Philippe Balbiani 
  
Ilya B Shapirovsky 
  
Valentin B Shehtman 
  
Every world

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

The starting point for our research is the well-known Sahlqvist Theorem. For about thirty years this result was considered as the strongest one giving a syntactic sufficient condition for completeness and first-order definability (elementarity) in modal logic. More recent studies show that Sahlqvist class can be extended to a larger class of "inductive" modal formulas inheriting both completeness and elementarity [START_REF] Goranko | Elementary canonical formulae: extending Sahlqvist's theorem[END_REF].

Now there is natural question: what happens beyond this new class? It is well-known that completeness or definability may be lost. Perhaps the simplest counterexample is given by the McKinsey axiom 3p → 3 p, which is non-elementary, but still complete and even has the finite model property. So after a slight variation of Sahlqvist formulas we may still hope to preserve at least some of nice properties.

On the other hand, recently Ian Hodkinson has found a precise description of quasi-elementary logics (i.e. those complete with respect to elementary classes of Kripke frames) [START_REF] Hodkinson | Hybrid formulas and elementarily generated modal logics[END_REF]: he defines a translation from a first-order theory T into a set of hybrid modal formulas, and next -into a set of pure modal formulas axiomatizing exactly the class of models of T . Moreover, the corresponding hybrid formulas are identified as "quasipositive". This general result is quite impressive, but the suggested axiomatization method may be not optimal in particular cases.

The class of modal logics studied in this paper is certainly covered by Hodkinson's theorem, but we propose a simpler description, which does not directly follow from [START_REF] Hodkinson | Hybrid formulas and elementarily generated modal logics[END_REF]. Namely, consider different versions of a modal formula ϕ(p 1 , . . . , p k ) with disjoint sets of proposition letters: ϕ = ϕ(p k+1 , . . . , p 2k ), ϕ = ϕ(p 2k+1 , . . . , p 3k ), . . . and put

ϕ n 3 = 3(ϕ ∧ ϕ ∧ • • • ∧ ϕ (n-1) ),
Advances in Modal Logic, Volume 6. c 2006, the authors.

L 3 (ϕ) = K + {ϕ n 3 | n ≥ 0}.
As we show, every logic L 3 (ϕ) is quasi-elementary, whenever ϕ is a Sahlqvist formula (or even an inductive formula). By Fine -Van Benthem Theorem (cf. [START_REF] Chagrov | Modal Logic[END_REF]Theorem 10.19]) this implies canonicity. An appropriate first-order condition can be obtained in a standard way:

∀x∃t(xRt ∧ Φ(t)),
where Φ is the first-order correspondent of ϕ, i.e. "every world sees a ϕworld". However this condition does not always characterize the frames for assume the reader is at home with well-known results such as Sahlqvist's theorem and Ladner's theorem. For more on these see Blackburn, de Rijke and Venema [START_REF] Blackburn | Modal Logic[END_REF], Chagrov and Zakharyaschev [START_REF] Chagrov | Modal Logic[END_REF] and Kracht [START_REF] Kracht | Tools and Techniques in Modal Logic[END_REF]. Still in this Section we recall some basic notions, for the sake of terminology and notation.

Syntax

Let P V = {p 1 , p 2 , . . . } be a countable set of proposition letters, with typical members denoted by p, q, etc. Modal formulas over P V are built using the constant ⊥, the unary connective and the binary connective →. Other constructs are defined as usual, in particular 3ϕ is the abbreviation for ¬ ¬ϕ.

For a formula ϕ, cl(ϕ) denotes the set of all subformulas of ϕ. Put P V (ϕ) = cl(ϕ) ∩ P V . The notation ϕ(p 1 , . . . , p n ) means {p 1 , .., p n } ⊇ P V (ϕ). For formulas ψ 1 , . . . , ψ n , ϕ(ψ 1 , . . . , ψ n ) denotes the result of simultaneous substitution of ψ 1 , . . . , ψ n for p 1 , . . . , p n in ϕ. For a set x of formulas, let x = {ϕ | ϕ ∈ x}.

A (normal) modal logic is a set L of formulas that contains all tautologies, the formula (p → q) → ( p → q) and that is closed under the standard rules: Modus ponens, Uniform substitution, and Generalization (given ϕ infer ϕ).

For a set Γ of formulas, L + Γ denotes the smallest modal logic containing (L ∪ Γ).

A formula ϕ is said to be L-deducible from a set Γ of formulas, in symbols Γ L ϕ if there exists formulas ϕ 1 , . . ., ϕ n ∈ Γ such that (ϕ 1 ∧ . . .

∧ ϕ n → ϕ) ∈ L. A set Γ of formulas is called L-consistent if Γ L ⊥.
Recall the inductive definition of uniform modal formulas. Any formula without modal operators is a uniform formula of degree 0; uniform formulas of degree n + 1 are built from the set { ψ | ψ is a uniform formula of degree n} using boolean connectives.

A logic is called uniform if it can be axiomatized by uniform formulas.

Semantics

As usual, a (Kripke) frame is a pair F = (W, R), where W is a non-empty set of worlds and R is a binary relation on

W . A world x ∈ W is called final in F if R(x) ⊆ {x} and deterministic in F if card(R(x)) ≤ 1. F is called serial if for all worlds x in W , R(x) = ∅.
For a world x in W and sets W 1 , . . ., W n ⊆ W , we say that

{W 1 , . . . , W n } is a cover of R(x) if R(x) ⊆ W 1 ∪ • • • ∪ W n .
A (Kripke) model based on F is a pair M = (F, V ), where V is a function assigning to each proposition letter p a subset V (p) of W . The inductive definition of the truth value of a formula ϕ at a world x in a model M is standard. M, x ϕ denotes that ϕ is true at x in M.

A formula ϕ is called true (respectively satisfiable) in a model M = (W, R, V ), in symbols M ϕ, if ϕ is true at any (resp., some) world in W ; ϕ is valid in a frame F, in symbols F ϕ, if ϕ is true in all models based on F. ϕ is valid at F, x (notation: F, x ϕ) if it is true at x in all models based on F. A formula ϕ is said to be valid in a class C of frames, in symbols C ϕ, if ϕ is valid in all frames in C. We say that a set L of formulas is valid in a frame F, in symbols F L, if all formulas from L are valid in F.

Every frame can also be regarded as a first-order structure, and we use the same sign to denote the truth of a first-order formula in this structure.

The modal logic of a class of frames C is defined as

L(C) = {ϕ | C ϕ}. A logic L is called complete with respect to C if L = L(C).
L is said to have the finite model property (fmp) if it is complete with respect to a class of finite frames.

We say that a set of modal formulas Γ modally defines the class of frames

Fr(Γ) := {F | F Γ}; Γ modally defines C within a class C if C = Fr(Γ)∩C .
We say that a formula ϕ modally defines C [within C ] if the set {ϕ} does.

A modal logic L is called strongly complete with respect to a class C of frames if for any L-consistent set Γ of formulas, there exists a model M based on a frame from C such that all formulas from Γ are simultaneously true at some world in M.

Recall that a formula ϕ is locally elementary if for some first-order formula Φ with only one free variable t we have: for any frame F and any world a in F, F, a ϕ iff F Φ(a). In this case Φ is called a local first-order correspondent of ϕ.

A set Γ of modal formulas is called elementary (respectively, Δ-elementary) if the class Fr(Γ) is elementary (respectively, Δ-elementary), i.e. if Fr(Γ) is the class of models of some first-order formula (resp., theory). Every locally elementary formula is obviously elementary.

A modal logic of the form L(C), for an elementary C, is called quasielementary (or elementarily generated).

Every world can see a ϕ-world

In this section we describe a family of quasi-elementary and finitely elementary logics.

For a tuple of proposition letters p = (p 1 , . . . , p k ) let

p n := (p kn+1 , . . . , p kn+k )
for n ≥ 0. So p 0 = p and all the tuples p n are disjoint. For a modal formula ϕ(p) put

ϕ n 3 := 3(ϕ(p 0 ) ∧ • • • ∧ ϕ(p n-1 ))
(in particular, ϕ 0 3 := 3 ), and also

L 3 (ϕ) := K + {ϕ n 3 | n ≥ 0}, L n 3 (ϕ) := K + ϕ n 3 . The following is rather trivial. PROPOSITION 1. L 0 3 (ϕ) ⊆ L 1 3 (ϕ) ⊆ L 2 3 (ϕ) . . . ⊆ L 3 (ϕ)
. Now let ϕ be a locally elementary formula, and let Φ(t) be its local firstorder correspondent. Consider the class of frames

C 3 (ϕ) := {F | F ∀x∃t(xRt ∧ Φ(t))}.
LEMMA 2. For a locally elementary formula ϕ, C 3 (ϕ) ⊆ Fr(L 3 (ϕ)).

Proof. Suppose F ∈ C 3 (ϕ(p)). This means that for any a ∈ F there exists b ∈ R(a) such that F Φ(b), which is equivalent to F, b ϕ, by the definition of Φ. But the latter implies F, b ϕ(p n ) for any n, hence F, a ϕ n 3 , and thus F, a L 3 (ϕ).

A formula ϕ is locally d-persistent if for any descriptive (general) frame (F, D) and any world a, (F, D), a ϕ implies F, a ϕ (the notion of a descriptive frame is defined in a standard way, see e.g. [START_REF] Chagrov | Modal Logic[END_REF]). THEOREM 3. Let ϕ be a locally elementary and locally d-persistent modal formula. Then 1. the canonical frame for L 3 (ϕ) is in C 3 (ϕ); 2. L 3 (ϕ) is canonical and therefore strongly complete with respect to C 3 (ϕ).

Proof. Let us prove (1); then (2) readily follows from Lemma 2 and the properties of the canonical model. Let F = (W, R) be the canonical frame for L 3 (ϕ(p)), p = (p 1 , . . . , p k ). For any a ∈ W , put

a + := a ∪ {ϕ(ψ 1 , . . . , ψ k ) | ψ 1 , . . . , ψ k are arbitrary modal formulas}. Claim 1 a + is L 3 (ϕ)-consistent.
Suppose the contrary. Then for some formulas γ 1 , . . . , γ m ∈ a and for some k-tuples of formulas ψ 1 , . . . , ψ n we have

L 3 (ϕ) γ 1 ∧• • •∧γ m ∧ϕ(ψ 1 )∧ • • • ∧ ϕ(ψ n ) → ⊥. Since 3(ϕ(ψ 1 ) ∧ • • • ∧ ϕ(ψ n )) is a substitution instance of ϕ n 3 , we have 3(ϕ(ψ 1 )∧• • •∧ϕ(ψ n )) ∈ a, so for some b ∈ R(a) we have ϕ(ψ 1 ), . . . , ϕ(ψ n ) ∈ b. Since every γ i is in a , we also have γ 1 , . . . , γ m ∈ b, so ⊥ ∈ b, which is a contradiction. Q.e.d.
By the Lindenbaum Lemma, there exists b ∈ W such that a + ⊆ b. So a ⊆ b, thus aRb. Now consider the general canonical frame (F, D) for L 3 (ϕ); recall that

D = {V 0 (ψ) | ψ is a modal formula},
where V 0 is the canonical valuation. Claim 2 (F, D), b ϕ.

In fact, for a valuation V in (F, D) let us show that b ∈ V (ϕ). By definition of D, for every i there exists a modal formula ψ i such that V (p i ) = V 0 (ψ i ); let ψ = (ψ 1 , . . . , ψ k ). Then by induction it follows that

V (ϕ(p)) = V 0 (ϕ(ψ)). But b ⊇ a + , so ϕ(ψ) ∈ b, and thus b ∈ V 0 (ϕ(ψ)) = V (ϕ). Q.e.d.
Since (F, D) is descriptive and ϕ is locally d-persistent, from Claim 2 we obtain F, b ϕ, i.e. F Φ(b); thus F ∀x∃t(xRt ∧ Φ(t)).

For a set Γ of modal formulas we can also define

L 3 (Γ) := K + {ϕ n 3 | ϕ ∈ Γ, n ≥ 0}, C 3 (Γ) := ϕ∈Γ C 3 (ϕ).
So we have Proof. In fact, every inductive formula is locally elementary and locally d-persistent [START_REF] Goranko | Elementary canonical formulae: extending Sahlqvist's theorem[END_REF]. DEFINITION 6. A modal logic L is called finitely elementary if there exists a first-order formula Φ such that for any finite frame F, F L iff F Φ.

THEOREM 7. If ϕ is a locally elementary modal formula, then L 3 (ϕ) is finitely elementary.

Proof. For a formula ϕ(p), p = (p 1 , . . . , p k ) with a local first-order correspondent Φ, let us prove that F L 3 (ϕ) iff F ∈ C 3 (ϕ) for any finite frame F. The direction "if" is already proved in Lemma 2. So consider a finite frame F = (W, R) with card(W ) = n, such that F L 3 (ϕ). We have to show that F ∀x∃t(xRt ∧ Φ(t)).

Consider the following Kripke model M = (F, V ). Take the N -element set P(W ) k of all k-tuples of subsets of W (where N = 2 nk ) and put it in some order: W 0 , W 1 , . . . , W N -1 . If W j = (W j 1 , . . . , W j k ), we define

V (p jk+i ) := W j i .
So we have defined V (p m ) for m = 1, . . . , Nk, and we assume that V (p m ) is arbitrary for all other m.

Now take any

a ∈ W . Since M, a ϕ N 3 , there exists b ∈ R(a) such that M, b ϕ(p 0 ) ∧ • • • ∧ ϕ(p N -1
). Then we claim that F, b ϕ. In fact, consider an arbitrary valuation V in F. By our construction, there exists j such that W j = (V (p 1 ), . . . , V (p k )), i.e.

V (p i ) = V (p jk+i ) whenever 1 ≤ i ≤ k.
Hence by induction it easily follows that

V (ϕ(p)) = V (ϕ(p j )). Now since M, b ϕ(p j ), we obtain (F, V ), b ϕ. Thus F, b ϕ, which is equivalent to F Φ(b). Eventually F ∀x∃y(xRy ∧ Φ(y)).
The following simple fact is motivated by Proposition 6.2 from [START_REF] Hodkinson | Hybrid formulas and elementarily generated modal logics[END_REF], though it is not formulated explicitly in that paper. PROPOSITION 8. If a recursively axiomatizable and finitely elementary modal logic has the fmp, then it is decidable.

Proof. In fact, if finite frames for L are defined by a certain first-order sentence, then the set of finite L-frames (whose worlds are identified with integers) is decidable. Together with the fmp, this implies the co-enumerability of L. So since L is recursively enumerable, it is decidable.

Note that in general a recursively axiomatizable logic with the fmp can be undecidable (the three-dimensional logic K 3 is a typical example), but this does not affect the logics considered in the present paper.

Every world can see a final world

Definitions

In this section we consider a particular case of the above construction, when ϕ = (p 1 → p 1 ). The corresponding first-order formula is Φ(t) = ∀x(tRx → t = x).

Let

α n := ϕ n 3 = 3((p 1 → p 1 ) ∧ . . . ∧ (p n → p n ))
. Consider the modal logics (for 0 ≤ n < ω):

L fw n := K + α n , L fw ω := L 3 (ϕ) = K + {α 0 , α 1 , . . .}. Note that L fw 0 = D = K + 3 and L fw 1 = K + 3(p → p) = K + p → 3 p. Then C 3 (ϕ) is the class C fw ω of all frames F = (W, R) satisfying possible finality condition 1
• for all worlds x in W , there exists a world y in R(x) such that R(y) ⊆ {y},

i.e. every world can see a final world. Let us also consider for every n ≥ 0, the class C fw n of all frames F = (W, R) such that • for all worlds x in W and for all covers {W 1 , . . . , W n } of R(x), there exists a world y in R(x) such that for all i in {1, . . . , n}, if y

∈ W i then R(y) ⊆ W i . PROPOSITION 9. C fw 0 ⊇ C fw 1 . . . ⊇ C fw ω .
Proof. Trivial.

Weakly condensed frames

Remark that C fw 0 is nothing but the class of all serial frames and C fw 1 is the class of all weakly condensed frames F = (W, R), i.e. such that:

• for all worlds x ∈ W , there exists y ∈ R(x) such that R(y) ⊆ R(x).

For a frame F = (W, R), consider the relation R → ⊆ R:

xR → y := {y} ∪ R(y) ⊆ R(x) Thus F is weakly condensed iff (W, R → ) is serial. One can easily see that R → is transitive: if xR → yR → z, then R(z) ∪ {z} ⊆ R(y) ⊆ R(x).
By a straightforward argument, F is weakly condensed iff F α 1 . Since the Sahlqvist formula p → 3 p is an equivalent form of α 1 , we obtain LEMMA 10. If F is the canonical frame for a logic L ⊇ L fw 1 , then F is weakly condensed.

Completeness

THEOREM 11. The canonical frame for L fw 2 is in C fw ω .

Proof. Let F = (W, R) be the canonical frame for L = L fw 2 . For any x ∈ W , put x + := x ∪ { ϕ | ϕ ∈ x}. Claim 1 For any worlds x, y in the canonical model

R(x) ⊇ R(y) iff y ⊇ { ϕ | ϕ ∈ x}.
In fact, if y ⊇ { ϕ | ϕ ∈ x} and yRz, then by the definition of R, ϕ ∈ x implies ϕ ∈ z, i.e. xRz. The other way round, if y ⊇ { ϕ | ϕ ∈ x}, then for some ϕ ∈ x we have ϕ ∈ y, and so there exists

z ∈ R(y) such that ϕ ∈ z. But ϕ ∈ x, hence z ∈ R(x). Therefore R(y) ⊆ R(x). Q.e.d.
Claim 2 xR → y iff y ⊇ x + . In fact, by definition, xRy iff y ⊇ x , and

R(x) ⊇ R(y) iff y ⊇ { ϕ | ϕ ∈ x}, by Claim 1. Q.e.d.
Due to Lemma 10, F is weakly condensed, and thus by Claim 2, x + is an L-consistent set for any x ∈ W .

For the proof of our theorem, consider an arbitrary world x in W . Assuming that all formulas are arranged in some fixed order ϕ 1 , ϕ 2 , . . ., we define the sequence y 0 , y 1 , . . . of L-consistent sets of formulas by induction:

But (3) 3((ϕ ∧ ϕ → (ϕ ∧ ϕ)) ∧ (ϕ ∧ ¬ϕ → (ϕ ∧ ¬ϕ))) ∈ L
as a substitution instance of α 2 . Since ϕ ∈ y , from ( 2) and ( 3) we obtain for some w ∈ R(y ):

¬(ϕ ∧ ϕ) ∧ ¬(ϕ ∧ ¬ϕ) ∈ w.
Then ¬ϕ ∈ w, which contradicts ϕ ∈ y .

Therefore u is L-consistent. By the Lindenbaum Lemma, there exists a maximal L-consistent set u ⊇ u. By the above construction and Claim 2, y R → u , and also 3ϕ → ϕ ∈ u . So by Claim 3, R(u ) = R(y ). Therefore z, t are worlds in R(u ). Hence 3ϕ ∈ u , and consequently ϕ is in u . Thus ϕ is in t: a contradiction. Q.e.d.

Since F is weakly condensed, for some z we have y R → z, i.e., y Rz and However let us give a syntactic proof of this fact proposed by Max Cresswell in a private communication.

R(z) ⊆ R(y ). By Claim 4, R(y ) = {z}, thus R(z) ⊆ {z}. xR → y and y R → z implies xRz, since R → is transitive and R → ⊆ R. Thus F ∈ C fw ω . COROLLARY 12. L fw
It is sufficient to show that L fw n α n+1 for n ≥ 2. Let Proof. Let F = (W, R) be a frame such that F L fw n and let us show that F ∈ C fw n . Take an arbitrary world x in W and a cover {W 1 , . . . , W n } of R(x). Let M = (F, V ) be a model based on F such that V (p 1 ) = W 1 , . . ., V (p n ) = W n . Since x α n , there exists a world y in R(x) such that for all i in {1, . . . , n}, M, y p i → p i . Then for any i in {1, . . . , n}, if

π 1 := (p 1 → p 1 ), π 2 := (p 2 → p 2 ) ∧ • • • ∧ (p n → p n ), π 3 := (p n+1 → p n+1 ). Now we argue in L fw n : (1) 3(π 1 ∧ (¬q → ¬q)) α 2 , Subst (2) 3(π 1 ∧ (3q → q)) (1), equivalent replacement (3) 3(π 1 ∧ (3(π 2 ∧ π 3 ) → (π 2 ∧ π 3 ))) (2), Subst (4) 3(π 2 ∧ π 3 ) α n , Subst (5) 3(π 2 ∧ π 3 ) ( 4 ) , Gen (6) 3(p ∧ (q → r)) → ( q → 3(p ∧ r)) derivable in K (7) 3(π 1 ∧ π 2 ∧ π 3 ) ( 6 ) , Subst, (3) 
y ∈ W i , then R(y) ⊆ W i . Now suppose F = (W, R) is a frame such that F L fw n .
Then there exists a model M = (F, V ) and a world x ∈ W such that for any y ∈ R(x), there exists i in {1, . . . , n} such that M, y p i → p i . Let W i = V (p i ). Then {W 1 , . . . , W n } is a cover of R(x) and for any y ∈ R(x) there exists i in {1, . . . , n} such that y ∈ W i , but R(y) ⊆ W i . Hence F ∈ C fw n .

COROLLARY 

(W, R → ) is in C fw 2 . In fact, let x ∈ W and let {W 1 , W 2 } be a cover of R → (x). Also let V 1 := W 1 ∩ R → (x), V 2 := W 2 ∩ R → (x), V 3 = R(x) \ (V 1 ∪ V 2 ). So {V 1 , V 2 , V 3 } is a cover of R(x) and there exists a world y in R(x) such that for all i in {1, 2, 3}, if y ∈ V i , then R(y) ⊆ V i ⊆ R(x). Therefore y ∈ R → (x). Next, for i = 1, 2 we have: if y ∈ W i , then y ∈ V i , so R → (y) ⊆ R(y) ⊆ V i ⊆ W i . Hence (W, R → ) is in C fw 2 . Q.e.d. Claim 2 (W, R → ) is in C fw ω . In fact, 3p → 3 p is in L fw
, R → ) 3p → 3 p. Since R → is transitive, (W, R → ) is in C fw ω . Q.e.d.
By Claim 2, for any world x there exists a world y in R → (x) such that R → (y) ⊆ {y}. Let W 1 = {y} and W 2 = R(y) \ {y}. Then {W 1 , W 2 } is a cover of R(y), and so there exists a world z ∈ R(y) such that for all i in {1, 2}, if z ∈ W i , then R(z) ⊆ W i .

Claim 1 F L dw ω . It is sufficient to show that for all n ≥ 0 and for all models M based on F, M, x β n . Since W/ ≡ M n is finite, there exists an

≡ M n -equivalence class U 0 such that U := U 0 ∩ Z is infinite. Then M, y U (3p 1 → p 1 ) ∧ . . . ∧ (3p n → p n ) and therefore M, x β n . Q.e.d.
Now suppose the class Fr(L) is Δ-elementary, i.e., definable by a firstorder theory T in the language {R, =}. Since F L dw ω , we have F L, thus F T . By the Löwenheim-Skolem theorem, there exists a countable subframe F = (W , R ) of F such that W ⊇ Z ∪ {x} and F T . Then F L, and thus F β 1 However by [6, Theorem 1], ¬β 1 is satisfiable at a point x in a frame (W, R) if for all y in R(x), R(y) is infinite and card(R(y)) ≥ card(R(x)). Thus F , x β 1 .

This contradiction proves the theorem.

COROLLARY 22. C dw ω is not modally definable.

Proof. In fact, if an elementary class of frames C is modally definable, then its modal logic L(C) is elementary -just because Fr(L(C)) is the smallest modally definable class containing C.

For v = {v 1 , . . . , v n } ∈ {0, 1} n , put p v := 1≤i≤n p vi i , where p 1 := p, p 0 := ¬p. It is not difficult to check that for all n > 0, β n is equivalent to results show that they are quasi-elementary. Are they elementary? finitely axiomatizable? Note that e.g. K4 + L 3 (p → p) = K4 + 3p → 3 p is elementary. 10. Theorem 3 can probably be extended to a larger class of logics. Of course, it survives in the polymodal case. Moreover, instead of the prefix 3 one can take a prefix 3 k1 . . . 3 kn , with the corresponding condition "every world sees a ϕ-world via the composed relation R k1 • • • • • R kn ". And furthermore, we can consider more complicated conditions, like "every world sees a world seeing a ϕ-world and a ψ-world". It would be interesting to find a natural general result of this kind.

COROLLARY 4 .COROLLARY 5 .

 45 If Γ is a set of locally elementary and locally d-persistent modal formulas, then L 3 (Γ) = L(C 3 (Γ)). If Γ is a set of inductive modal formulas, then L 3 (Γ) = L(C 3 (Γ)), and thus this logic is canonical and strongly complete with respect to C 3 (Γ).

2

  is strongly complete with respect to C fw ω . COROLLARY 13. The McKinsey formula 3p → 3 p is in L fw 2 . Proof. 2 In fact, C fw ω 3p → 3 p. PROPOSITION 14. L fw 2 = L fw 3 . . . = L fw ω . Proof. Follows from Theorems 3 and 11.

  , MP,[START_REF] Goldblatt | First-order definability in modal logic[END_REF], MP Note that together with Theorem 3, this argument provides an alternative proof of Theorem 11.

4. 4 ElementarityPROPOSITION 15 .

 415 Let n ≥ 2. Then for any frame F, F ∈ C fw n iff F L fw n .

2 (

 2 Corollary 13); then by Proposition 15 and Claim 1, (W

v∈{0,1} n 3 p

 3 v . Thus the logics L dw 1 , L dw 2 , . . . , L dw ω are uniform. Since all serial uniform logics have the fmp (see e.g. [4]), we have the following THEOREM 23. The logics L dw 1 , L dw 2 , . . . , L dw ω have the fmp. COROLLARY 24. The logics L dw 1 , L dw 2 , . . . , L dw ω are decidable.

In the transitive case it is also called "McKinsey property"[START_REF] Segerberg | Decidability of S4.1[END_REF] 

Note that there also exists a simple syntactic proof of this corollary.
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Let y = y 0 ∪ y 1 ∪ . . .. Note that y is L-consistent, and for all formulas ϕ, if y ∪ { ϕ} is L-consistent, then ϕ ∈ y . By the Lindenbaum Lemma, there exists a maximal L-consistent set y such that y ⊆ y . Since y ⊇ x + , then by Claim 2, xR → y .

Given v ∈ R(y ) and R(v) ⊆ R(y ), let us show that R(y ⊆ R(v). So we assume t ∈ R(y ) and show that vRt. For this we further assume ϕ ∈ v and show that ϕ ∈ t. Since v is a world in R(x) such that R(v) ⊆ R(x), we have y ⊆ v. In fact, note that x ⊆ v since xRv; all other formulas in y are of the form ψ, and ψ ∈ y ⊆ y implies y ψ, and thus v ψ

Hence y ∪ { ϕ} is an L-consistent set of formulas, and thus ϕ ∈ y by our construction. Therefore ϕ ∈ y . Since y Rt, we eventually obtain

In fact, let z, t be worlds in R(y ) such that z = t. Then there exists a formula ϕ ∈ z such that ϕ ∈ t. Thus u = (y ) + ∪ {3ϕ → ϕ} is an L-consistent set of formulas. For otherwise there exists formulas ϕ 1 , . . . , ϕ m+n such that ϕ 1 , . . . , ϕ m+n ∈ y and

So ϕ ∧ ϕ is in y . On the other hand, by [START_REF] Van Benthem | A note on modal formulae and relational properties[END_REF] and classical logic

Suppose z ∈ W 2 . Then R(z) ∪ {z} ⊆ R(y). So yR → z and z = y. Consequently R → (y) ⊆ {y}: a contradiction.

Hence z ∈ W 1 , i.e. z = y, and so R(z) ⊆ {y}. Since y ∈ R → (x) ⊆ R(x), y is a final world in R(x).

Fmp and decidability

THEOREM 18. L fw 2 has the fmp and therefore is decidable.

Proof. Given an L fw 2 -consistent formula ϕ, let us show that ϕ is satisfiable in some finite frame from C fw ω . Let M = (W, R, V ) be the canonical model for L fw 2 . Then M, x 0 ϕ for some x 0 ∈ W and (W, R) ∈ C fw ω by Theorem 11. Let W f be the set of all final worlds in M. Take a new proposition letter q ∈ cl(ϕ), and let U be a valuation such that for all p ∈ cl(ϕ), U (p) = V (p), and U (q) = W f . For N := (W, R, U ) we obviously have N , x 0 φ.

Let N = (W , R , U ) be the minimal filtration of N through Ψ = cl(ϕ)∪ {q}. Recall that W is the quotient set under the equivalence relation

x ∼ y iff the same formulas from Ψ are true at N , x and N , y,

where x denotes the class of x modulo ∼. So N is finite, and N , x 0 ϕ, by the Filtration Lemma.

Let us show that (W , R ) ∈ C fw ω . Consider x ∈ W . Since (W, R) ∈ C fw ω , there exists y ∈ W f ∩ R(x). Then xR y. Suppose yR z, so y 1 Rz 1 for some y 1 ∈ y, z 1 ∈ z. Since y ∈ W f we have N , y q, so N , y 1 q and y 1 ∈ W f . Hence

Every world can see a deterministic world

In our second example, we put ϕ := 3p 1 → p 1 . Let

for n ≥ 0. Note that L dw 0 is nothing but K + 3 , and

is the class of all frames F = (W, R) with the following property:

• for all worlds x in W , there exists a world y in R(x) such that card(R(y)) = 1, i.e., every world in W can see a deterministic world in F.

Let us also consider for n ≥ 1, the class C dw n of all frames F = (W, R) such that

• for all worlds x in W and for all sets W 1 , . . . , W n ⊆ W , there exists a world y in R(x) such that for all i in {1, . . . , n}, if R(y)

Let C dw 0 be the class of all serial frames. One can easily see that PROPOSITION 19.

Proof. Given a frame F = (W, R) ∈ C dw n , let us show that for any model M = (F, V ), for any x ∈ W we have M, x β n . Put W i := V (p i ). Then for some y ∈ R(x) we have: for all i in {1, . . . , n}, R(y

For the converse, suppose F L dw n and show that

From [START_REF] Goldblatt | The McKinsey-Lemmon logic is barely canonical[END_REF] it follows that L dw ω is not finitely-axiomatizable (this proof is based on constructions from [START_REF] Goldblatt | First-order definability in modal logic[END_REF], [START_REF] Goldblatt | The McKinsey axiom is not canonical[END_REF]).

It is well known that L dw 1 is not Δ-elementary; this was proved independently in [START_REF] Van Benthem | A note on modal formulae and relational properties[END_REF] and [START_REF] Goldblatt | First-order definability in modal logic[END_REF]; a proof can also be found in [START_REF] Blackburn | Modal Logic[END_REF]. Next, [START_REF] Goldblatt | The McKinsey-Lemmon logic is barely canonical[END_REF] proves that L dw ω is not Δ-elementary (and thus certainly C dw ω = Fr(L dw ω )). Let us now prove the following generalization of this fact:

Proof. The main idea is the same as in [START_REF] Van Benthem | A note on modal formulae and relational properties[END_REF]. First, for any Kripke model M and n ≥ 1 we define the relation

Clearly, ≡ M n is an equivalence relation on M, and the quotient set W/ ≡ M n is finite. By a straightforward argument,

Now let us define a certain frame F = (W, R). For a countable set Z = {z i | i ∈ N}, take the uncountable set 

Complexity

It is well-known that all logics between K and S4 are PSPACE-hard [START_REF] Ladner | The computational complexity of provability in systems of modal logic[END_REF]. This result can be easily extended to all logics between K and S4 + 3p → 3 p (see e.g. [START_REF] Shapirovsky | On PSPACE-decidability in transitive modal logics[END_REF]). Thus L fw 2 , L dw ω are PSPACE-hard. PSPACE-decidability of the logics L fw 2 , L dw ω was recently obtained by the first author, the proof will be published in the sequel.

Conclusion

Stepping aside from a familiar field leads us to various nontrivial questions. We hope to address some of them in the second part of this paper. Let us only mention several topics for further study.

1. We see that L 3 (ϕ) (for a Sahlqvist formula ϕ) is sometimes finitely axiomatizable. Does there exist a reasonable criterion (or at least a sufficient condition) for that?

2. Basing on his investigation in first-order modal logic, Sergei Astretsov (Moscow State University) proposed the following conjecture: L 3 (ϕ) is finitely axiomatizable iff it is elementary. This conjecture is consistent with the three examples from the present paper.

3. Does the fmp always transfer from K + ϕ to L 3 (ϕ)? 4. What are the properties of L 3 (ϕ) for well-known formulas ϕ, such as transitivity, non-branching, symmetry? As for transitivity, there is some progress: recently Stanislav Kikot (Moscow State University) has proved that C 3 ( p → 2 p) is not modally definable. This leads to another question: does the elementarity of L 3 (ϕ) imply the modal definability of C 3 (ϕ)? Note that the converse is rather trivial, see the proof of Corollary 22.

5. The logics L 3 (ϕ) are not Δ-elementary for ϕ = p → p, p → p. What happens to other non-elementary logics L 3 (ϕ) from Theorem 3? Note that according to a result by Van Benthem [START_REF] Van Benthem | Modal logic and classical logic[END_REF], every finitely axiomatizable Δ-elementary modal logic is elementary.

6. Note that Theorem 21 on non-elementarity of "approximants" L n 3 (ϕ) holds for KM ∞ , but its analogue fails for Hughes' logic L 3 ( p → p), since L 1 3 ( p → p) = K + p → 3p is axiomatized by a Sahlqvist formula. What happens in the general case -is it true that if L 3 (ϕ) (for a Sahlqvist ϕ) is non-elementary, then L n 3 (ϕ) are also non-elementary for sufficiently large n?

7. Is it true that all the logics L n 3 (ϕ) are complete (again for a Sahlqvist ϕ)? We do not know this even for simple cases, like n = 2, ϕ = p → p.

8. Is it possible to extend the result on non-canonicity of approximants for L 3 (ϕ) by Goldblatt-Hodkinson [START_REF] Goldblatt | The McKinsey-Lemmon logic is barely canonical[END_REF] to a larger class of logics L 3 (ϕ)? What about noncompactness (for the McKinsey axiom this was established in [START_REF] Wang | The McKinsey axiom is not compact[END_REF])?

9. What happens in the transitive case? More exactly, consider logics of the form K4 + L 3 (ϕ) for locally elementary and locally d-persistent ϕ. Our