies for 64 MB, 512 MB and 1024 MB file average size with file reuse 50 and replica quota 0.5

Figure 14 :

 14 Figure 14: Average execution time of all strategies for file average size 512 MB, standard deviation 512 MB with file reuse 50 and replica quota 0.5

Figure 15 :

 15 Figure 15: Amount of data written per node of all scheduling techniques with file reuse 50 and replica quota 0.2

Figure 16 :Figure 17 :

 1617 Figure 16: Data written per replication event of Greedy strategy for file size 1024 MB

Table 1 :

 1 Shapiro-Wilk test values of the results of the scheduling strategies

	Strategy	W	p-value
	FIFO	0.989383339881897	0.6149654388427734
	Greedy	0.9531400799751282 0.0013436338631436229
	Minimum	0.9873561859130859	0.4620157778263092
	Maximum	0.977445125579834	0.08389880508184433

Table 3 :

 3 Average execution time of scheduling techniques with 64 MB, 512 MB and 1024 MB file average size

	Size	FIFO	Greedy	Minimum Maximum
	64 MB	4477.86 s	694.34 s	3937.12 s 4490.26 s
	512 MB	32746.40 s 6528.52 s 38262.54 s 31293.23 s
	1024 MB	79762.63 s 27817.33 s 89065.33 s 83274.42 s

Scheduling Techniques Average file Size 64 MB Average file Size 512 MB Average file Size 1024 MB Reuse 50 Reuse 75 Reuse 100 Reuse 50 Reuse 75 Reuse 100 Reuse 50 Reuse 75 Reuse 100 FIFO

		4477.8	6034.4	7395.7	32746.4	48172.4	63608.1	79762.6	118348.2	157439.3
		sec	sec	sec	sec	sec	sec	sec	sec	sec
	Greedy	694.3	1025.8	1329.2	6528.5	10753.7	15020.6	27817.3	43431.4	58811.5
		sec	sec	sec	sec	sec	sec	sec	sec	sec
	Minimum	3937.1	5400.9	6747.1	38262.5	54976.2	71087.9	89065.3	132470.7	175827.8
		sec	sec	sec	sec	sec	sec	sec	sec	sec
	Maximum	4490.2	6051.7	7512.5	31293.2	45085.8	58449.2	83274.4	123270.3	165124.6
		sec	sec	sec	sec	sec	sec	sec	sec	sec

Table 4 :

 4 Average execution time of Scheduling techniques with reuse factors 50, 75 and 100

Table 5 :

 5 Average execution time of Scheduling techniques with replica quota 0.2 and 0.5 6.2.4 Execution time with file average size 512 and standard deviation 512

Table 6 :

 6 Average execution time of scheduling strategies for file average size 512 MB, standard deviation 512 and file average size 512 MB, standard deviation 1 with, file reuse 50 and replica quota 0.5

	Scheduling	File average size 64	File average size	File average size
	Techniques	MB	512 MB	1024 MB
		Replica	Replica	Replica	Replica	Replica	Replica
		quota	quota	quota	quota	quota	quota
		0.2	0.5	0.2	0.5	0.2	0.5
	FIFO	4477.8	3319.8	32746.4	31706.3	79762.6	79600.9
		sec	sec	sec	sec	sec	sec
	Greedy	694.3 sec 677.4 sec	6528.5	8292.89	27817.3	32695.1
				sec	sec	sec	sec
	Minimum	3937.1	3175.0	38262.5	37830.5	89065.3	91421.5
		sec	sec	sec	sec	sec	sec
	Maximum	4490.2	3414.4	31293.2	31706.3	83274.4	83062.1
		sec	sec	sec	sec	sec	sec

Table 7 :

 7 Amount of data written per node of all scheduling techniques with file reuse 50 and replica quota 0.2

	Scheduling	File average size	File average size	File average
	Techniques	64 MB	512 MB	size 1024 MB
	FIFO	3.2 GB	119.9 GB	553.4 GB
	Greedy	1.7 GB	32.7 GB	207.3 GB
	Minimum	2.9 GB	138.3 GB	439.8 GB
	Maximum	3.3 GB	82.02 GB	123.7 GB

Table 9 :

 9 Amount of data written per node of the scheduling techniques using naive replication strategy

		File average size	File average size	File average size
	Techniques	64 MB	512 MB	1024 MB
	FIFO	10.7 GB	308 GB	798.3 GB
	Greedy	1.55 GB	12.54 GB	25.1 GB
	Minimum	10.7 GB	306.4 GB	819 GB
	Maximum	10.6 GB	117.4 GB	256.1 GB

Table 10 :

 10 Comparison of Amount of data written per node using naive replication strategy and replica quota 0.2 with keep remote files as falseTo find out the differences between amount of data written per node for Greedy and Maximum technique using naive replication strategy with replica quota 0.2 and keeping the remote files as false, we compared them in Table10. Using the naive replication strategy, the amount of data written per node for Greedy is decreased for all the file average sizes and just for 1024 MB of file average size it is decreased 8.2 times. On the other hand, for the Maximum technique the amount of data written per node for all file sizes is increased instead. For file average size 1024 MB, the amount of data written per node of Maximum is increased by 2.07 times. The Maximum strategy has more amount of data written in naive replication strategy from previous replication strategy

	Scheduling	File average size	File average	File average
	Techniques	64 MB	size 512 MB	size 1024 MB
	FIFO	1512.5 sec	32697.6 sec	82033.8 sec
	Greedy	668.8 sec	5385.8 sec	10780.5 sec
	Minimum	1513.3 sec	32454.07 sec	83943.4 sec
	Maximum	1503.0 sec	15056.5 sec	32065.1 sec

Table 5

 5 shows the average execution time of the scheduling strategies for file sizes of 64 MB, 512 MB and 1024 MB with replica quota 0.2 and replica 0.5. It is observed that replica quota 0.5 has less execution time for small file size in which Maximum scheduling technique has 31.50% shorter execution time than replica quota 0.2.

	Access to the	Greedy	Maximum
	file	Replica Quota	Naive replication	Replica Quota	Naive replication
		0.2	strategy	0.2	strategy
	Local access	8259	10381	243	8079
	Remote access	2172	50	7993	2352

https://www.techwalla.com/articles/the-advantages-of-storage-devices

https://www.samsung.com/semiconductor/minisite/ssd/product/portable/x5/

https://blog.seagate.com/enterprises/mach2-and-hamr-breakthrough-ocp/

Abbreviations

WMS

Workflow Management Systems