

The magnetic signal from trunk bark of urban trees catches the variation in particulate matter exposure within and across six European cities

Anskje van Mensel, Karen Wuyts, Pedro Pinho, Babette Muyshondt, Cristiana Aleixo, Marta Alos Orti, Joan Casanelles-Abella, François Chiron, Tiit Hallikma, Lauri Laanisto, et al.

▶ To cite this version:

Anskje van Mensel, Karen Wuyts, Pedro Pinho, Babette Muyshondt, Cristiana Aleixo, et al.. The magnetic signal from trunk bark of urban trees catches the variation in particulate matter exposure within and across six European cities. Environmental Science and Pollution Research, In press, 10.1007/s11356-023-25397-8. hal-04002043

HAL Id: hal-04002043 https://hal.science/hal-04002043

Submitted on 23 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 The magnetic signal from trunk bark of urban trees catches the variation in particulate matter 2 exposure within and across six European cities Anskje VAN MENSEL^{a,*}, Karen WUYTS^a, Pedro PINHO^b, Babette MUYSHONDT^a, Cristiana ALEIXO^b, Marta 3 4 ALOS ORTI^c, Joan CASANELLES-ABELLA^{d,e}, François CHIRON^f, Tiit HALLIKMA^c, Lauri LAANISTO^c, Marco MORETTI^d, Ülo NIINEMETS^g, Piotr TRYJANOWSKI^h, Roeland SAMSON^a 5 6 7 ^a Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University 8 of Antwerp, Antwerp, Belgium 9 ^b Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da 10 Universidade de Lisboa, Lisbon, Portugal 11 ^c Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia 12 ^d Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, 13 Switzerland 14 ^e Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland 15 ^f Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France 16 ^g Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia 17 ^h Department of Zoology, Poznan University of Life Sciences, Poland 18 19 * Corresponding author: Anskje VAN MENSEL; email address: anskje.vanmensel@uantwerpen.be; 20 telephone number: +32 (0) 3 265 96 04 21

22 Abstract

23 Biomagnetic monitoring increasingly is applied to assess particulate matter (PM) concentrations, 24 mainly using plant leaves sampled in small geographical area and from a limited number of species. 25 Here, the potential of magnetic analysis of urban tree trunk bark to discriminate between PM exposure 26 levels was evaluated and bark magnetic variation was investigated at different spatial scales. Trunk 27 bark was sampled from 684 urban trees of 39 genera in 173 urban green areas across six European 28 cities. Samples were analysed magnetically for the Saturation Isothermal Remanent Magnetisation 29 (SIRM). The bark SIRM reflected well the PM exposure level at city and local scale, as the bark SIRM (i) 30 differed between the cities in accordance with the mean atmospheric PM concentrations and (ii) increased with the cover of roads and industrial area around the trees. Furthermore, with increasing 31 32 tree circumferences, the SIRM values increased, as a reflection of a tree age effect related to PM accumulation over time. Moreover, bark SIRM was higher at the side of the trunk facing the prevailing 33 34 wind direction. Significant relationships between SIRM of different genera validate the possibility to

combine bark SIRM from different genera to improve sampling resolution and coverage in biomagnetic
 studies. Thus, the SIRM signal of trunk bark from urban trees is a reliable proxy for atmospheric coarse
 to fine PM exposure in areas dominated by one PM source, as long as variation caused by genus,
 circumference and trunk side is taken into account.

39

40 Keywords

41 Magnetic biomonitoring – urban green - tree trunk bark - SIRM – air pollution – particulate matter

42

43 Acknowledgements

44 This study was supported by the Belgian Science Policy (Belspo) within the Belgian research action through interdisciplinary networks (BRAIN-be) with project number BR/175/A1/BIOVEINS-BE. This was 45 46 within the framework of the ERA-NET BiodivERsA project 'BIOVEINS - Connectivity of green and blue 47 infrastructures: living veins for biodiverse and healthy cities' (H2020 BiodivERsA32015104). A. Van 48 Mensel, R. Samson and K. Wuyts acknowledge funding from the University of Antwerp. P. Pinho acknowledges Fundação para a Ciência e a Tecnologia (FCT, 2020.03415.CEECIND). B. Muyshondt 49 50 acknowledges funding from a PhD grant Strategic Basic Research of the Research Foundation - Flanders (FWO, 1S84819N). C. Aleixo gratefully acknowledges FCT for the financial support (PhD grant reference 51 SFRH/BD/141822/2018). M. Alos Orti was supported by the European Social Fund's Dora Plus 52 53 Programme. J. Casanelles-Abella was supported by the Swiss National Science Foundation (project 54 31BD30_172467). P. Tryjanowski acknowledges the National Science Center Poland (NCN) for funding 55 through NCN/2016/22/Z/NZ8/00004. Moreover, we are grateful to Leen Van Ham and Hanne 56 Hendrickx for laboratory assistance and to Joana Margues and Piret Lõhmus for help with sample 57 collection.

58 1. Introduction

Air pollution is responsible for millions of premature human deaths worldwide every year (WHO 2018).
Particulate matter (PM) – a complex and varying mixture of particles – is one of Europe's most harmful
pollutants for human health (EEA 2020). Suspended in the air, PM can be inhaled and cause various
adverse health effects, including aggravation of respiratory and cardiovascular diseases (Pöschl 2005).
This is of particular concern in cities since urban air quality is worse than in the rural environment (EEA
2020). Air pollution has a direct economic impact, with rising cost for health insurances, reduced labour
productivity and higher absenteeism at work (European Environment Agency (EEA) 2020).

66

67 To estimate exposure to air pollution and potential health risks, it is important to monitor local air 68 quality. Especially valuable are easy to measure proxies that integrate the pollution signal over time 69 and provide a reliable estimate of air pollution level in any chosen locality. Biomagnetic monitoring, 70 i.e. the measurement of magnetic variables such as the Saturation Isothermal Remanent 71 Magnetisation (SIRM) of biological matrices exposed to the atmosphere, has been used increasingly 72 over the years to provide proxies of atmospheric PM concentration and of the amount and 73 composition of surface-accumulated PM and metals (Hofman et al. 2017). It is a straightforward, quick 74 method that allows the analysis of a lot of samples to create time-integrated air pollution maps at high 75 spatial resolution while taking into account specific local conditions (as opposed to air quality sampling 76 with sensors or air pollution modelling). Via deposition of PM on exposed surfaces, SIRM is related to 77 atmospheric mass concentrations of coarse and fine PM fractions (PM₁₀ and PM_{2.5}, i.e. PM with an 78 aerodynamic diameter smaller than 10 and 2.5 µm, respectively ; Hofman et al. 2020, Revuelta et al. 79 2014) and increases with exposure to motorised road and railroad traffic (Kardel et al. 2012; Wuyts et 80 al. 2018) and industrial emissions (Matzka and Maher 1999; Declercq et al. 2020). For more 81 background information on SIRM we refer to the review paper by Hofman et al. (2017).

82

Mosses, lichens, plant leaves and branches and even animals and human tissues have been used for 83 84 biomagnetic monitoring (Hofman et al. 2017). So far, the magnetic signal of tree bark from trunk and 85 branches has been only sparsely studied before, although some benefits can be deduced from its use. 86 Trunk bark from Acer rubrum trees near a highway was studied by Kletetschka et al. (2003) and showed 87 higher SIRM values at the forest-facing side as opposed to the road-facing side of trees. This difference 88 was presumed to be due to differences in surface wetness. Also Zhang et al. (2008) found that the 89 acquisition of magnetic particles by Salix matsudana trunk bark depends on orientation and height. 90 However, they found higher SIRM values at the pollution-source facing sides of trees. Brignole et al. 91 (2018) and Chaparro et al. (2020) showed that magnetic analysis of trunk bark is a good proxy for iron-92 rich fine particles trapped in the bark and overall load of trace elements in the bark and that it could

93 be used to make a distinction between locations with differences in air pollution. A study on branch 94 bark of *Platanus x acerifolia* (Wuyts et al. 2018) confirmed the presence of metal-containing particles 95 on and in bark and the potential of bark SIRM to distinguish between sites with different traffic 96 intensity, but also pointed to the accumulation of particles and SIRM with exposure time. To develop 97 a reliable methodology for PM exposure assessment based on biomagnetic monitoring with tree bark, potentially confounding factors need to be identified and knowledge on the influence of tree 98 99 characteristics and sampling methods on the magnetic signal of tree bark is necessary. The available 100 evidence is, however, limited and ambiguous. Moreover, previous studies are predominantly single-101 city studies which limits the number of species, climate types, PM exposure levels and PM source types, 102 and hence questions the generalizability of the biomagnetic approach.

103

104 In this study, we aimed to evaluate the variation in trunk bark magnetism of urban trees at large spatial 105 scale (i.e. in cities across the European continent), at local scale (i.e. within cities) and microscale (i.e. 106 within trees), in relation with levels of exposure to PM and genera. Therefore, the tree trunk bark from 107 39 genera was sampled in over 170 urban green areas (UGAs) in six European cities and analysed 108 magnetically for the SIRM. A multiple-city approach has the advantage of including multiple different 109 environmental and human-induced conditions. Particulate matter source abundance (e.g. surface area 110 of roads), measured and modelled ambient PM concentration, time of exposure, and orientation of 111 the sampled trunk were considered as indicators of PM exposure. The following research questions 112 were addressed: (1) Does trunk bark SIRM differ between cities in accordance with their mean 113 atmospheric PM concentrations? (2) Is the variation in trunk bark SIRM related to differences in tree 114 genus and does it influence the capacity of trunk bark SIRM to differentiate between cities regarding 115 PM? (3) Is variation in SIRM related to difference in levels of PM exposure, as indicated by modelled 116 atmospheric PM concentration, land use (to quantify PM source abundance), tree diameter (as an 117 indicator of time of exposure) and trunk side (orientation)? (4) What are the potential, drawbacks and 118 advantages of magnetic analysis of tree trunk bark to discriminate between sites with different PM 119 concentrations? We expect to see higher SIRM values on tree trunk bark in cities with worse air quality 120 (i.e. higher PM concentrations), in areas with more PM sources, in trees with a greater trunk 121 circumference (as indicator of tree age and as such exposure time) and at trunk sides oriented towards 122 the prevailing wind direction (more PM deposition due to greater chance of wet bark from rain and 123 increased impaction of particles from the air flow approaching the tree trunk).

124

125 2. Methods

126 2.1. Sampling locations

For this research, samples were collected in six European cities in the framework of the BiodivERsA 127 128 project 'BIOVEINS - Connectivity of green and blue infrastructures: living veins for biodiverse and 129 healthy cities'. These cities included Antwerp, Belgium; Lisbon, Portugal; Paris, France; Poznan, Poland; 130 Tartu, Estonia and Zurich, Switzerland (Table 1, Fig. S1 in supplementary information (SI)). The study 131 encompassed small cities with moderate population density and relatively low PM_{2.5} concentrations, 132 such as Tartu, as well as large cities with high population density (e.g. Paris) or high PM_{2.5} 133 concentrations (e.g. Poznan). Three climate types are covered in this study, i.e. temperate (Antwerp, 134 Paris, Poznan and Zurich), Mediterranean (Lisbon) and continental (Tartu). Long-term mean yearly 135 precipitation amounts vary between 529 and 1200 mm. The prevailing wind directions are dominated 136 by northwest to southwest winds except for the southeasterly winds prevailing in Zurich.

137Table 1. Summary of cities with their abbreviation (abb.), coordinates, mean annual concentration of fine particulate matter138in μg/m³ for 2019 and 2020 (PM2.5, EEA 2021), population density (inhabitants/km² in 2018 (Eurostat 2021)), prevailing wind139direction (WD, Meteoblue 2021), mean annual precipitation (in mm; reference period An: 1991-2020 (KMI 2021), Lx: 1991-1402018 (IPMA 2021), Pa: 1981-2010 (Météo-France 2021), Po: 1991-2020 (Climate Change Knowledge Portal 2021), Ta: 2016-1412020 (Estonian Weather Service 2021), Zu: 1991-2020 (MeteoSwiss 2021), climatic zone according to the Köppen – Geiger142climate classification (Kottek et al. 2006; Cfb: temperate maritime climate, Csa: warm Mediterranean climate, Dfb: moderate143continental climate with precipitation throughout the year) and number of sampled trees of the four main genera (Acer,

- 144 Fraxinus, Quercus, Tilia) and all other genera with at least 10 trees sampled (Aesculus, Catalpa, Fagus, Juglans, Populus,
- 145 Robinia, Schinus, Ulmus). *Some UGAs were located outside the Paris city center where population density might be lower.

city	abb.	coordinates	PM _{2.5}	pop.	WD	prec.	clima	Acer	Fraxinus	Quercus	Tilia	other
				dens.			te					
Antwerp	An	51° 15' 36.7''N	12.52	1,094	SW	853	Cfb	24	9	38	22	22
		4° 24' 10.0''E										
Lisbon	Lx	38° 43' 20.1"N	9.47	1,011	NW	815	Csa	5	6	2	2	9
		9° 8' 21.6''W										
Paris	Ра	48° 51' 23.8''N	10.52	21,070*	SW	638	Cfb	21	12	11	17	60
		2° 21' 8.0''E										
Poznan	Ро	52°24'23.0''N	17.17	2,089	WSW	529	Cfb	63	6	7	28	18
		16°55'30.6''E										
Tartu	Та	58°22'40.9''N	5.18	14	SW	690	Dfb	17	2	10	40	19
		26°43'42.6''E										
Zurich	Zu	47°22'36.8''N	8.59	915	SSE	1200	Cfb	37	8	24	18	36
		8°32'30.1''E										

146

147 2.2. Experimental set-up and sampling

148 In each city, the aim was to select 36 urban green areas (UGAs) based on their size and connectivity in

the urban matrix according to the Urban Atlas 2012, as described in detail by Villarroya-Villalba et al.

150 (2021). The Urban Atlas 2012 was developed by the EU's Copernicus Land Monitoring Service based 151 on satellite image interpretation at 2.5 m resolution for the reference year 2012 (freely accessible at 152 https://land.copernicus.eu/). The Proximity Index (PI) was used to calculate the connectivity of UGAs. 153 It considered the area of and distance to nearby patches (radius of 5 km) with favourable habitat 154 (patches with a high probability of having trees). All possible UGAs were divided into six size and six PI classes, giving 36 possible combinations. Those combined classes were used to do a random stratified 155 156 sampling. In the end we were able to perform sampling in 173 UGAs, of which 34 in Antwerp, 12 in 157 Lisbon, 36 in Paris, 34 in Poznan, 22 in Tartu and 35 in Zurich.

158 Inside each selected UGA, four trees, preferably of the same species, were selected in the four main 159 wind directions around the centroid of the UGA. The centroid was predetermined as the centre of 160 gravity of the UGA. When there were no four suitable trees available inside the UGA, trees were 161 selected outside the UGA but as close to the UGA as possible. The genus of each sampled tree was 162 identified in the field. Trees preferably had a diameter between 20 cm and 80 cm to avoid young and very old trees and as such to ensure, as much as possible, uniformity in trunk bark structure within 163 164 genera. We expected variation in PM accumulation on the tree trunks due to influence of wind and 165 rain according to their prevailing direction and the position of PM sources relative to the trees. Since 166 these are expected to be tree-specific and difficult to determine accurately for each tree, particularly 167 for trees inside UGAs, we opted for uniformity and chose to collect bark at two fixed, opposite sides, 168 i.e. the north- and south-facing sides of the trunk, from here on mentioned as N- and S-facing sides. 169 Samples were taken at a height of 1.5 m above ground level using a stainless steel knife, by scraping 170 off the surface of the trunk. The bark scrape was intercepted with a plastic kidney dish, stored in a 171 labelled paper bag and transported to the lab. Tree stem circumference was measured using a 172 measuring tape at a height of 1.5 m above the ground. The knife and kidney dish were cleaned between the collection of different samples. 173

The sampling campaigns were performed sequentially in Antwerp (2 – 11 May 2018), Zurich (3 – 16 July 2018), Poznan (19 – 28 July 2018), Tartu (25 – 26 July and 3 – 14 September 2018), Paris (22 August – 2 September 2018) and Lisbon (11 May – 9 June 2019). In total, 1382 samples were collected from 684 trees of 39 genera in and around 173 UGAs. Four genera were sampled in all cities, i.e. *Acer, Tilia, Quercus* and *Fraxinus*, which together encompassed 429 trees. It should be kept in mind that, throughout this manuscript, data of a genus do not represent all species within the genus but yet reflect the data of several but not all unidentified species in the genus.

181 2.3. Sample preparation and magnetic analysis

182 Before storage, samples were dried at room temperature for at least a week in the lab. From each bark 183 sample, a subsample (with median mass of 617 mg) was taken and weighed using an electronic balance 184 with an accuracy of 0.0001 g. This subsample was thoroughly packed in cling film, to avoid movement of the bark, and pressed into a plastic sample pot with a volume of 6.7 10⁻⁶ m³. For magnetising the 185 subsample, we followed the protocol described by Kardel et al. (2011). We used a pulsed DC magnetic 186 187 field of 0.8 T to magnetise the subsample with the Molspin pulse magnetiser (Molspin Ltd, UK). The 188 volume magnetisation of the subsample was measured immediately after magnetisation using a JR-6 magnetometer with a sensitivity of 10^{-8} A m⁻¹ (AGICO, Czech Republic), as the average of two 189 190 measurements. Method blanks were included as sample pots with the same amount of cling film as was used to pack the subsamples. The obtained volume magnetisation values (in A m⁻¹) were 191 192 multiplied by the volume of the sample pot to obtain the magnetic moment (A m²). The magnetic 193 moment was normalised by dividing by the mass of the subsample, which resulted in the mass-194 normalised saturation isothermal remanent magnetisation (SIRM) expressed as A m² kg⁻¹. Samples 195 were weighted and magnetically analysed between August 2018 and December 2019.

196 2.4. Land-use classification

Land-use classes in the neighbourhood of the UGAs were extracted from the Urban Atlas (UA) 197 198 (Copernicus Land Monitoring Service 2012) within a buffer of 200 m radius around the centroid of the 199 UGA. Land use categories were selected and combined into land-use classes to represent potential 200 sources of PM: agricultural area (UA categories 21000, 22000, 23000), urban area (UA categories 201 11100, 11210, 11220, 11230, 11240), roads (UA categories 12210, 12220), industrial area (UA 202 categories 12300, 13100, 13300) and railways (UA category 12230). Land-use categories with a 203 possible sink capacity for PM are combined in the land-use class green area (UA categories 14100, 204 14200, 31000, 32000). The area in square meters was calculated for each one of the six combined land-205 use classes in each buffer area of 200 m radius to represent the cover of this land-use class in the 206 vicinity of the UGA.

207 2.5. Statistical analysis

208 2.5.1. City, genus and PM exposure

To make the dataset more balanced, we only worked with data from genera for which we had at least 20 samples throughout all cities. This resulted in a dataset with 1178 observations from 593 trees of 12 genera in 164 UGAs, further called the full 12-genera dataset (number of samples N = 228 in Antwerp; 48 in Lisbon; 242 in Paris; 243 in Poznan; 175 in Tartu and 242 in Zurich). These 12 genera were: *Acer* (N = 332), *Tilia* (N = 254), *Quercus* (N = 180), *Aesculus* (N = 86), *Fraxinus* (N = 86), *Populus* (N = 72), *Robinia* (N = 46), *Fagus* (N = 32), *Catalpa* (N = 24), *Juglans* (N = 22), *Schinus* (N = 22) and *Ulmus* 215 (N = 22). The median circumference of the sampled trees was 129 ± 51 cm. Striking was the significantly 216 higher circumference for Tartu trees (170 ± 48 cm). Because the SIRM data were right-skewed, we In-217 transformed them before analysis. The covers of each of the six combined land-use classes were tested 218 for correlation using the Spearman correlation test and only significantly uncorrelated PM sources 219 were used to investigate whether variation in bark SIRM can be explained by the land-use class covers 220 (PCA, Fig. S2 in SI). A mixed model was built with UGA-ID and tree-ID as random factors, with the latter 221 nested in the first, and city (factor, 6 levels), orientation (factor, 2 levels), genus (factor, 12 levels), tree 222 circumference (continuous), cover of industrial area (continuous), cover of roads (continuous) and 223 their two-way interactions as fixed factors. This model was optimised stepwise for random and fixed 224 factors based on the comparison of the Akaike Information Criterion (AIC). Model diagnostic plots were 225 checked. P values of fixed effects were obtained with the function ANOVA.

In the next step, to gain better insight on the possible interactions of the explanatory variables with
the genus effect, we focused on the four genera that occurred in all of the six cities, namely *Acer, Tilia, Quercus* and *Fraxinus*. These four genera represent 72% of the full 12-genera dataset (Table 1) and is
further on called the 4-genera dataset (N_{total} = 852: N_{Antwerp} = 185; N_{Lisbon} = 30; N_{Paris} = 122; N_{Poznan} = 207;
N_{Tartu} = 138; N_{zurich} = 170). Hereon, we applied and optimized a similar mixed model as above with only
four levels for the variable genus.

232 Next, we investigated the relationship of SIRM values with PM exposure at city level, taking the city-233 specific mean annual measured PM_{2.5} concentrations of 2019-2020 (Table 1) as indicator. A mixed 234 model was built to evaluate influence of the mean annual PM_{2.5} concentration at city level on the SIRM 235 values and taking into account genus, circumference, tree trunk side and cover of industry and roads. 236 This was done for both the 12-genera and the 4-genera dataset. Acer was the only genus that was 237 represented in each city with at least five trees. Therefore, at city level, the correlation between 238 median bark SIRM values of Acer with 2-year-mean annual PM concentrations was tested with a 239 Pearson correlation test (N = 6).

240 2.5.2. Correlation of modelled PM data with bark SIRM values for Antwerp

For the locations of all trees sampled in Antwerp (N = 129), modelled PM₁₀ and PM_{2.5} concentrations for the years 2018 and 2019 were extracted from concentration maps derived from the ATMO-Street model chain (Lefebvre et al. 2013; IRCELINE 2018, 2019) using QGIS software (QGIS Development Team 2020). The SIRM and the modelled PM₁₀ and PM_{2.5} data were right-skewed and were Intransformed prior to analysis. A mixed model was built to investigate the effect of modelled PM concentrations on the measured SIRM values. Orientation (factor, 2 levels), genus (factor, 12 levels), tree trunk circumference (continuous) and GIS-extracted modelled PM concentrations (continuous)

- 248 were used as fixed factors. UGA-ID and tree-ID were used as random factors, with the latter nested in
- the first. The same model (but without the explanatory variable "genus") was run for subsets of the three most common genera in Antwerp: *Quercus* (N = 76), *Acer* (N= 47) and *Tilia* (N = 44).
- 251 2.5.3. Spatial interpolation and inter-genera correlation
- 252 To investigate relations between the bark SIRM values of the different genera, spatial interpolation 253 was performed at city level for Acer data (the most sampled genus) for the cities with sufficient 254 coverage of Acer trees: Antwerp (N = 24), Poznan (N = 63) and Zurich (N = 37). Interpolation was done 255 on the mean values per Acer tree (i.e. mean of N and S samples) using QGIS (QGIS Development Team 256 2020). After this, the SIRM values for Acer were extracted from the interpolated maps at the locations 257 of the trees from the two other abundant genera Tilia and Quercus in Antwerp (N_{Tilia} = 15, N_{Quercus} = 258 20), Poznan (N_{Tilia} = 17, N_{Quercus} = 6) and Zurich (N_{Tilia} = 18, N_{Quercus} = 24). The Pearson correlation test 259 was used on the In-transformed data to check for correlations between the interpolated SIRM values 260 of genus Acer and the mean measured SIRM values of Tilia and Quercus (i.e. the mean of samples at 261 N- and S-sides of the tree). All statistical analyses were performed in R 4.1.2 (R Core Team 2021). The 262 linear mixed models were built on In-transformed SIRM data using the package nlme (Pinheiro et al. 263 2021). Images were made using the package ggplot2 (Wickham 2016). In all statistical tests, p-values ≤ 264 0.05 were considered as significant.

265 **3. Results**

266 3.1. City, genus and PM exposure: the 12-genera dataset

The tree trunk bark SIRM value ranged between 3.0 and 10346.6 μ A m² kg⁻¹ over the six cities and 12 267 268 genera (i.e. those with at least 20 samples), with a median value of 406.2 µA m² kg⁻¹. Genera to climate 269 relationships were observed e.g., Catalpa and Juglans were only represented in the southern cities. 270 According to the mixed model, with UGA-ID and tree-ID as nested random factors, city (p < 0.0001), 271 genus (p < 0.0001), circumference (p < 0.0001), orientation (p = 0.0009), cover of industrial area (p = 272 0.0028) and cover of roads (p = 0.0011) contributed significantly to the variation in bark SIRM of the 273 12 genera. There was a significant interaction between city and circumference (p = 0.0063), city and 274 orientation (p < 0.0001), city and cover of industrial area (p = 0.0038, Fig. S3 in SI) and between city 275 and cover of roads (p < 0.0001, Fig. S3 in SI). The lowest SIRM values occurred in Zurich, while the 276 highest values were observed in Poznan (Fig. 1). The median SIRM values of the bark including the 12 277 genera increased in the following order: Zurich, Tartu, Paris, Antwerp, Lisbon, Poznan. The SIRM values 278 were significantly higher in Antwerp, Lisbon and Poznan than in Paris, Tartu and Zurich.

281

Fig. 1 Median and quantile normalised SIRM values of tree trunk bark for the 12-genera dataset (a) and the 4-genera dataset (b) for the six cities under investigation (An= Antwerp, Lx = Lisbon, Pa = Paris, Po = Poznan, Ta = Tartu, Zu = Zurich; 12-genera dataset: $N_{An} = 228$, $N_{Lx} = 48$, $N_{Pa} = 242$, $N_{Po} = 243$, $N_{Ta} = 175$, $N_{Zu} = 242$; 4-genera dataset: $N_{An} = 185$, $N_{Lx} = 30$, $N_{Pa} = 122$, $N_{Po} =$ 207, $N_{Ta} = 138$, $N_{Zu} = 170$). The horizontal lines represent Q1, median and Q3. SIRM values can be read off from the left y-axis. Different letters indicate significant differences in SIRM values between the cities according to the mixed model outcome. Red triangles represent the, mean annual concentration of fine particulate matter in $\mu g/m^3$ for 2019 and 2020 (PM_{2.5}, EEA (2021)) as shown in Table 1 and values can be read off from the right y-axis. Mind the logarithmic scale of the y-axes.

289

The SIRM varied significantly between the genera (overview in Fig. S4 in SI). Taking into account the variation caused by city and tree circumference, the lowest values occurred in *Fagus*, intermediate values (in order of increasing values) in *Populus*, *Fraxinus*, *Acer*, *Catalpa*, *Quercus*, *Ulmus*, *Tilia*, *Aesculus* and *Juglans*, and the highest values (in order of increasing values) in *Robinia* and *Schinus*.

In all cities, the bark SIRM significantly increased with increasing circumference (Fig. 2a), following a linear relationship between the In-transformed bark SIRM and the tree circumference and thus the tree trunk bark SIRM values increased exponentially with tree circumference. However, there was a significant interaction effect between circumference and city. The trend lines were significantly steeper for Paris and Poznan than for Antwerp, Tartu and Zurich (Fig. 2b).

279 280

Fig. 2 Normalised SIRM values of tree trunk bark in function of tree trunk circumference for all cities (a) and for the six studied
 cities individually (b) (An = Antwerp, Lx = Lisbon, Pa = Paris, Po = Poznan, Ta = Tartu and Zu = Zurich). Given the logarithmic
 scale of the y-axis, there is an exponential trend of increasing SIRM values with expanding tree trunk circumference at a height
 of 1.5 m above ground plotted with geom_smooth. Grey bands show the 95% confidence interval.

In general, the SIRM values at the N-facing side of trees were lower than at the S-facing side of trees (p < 0.0001) but there was a significant interaction between orientation and city (p < 0.0001). In Antwerp, the S-facing bark had significantly higher SIRM values (p < 0.0001), while in Lisbon, the SIRM of the N-facing bark was higher (p = 0.0002). In Antwerp, the median at the N-facing side was 35 % lower than at the S-facing side. In Lisbon, the SIRM median values at the N-facing side were double of those on the S-facing side. In Paris, Poznan, Tartu and Zurich, no significant differences occurred in bark SIRM between N and S orientation (Fig. 3).

Fig. 3 Normalised SIRM values at the north (N)- and south (S)- facing sides of the sampled trees. Results are shown for the 12 genera for which at least 10 trees were sampled In the six studied cities (An = Antwerp, Lx = Lisbon, Pa = Paris, Po = Poznan, Ta = Tartu and Zu = Zurich). Asterisk shows cities with significant differences between both sides (* = $p \le 0.05$). Mind the

317 *logarithmic scale of the y-axis.*

The cover of roads and cover of industry were not significantly correlated (r = 0.07, p = 0.3885) and 318 319 contributed both to the variation in SIRM. The cover of industrial area in the buffer zones did significantly correlate with the cover of urban area (r = -0.34, p < 0.0001), agriculture (r = -0.22; p = 320 321 0.0038) and railways (r = 0.15, p = 0.0532). The cover of industrial area and roads around the UGA 322 centroid had a positive significant effect on the SIRM values, but these effects were city-dependent. The SIRM values increased significantly more per unit surface increase of industrial area in Zurich than 323 324 in Antwerp, Lisbon and Paris. The least steep relationship between the SIRM value and cover of 325 industrial area was found in Paris; only in Tartu and Zurich, this relationship was significantly steeper. 326 Also for the cover of roads, there was an interaction with the city effect: the SIRM values increased 327 more with an increasing cover of roads in Poznan, Zurich and Paris than they did in Lisbon and Antwerp.

328 3.2. City, genus and PM exposure: the 4-genera dataset

When considering only the four genera that occurred in all of the six cities, namely *Acer* (N = 332), *Tilia* (N = 254), *Quercus* (N = 180) and *Fraxinus* (N = 86), the SIRM values ranged between 3.0 and 10346.6 μ A m² kg⁻¹ over the six cities and four genera (i.e. those that occur in all cities), with a median value of 412.1 μ A m² kg⁻¹. The optimised mixed model, with UGA-ID and tree-ID as nested random factors, indicated a significant contribution of city (p < 0.0001), genus (p = 0.0004), circumference (p < 0.0001), orientation (p = 0.0019), cover of roads (p = 0.0036) and cover of industrial area (p = 0.0085) to the variation in bark SIRM, with a significant interaction between city and orientation (p = 0.0001), city and cover of roads (p = 0.0003) and city and cover of industrial area (p = 0.0117). The lowest SIRM values
occurred in Zurich, while the highest values were observed in Poznan (Fig. 1). The median values of the
bark SIRM including the four genera increased in the following order: Zurich, Paris, Tartu, Antwerp,
Lisbon, Poznan.

340 The lowest SIRM values were for samples of the genera Fraxinus and Acer, while the genus Quercus 341 had intermediate values and the values for Tilia samples were significantly higher than those of Acer 342 (p = 0.0018) and *Fraxinus* (p = 0.0298) (overview in Fig. S4 in SI). Moreover, a significant increase in 343 SIRM values was observed with tree circumference (p < 0.0001), irrespective of genus and city. In 344 general, significantly higher SIRM values were observed at the S-facing side of the tree, as opposed to 345 the N-facing side of the trees (p < 0.0001), but there was a significant interaction between city and 346 orientation (p = 0.0001). There were significant differences between samples from N- and S-facing side 347 of trees in Antwerp and Lisbon. In Antwerp, the median at the N-facing side was 34 % lower than at 348 the S-facing side. In Lisbon, the opposite was true with median values at the N-facing side that were 349 more than three times as high (314 %) as those on the S-facing side.

350 The covers of industrial area and roads in the vicinity of the UGAs had a positive significant effect on 351 the SIRM values, but these effects were city-dependent. As with the 12-genera dataset, the SIRM 352 values increased significantly more per surface of industrial area in Zurich then in Antwerp, Lisbon and 353 Paris. The least steep relationship between SIRM value and cover of industrial area was found in Paris, 354 only in Tartu and Zurich this relationship was significantly steeper. Also the cover of roads, interacted 355 significantly with the city effect: SIRM values increased more with an increasing cover of roads in 356 Poznan, Zurich and Paris than in Antwerp. In Tartu, the increase in SIRM values with cover of roads was 357 significantly lower than in Paris, but did not significantly differ from the other cities.

358 3.3. Relationships of SIRM values with PM data

Following the mixed models outcome in which the circumference, genus, tree side and land-use classes were accounted for, the cities' mean annual measured $PM_{2.5}$ concentration contributed significantly to the variation in SIRM, for both the 12-genera (p < 0.0001) and the 4-genera (p < 0.0001) dataset. Positive relationships between the annual measured $PM_{2.5}$ concentration and the SIRM were observed. Moreover, the six median bark SIRM values of *Acer* – the only genus with at least five trees in each city – correlated significantly and positively with the cities' mean annual measured $PM_{2.5}$ concentrations (r = 0.91, p = 0.0124, Fig. S5 in SI).

For the detailed analyses in Antwerp, the modelled PM₁₀ and PM_{2.5} concentrations were correlated (in each year 2018 and 2019: p < 0.0001) and so were the PM concentrations of the different years 2018 and 2019 (in each size fraction PM_{2.5} and PM₁₀: p < 0.0001). For this reason, only one series of data for PM concentrations was kept in the model at the same time. For none of the years and fractions did the modelled PM concentration at the sampling locations contribute to the explanation of the variation in SIRM values ($PM_{2.5, 2018}$: p = 0.9033; $PM_{10, 2018}$: p = 0.9451; $PM_{2.5, 2019}$: p = 0.9125; $PM_{10, 2019}$: p = 0.7716). For all of the three subsets of the most common genera in Antwerp, the same conclusions could be drawn.

374 3.4. Inter-genera correlation

There was a significant correlation between the SIRM values for *Tilia* trees (averaged at tree level) and the interpolated SIRM values for genus *Acer* extracted at the *Tilia* tree location (r = 0.74, p < 0.0001). Similarly, the SIRM values for trees of the genus *Quercus* were significantly correlated with the interpolated SIRM values for *Acer* extracted at the *Quercus* tree locations (r = 0.75, p < 0.0001). The relationship between these values is described by the linear relationships SIRM_{Acer} = 0.3 * SIRM_{Tilia} + 531.5 and SIRM_{Acer} = 0.2 * SIRM_{Quercus} + 394.5 (Fig. 4, Fig. S6 in SI).

381

382

383

388 4. Discussion

This study is the first to study tree bark SIRM on a continental scale, in different climate zones, in different urban settings and with a large variety of genera. Our results indicate the importance of surrounding land use, genus, tree circumference and orientation resulting in differences in bark SIRM

related to PM exposure. The median tree trunk bark SIRM value of 406.2 µA m² kg⁻¹ obtained in this 392 study falls within the range of SIRM values for bark found by Hofman et al. 2017 (4.3 to 2980 μ A m² kg⁻ 393 ¹) and Kletetschka et al. 2003 (270 to 1530 µA m² kg⁻¹ in Goddard, Maryland, US), but is lower than the 394 range of 2500-19200 µA m² kg⁻¹ observed by Chaparro et al. (2020) in Mar del Plata in Argentina. 395 396 Moreover, a large range with SIRM values up to 10346.6 µA m² kg⁻¹ was observed in this study. This 397 large variation in SIRM value here is probably the result of the large extent of the study, including a 398 large sample size in different urban settings and climate zones, and the large variation in factors that 399 influence the bark SIRM value, i.e. tree genus, tree circumference and site- and city specific PM 400 exposure.

401 4.1. Inter-city variations in SIRM

402 The trunk bark SIRM differed between cities, with higher values in Poznan, Lisbon and Antwerp and 403 lower values in Paris, Tartu and Zurich (Fig. 1). This is in line with the higher recent mean annual 404 concentrations of PM_{2.5} measured in Antwerp and Poznan and the lower PM_{2.5} concentrations for Tartu 405 and Zurich (Table 1, Fig. 1), in spite of the difference in time span represented by bark SIRM (which 406 increases with tree age (see §4.4.2) and thus can be considered a time-integrated PM proxy) and the 407 recent PM_{2.5} concentrations. However, Paris and Lisbon seem to deviate slightly from this similarity: trees in Paris had lower bark SIRM and those in Lisbon higher SIRM values than could be expected 408 409 based on the mean annual PM_{2.5} concentrations. In Paris, site selection included parks outside the city 410 center and sometimes in low urbanised landscape far away from the most urbanised sites; this can 411 explain SIRM values being lower than expected from the city's mean annual PM_{2.5} concentration. In 412 Lisbon, sampling was performed one year later than in the other cities, which may have contributed 413 to higher SIRM values than expected, although this effect is expected to be marginal. Nonetheless, the 414 measured PM_{2.5} concentrations can significantly explain variation in SIRM at city level when the influence of genus, circumference, tree trunk side and the cover of roads and industry are controlled 415 416 for. The tree trunk SIRM increased with increasing levels of mean annual PM2.5 concentrations. More 417 specifically, when only SIRM values of Acer were considered, i.e. the only genus with at least five trees 418 sampled per city, also a significant and positive correlation was observed between the cities' mean 419 annual measured PM2.5 concentrations and their median bark SIRM. Our results confirm that trunk 420 bark SIRM differs between cities in accordance with their mean atmospheric PM concentrations 421 (research question 1).

When considering the four genera that occurred in all cities, the interaction between city and genus
was not significant, so the differentiating power of bark SIRM between cities with different PM_{2.5} levels
was similar for each of the considered genera. We conclude that the power of trunk bark SIRM to

differentiate between cities according to their mean annual PM concentration is irrespective of thefour widespread genera considered in this study (research question 2).

427 4.2. Inter-tree variation in SIRM

428 4.2.1. PM sources in tree surroundings

429 Across the six cities, the bark SIRM values were found to increase with increasing covers of industrial 430 area and of roads in the surroundings of the UGAs. These results indicate the sensitivity of bark SIRM 431 to magnetic PM emissions from industrial activities and traffic. Elevated SIRM signals in industrial areas 432 and closer to roads with motorised traffic opposed to green areas have been observed previously for 433 leaves (Hansard et al. 2011; Castanheiro et al. 2016; Kardel et al. 2012; Moreno et al. 2003), the bark 434 of tree branches (Wuyts et al. 2018) and tree trunk bark (Brignole et al. 2018). This study, nonetheless, 435 goes beyond the categorical comparison of land use classes and is, to our knowledge, the first to 436 identify a relationship between tree trunk bark SIRM and the cover of industrial area and roads in the 437 vicinity of the sampling location, and thus to quantitatively generalise the influence of land use on 438 SIRM (research question 3).

439 Furthermore, the interactions of the city effect with the cover of industrial area and with the cover of 440 roads suggest that the effect size of road and industry cover on bark SIRM was city-specific. As amount, 441 chemical composition and size fraction distribution of deposited PM influence its SIRM signal (Hofman 442 et al. 2014a; Castanheiro et al. 2021), these interactions imply that industrial areas and roads in 443 different cities emit magnetic PM in different amounts per surface area and/or in other chemical 444 composition or size fraction distribution. Indeed, studies by Sawidis et al. (2011) on accumulated 445 metals in tree bark and by Baldacchini et al. (2017) on PM on leaves at street sites found different 446 chemical compositions across European cities. These differences were attributed to differences in PM 447 sources, i.e. local geochemistry, population density, the type and location of industrial activities and 448 traffic, and the rate of technological innovations and emission control programs. We, therefore 449 recommend further research to look into the potential of tree trunk bark SIRM to differentiate 450 between different source types, whether or not in combination with chemical analyses (Lopes Moreira 451 et al. 2016).

452 4.2.2. Modelled PM concentrations

Bark SIRM values did not significantly correlate with the modelled PM₁₀ and PM_{2.5} concentrations in Antwerp city. This is in line with the findings of Hofman et al. (2014b) who saw a bad agreement between SIRM values of ivy (*Hedera* sp.) leaves and modelled atmospheric PM₁₀ concentrations. Using measured PM concentrations, however, Mitchell and Maher (2009) did find a strong correlation between leaf SIRM values and pumped air filter particulate mass. The disagreement between the 458 modelled PM₁₀ and PM_{2.5} concentrations and the bark SIRM values in our study can be explained by 459 the time range during which PM has been accumulating on the sampled bark. When samples are 460 collected from 50-year-old trees, they have been subjected to PM concentrations in the air at that 461 specific location for all those years. The modelled PM₁₀ and PM_{2.5} concentrations from the previous 462 years are likely not representative of the PM exposure in the lifespan of the trees. Moreover, 463 inaccuracies in the PM model outcomes are plausible due to limited or inaccurate input data (e.g. 464 limited number of measuring stations and uncertainty in emission data), model assumptions and local 465 and temporary conditions (Lefebvre et al. 2013). Also, in a mixed-source environment, variation in SIRM reflects not only differences in atmospheric PM₁₀ or PM_{2.5} concentrations but also in composition 466 467 and magnetic grain size, since different PM sources may induce different leaf SIRM values at 468 comparable Fe content or atmospheric PM mass concentration (Baldacchini et al. 2017, Hansard et al. 469 2011). This was also pointed out by the different relationships between bark SIRM and the cover of 470 roads and industrial land use (§4.2.1). Our SIRM data were capable of capturing the high spatial 471 variation in PM exposure typical of urban settings, both in amount and composition, and can take into 472 account local conditions. Hence, we suggest measuring bark SIRM values to get a better idea of the 473 spatial variation in anthropogenic coarse and fine PM concentrations at a higher spatial resolution in 474 order to complement PM measurements and to be taken into account in PM concentration models, 475 preferentially in areas dominated by the same anthropogenic PM source.

476 4.2.3. Genera and bark structure

477 The bark SIRM significantly depended upon the genus of the sampled tree. Notable are the low values 478 for Faqus trees and high values for Robinia and Schinus. In the smaller 4-genera dataset (with genera 479 sampled in all cities) the SIRM values of the genera Acer and Fraxinus were significantly lower than 480 those for Tilia. Roughness of the exposed surface is a variable known to increase deposition of PM as 481 proven by Muhammad et al. (2020) for leaves, and our results suggest that it seems to play a role in 482 accumulation of PM on bark too. The sole representative of Fagus in Europe is F. sylvatica, which 483 displays a very smooth and thin bark at all ages. The genus Acer in this study encompassed A. 484 pseudoplatanus and A. platanoides, both showing a smooth bark surface at young and intermediate 485 age and a rougher bark surface only at later age (with shallow cracks and furrows, respectively). In 486 addition, since the magnetic signal of bark is confined to the outermost surface (Wuyts et al. 2018), 487 exfoliation as observed for A. pseudoplatanus bark scales at later age can reduce the magnetic signal. 488 The very rough, non-exfoliating bark of Robinia pseudoacacia (the sole representative of the Robinia 489 genus in this study) and the genus Schinus can explain their very high values of bark SIRM. The dense 490 longitudinal fissures and cracks in the bark of the Tilia species in this study (T. platyphyllos, T. cordata 491 and T. tomentosa) provide a rough surface as well, but yet with micro-roughness rather than Robinialike macro-roughness. It should be noted also that a thick bark may dilute the magnetic signal per mass unit, as the accumulation is restricted mainly to the exposed surface (Wuyts et al. 2018). This could cause underestimation of the PM accumulation on bark of species with thick bark, such as *Quercus* and *Populus*. Nonetheless, rough bark surface seems to stimulate PM accumulation, but it is probable that other trunk bark traits also play a role in bark PM accumulation, such as its water holding capacity and wettability.

498 4.2.4. Tree circumference as a measure for exposure time

499 Tree trunk bark SIRM increased with increasing tree trunk circumference, probably via its relationship 500 with tree age. With increasing tree trunk circumference, the In-transformed bark SIRM signal increased linearly (Fig. 2), and this for all genera studied and a broad range of circumferences, i.e. between 50 501 502 and 300 cm. For a given PM deposition velocity on bark, it can be expected that PM accumulates on 503 bark with time, at least for trees with non-exfoliating bark, resulting in increasing PM per surface area 504 and SIRM as trees age whilst their circumference increases. In conditions with low competition for light 505 as can be expected in urban settings, tree circumference can be considered as a rough indicator of tree 506 age (Wegiel et al. 2017). According to Catinon et al. (2009), the accumulation of superficial deposits on 507 young stems of F. excelsior trees reaches a maximum after 10-15 years, after which the accumulation 508 per area unit of bark only slowly increases. Increasing SIRM values with tree age were also observed 509 by Wuyts et al. (2018) who investigated SIRM values of *Platanus x acerifolia* tree branches of different 510 ages. The effect of surface roughening with aging, stimulating the deposition of PM on the surface, 511 may also have played a role in the early years of tree development. It should be kept in mind that for 512 trees in urban environments tree age and exposure time may not fully coincide: urban trees are 513 brought in at variable ages and diameters from a tree nursery where they have experienced PM 514 exposure different from that at their current urban location during a period that may also very from 515 tree to tree. The time since tree planting is therefore probably more representative of the exposure 516 time than tree diameter. The increase in SIRM values with tree trunk circumference was city-517 dependent as not all slopes in the relationship were equally steep for each city (Fig. 2b) and a significant 518 interaction occurred between circumference and city effects. Via the relation of circumference with 519 tree age and thus exposure time, an explanation for this interaction can be found in differences in the 520 growth rate of trees and accumulation rate in the different cities. The latter, in turn, could relate to 521 differences in PM concentrations, PM size distribution and meteorology (e.g. wind speed and rain) 522 between cities. Although the effect of exposure time on tree trunk circumference is city-dependent, 523 we can conclude that tree trunk circumference will increase with tree age in all cities without reaching 524 a maximum value and this irrespective of genus.

525 4.3. Intra-tree variation in SIRM: orientation

526 Although the bark SIRM values were in general lower at the N-facing than at the S-facing side of trees 527 (Fig. 3), a significant interaction with city was observed. The SIRM values in Antwerp and Lisbon were 528 1.5-2 times higher at the side of the tree that corresponds to the prevailing wind direction (in Antwerp 529 SW and in Lisbon NW). For the other cities, the sampling sides did not coincide with the prevailing wind 530 direction, so no potential effect of prevailing wind direction could be detected. The prevailing wind-531 facing side of trees is more likely to get wet from rain during a downpour than the other side of the 532 tree. The presence of water facilitates the deposition of PM and stickiness for particles is higher on 533 moist surfaces (Kletetschka et al. 2003), but a possibly higher wash-off at this side may also occur. 534 Moreover, the wind-facing side of trees undergoes a larger impaction of upcoming PM by the direct 535 air flow on the surface, a process which is most effective for coarse particles (Fowler et al. 2009), i.e. 536 the particles with the highest magnetic concentration (Revuelta et al. 2014).

537 4.4. Advantages and drawbacks of biomagnetic monitoring using tree trunk bark

538 In the light of research question 4, we here evaluate the potential, drawbacks and advantages of using 539 magnetic analysis of tree trunk bark to discriminate between sites with different PM concentrations, 540 based on our study's results and experience. As atmospheric PM will predominantly accumulate at the 541 outer surface of the tree (Wuyts et al. 2018), it is better to collect bark with an object that takes a small 542 and fixed surface (e.g. a corer or template). This enables the calculation of surface-normalised bark 543 SIRM, making the samples independent of bark thickness while ensuring that the entire surface is 544 sampled instead of only the protrusive bark parts. Alternatively, all samples need to be taken up to a fixed and not too large depth otherwise the signal might be diluted for each species differently. 545 546 Moreover, we suggest to use tree species that can be sampled rather easily, i.e. species with a 547 smoother trunk (e.g. F. sylvatica), and avoid species with a very rough or exfoliating trunk (e.g. Platanus 548 sp.). When there is limited time or resources, and only one sample per tree can be taken, it is advised 549 to take samples according to the overall predominant wind direction as this will result in the highest 550 SIRM values with the lowest relative measuring error in areas with low air pollution. Furthermore, the 551 significant relationships between the SIRM values of Acer-Tilia and Acer-Quercus tree pairs (Fig. 4) 552 endorse the possibility of increasing the spatial sampling resolution and cover of a biomagnetic monitoring study through the combination of different tree genera. SIRM values of different genera 553 554 are then to be rescaled to the most abundant genus with inter-genera calibration formulae. A similar 555 suggestion was made before for leaves by Kardel et al. (2011) based on a linear relationship between 556 the leaf SIRM of pairwise co-located *Tilia sp.* and *Carpinus betulus* trees.

557 Sampling trunk bark for biomagnetic monitoring has some advantages over the use of leaves and 558 branches. It can be sampled during all seasons, as opposed to leaves of deciduous species. When 559 working with leaves in temperate climates, research in winter periods is limited to evergreen species 560 which will reduce the spatial resolution of the study. Moreover, trunk bark can be sampled at breathing 561 height, which is more relevant for human PM exposure assessments. In many cases, this is a height 562 where branches and leaves are not available. When sampling leaves or branches high up in the canopy, 563 often a telemetric pruner or, even more complicated in urban settings, a crane needs to be used and 564 the chance of contamination of the samples is high. However, sampling of the tree trunk also has 565 disadvantages. In absence of a tree database with info on planting date, one cannot determine exactly 566 in an non-destructive, easy and cheap way the age of the bark and thus its exposure time. Therefore, 567 in order to use tree trunk magnetic sampling the tree trunk circumference must be controlled for either 568 during sampling or during statistical analysis. For young branches and foliage, and particularly for 569 leaves of deciduous species, surface exposure time generally is easier to assess. Moreover, preparing 570 trunk bark for magnetic analysis takes more time and effort than using branches (which can be easily 571 cut in pieces) or leaves (which can be rolled up) to fit in the plastic sample container for lab analysis.

572 5. Conclusion

573 The SIRM signal of trunk bark from urban trees varies greatly between and within cities, from 574 continental to tree level. Through their effect on magnetic PM accumulation on the exposed bark, tree 575 genus, cover of PM-emitting sources (i.e. roads and industry) near the tree, PM concentrations and 576 tree circumference (as an indicator of tree age) explain the variation observed in tree trunk bark. Intra-577 tree variation occurs in relation with trunk side (orientation) relative to the prevailing wind direction. 578 We can conclude that the magnetic signal of tree trunk bark is a good proxy for ambient coarse to fine 579 PM concentrations and enables to catch variation in anthropogenic PM exposure from traffic and 580 industry at a local scale in areas dominated by the same anthropogenic PM source . However, our 581 results point to the importance of monitoring bark SIRM with a standardised sampling protocol, in 582 which genus, tree circumference (or age) and trunk side are thoughtfully selected. Nonetheless, the 583 combination of different genera in one monitoring study with bark SIRM via inter-calibration seems 584 valid and could enhance a biomonitoring study's spatial sample resolution and coverage. Therefore, 585 we can recommend the use of bark from urban trees from different genera as an easy to measure, 586 reliable and time-integrative proxy for source-specific, coarse to fine PM exposure at local scale.

587

588 Statements & Declarations

589 Funding

590 This study was supported by the Belgian Science Policy (Belspo) within the Belgian research action

591 through interdisciplinary networks (BRAIN-be) with project number BR/175/A1/BIOVEINS-BE. This

- 592 was within the framework of the ERA-NET BiodivERsA project 'BIOVEINS Connectivity of green and
- blue infrastructures: living veins for biodiverse and healthy cities' (H2020 BiodivERsA32015104). A.
- 594 Van Mensel, R. Samson and K. Wuyts acknowledge funding from the University of Antwerp. P. Pinho
- 595 acknowledges Fundação para a Ciência e a Tecnologia (FCT, 2020.03415.CEECIND). B. Muyshondt
- 596 acknowledges funding from a PhD grant Strategic Basic Research of the Research Foundation -
- 597 Flanders (FWO, 1S84819N). C. Aleixo gratefully acknowledges FCT for the financial support (PhD
- 598 grant reference SFRH/BD/141822/2018). M. Alos Orti was supported by the European Social Fund's
- 599 Dora Plus Programme. J. Casanelles-Abella was supported by the Swiss National Science Foundation
- 600 (project 31BD30_172467). P. Tryjanowski acknowledges the National Science Center Poland (NCN)
- 601 for funding through NCN/2016/22/Z/NZ8/00004.
- 602 *Competing interests*
- The authors have no relevant financial or non-financial interests to disclose.
- 604 *Author contributions*
- 605 . Anskje Van Mensel, Karen Wuyts, Pedro Pinho and Roeland Samson worked on the conception and 606 design of the study. Anskje Van Mensel, Pedro Pinho, Babette Muyshondt and Marta Alos Orti 607 substantially contributed to the acquisition of the data. Anskje Van Mensel and Karen Wuyts worked 608 on the analysis and interpretation of the data. The first draft of the manuscript was written by Anskje 609 Van Mensel. Karen Wuyts, Pedro Pinho, Babette Muyshondt, Cristiana Aleixo, Marta Alos Orti, Joan 610 Casanelles-Abella, François Chiron, Tiit Hallikma, Lari Laanisto, Marco Moretti, Ülo Niinemets, Piotr Tryjanowski and Roeland Samson commented on previous versions of the manuscript. All authors read 611 612 and approved the final manuscript.
- 613 Ethical Approval
- 614 Not applicable
- 615 Consent to participate
- 616 Not applicable
- 617 Consent to publish
- 618 Not applicable
- 619 Availability of data and materials
- 620 Not applicable
- 621

622 References

- Baldacchini C, Castanheiro A, Maghakyan N et al (2017) How does the amount and composition of PM
- 624 deposited on *Platanus acerifolia* leaves change across different cities in Europe? Environ Sci
- 625 Technol 51:1147-1156. https://doi.org/10.1021/acs.est.6b04052

Brignole D, Drava G, Minganti V et al (2018) Chemical and magnetic analyses on tree bark as an
effective tool for biomonitoring: A case study in Lisbon (Portugal). Chemosphere 195:508–514.
https://doi.org/10.1016/j.chemosphere.2017.12.107

Castanheiro A, Samson R, De Wael K (2016) Magnetic- and particle-based techniques to investigate
metal deposition on urban green. Sci Total Environ 571:594–602.
https://doi.org/10.1016/j.scitotenv.2016.07.026

Castanheiro A, Wuyts K, Hofman J et al (2021) Morphological and elemental characterization of leaf deposited particulate matter from different source types: a microscopic investigation. Environ
 Sci Pollut Res 28:25716–25732. https://doi.org/10.1007/s11356-021-12369-z

Catinon M, Ayrault S, Clocchiatti R et al (2009) The anthropogenic atmospheric elements fraction: A
new interpretation of elemental deposits on tree barks. Atmos Environ 43:1124–1130.
https://doi.org/10.1016/j.atmosenv.2008.11.004

Chaparro M, Chaparro M, Castañeda-Miranda A et al (2020) Fine air particles trapped by street tree
barks: in situ magnetic biomonitoring. Environ Pollut 266:115299.
https://doi.org/10.1016/j.envpol.2020.115229

641ClimateChangeKnowledgePortal(2021)Climatology.642https://climateknowledgeportal.worldbank.org/country/poland/climate-data-historical.

643 Accessed 21 Nov 2021

- 644 Copernicus Land Monitoring Service (2012) Urabn Atlas 2012. http://land.copernicus.eu/. Accessed 1
 645 Dec 2018
- Declercq Y, Samson R, Van De Vijver E et al (2020) A multi-proxy magnetic approach for monitoring
 large-scale airborne pollution impact. Sci Total Environ 743:140718.
 https://doi.org/10.1016/j.scitotenv.2020.140718
- 649 Drava G, Ailuno G, Minganti V (2020) Trace Element Concentrations Measured in A Biomonitor (Tree

Bark) for Assessing Mortality and Morbidity of Urban Population: A New Promising Approach for

651 Exploiting the Potential of Public Health Data. Atmosphere 11. doi:10.3390/atmos11080783

652 Estonian Weather Service (2021) Annual precipitation. https://www.ilmateenistus.ee/kliima/climate-

653 maps/precipitation/annual/?lang=en. Accessed 11 Dec 2021

654 European Environment Agency (EEA) (2020) Air quality in Europe - 2020 report

European Environment Agency (EEA) (2021) European city air quality viewer.
 https://www.eea.europa.eu/themes/air/urban-air-quality/european-city-air-quality-viewer.

657 Accessed 11 Dec 2021

Eurostat (2021) Population density by NUTS 3 region.
https://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-115323_QID_5438C657_UID_-

22

661 3F171EB0&layout=TIME,C,X,0;GEO,B,Y,0;UNIT,B,Z,0;INDICATORS,C,Z,1;&zSelection=DS-

662 115323UNIT,PER_KM2;DS-115323INDICATORS,OBS_FLAG;&rankName1=UNIT_1_2_-

663 1_2&rankName2. Accessed 11 Dec 2021

Fowler D, Pilegaard K, Sutton MA et al (2009) Atmospheric composition change: ecosystemsatmosphere interactions. Atmos Environ 43:5193–5267.
https://doi.org/10.1016/j.atmosenv.2009.07.068

Hansard R, Maher BA, Kinnersley R (2011) Biomagnetic monitoring of industry-derived particulate
 pollution. Environ Pollut 159:1673–1681. https://doi.org/10.1016/j.envpol.2011.02.039

Hofman J, Wuyts K, Van Wittenberghe S et al (2014a) On the link between biomagnetic monitoring and
 leaf-deposited dust load of urban trees: Relationships and spatial variability of different particle

671 size fractions. Environ Pollut 192:285–294. https://doi.org/10.1016/j.envpol.2014.05.006

Hofman J, Lefebvre W, Janssen S et al (2014b) Increasing the spatial resolution of air quality
assessments in urban areas: A comparison of biomagnetic monitoring and urban scale
modelling. Atmos Environ 92:130–140. https://doi.org/10.1016/j.atmosenv.2014.04.013

675 Hofman J, Maher BA, Muxworthy AR et al (2017) Biomagnetic Monitoring of Atmospheric Pollution: A

- 676 Review of Magnetic Signatures from Biological Sensors. Environ Sci Technol 51:6648–6664. 677 <u>https://doi.org/10.1021/acs.est.7b00832</u>
- Hofman J, Castanheiro A, Nuyts G et al (2020) Impact of urban street canyon architecture on local
 atmospheric pollutant levels and magneto-chemical PM₁₀ composition: an experimental study
 in Antwerp, Belgium. Sci Total Environ 712:135534.
 https://doi.org/10.1016/j.scitotenv.2019.135534

682 IPMA (2021) List of surface weather stations - long series.
 683 https://www.ipma.pt/en/oclima/series.longas/list.jsp. Accessed 11 Dec 2021

684 IRCELINE (2019) ATMO-Street model

685 IRCELINE (2018) ATMO-Street model

- Kardel F, Wuyts K, Maher BA et al (2011) Leaf saturation isothermal remanent magnetization (SIRM)
 as a proxy for particulate matter monitoring: Inter-species differences and in-season variation.
 Atmos Environ 45:5164–5171. https://doi.org/10.1016/j.atmosenv.2011.06.025
- Kardel F, Wuyts K, Maher BA, Samson R (2012) Intra-urban spatial variation of magnetic particles:
 Monitoring via leaf saturation isothermal remanent magnetisation (SIRM). Atmos Environ
 55:111–120. https://doi.org/10.1016/j.atmosenv.2012.03.025
- Kletetschka G, Žila V, Wasilewski PJ (2003) Magnetic anomalies on the tree trunks. Stud Geophys Geod
 47:371–379. https://doi.org/10.1023/A:1023779826177

KMI (2021) Climate statistics of the Belgian municipalities. Antwerp (NIS11002).
https://www.meteo.be/resources/climatology/climateCity/pdf/climate_INS11002_9120_nl.pd
f. Accessed 11 Dec 2021 (in Dutch)

Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated.
 Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

Lefebvre W, Degrawe B, Beckx C et al (2013) Presentation and evaluation of an integrated model chain
to respond to traffic- and health-related policy questions. Environ Model Softw 40:160–170.
https://doi.org/10.1016/j.envsoft.2012.09.003

Matzka J, Maher BA (1999) Magnetic biomonitoring of roadside tree leaves: Identification of spatial
 and temporal variations in vehicle-derived particulates. Atmos Environ 33:4565–4569.
 https://doi.org/10.1016/S1352-2310(99)00229-0

705 Météo-France (2021) Climate Paris-Montsouris - normals.
706 https://meteofrance.com/climat/normales/france/ile-de-france/paris-montsouris. Accessed 11
707 Dec 2021 (in French)

- 708Meteoblue(2021)WeatherHistory&Clilmate.709https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/. Accessed 11 Dec7102021
- 711MeteoSwiss(2021)Climatenormals.Normvaluecharts.712https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-

713 normals/norm-value-charts.html?filters=precip_9120_yy. Accessed 11 Dec 2021

Mitchell R, Maher BA (2009) Evaluation and application of biomagnetic monitoring of traffic-derived
particulate pollution. Atmos Environ 43:2095–2103.
https://doi.org/10.1016/j.atmosenv.2009.01.042

Moreira TCL, de Oliveira RC, Amato LFL et al (2016) Intra-urban biomonitoring: Source apportionment
 using tree barks to identify air pollution sources. Environ Int 91:271–275.
 https://doi.org/10.1016/j.envint.2016.03.005

Moreno E, Sagnotti L, Dinarès-Turell J et al (2003) Biomonitoring of traffic air pollution in Rome using
 magnetic properties of tree leaves. Atmos Environ 37:2967–2977.
 https://doi.org/10.1016/S1352-2310(03)00244-9

Muhammad S, Wuyts K, Samson R (2020) Immobilized atmospheric particulate matter on leaves of 96
 urban plant species. Environ Sci Pollut Res 27:36920–36938. https://doi.org/10.1007/s11356 020-09246-6

726 Pinheiro J, Bates D, DebRoy S, Sarkar D RCT (2021) nlme: Linear and Nonlinear Mixed Effects Models

Pöschl U (2005) Atmospheric aerosols: Composition, transformation, climate and health effects.
 Angew Chemie - Int Ed 44:7520–7540. https://doi.org/10.1002/anie.200501122

24

QGIS Development Team (2020) QGIS Geographic Information System. Open Source GeospatialFoundation Project.

731 R Core Team (2021) R: A language and environment for statistical computing.

Revuelta MA, McIntosh G, Pey J et al (2014) Partitioning of magnetic particles in PM10, PM2.5 and
PM1 aerosols in the urban atmosphere of Barcelona (Spain). Environ Pollut 188:109-117.
http://dx.doi.org/10.1016/j.envpol.2014.01.025

Sawidis T, Breuste J, Mitrovic M et al (2011) Trees as bioindicator of heavy metal pollution in three
 European cities. Environ Pollut 159:3560–3570. https://doi.org/10.1016/j.envpol.2011.08.008

737 Villarroya-Villalba L, Casanelles-Abella J, Moretti M et al (2021) Response of bats and nocturnal insects

to urban green areas in Europe. Basic Appl Ecol 51:59–70.
https://doi.org/10.1016/j.baae.2021.01.006

Wegiel A, Malinski T, Bocianowski J et al (2017) Equations for predicting age of black locust (Robinia
 pseudoacacia L.) based on the tree circumference. Sylwan 161:831–841 (in Polish)

WHO (2018) Health, environment and climate change: report by the Director-General. World Heal
Organ 2016:1–7

744 Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York

745 Wuyts K, Hofman J, Wittenberghe S Van et al (2018) A new opportunity for biomagnetic monitoring of

particulate pollution in an urban environment using tree branches. Atmos Environ 190:177–187.
https://doi.org/10.1016/j.atmosenv.2018.07.014

748 Zhang C, Huang B, Piper JDA, Luo R (2008) Biomonitoring of atmospheric particulate matter using

749 magnetic properties of Salix matsudana tree ring cores. Sci Total Environ 393:177–190.
750 https://doi.org/10.1016/j.scitotenv.2007.12.032