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A CHARACTERISATION OF HIGHER TORSION CLASSES

JENNY AUGUST, JOHANNE HAUGLAND, KARIN M. JACOBSEN, SONDRE KVAMME, YANN PALU,
AND HIPOLITO TREFFINGER

Abstract. Let A be an abelian length category containing a d-cluster tilting subcategory
M. We prove that a subcategory of M is a d-torsion class if and only if it is closed under
d-extensions and d-quotients. This generalises an important result for classical torsion classes.
As an application, we prove that the d-torsion classes in M form a complete lattice. Moreover,
we use the characterisation to classify the d-torsion classes associated to higher Auslander
algebras of type A, and give an algorithm to compute them explicitly. The classification is
furthermore extended to the setup of higher Nakayama algebras.
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1. Introduction

The notion of torsion pairs was introduced for arbitrary abelian categories in [D] to generalise
the properties of the class of torsion groups in the category of abelian groups. Since then, torsion
theories, and the related notion of t-structures [BBD] for triangulated categories, have become
ubiquitous in representation theory, homological algebra, and algebraic geometry. Within these
areas, torsion theories and t-structures play a key role in topics such as (perverse) sheaves [BBD],
tilting theory and its generalisations [BB, AIR, AHMV, AHLSV], and stability conditions [B].

Meanwhile, higher homological algebra has become an increasingly active field of research
since its introduction in [I1, I2, I3]. It has found applications in algebraic K-theory [DJW],
wrapped Floer theory in symplectic geometry [DJL], and in algebraic geometry where it was
an important ingredient in the proof of the Donovan-Wemyss conjecture [JKM]. Originally
motivated by Auslander–Reiten theory, cluster tilting theory and the classical Auslander cor-
respondence, one studies categories where the role of short exact sequences (or distinguished
triangles) is taken by longer sequences. Examples include d-abelian and d-exact categories [J2],
(d+ 2)-angulated categories [GKO], and d-exangulated categories [HLN]. Here, the positive in-
teger d controls the length of the important sequences, with d = 1 coinciding with the classical
cases.

By work of [J2, Kv, EN-I], studying d-abelian categories is equivalent to studying so called
d-cluster tilting subcategories of abelian categories. Our setup will be the latter, where we
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assume the ambient abelian category to be of finite length (see Section 2.1 for details). Many
important classical concepts in representation theory generalise to this setting. In this paper,
we focus on the higher analogue of torsion classes, namely d-torsion classes, introduced in [Jø]
and further studied in [AJST].

A fundamental result in the study of torsion classes states that a subcategory of an abelian
length category is a torsion class if and only if it is closed under extensions and quotients [D].
This result is of crucial importance, as it both allows for the detection of torsion classes, and
moreover gives properties which play a key role in many proofs related to these objects. A higher-
dimensional version of this classical characterisation would hence be a substantial advancement.
The main result of this paper gives such a characterisation of d-torsion classes in terms of closure
under d-extensions and d-quotients (see Definitions 3.6 and 3.7).

Theorem 1.1 (Theorem 3.17). Let M be a d-cluster tilting subcategory of an abelian length cat-
egory A. A subcategory U ⊆ M is a d-torsion class if and only if it is closed under d-extensions
and d-quotients.

Note that while a different characterisation of d-torsion classes using the bounded derived cat-
egory of A has been given in the special case where A is the module category of a d-representation
finite d-hereditary algebra [Jø], the characterisation in Theorem 1.1 works generally, does not
require use of derived categories, and is closer to the classical result for torsion classes.

The proof of Theorem 1.1 makes significant use of the main result in [AJST], which relates
d-torsion classes in M to torsion classes in A. This allows us to apply results about torsion
classes also in the higher setup. As another key ingredient in the proof of Theorem 1.1, we give
a higher generalisation of the classical factorisation of a morphism in an abelian category as
the composition of an epimorphism followed by a monomorphism, see Proposition 3.13. This
result is of independent interest, and we expect it to play a role in providing answers to other
questions in higher homological algebra.

With Theorem 1.1 in hand, we are able to generalise other well-known results about torsion
classes to the higher setting. For example, an immediate consequence of combining Theorem 1.1
with a result in [Kl], is that every d-torsion class carries the structure of a d-exact category, see
Corollary 3.19.

Other important results concerning classical torsion classes include the study of their poset
structure. The set tors(A) of torsion classes in A has a natural partial order given by inclusion,
and this poset is actually a complete lattice, with meet given by intersection, see e.g. [IRTT,
Proposition 2.3]. Theorem 1.1 allows us to give the following generalisation of this result.

Theorem 1.2 (Theorem 4.3). Let M be a d-cluster tilting subcategory of an abelian length
category A. Then the set d-tors(M) of all d-torsion classes in M is a complete lattice with meet
given by intersection.

In the classical setting, lattice-theoretic properties of tors(A) form an area of active research
[AP, GM, J1], which is intimately related to representation theory [BCZ, DIRRT]. We refer to
[T] for an introductory survey on the topic. Theorem 1.2 opens up a new avenue of research in
higher homological algebra through the study of the lattice of higher torsion classes.

The classical characterisation of torsion classes as those subcategories that are closed under
extensions and quotients, is often used to determine if a given subcategory is a torsion class, or
to compute the smallest torsion class containing that given subcategory. Crucial to the success
of this approach, is that we often have a good understanding of the middle terms in extensions.
To use Theorem 1.1 in an analogous way to determine d-torsion classes, we therefore need
an understanding of middle terms in d-extensions, which is notably more complicated. The
following result simplifies this problem significantly.

Theorem 1.3 (Theorem 3.20). Let M be a d-cluster tilting subcategory of an abelian length
category A. Suppose U ⊆ M is closed under d-extensions with indecomposable end terms and
all d-quotients. Then U is closed under all d-extensions.
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This theorem is of independent interest, as extension closure is a useful concept across many
areas of representation theory. In this paper, we focus on using Theorem 1.3 to classify d-torsion
classes in concrete examples.

We apply our results to higher Auslander algebras of type A [I3] and higher Nakayama alge-
bras of type A and A

∞
∞ [JKPK]. The module category of each such algebra contains a d-cluster

tilting subcategory, and their combinatorial descriptions due to [OT] and [JKPK] make them
an ideal testing ground for new results in higher homological algebra. Higher Auslander alge-
bras are particularly important, as their derived categories are equivalent to certain partially
wrapped Fukaya categories [DJL]. We use Theorems 1.1 and 1.3 to give a combinatorial de-
scription of all d-torsion classes associated to these algebras, where the classification results for
the three families are given in Theorems 5.13, 6.1 and 6.4, respectively. Moreover, in the case
of higher Auslander algebras, we implement our results in algorithms that compute and count
all d-torsion classes, see Table 2.

We expect that the results we present in this article will provide tools for any further study
of d-torsion classes and will be of importance in building bridges between d-torsion classes and
other subjects in representation theory and beyond. This is demonstrated in a forthcoming
paper [AHJ+], where Theorem 1.1 is applied to establish a connection between functorially
finite d-torsion classes, τd-tilting theory and (d+ 1)-term silting objects.

Structure of the paper. In Section 2 we give an overview of the definitions and background
used in the rest of the paper. In Section 3 we prove Theorems 1.1 and 1.3, while Theorem 1.2 is
shown in Section 4. Section 5 is dedicated to the study of d-torsion classes associated to higher
Auslander algebras. Finally, we extend our view to higher Nakayama algebras in Section 6.

Conventions and notation. Throughout this paper, let d denote a positive integer and A an
essentially small abelian category. We always assume A to be a finite length category, which
implies that the Krull–Remak–Schmidt property is satisfied, see [Kr, Lemma 5.1 and Theorem
5.5].

We let k be a field. Given a finite dimensional k-algebra A, the notation modA is used for
the category of finitely presented right A-modules.

Arrows in a quiver are composed from left to right, meaning that we write ab for the path
starting in the source of a and ending in the target of b.

All subcategories are assumed to be full and closed under isomorphisms and finite direct
sums. For a collection of objects X in an additive category C, we denote by add(X ) the smallest
subcategory of C which contains X and is closed under finite direct sums and direct summands.

2. Background and preliminaries

In this section we provide an overview of definitions and results which give the foundation
for the rest of the paper. Before we start discussing notions from higher homological algebra,
we recall some terminology related to subcategories and approximations.

Let X be a subcategory of the abelian category A. We say that X is generating if any object
in A is a quotient of an object in X ; that is, for every Y ∈ A, there exists an exact sequence
X → Y → 0 with X ∈ X . Dually, we can define the notion of cogenerating, and we call a
subcategory generating-cogenerating if it is both generating and cogenerating.

Given an object Y ∈ A, a morphism f : Y → X with X ∈ X is a left X -approximation of Y if
any morphism Y → X ′ with X ′ ∈ X factors through f . The subcategory X is called covariantly
finite if every object in A admits a left X -approximation. The notions of right X -approximations
and contravariantly finite subcategories are defined dually, and a subcategory is functorially
finite if it is both covariantly and contravariantly finite.

Recall that a morphism f : X → Y is called left minimal if any endomorphism g of Y satisfying
g ◦ f = f is an isomorphism. A minimal left X -approximation is a left X -approximation which
is also left minimal. Right minimal morphisms and minimal right X -approximations are defined
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dually. Since A is Krull–Schmidt, an object has a left (right) X -approximation if and only if it
has a minimal left (right) X -approximation.

2.1. d-cluster tilting subcategories and d-abelian categories. The theory of higher ho-
mological algebra originated in [I1, I2] with the study of d-cluster tilting subcategories. The
definition is given below.

Definition 2.1. A functorially finite generating-cogenerating subcategory M of the abelian
category A is d-cluster tilting if

M = {X ∈ A | ExtiA(X,M) = 0 for M ∈ M and i = 1, . . . , d− 1}

= {Y ∈ A | ExtiA(M,Y ) = 0 for M ∈ M and i = 1, . . . , d− 1}.

To formalise the homological structure of d-cluster tilting subcategories, Jasso introduced
d-abelian categories, where the case d = 1 recovers the classical notion of abelian categories [J2].
To give a precise definition, we first recall some terminology.

Let M be an additive category and recall that a weak cokernel of a morphism f : X → Y in
M is a morphism g : Y → Z in M for which the induced sequence

HomM(Z,M) → HomM(Y,M) → HomM(X,M)

is exact for any M ∈ M. This is equivalent to saying that g ◦f = 0 and that for any g′ : Y →M
with g′ ◦f = 0, there exists a (not necessarily unique) morphism h : Z →M such that h◦g = g′.
We call a morphism g a weak cokernel if there exists a morphism f such that g is a weak cokernel
of f .

A d-cokernel of a morphism f0 : X0 → X1 in M is given by a sequence of morphisms

X1
f1
−→ X2

f2
−→ . . .

fd−1

−−−→ Xd
fd−→ Xd+1 → 0

in M such that for every M in M, the sequence

0 → HomM(Xd+1,M) → HomM(Xd,M) → · · · → HomM(X1,M) → HomM(X0,M)

of abelian groups is exact. Such a d-cokernel is sometimes simply denoted by (f1, . . . , fd), and
(f1, . . . , fd) is a d-cokernel of f0 if and only if fi is a weak cokernel of fi−1 for i = 1, . . . , d − 1
and fd is the cokernel of fd−1. The notion of a d-kernel in M is defined dually. A sequence

0 → X0
f0
−→ X1

f1
−→ . . .

fd−1

−−−→ Xd
fd−→ Xd+1 → 0 (1)

in M is called a d-exact sequence or a d-extension if (f1, . . . , fd) is a d-cokernel of f0 and
(f0, . . . , fd−1) is a d-kernel of fd.

Definition 2.2. [J2, Definition 3.1] An additive category M is d-abelian if it is idempotent
complete, every morphism admits a d-kernel and a d-cokernel, and every monomorphism f0
(resp. epimorphism fd) fits into a d-exact sequence of the form (1).

A d-exact sequence of the form (1) is said to be equivalent to a d-exact sequence

0 → X0
f ′

0−→ X ′
1

f ′

1−→ . . .
f ′

d−1

−−−→ X ′
d

f ′

d−→ Xd+1 → 0

if there exists a commutative diagram

0 X0 X1 · · · Xd Xd+1 0

0 X0 X ′
1 · · · X ′

d Xd+1 0.

f0 f1 fd−1 fd

f ′

0 f ′

1
f ′

d−1 f ′

d

Note that this defines an equivalence relation on the class of d-exact sequences whenever the
category M is d-abelian [J2, Proposition 4.10].
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When M ⊆ A is a d-cluster tilting subcategory, d-exact sequences coincide precisely with
exact sequences of the form (1) where all terms are in M. Moreover, any exact sequence in A
of the form (1) with end terms in M is equivalent to one where all terms are in M [I1, A.1].

In a d-abelian category, we also find higher analogues of the classical notions of pushouts
and pullbacks. For more details on the construction of d-pushouts and d-pullbacks, we refer the
reader to [J2, Section 2.3].

Jasso proved the following theorem, which shows that d-abelian categories capture the ho-
mological structure of d-cluster tilting subcategories.

Theorem 2.3. [J2, Theorem 3.16] Let M be a d-cluster tilting subcategory of A. Then M is
d-abelian.

It has recently been shown that the converse of Theorem 2.3 also holds, i.e. that any d-abelian
category is equivalent to a d-cluster tilting subcategory of an abelian category [EN-I, Kv]. There-
fore, all d-abelian categories may be treated as d-cluster tilting subcategories.

We end this subsection by introducing a running example that will help us illustrate many
of the results in this paper.

Example 2.4. Consider the quiver 1
α
−→ 2

β
−→ 3. Let A denote the path algebra of this quiver

modulo the ideal generated by the relation αβ. Figure 1 shows the Auslander–Reiten quiver of
modA, where the dashed arrows indicate the Auslander–Reiten translation. The subcategory

M = add
{

3 ⊕ 2

3
⊕ 1

2
⊕ 1

}

is 2-cluster tilting in modA, and M is hence an example of a 2-abelian category. The indecom-
posable objects of modA that generate M are marked in Figure 1.

3 2 1

2

3

1

2

Figure 1. The Auslander–Reiten quiver of the module category considered
in Example 2.4, with the generators of the 2-cluster tilting subcategory M
marked.

2.2. Minimality. The d-kernels and d-cokernels in a d-abelian category are unique only up to
homotopy. Many of our proofs require a stronger sense of uniqueness, which is why we recall
the concept of minimality in this section.

The Jacobson radical of the abelian category A consists of the morphisms

RadA(X,Y ) = {f ∈ HomA(X,Y ) | 1X − g ◦ f is invertible for all g ∈ HomA(Y,X)}.

For more details and basic properties, see [ASS, A.3].

Definition 2.5. [HJ, Definition 2.5] Let M be a d-cluster tilting subcategory of A.

(1) A d-cokernel

X1
f1
−→ X2

f2
−→ . . .

fd−1

−−−→ Xd
fd−→ Xd+1 → 0

of a morphism f0 : X0 → X1 in M is called minimal if fi ∈ RadA(Xi, Xi+1) for
i = 2, . . . , d.
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(2) A d-kernel

0 → X0
f0
−→ X1

f1
−→ . . .

fd−2

−−−→ Xd−1
fd−1

−−−→ Xd

of a morphism fd : Xd → Xd+1 in M is called minimal if fi ∈ RadA(Xi, Xi+1) for
i = 0, . . . , d− 2.

(3) A d-extension

0 → X0
f0
−→ X1

f1
−→ . . .

fd−1

−−−→ Xd
fd−→ Xd+1 → 0

in M is called minimal if fi ∈ RadA(Xi, Xi+1) for i = 1, . . . , d− 1.

Proposition 2.6 justifies the terminology in the definition above, and shows that minimal
d-cokernels, d-kernels and d-extensions exist and are unique up to isomorphism. When we say
that a complex in a category M is a direct summand of another complex, this means that it is
a direct summand in the category of complexes over M.

Proposition 2.6. [HJ, Proposition 2.4] Let M be a d-cluster tilting subcategory of A.

(1) Given a morphism f in M, there exists a minimal d-cokernel (resp. d-kernel) of f . This
d-cokernel (resp. d-kernel) is a direct summand of any other d-cokernel (resp. d-kernel)
of f .

(2) Given a d-extension in M, there exists an equivalent minimal d-extension. This minimal
d-extension is a direct summand of every d-extension in the associated equivalence class.

Remark 2.7. Since [J2, Lemma 2.1] implies that any two d-cokernels of a morphism are iso-
morphic in the homotopy category, Proposition 2.6 implies that any d-cokernel is isomorphic to
the direct sum of the minimal d-cokernel and a contractible exact sequence. Moreover, for an

abelian category, any contractible complex is the direct sum of complexes of the form N
1N−−→ N .

In particular, given a d-cokernel

X1
f1
−→ · · ·

fd−1

−−−→ Xd
fd−→ Xd+1 → 0

of f0 : X0 → X1 where fi /∈ RadA(Xi, Xi+1) for some 2 ≤ i ≤ d, there is an isomorphic
d-cokernel where fi is replaced by

(
f ′
i 0
0 1N

)

: X ′
i ⊕N → X ′

i+1 ⊕N

with f ′
i ∈ RadA(X

′
i, X

′
i+1). Similar statements hold for d-kernels and d-extensions.

The terminology in Definition 2.5 is further justified by the following connection to minimal
morphisms.

Lemma 2.8. Let X
f
−→ Y

g
−→ Z be a complex in A for which the induced sequence

HomA(Z, Y ) → HomA(Y, Y ) → HomA(X,Y )

is exact. The morphism f is left minimal if and only if g ∈ RadA(Y, Z).

Proof. See [JK, Lemma 1.1] �

The construction of a minimal d-cokernel is frequently used throughout the paper. We discuss
it in more detail in the following.

Construction 2.9. The minimal d-cokernel of a morphism f : X → Y in a d-cluster tilting
subcategory M ⊆ A can be constructed as follows:

(1) Set C1 = Coker f and let g1 : C1 → M1 be the minimal left M-approximation of C1.

Set f1 : Y →M1 to be the composition Y → C1
g1
−→M1.

(2) Repeat on f1 : Y →M1 to construct f2 : M1 →M2.
(3) Iterate the procedure, which must terminate and result in a d-cokernel by [J2, Proposi-

tion 3.17].
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Since each morphism fi is the composition of an epimorphism and a left minimal morphism,
they are all left minimal, and hence Lemma 2.8 shows that this is the minimal d-cokernel of
f . Note that each fi can equivalently be described as the left minimal weak cokernel of the
previous morphism.

Lemma 2.10. Suppose we have a d-extension

0 → X → E1 → E2 → · · · → Ed → Y → 0.

Then, for any morphism h : X → F0, there is a d-pushout diagram

0 X E1 · · · Ed Y 0

0 F0 F1 · · · Fd Y 0

h

such that the bottom row is a minimal d-extension.

Proof. The fact that a d-pushout diagram exists is precisely [J2, Theorem 3.8]. It follows from
[J2, Proposition 4.8] that the bottom row is a d-extension with last term equal to Y . If this
d-extension is minimal, then we are done. Otherwise, it has a minimal d-extension as a direct
summand by Proposition 2.6. Composing the morphism in the statement with the projection
onto this minimal d-extension gives another commutative diagram, which is a d-pushout by [J2,
Proposition 4.8]. The bottom row of this new diagram is a minimal d-extension as required. �

Note that there is a dual version of Lemma 2.10 which will also be used.

2.3. Torsion and d-torsion classes. Generalising the properties of the class of torsion groups
in the category of abelian groups, the notion of a torsion pair was introduced in [D] as follows.

Definition 2.11. A pair (T ,F) of subcategories of A is a torsion pair if the following conditions
are satisfied:

(1) For every X ∈ A, there exists a short exact sequence

0 → tX → X → fX → 0

where tX ∈ T and fX ∈ F .
(2) HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

Given a torsion pair (T ,F), we say that T is a torsion class and F a torsion free class.

Note that the short exact sequence from the definition above is unique up to isomorphism.
The following classical result characterises torsion classes in A as those subcategories which are
closed under extensions and quotients.

Theorem 2.12. [D, Theorem 2.3] A subcategory T of A is a torsion class if and only if T is
closed under extensions and quotients.

We denote by tors(A) the poset of all torsion classes in A ordered by inclusion. It is well
known that tors(A) is a complete lattice where the meet is given by intersection, see e.g. [IRTT,
Proposition 2.3].

In light of the development of higher homological algebra, it is natural to consider higher
analogues of torsion classes. The notion of d-torsion classes was introduced in [Jø].

Definition 2.13. [Jø, Definition 1.1] Let M be a d-abelian category. A subcategory U of M is
a d-torsion class if for every M in M, there exists a d-exact sequence

0 → UM →M → V1 → · · · → Vd → 0

such that the following conditions are satisfied:

(1) The object UM is in U .
(2) The sequence 0 → HomM(U, V1) → · · · → HomM(U, Vd) → 0 is exact for every U in U .
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The object UM above is known as the d-torsion subobject of M with respect to U and a complex
V1 → · · · → Vd in M is called U-exact when it satisfies the exactness property described in (2).

Note that when d = 1, the previous definition is equivalent to the definition of a torsion class,
c.f. Definition 2.11.

Remark 2.14. It is shown in [Jø, Lemma 2.7(iii)] that d-torsion classes are closed under direct
sums and summands, and thus any d-torsion class is completely determined by its indecompos-
able objects.

A recent paper [AJST] showed that there is a strong relationship between the torsion classes
in an abelian category A and the d-torsion classes in a d-cluster tilting subcategory M of A.

Theorem 2.15. [AJST, Theorem 1.1] Let M be a d-cluster tilting subcategory of A. Then a
torsion class T in A is the minimal torsion class containing a given d-torsion class in M if and
only if the following conditions are satisfied:

(1) For every M ∈ M, we have tM ∈ M.
(2) T is the smallest torsion class containing all tM for M ∈ M.

(3) For any M,M ′ ∈ M, we have Extd−1
A (tM, fM ′) = 0.

Moreover, in this case U := T ∩ M is a d-torsion class and T is the minimal torsion class
containing it. Furthermore, we have UM = tM for every object M ∈ M.

We now illustrate Theorem 2.15 in our running example.

Example 2.16. Let A and M be as in Example 2.4. In Table 1 we give the complete list of
2-torsion classes U in M and the corresponding minimal torsion classes T in modA such that
U = T ∩M.

2-torsion classes in M Corresponding minimal torsion classes in modA

M modA

add
{

2

3
⊕ 1

2
⊕ 1

}

add
{

2

3
⊕ 2 ⊕ 1

2
⊕ 1

}

add
{

1

2
⊕ 1

}

add
{

1

2
⊕ 1

}

add {1} add {1}
add {3} add {3}
{0} {0}

Table 1. The 2-torsion classes considered in Example 2.16 and their corre-
sponding torsion classes.

On one hand, we note that although Theorem 2.15 gives a complete characterisation of the
minimal torsion classes T in modA such that T ∩M is a 2-torsion class in M, there are other

torsion classes in modA with this property. For instance, we see that T = add
{

2 ⊕ 1

2
⊕ 1

}

is a

torsion class in modA and T ∩M = add
{

1

2
⊕ 1

}

is a 2-torsion class in M.

On the other hand, it is not true that T ∩M is a 2-torsion class in M for every torsion class T

in modA. Two such examples are T1 = add {3 ⊕ 1} and T2 = add
{

3 ⊕ 2

3
⊕ 2

}

. The intersections

T1 ∩ M and T2 ∩ M are not 2-torsion classes in M, for reasons that will be explained in
Example 3.18.

3. Closure under d-extensions and d-quotients

Throughout this section, let M be a d-cluster tilting subcategory of the abelian category A.
We also introduce the following setup, which will not be assumed unless explicitly stated.



A CHARACTERISATION OF HIGHER TORSION CLASSES 9

Setup 3.1. Let U be a d-torsion class in M. Let T be a torsion class in A such that U = T ∩M
and the torsion subobject tM of M belongs to M for all M ∈ M.

We note that Theorem 2.15 implies that for every d-torsion class U in M, we can find a
torsion class T satisfying Setup 3.1.

Section 3 is divided into three subsections. We first verify some consequences of the setup
above in Section 3.1. In Section 3.2 we state and prove the main result of this paper, namely
the characterisation of higher torsion classes given in Theorem 1.1. The aim of Section 3.3 is to
prove Theorem 1.3.

3.1. Approximations by d-torsion classes. Throughout this subsection we assume Setup 3.1.

Lemma 3.2. For any M ∈ M, there is an isomorphism UM
∼= tM commuting with the inclusion

to M .

Proof. By the definition of a d-torsion class, the morphism UM →M is a right U-approximation.
Since the morphism tM → M is a right T -approximation and tM ∈ U , it must also be a right
U-approximation. Hence, the inclusions UM → M and tM → M must factor through each
other, which implies that UM

∼= tM . �

By Lemma 3.2, we can assume UM = tM whenever we are in Setup 3.1, and we will do this
from now on. Given Setup 3.1, we gain additional control of left M-approximations of objects
in T .

Lemma 3.3. Let φX : X → M be the minimal left M-approximation of an object X in T .
Then M is in U .

Proof. Consider the short exact sequence

0 → tM
ι
−→M → fM → 0

associated to the torsion pair (T ,F). The morphism ι is a right T -approximation of M , and
tM ∈ M by assumption. AsX ∈ T , there exists a morphism ψX : X → tM such that ιψX = φX .
Notice that since φX is a left M-approximation of X , so is ψX . Since φX is minimal and ι is a
monomorphism, this implies that M is isomorphic to tM . Consequently, one obtains that M is
contained in T , and hence also in U . �

Corollary 3.4. If X ∈ T , then the minimal left M-approximation of X is also the minimal
left U-approximation of X. Moreover, this approximation is a monomorphism.

Proof. Let φX : X → M be the minimal left M-approximation of X . By Lemma 3.3, we
know that M ∈ U , and it follows that φX is also a left U-approximation. Since φX is left
minimal, it is the minimal left U-approximation of X . Finally, since M is cogenerating, any left
M-approximation is a monomorphism. �

Remark 3.5. Note that the previous corollary implies that the d-torsion class U is always
covariantly finite within the torsion class T , even if U is not covariantly finite in M or A.

3.2. Characterising d-torsion classes. In order to formulate our results, we need higher
analogues of what it means for a subcategory to be closed under extensions and quotients.
Recall the notions of d-cokernels and d-extensions from Section 2.1.

Definition 3.6. A subcategory U of M is called closed under d-extensions if for any d-extension

0 → X → E1 → · · · → Ed → Y → 0

in M with X and Y in U , there exists an equivalent d-extension

0 → X → E′
1 → · · · → E′

d → Y → 0

where all the objects are in U .
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Definition 3.7. A subcategory U of M is called closed under d-quotients if for any morphism
f : M → U in M with U in U , there exists a d-cokernel

M
f
−→ U → E1 → E2 → · · · → Ed → 0

of f with Ei in U for all i = 1, . . . , d. If this condition is only assumed to hold when both M
and U belong to U , we say that U is closed under d-cokernels.

It will further be convenient to define a (minimal) d-quotient of U ∈ M as a (minimal)
d-cokernel of some morphism f : M → U in M.

Remark 3.8. Since every d-extension is equivalent to a minimal one by Proposition 2.6, to
prove that a subcategory U ⊆ M is closed under d-extensions, it is enough to show that any
minimal d-extension

0 → X → E1 → · · · → Ed → Y → 0

with X,Y ∈ U satisfies E1, . . . , Ed ∈ U . We call this latter property being closed under minimal
d-extensions. Conversely, if U is closed under direct summands and d-extensions, then U is
closed under minimal d-extensions. Analogous statements hold for minimal d-quotients.

Remark 3.9. Since M is closed under direct summands, it follows that any subcategory U ⊆ M
which is closed under d-quotients is also closed under direct summands.

We often implicitly use that the subcategories we work with are closed under direct sum-
mands. This is not a standing assumption, but will hold either due to Remark 2.14 or Re-
mark 3.9.

The following lemma shows that when checking if a subcategory is closed under d-extensions,
it is often sufficient to consider the first middle term. This simplifies the proof of Proposition 3.11
and is also an important step towards the main result in Section 3.3.

Lemma 3.10. Let U ⊆ M be closed under d-quotients. Then for any minimal d-extension

0 → X
f
−→ E1

e1−→ E2
e2−→ · · ·

ed−1

−−−→ Ed
g
−→ Y → 0

in M with X,E1, Y ∈ U , it follows that Ei ∈ U for i = 2, . . . , d.

Proof. The minimality of the d-extension (see Definition 2.5) gives that ei ∈ RadA(Ei, Ei+1) for
all i = 1, . . . , d− 1. Moreover, the sequence

E1
e1−→ E2

e2−→ · · ·
ed−1

−−−→ Ed
g
−→ Y → 0 (2)

is a d-cokernel of f . If g ∈ RadA(Ed, Y ), then this d-cokernel is minimal. Since E1 ∈ U , the
result then follows from U being closed under d-quotients.

Suppose hence that g /∈ RadA(Ed, Y ). Recall from Remark 2.7 that the sequence (2) is
isomorphic to the direct sum of the minimal d-cokernel of f and shifted complexes of the form

N
1N−−→ N . However, since ei ∈ RadA(Ei, Ei+1) for i = 1, . . . d−1, it follows that (2) is isomorphic

to

E1
e1−→ E2

e2−→ · · ·
ed−2

−−−→ Ed−1

e′d−1=
(

h1

h2

)

−−−−−−−−→ E′
d ⊕ Y ′′

(

g′ 0
0 1Y ′′

)

−−−−−−−→ Y ′ ⊕ Y ′′ → 0,

where e′d−1 is ed−1 composed with an isomorphism and

E1
e1−→ E2

e2−→ · · ·
ed−2

−−−→ Ed−1
h1−→ E′

d

g′

−→ Y ′ → 0

is a minimal d-cokernel of f . In particular, the objects E2, . . . , Ed−1, E
′
d are in U as E1 ∈ U and

U is closed under d-quotients. Since Y ′⊕Y ′′ = Y ∈ U , we moreover see that Ed = E′
d⊕Y

′′ ∈ U ,
completing the proof. �
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We are now ready to prove the first part of our characterisation result. Recall that a complex
V1 → · · · → Vd in M is said to be U-exact with respect to a subcategory U ⊆ M if

0 → HomA(U, V1) → HomA(U, V2) → · · · → HomA(U, Vd) → 0

is exact for all objects U in U .

Proposition 3.11. Let U ⊆ M be a d-torsion class. Then U is closed under d-extensions and
d-quotients.

Proof. As U is a d-torsion class in M, we have that U = T ∩M for some torsion class T in A
as in Setup 3.1. Recall from Remark 3.8 that it suffices to consider minimal d-extensions and
minimal d-quotients.

We first show that U is closed under d-quotients. Let f : M → U be a morphism in M with
U ∈ U and consider its minimal d-cokernel

M
f
−→ U

f1
−→ V1

f2
−→ · · ·

fd−1

−−−→ Vd−1
fd−→ Vd → 0.

By construction of the minimal d-cokernel (see Construction 2.9), we have that Vi arises as
the minimal left M-approximation of Coker fi−1 for all i = 1, . . . , d, where we set f0 = f . As
U ∈ U = T ∩ M and T is closed under quotients, Lemma 3.3 implies that Vi ∈ U for all
i = 1, . . . , d. This shows that U is closed under d-quotients.

We next prove that U is closed under d-extensions. Consider a minimal d-exact sequence

0 → X
e0−→ E1

e1−→ · · ·
ed−1

−−−→ Ed
ed−→ Y → 0

in M with X and Y in U . By Lemma 2.8, the morphism ei is left minimal for i = 0, . . . , d− 2.
As U is a d-torsion class, we obtain the solid part of the diagram

0 X E1 E2 · · · Ed Y 0

0 tE1 E1 W1 · · · Wd−1 Wd 0,

e0

g0

e1

h0

e2

g2
h1

ed−1 ed

gd
hd−1

gd+1

hd

ι w0 w1 wd−2 wd−1

where the bottom row is the d-exact sequence associated to E1 by U . In particular, the object
tE1 ∈ U is the d-torsion subobject of E1 with respect to U by Lemma 3.2, and the sequence
W1 → · · · → Wd is U-exact. As ι is a right T -approximation and X ∈ U = T ∩M, there exists
a morphism g0 : X → tE1 making the left square commute. We can hence complete the diagram
to a morphism g of d-exact sequences by using the factorisation property for weak cokernels,
see Section 2.1.

Since the sequence W1 → · · · →Wd is U-exact, the morphism

wd−1 ◦ − : HomA(Y,Wd−1) → HomA(Y,Wd)

is surjective. Hence, there exists a morphism hd : Y → Wd−1 with wd−1hd = gd+1. As the
bottom row is d-exact, there is an exact sequence

HomA(Ed,Wd−2) → HomA(Ed,Wd−1) → HomA(Ed,Wd).

Using the commutativity of the rightmost square, we get wd−1(gd − hded) = 0, so gd − hded is
in the kernel of the second morphism. By exactness, there exists a morphism hd−1 : Ed →Wd−2

such that gd − hded = wd−2hd−1, or equivalently gd = hded + wd−2hd−1.
We can repeat this process to obtain a homotopy of the map of complexes g. In particular,

there are morphisms h0 and h1 such that g1 = 1E1
= ιh0+h1e1. This implies that ιh0e0 = e0, so

ιh0 is an isomorphism by the left minimality of e0. The morphism h0 is hence a split monomor-
phism, so E1 is contained in U . By Lemma 3.10, this implies that Ei ∈ U for i = 2, . . . , d, so
the subcategory U is closed under d-extensions. �

Remark 3.12. Proposition 3.11 implies that every d-torsion class is closed under d-cokernels.



12 AUGUST, HAUGLAND, JACOBSEN, KVAMME, PALU, AND TREFFINGER

The remainder of this subsection is devoted to proving the converse of Proposition 3.11. Since
any d-torsion class in M is contravariantly finite in M, we first establish that for a subcategory
U ⊆ M to be contravariantly finite, it is enough to assume closure under d-quotients.

We first need a result on coimage factorisation in a d-cluster tilting subcategory. Recall from
Section 2.1 that a morphism g in M is a weak cokernel if there exists a morphism f in M such
that g is a weak cokernel of f .

Proposition 3.13. Let f : M → N be a morphism in M. Then there exists a factorisation
f = f2 ◦ f1 in M where f2 is a monomorphism and f1 is a composite of left minimal weak
cokernels.

Proof. Let E0 denote the image of f , and let ι0 : E0 →M0 be a minimal left M-approximation.
The inclusion E0 → N lifts via ι0 to a morphism g0 : M0 → N . Let E1 be the image of g0,
and note that E0 ⊆ E1. Repeating this procedure, we get a subobject Ei ⊆ N , a minimal left
approximation ιi : Ei → Mi, and a lift gi : Mi → N for each i ≥ 0. In particular, the Ei’s form
an increasing sequence E0 ⊆ E1 ⊆ E2 ⊆ · · ·Ei ⊆ · · · of subobjects of N .

Since A is of finite length, this sequence has to stabilise, say at Ej . This implies that the
image of gj : Mj → N is Ej . But then the inclusion ιj : Ej → Mj is a split monomorphism,
and hence an isomorphism since it is also left minimal. This shows that Ej ∈ M. Now let
f2 : Ej → N be the inclusion, and let f1 : M → Ej be the composite M → E0 → Ej . Note that
this is equal to the composite

M M0 M1 · · · Mj−1 Mj .

E0 E1 E2 · · · Ej−1 Ej

ι0 ι1 ι2 ιj−1 ∼=

By construction, the morphisms M →M0 and Mi →Mi+1 for i = 0, . . . , j − 1 are left minimal
weak cokernels. Since f1 is a composite of such morphisms and the isomorphism Mj

∼= Ej , this
proves the claim. �

Lemma 3.14. Let U ⊆ M be closed under d-quotients. If g : M → N is a left minimal weak
cokernel with M ∈ U , then N ∈ U .

Proof. Assume g is a weak cokernel of a morphism f . Then g is part of a d-cokernel of f , and
if g is left minimal, then it is part of the minimal d-cokernel of f ; see Construction 2.9. This
proves the claim. �

We now apply Proposition 3.13 and Lemma 3.14 to show that being closed under d-quotients
implies being contravariantly finite.

Proposition 3.15. Let U ⊆ M be closed under d-quotients and consider M ∈ M. Then there
exists a minimal right U-approximation U → M which is a monomorphism. In particular, the
subcategory U is contravariantly finite in A.

Proof. Consider the set of subobjects U ⊆M with U ∈ U . Note that this set is non-empty since
0 ∈ U .

We first prove that this set has a unique maximal element. Indeed, since A has finite length,
we can choose U ⊆ M with U ∈ U and where U is of maximal length with this property. Now
let V ⊆M with V ∈ U , and consider the induced morphism U ⊕ V →M. By Proposition 3.13,
there exists W ⊆ M with W ∈ M such that U ⊆ W ⊆ M and V ⊆ W ⊆ M , and such that
the induced morphism U ⊕ V → W is a composite of left minimal weak cokernels. Since U is
closed under d-quotients, it follows from Lemma 3.14 that W ∈ U . But since U is maximal with
respect to the property that U ∈ U and U ⊆ M , it follows that U = W . This implies that V
must be contained in U , and hence U is the unique maximal subobject U ⊆M satisfying U ∈ U .

Now let U ′ → M be an arbitrary morphism with U ′ ∈ U . By Proposition 3.13, there exists
an object V ′ such that U ′ → M factors through V ′ and where the morphism U ′ → V ′ is a
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composite of left minimal weak cokernels and the morphism V ′ → M is a monomorphism. It
follows that V ′ ∈ U and V ′ is a subobject of M .

By the maximality of U , we get that V ′ ⊆ U ⊆ M , so the morphism U ′ → M also factors
through U . This shows that the inclusion U ⊆M is a right U-approximation, which is minimal
since it is a monomorphism. This proves the first claim.

Finally, the fact that U is contravariantly finite in A follows from the fact that M is con-
travariantly finite in A and U is contravariantly finite in M. �

Using the proposition above, we now show the converse of Proposition 3.11.

Proposition 3.16. Let U ⊆ M be closed under d-extensions and d-quotients. Then U is a
d-torsion class in M.

Proof. Consider an object M ∈ M. By the definition of a d-torsion class (see Definition 2.13),
we need to show that there exists a d-exact sequence

0 → UM →M → V1 → · · · → Vd → 0

where UM ∈ U and the sequence 0 → HomM(U, V1) → · · · → HomM(U, Vd) → 0 is exact for
every U in U .

Since U is closed under d-quotients, Proposition 3.15 shows that we may take a minimal right
U-approximation f : UM → M which is a monomorphism. Taking the minimal d-cokernel of f
gives a d-exact sequence

0 → UM
f
−→M → V1 → · · · → Vd → 0. (3)

Let U ∈ U . As f is a right U-approximation, we know that HomM(U, f) is an epimorphism.
Thus, it follows from d-exactness of the sequence (3) that

0 → HomM(U, V1) → · · · → HomM(U, Vd−1) → HomM(U, Vd)

is exact. To finish our proof, we hence need to show that the rightmost morphism in this
sequence is an epimorphism.

Consider hd ∈ HomM(U, Vd) and take a d-pullback of (3) along hd. This yields a commutative
diagram

0 UM W0 W1 · · · Wd−1 U 0

0 UM M V1 · · · Vd−1 Vd 0,

f0

h0

fd

hd

f

where the upper row is a d-exact sequence. By the dual of Lemma 2.10, this d-extension can
be assumed to be minimal, and then closedness of U under d-extensions implies Wi ∈ U for
all i = 0, . . . , d − 1 by Remark 3.8. As f is a right U-approximation, the morphism h0 factors
through f , so f0 is a split monomorphism. It follows that fd is a split epimorphism, and hence
hd factors through Vd−1. In particular, the morphism HomM(U, Vd−1) → HomM(U, Vd) is an
epimorphism as required. �

We can now generalise the classical characterisation of torsion classes, cf. Theorem 2.12.

Theorem 3.17. Let M be a d-cluster tilting subcategory of A. A subcategory U ⊆ M is a
d-torsion class if and only if it is closed under both d-extensions and d-quotients.

Proof. The necessity follows from Proposition 3.11, while the sufficiency follows from Proposi-
tion 3.16. �

We now demonstrate the use of Theorem 3.17 in our running example.
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Example 3.18. Let A and M be as described in Example 2.4. In Example 2.16 we claimed that

T1 = add {3 ⊕ 1} and T2 = add
{

3 ⊕ 2

3
⊕ 2

}

are torsion classes for which T1 ∩M = add {3 ⊕ 1}

and T2 ∩M = add
{

3 ⊕ 2

3

}

are not 2-torsion classes in M. We now use Theorem 3.17 to explain

why this is the case.
Consider the exact sequence

0 −→ 3 −→
2

3
−→

1

2
−→ 1 −→ 0.

It is straightforward to check that this is a minimal 2-extension in M. This implies that T1∩M
is not closed under 2-extensions, so it is not a 2-torsion class in M by Theorem 3.17.

Similarly, using the same sequence, one can see that T2 ∩M is not closed under 2-quotients.
Therefore, Theorem 3.17 implies that T2 ∩M is not a 2-torsion class.

A d-exact category is a pair (C,X ) consisting of an additive category C and a class X of d-exact
sequences in C satisfying certain axioms, see [J2, Definition 4.2]. One immediate consequence of
our characterisation result is that any d-torsion class U in M carries the structure of a d-exact
category.

Corollary 3.19. Let U ⊆ M be a d-torsion class. Consider the class X of d-exact sequences
in M where all the terms are in U . Then (U ,X ) is a d-exact category.

Proof. By Theorem 3.17, the subcategory U is closed under d-extensions in M. The result hence
follows by applying [Kl, Corollary 4.12]. �

Note that when viewing M and U as d-exangulated categories, see [HLN], Corollary 3.19
moreover implies that U is a d-exangulated subcategory of M in the sense of [H, Definition 3.7].

3.3. Closure under d-extensions. To check if a subcategory U ⊆ M is closed under d-
extensions, it is necessary to determine the middle terms of any minimal d-extension between
any two (not necessarily indecomposable) objects in U . In this subsection we show that under
certain conditions, it is enough to understand the d-extensions between indecomposable objects.
The main result is the following.

Theorem 3.20. Suppose U ⊆ M is closed under d-extensions with indecomposable end terms
and all d-quotients. Then U is closed under all d-extensions.

We apply the theorem above in Sections 5 and 6, where we use it to give a combinatorial
description of d-torsion classes of higher Auslander algebras of type A and higher Nakayama
algebras of type A and A∞

∞.
In order to prove Theorem 3.20, recall first from Remark 3.8 that we may focus our attention

purely on minimal d-extensions and minimal d-quotients. Our first step is to show that when
closing a subcategory under d-extensions, it may suffice to consider d-extensions where the first
term is indecomposable.

Lemma 3.21. Suppose U ⊆ M is closed under d-quotients. If U is closed under d-extensions
with indecomposable first term, then U is closed under all d-extensions.

Proof. Assume that U is closed under d-quotients and under d-extensions with indecomposable
first term. Let

0 → X → E1 → · · · → Ed → Y → 0

be a minimal d-extension with X,Y ∈ U . We want to show that Ei ∈ U for all i = 1, . . . , d. By
Lemma 3.10, it is sufficient to check that E1 ∈ U .

If X is indecomposable, we are done by assumption. Suppose hence that X = X1 ⊕ X2,
where X1 is indecomposable and X2 6= 0. We take a d-pushout of the d-exact sequence along
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the projection π : X → X1. This yields a commutative diagram

X2 X2

0 X E1 · · · Ed Y 0

0 X1 F1 · · · Fd Y 0

∼=

ι

π g

where the lower sequence is d-exact and can be assumed to be minimal by Lemma 2.10. In the di-
agram, we have included the kernels of π and g, which are isomorphic. As X1 is indecomposable,
we have F1 ∈ U .

We claim that g is left minimal. Indeed, the morphism X1 → F1 is left minimal since the
lower sequence is a minimal d-extension. Since π : X → X1 is an epimorphism, the composite

X
π
−→ X1 → F1 is also left minimal. Hence the composite X → E1

g
−→ F1 is left minimal, so g

must be left minimal. It follows that g : E1 → F1 is the first morphism in the minimal d-cokernel
of ι : X2 → E1. Using that ι is a monomorphism, this yields a d-exact sequence

0 → X2
ι
−→ E1

g
−→ F1 → G2 → · · · → Gd → 0.

All morphisms but ι and g are in the radical by the definition of a minimal d-cokernel. We now
show that we may also assume that g is in the radical, and thus that the d-extension above is
minimal. Otherwise, we know by Remark 2.7 that the d-extension is isomorphic to

0 → X2

ι′=
(

j1
j2

)

−−−−−−→ E′
1 ⊕ E′′

1

(

g′ 0
0 1

)

−−−−−→ F ′
1 ⊕ E′′

1 → G2 → · · · → Gd → 0,

where ι′ is ι composed with an isomorphism and the exact sequence

0 → X2
j1
−→ E′

1
g′

−→ F ′
1 → G2 → · · · → Gd → 0

is a minimal d-extension. As F1
∼= F ′

1 ⊕E′′
1 ∈ U , we have E′′

1 ∈ U , and so it follows that E1 ∈ U
if and only if E′

1 ∈ U . Consequently, it suffices to assume that g was already in the radical.
Now, the sequence G2 → · · · → Gd → 0 is a minimal d-cokernel of g by construction, and so,
since F1 ∈ U and U is closed under d-quotients, we see that G2, . . . , Gd ∈ U .

Obviously, the object X2 has fewer indecomposable summands than X . If X2 is indecompos-
able, we know that E1 ∈ U , as the end terms X2 and Gd of the above d-extension are in U . If
not, we repeat the argument to eventually show that E1 ∈ U . �

We are now ready to give the proof of Theorem 3.20.

Proof of Theorem 3.20. Suppose that we have a minimal d-extension

0 → X
e0−→ E1

e1−→ E2
e2−→ · · ·

ed−1

−−−→ Ed
ed−→ Y → 0

with X,Y ∈ U . By Lemma 3.21, we may assume that X is indecomposable. Let Y =
⊕t

j=1 Yj ,
where each Yj is indecomposable. For each inclusion ιj : Yj → Y , consider a d-pullback diagram

0 X Fj,1 · · · Fj,d Yj 0

0 X E1 · · · Ed Y 0.

fj,0

hj,0

fj,1

hj,1

fj,d−1 fj,d

hj,d ιj

e0 e1 ed−1 ed

(4)

By the dual of Lemma 2.10, the top d-extension can be chosen to be minimal. Consequently,
each of the morphisms fj,1, . . . , fj,d−1 is in the Jacobson radical. Moreover, the middle objects
Fj,1, . . . , Fj,d are in U since U is closed under d-extensions between indecomposables.
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Now look at the d-extension

0 →
t⊕

j=1

X
f0
−→

t⊕

j=1

Fj,1
f1
−→ · · ·

fd−1

−−−→
t⊕

j=1

Fj,d
fd−→

t⊕

j=1

Yj → 0

given by the direct sum of all the upper d-extensions obtained as in (4). Consider the induced
map

0
⊕t

j=1X
⊕t

j=1 Fj,1 · · ·
⊕t

j=1 Fj,d

⊕t
j=1 Yj 0

0 X E1 · · · Ed Y 0

f0

h0

f1

h1

fd−1 fd

hd

e0 e1 ed−1 ed

with hi = ( h1,i ··· ht,i ) for i = 0, . . . , d. This is a d-pushout diagram by [J2, Proposition 4.8],
and thus the associated mapping cone

0 →
t⊕

j=1

X

(

h0

−f0

)

−−−−−→ X ⊕
t⊕

j=1

Fj,1

(

e0 h1

0 −f1

)

−−−−−−→ E1 ⊕
t⊕

j=1

Fj,2 → · · · → Ed → 0 (5)

is a d-extension. Note that the term X ⊕
⊕t

j=1 Fj,1 lies in U . If (5) is given by the minimal
d-cokernel of the first morphism, we are hence done by closure under minimal d-quotients. So
suppose this d-cokernel is not minimal. By Remark 2.7, it is then isomorphic to the direct sum

of the minimal d-cokernel and shifted complexes of the form N
1
−→ N . In particular, if

X ⊕
t⊕

j=1

Fj,1
∂1−→ M1

∂2−→M2 → · · · →Md → 0

is the minimal d-cokernel of
(

h0

−f0

)

, then there is a commutative diagram

E1 ⊕
⊕t

j=1 Fj,2 E2 ⊕
⊕t

j=1 Fj,3

M1 ⊕N1 M2 ⊕N1 ⊕N2,

(

e1 h2

0 −f2

)

(

a b
c d

)

φ(

∂2 0
0 1
0 0

)

where the vertical maps are isomorphisms. Since e1 ∈ RadA(E1, E2), the morphism

φ ◦

(
e1
0

)

: E1 →M2 ⊕N1 ⊕N2

also lies in the radical, and thus so does

φ ◦

(
e1
0

)

=





∂2 0
0 1
0 0





(
a
c

)

=





∂2 ◦ a
c
0



 .

This shows that c ∈ RadA(E1, N1). Now let
(

α β
γ δ

)

denote the inverse of
(
a b
c d

)
. We have

αa + βc = 1E1
, or equivalently αa = 1E1

− βc. It follows from the definition of the radical
that this is an isomorphism, as c ∈ RadA(E1, N1). This implies that E1 is a direct summand of
M1. But M1 ∈ U since U is closed under minimal d-quotients, and hence E1 also lies in U . It
then follows from Lemma 3.10 that E2, . . . , Ed ∈ U , so we can conclude that U is closed under
d-extensions as required. �
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4. The lattice of d-torsion classes

The torsion classes in A form a complete lattice with meet given by intersection, see e.g.
[IRTT, Proposition 2.3]. In this section, we use the characterisation of higher torsion classes
given in Theorem 3.17 to show that an analogous statement holds for higher torsion classes.

Let us first recall some relevant definitions.

Definition 4.1. Let P be a poset. For an arbitrary subset H ⊆ P , the join of H , if it exists,
is the least upper bound of H . Dually, the meet of H , if it exists, is the greatest lower bound of
H . The poset P is a complete lattice if for any subset H ⊆ P , the join and the meet of H exist.

For the sake of clarity, note that a least upper bound is unique as it is smaller than any
other upper bound, and similarly for greatest lower bounds. Note also that a complete lattice
is bounded, i.e. it has a minimum and a maximum, obtained by letting H in the definition be
empty. The following lemma is well-known, see e.g. [G, Lemma I.3.34].

Lemma 4.2. Let P be a poset. If any subset of P admits a meet or if any subset of P admits
a join, then P is a complete lattice.

For a d-cluster tilting subcategory M of A, we let d-tors(M) denote the poset of d-torsion
classes in M ordered by inclusion.

Theorem 4.3. Let M be a d-cluster tilting subcategory of A. Then d-tors(M) is a complete
lattice with meet given by intersection.

Proof. To show that d-tors(M) is a complete lattice, it suffices to show that it has arbitrary
meets by Lemma 4.2. We note that if d-tors(M) is closed under arbitrary intersections, then
meets are given by intersections, and closure under arbitrary meets follows. Therefore, we only
need to show that for any subset S of d-tors(M), the intersection

V :=
⋂

U∈S

U

is a d-torsion class. By Theorem 3.17 and Remark 3.8, it is enough to show that V is closed
under minimal d-extensions and minimal d-quotients. This follows from the fact that each U ∈ S
is closed under d-extensions and d-quotients by Theorem 3.17. �

We illustrate the lattice structure on the set of higher torsion classes in our running example.

Example 4.4. In the setting of Example 2.4, the set of all 2-torsion classes in M is listed in
Table 1. By Theorem 4.3, we know that the poset of all 2-torsion classes in M ordered by
inclusion forms a complete lattice. We include the Hasse diagram in Figure 2.

Another example, namely the complete lattice of 3-torsion classes for the higher Auslander
algebra A3

3, can be found in Example 5.21. This example will demonstrate that, unlike in the
classical setting, the lattice of d-torsion classes may not be Hasse-regular or semi-distributive
(see e.g. [DIRRT] for the definitions).

It follows from Theorem 2.15 that there is an injective, order-preserving map

d-tors(M) → tors(A) (6)

which takes a d-torsion class U ⊆ M to the smallest torsion class in A containing U (see [AJST,
Corollary 3.3]). We now give an example that demonstrates that this map is not a morphism
of lattices.

Example 4.5. Continuing with Example 4.4, we see that the 2-torsion classes add{3} and
add{1} are both torsion classes in A, and thus are sent to themselves under the map (6).
However, Figure 2 shows that the join in 2-tors(M) is M, which is sent to A under (6), while
the join in tors(A) is simply add{3⊕ 1}.
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M

add
{

2

3
⊕ 1

2
⊕ 1

}

add {3} add
{

1

2
⊕ 1

}

add {1}

{0}

Figure 2. The Hasse diagram of the lattice of 2-torsion classes in Example 4.4.

We finish by investigating when the intersection with a d-cluster tilting subcategory gives
a map of posets. The result will be applied in the context of higher Nakayama algebras in
Section 6.

Proposition 4.6. Let A1 and A2 be abelian categories of finite length, and let M1 ⊆ A1 and
M2 ⊆ A2 be d-cluster tilting subcategories. Assume we have an exact inclusion A2 ⊆ A1 such
that M2 ⊆ M1. The following statements hold:

(1) If U is a d-torsion class in M1, then U ∩M2 is a d-torsion class in M2.
(2) Intersecting with M2 gives a map of posets

d-tors(M1) → d-tors(M2)

which preserves meets.
(3) If A2 is closed under quotients in A1, then M2 is closed under d-quotients in M1.

Proof. Assume that U is a d-torsion class in M1. Since the inclusion A2 ⊆ A1 is exact, it
must send d-cokernels and d-kernels in M2 to d-cokernels and d-kernels in M1, respectively. In
particular, it preserves d-quotients and d-extensions. Therefore, the subcategory U ∩M2 must
be closed under d-extensions and d-quotients in M2, since U is closed under d-extensions and
d-quotients in M1. This proves (1).

Part (2) follows from (1) and the fact that meets in d-tors(M1) and d-tors(M2) are given by
intersection.

For part (3), note that giving a d-quotient in M1 of an object X ∈ M2 is the same as giving
a d-cokernel in M1 of a morphism Y → X with Y ∈ M1. This is again equivalent to giving an
exact sequence

0 → C →M1 → M2 → · · · → Md → 0

where C is the cokernel of Y → X and each Mi is in M1. Now since A2 is closed under
quotients in A1, the cokernel C must be contained in A2. As M2 is d-cluster tilting in A2, we
can construct an exact sequence

0 → C → N1 → N2 → · · · → Nd → 0

where each Ni is in M2, see [J2, Proposition 3.17]. Since M2 ⊆ M1, this must give a d-cokernel
of Y → X in M1 by the observation above. This proves the claim. �

Remark 4.7. Note that if A2 is closed under quotients in A1, it follows from Proposition 4.6(3)
that any minimal d-cokernel in M1 of a morphism X → Y with Y ∈ M2 is a minimal d-cokernel
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of a morphism in M2. In particular, a subcategory of M2 is closed under d-quotients in M2 if
and only if it is closed under d-quotients in M1.

5. Higher Auslander algebras

In this section, we apply Theorem 3.17 to classify and count the d-torsion classes associated
to higher Auslander algebras of type A. Higher Auslander algebras were introduced in [I3] and
constitute an important class of algebras in higher homological algebra. The module category of
each such algebra contains a d-cluster tilting subcategory, which was described combinatorially
in [I3] and [OT].

Recall from Theorem 3.17 that d-torsion classes in a d-cluster tilting subcategory are precisely
the subcategories which are closed under d-extensions and d-quotients. In Sections 5.1 and 5.2
we present results on closure under d-extensions and d-quotients for higher Auslander algebras
of type A, culiminating in a combinatorial characterisation of their higher torsion classes in
Theorem 5.13. In Section 5.3 we employ our results to write an algorithm which computes and
counts all these d-torsion classes.

5.1. Background on higher Auslander algebras. We start by providing a brief introduction
to higher Auslander algebras, highlighting combinatorial descriptions which will be important
throughout Section 5. We mostly follow the notation and terminology from [JKPK].

For positive integers n and d, let Nn = {0, 1, . . . , n − 1} with the natural poset structure.
Consider the set

Nd
n = Nn × · · · ×Nn

︸ ︷︷ ︸

d times

of d-tuples x = (x0, . . . , xd−1) over Nn. We endow Nd
n with the product order, meaning that

x ≤ y in Nd
n if and only if xi ≤ yi for all i = 0, 1, . . . , d−1. We can also consider Nd

n as a category
whose objects are the elements of Nd

n, and whose morphisms are given by the poset relations
of Nd

n. Taking the k-linearisation of this category, we get a finite-dimensional k-algebra, see
[JKPK, Section 1.2] for more details. By abuse of notation, we also denote this algebra by Nd

n.
Let osdn be the subset of Nd

n of non-decreasing d-tuples over Nn. In particular, an element of
osdn is a tuple x = (x0, . . . , xd−1) with x0 ≤ x1 ≤ · · · ≤ xd−1. The higher Auslander algebra Ad

n

is defined as the idempotent quotient

Ad
n := Nd

n/(N
d
n \ osdn),

where we consider Nd
n as a finite-dimensional k-algebra as above. Note that Ad

n is equivalently
given by the opposite of a quiver Qn,d whose vertices are the elements of the set osdn, and where
there is an arrow from vertex x to vertex y if we have yi = xi + 1 for exactly one 0 ≤ i ≤ d− 1
and yj = xj for j 6= i. The relations of Ad

n are given by an admissible ideal In,d making squares
commutative and sending certain compositions of two arrows to zero, see [HJ].

Remark 5.1. The notation we use is similar to that in [JKPK]. It relates to the notation in
[HJ] in the following way: What we call Qn,d, Ad

n and In,d corresponds to what is denoted by
Qn,d−1, Ad−1

n and In,d−1 in [HJ]. To see this, note that the poset osdn is isomorphic to the poset
Vn,d−1 of increasing d-tuples x′ = (x′0, . . . , x

′
d−1) over {1, 2, . . . , n + d − 1} used in [HJ]. The

isomorphism is given by

osdn → Vn,d−1 (x0, . . . , xd−1) 7→ (x0 + 1, x1 + 2, . . . , xd−1 + d).

The module category of Ad
n has a d-cluster tilting subcategory

Md
n := add(Md

n) ⊆ modAd
n

where Md
n =

⊕

x∈osd+1
n

Mx. Here, the notation Mx is used for the indecomposable Ad
n-module

with support in all vertices y ∈ osdn such that x0 ≤ y0 ≤ x1 ≤ · · · ≤ xd−1 ≤ yd−1 ≤ xd.
Note that the d-cluster tilting subcategory Md

n contains finitely many indecomposable objects,
indexed by osd+1

n . It is known that EndAd
n
(Md

n) and Ad+1
n are isomorphic as algebras by [I3,
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Corollary 1.16], see also [JKPK, Theorem 2.3]. For examples of the quivers Qn,d and relevant
modules, see [JKPK, Section 2.1] and [HJ, Example 2.13].

Next we define the relation

x y if and only if x0 ≤ y0 ≤ x1 ≤ y1 ≤ · · · ≤ xd ≤ yd

on the set Zd+1 of all (d+ 1)-tuples over Z. Note that x y implies x ≤ y. Using the relation
 , one can determine the Hom-spaces between indecomposable modules in Md

n.

Proposition 5.2. [OT, Theorem 3.6(3)], [JKPK, Proposition 2.8] Let x, y ∈ osd+1
n . Then

dimHomAd
n
(Mx,My) =

{

1 if x y

0 otherwise.

The d-extensions in Md
n have a similar combinatorial description, including a description of

all the middle terms. To this end, we define τd : Z
d+1 → Zd+1 by

τd(x0, . . . , xd) = (x0 − 1, x1 − 1, . . . , xd − 1).

The notation is motivated by the fact that if x ∈ osd+1
n with x0 > 0, then τd(Mx) ∼= Mτd(x) by

[JKPK, Proposition 2.7 (iii)], where τd(Mx) is the higher Auslander–Reiten translate of Mx.

Proposition 5.3. [OT, Theorem 3.6(4) and 3.8], [JKPK, Proposition 2.8] Let x, y ∈ osd+1
n .

Then

dimExtdAd
n
(My,Mx) =

{

1 if x τd(y)

0 otherwise.

In particular, if x τd(y), there is a non-trivial d-extension

0 →Mx → E1 → · · · → Ed →My → 0 (7)

where Ek =
⊕

z∈Zk
Mz for

Zk = {z ∈ osd+1
n | zi ∈ {xi, yi} for each i and |{i | zi = yi}| = k}.

Remark 5.4. The d-extension (7) in Proposition 5.3 is minimal. This is seen by combining
the fact that Ek and Ek+1 have no isomorphic direct summands for k = 1, . . . , d − 1 with
Proposition 2.6 and Remark 2.7.

We will use the following lemma, which can be seen as an immediate consequence of the
description of d-extensions in Proposition 5.3.

Lemma 5.5. Suppose that x, y ∈ osd+1
n with xi = yi for all i = 0, . . . , d− 1 and xd ≤ yd. Then

any non-zero morphism Mx →My is a monomorphism.

Proof. If xd = yd, the only non-zero morphism (up to multiplication by a scalar) is the identity,
which is a monomorphism. If xd < yd, the result follows from Proposition 5.3 when looking at
the extension between Mx and Mz, where z = (x1 + 1, . . . , xd + 1, yd). �

Although Proposition 5.3 is limited to describing the middle terms in d-extensions with
indecomposable end terms, we know from Theorem 3.20 that this knowledge is sufficient for
producing d-torsion classes if we have already established closure under d-quotients.

5.2. A combinatorial characterisation of d-torsion classes in Md
n. The main result of this

subsection is a characterisation of higher torsion classes associated to higher Auslander algebras
of type A, see Theorem 5.13. The key ingredient in the proof of this result is a combinatorial
description of how to close a subcategory of Md

n under d-quotients.
Given M ∈ Md

n, we write dq(M) for the smallest subcategory of Md
n which contains M

and is closed under d-quotients (see Definition 3.7). We often refer to dq(M) as the d-quotient
closure of M . It is clear that if N ∈ dq(M), then dq(N) ⊆ dq(M).

We filter dq(M) as follows:
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• Set dq(M)0 = add(M).
• For i ≥ 0, set

dq(M)i+1 = add

{

N ∈ Md
n

∣
∣
∣
∣

∃ minimal d-quotient X → Y → C1 → · · · → Cd → 0 in
Mn,d with Y ∈ dq(M)i and N ∼= Cj for some 1 ≤ j ≤ d

}

.

We see that dq(M)0 ⊆ dq(M)1 ⊆ . . . and that the chain must stabilise with dq(M)t = dq(M)t+1

for some t ∈ N because Md
n has finitely many indecomposables. By definition, we have

dq(M) = dq(M)t.
To completely determine the subcategory dq(M), it is sufficient to describe the indecompos-

able modules it contains. With this in mind, we begin by identifying certain indecomposables
which must be contained in d-quotient closures.

Lemma 5.6. Let x ∈ osd+1
n be such that xi + 1 ≤ xi+1 for some 0 ≤ i ≤ d − 1 and set

y = (x0, . . . , xi−1, xi + 1, xi+1, . . . , xd). Then My ∈ dq(Mx).

Proof. Define z = (z0, . . . , zd) such that

zj =

{

xj if j 6= i+ 1

xi + 1 if j = i+ 1.

We then have z  x, so there is a non-zero morphism Mz → Mx by Proposition 5.2. The
module My is hence in dq(Mx) by [HJ, Lemma 3.8(2)]. �

Lemma 5.6 yields the following corollary.

Corollary 5.7. Given any x ∈ osd+1
n , the set

{
My ∈ Md

n | y ∈ osd+1
n , x ≤ y and xd = yd

}

is contained in dq(Mx).

Proof. Suppose y ∈ osd+1
n satisfies x ≤ y and xd = yd. Construct a sequence

x = z0, z1, z2, . . . , zm = y

in osd+1
n , where the element zi+1 is constructed from zi as follows. If zi = y, then we are

finished. Otherwise, there exists a maximal j such that zij < yj , and we must have j < d. Then

zij + 1 ≤ yj ≤ yj+1 = zij+1 and we define

zi+1
k =

{

zik + 1 if k = j

zik if k 6= j.

Notice that Mzi+1 ∈ dq(Mzi) by Lemma 5.6 and that this process must terminate with zm = y.
Thus, we get

My ∈ dq(Mzm−1) ⊆ · · · ⊆ dq(Mx)

as required. �

We now present the key technical lemma needed to describe dq(Mx) completely.

Lemma 5.8. Suppose that C0 → C1 → · · · → Cd → 0 is a minimal d-cokernel of a morphism
C−1 → C0 in Md

n. If Mz ∈ add(Ci) for some 1 ≤ i ≤ d, then there exists Mx ∈ add(C0) such
that x ≤ z and xd = zd.

Proof. Since each Ci ∈ Md
n, we may assume that every Ci is equal to a direct sum of modules

of the form Mz for z ∈ osd+1
n . Choose Mz ∈ add(Ci). Write the morphism Ci−1 → Ci as

(
f
g

)

: Ci−1 →Mz ⊕ C′
i.
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By the construction of minimal d-cokernels, this morphism factors through the cokernel K of
the morphism Ci−2 → Ci−1 as indicated in the diagram

Ci−1 Mz ⊕ C′
i,

K

(

f
g

)

π
(

f ′

g′

)

where
(

f ′

g′

)

is a minimal left Md
n-approximation of K.

There exists some Mw ∈ add(Ci−1) with a non-zero morphism Mw → Mz. Indeed, if this
is not the case, then f = 0. However, since π is an epimorphism, this would imply f ′ = 0,

contradicting
(

f ′

g′

)

being left minimal. Consequently, we may write Ci−1 = D ⊕ D′, where

D 6= 0 and D′ is the largest summand of Ci−1 that maps to zero under f . This means that the
morphism

(
f
g

)
may be written as

(
f1 0
g1 g2

)

: D ⊕D′ −→Mz ⊕ C′
i.

For everyMv ∈ add(D), there is a non-zero morphism to Mz. Hence, Proposition 5.2 shows that
v  z. Since D 6= 0, we may choose My ∈ add(D) with yd maximal, i.e. for all Mv ∈ add(D),
we have vd ≤ yd.

With z and y fixed and knowing that y  z, we may now consider z′ = (z0, z1, . . . , zd−1, yd).
Notice that z′  z. Proposition 5.2 and Lemma 5.5 thus yield that there exists a monomorphism
ι : Mz′ → Mz. Moreover, by the maximality of yd, we have v  z′ for all Mv ∈ add(D). Hence,
by Proposition 5.2, there exists a morphism h : D →Mz′ such that f1 = ι ◦h. In particular, the
solid part of the diagram

D ⊕D′ Mz′ ⊕ C′
i

K Mz ⊕ C′
i

(

h 0
g1 g2

)

π=( π1
π2
) ( ι 0

0 1 )
t

(

f ′

g′

)

commutes. Since ( ι 0
0 1 ) is a monomorphism, this implies that the composition of the morphism

Ci−2 → Ci−1 and
(

h 0
g1 g2

)
is zero. Thus, there is a morphism t : K → Mz′ ⊕ C′

i making the
upper triangle in the diagram above commute.

Note that the lower triangle also commutes as π is an epimorphism. Finally, since
(

f ′

g′

)

is

an Md
n-approximation, there exists a morphism s : Mz ⊕ C′

i →Mz′ ⊕ C′
i such that

t = s ◦

(
f ′

g′

)

.

It follows that
(
f ′

g′

)

=

(
ι 0
0 1

)

◦ t =

(
ι 0
0 1

)

◦ s ◦

(
f ′

g′

)

,

and thus ( ι 0
0 1 ) ◦ s is an isomorphism, since

(
f ′

g′

)

is left minimal. Therefore, the monomorphism

ι is also an epimorphism, so it must be an isomorphism and we have Mz
∼= Mz′ . This shows

that yd = zd, and hence My ∈ add(Ci−1) satisfies both y  z (and thus y ≤ z) and yd = zd.
We can now repeat the argument with My and keep going until we get Mx ∈ add(C0) with

x ≤ y ≤ z and xd = yd = zd. �

Lemma 5.8 enables us to fully describe dq(Mx) for an indecomposable module Mx ∈ Md
n.



A CHARACTERISATION OF HIGHER TORSION CLASSES 23

Corollary 5.9. Given any x ∈ osd+1
n , we have

dq(Mx) = add
{
My ∈ Md

n | y ∈ osd+1
n , x ≤ y and xd = yd

}
.

Proof. By Corollary 5.7, it suffices to show that for any My ∈ dq(Mx), we must have x ≤ y and
xd = yd. Let i ≥ 0 be such that My ∈ dq(Mx)i. If i = 0, we have My ∈ dq(Mx)0 = add(Mx),
so My = Mx and the statement holds. Assume hence i > 0. By Lemma 5.8, there exists
Mz ∈ dq(Mx)i−1 such that z ≤ y and zd = yd.

Repeating this argument, we will eventually find some Mw ∈ dq(Mx)0 such that w ≤ y and
wd = yd. As dq(Mx)0 = add(Mx) yields Mw =Mx, the result follows. �

Remark 5.10. It follows from Corollary 5.9 that any My,Mz ∈ dq(Mx) satisfy yd = xd = zd,
and thus there are no non-trivial d-extensions between them by Proposition 5.3. In particular,
the subcategory dq(Mx) is closed under d-extensions, and it is hence the smallest d-torsion class
containing Mx by Theorem 3.17.

We now consider the d-quotient closure of a set of indecomposables.

Proposition 5.11. Given any subset I ⊆ osd+1
n , suppose that My ∈ dq

(⊕

x∈I Mx

)
. Then

My ∈ dq(Mx) for some x ∈ I.

Proof. We prove this by induction on the filtration of dq(
⊕

x∈I Mx). If

My ∈ dq

(
⊕

x∈I

Mx

)

0

= add

(
⊕

x∈I

Mx

)

,

the statement clearly holds.
Now suppose My ∈ dq

(⊕

x∈I Mx

)

i
for some i > 0, and that the result is known for all

Mz ∈ dq
(⊕

x∈I Mx

)

i−1
. By construction, there must exist a minimal d-quotient

X
f
−→ Y → C1 → · · · → Cd → 0

in Md
n of some morphism f such that Y ∈ dq

(⊕

x∈I Mx

)

i−1
and My ∈ add(Cj) for some

1 ≤ j ≤ d. Hence, combining Lemma 5.8 with Corollary 5.7 shows that there exists

Mz ∈ add(Y ) ⊆ dq

(
⊕

x∈I

Mx

)

i−1

such that My ∈ dq(Mz). By the induction hypothesis, we have Mz ∈ dq(Mx) for some x ∈ I,
and thus it follows that My ∈ dq(Mz) ⊆ dq(Mx) as required. �

Using Proposition 5.11, we are able to give a complete description of the d-quotient closure
of any module in Md

n.

Corollary 5.12. Given a subset I ⊆ osd+1
n , the set of indecomposable modules in dq

(⊕

x∈I Mx

)

is precisely
⋃

x∈I

{
My ∈ Md

n | y ∈ osd+1
n , x ≤ y and xd = yd

}
.

Proof. Since it is clear that dq(Mx) ⊆ dq
(⊕

x∈I Mx

)
for each x ∈ I, this is a direct consequence

of Corollary 5.9 and Proposition 5.11. �

For a set of indecomposable modules in Md
n, Corollary 5.12 gives a purely combinatorial

description of all the indecomposables in their d-quotient closure. Unlike what we saw in
Remark 5.10, there may now exist non-trivial d-extensions, so the d-quotient closure is not
necessarily a d-torsion class. However, using the results developed in this subsection, we give
a full combinatorial description of the subsets corresponding to d-torsion classes. Note that
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any subcategory of Md
n which is closed under direct summands is uniquely determined by its

indecomposable modules, i.e. by a subset of osd+1
n . We hence use the notation

UI := add{My ∈ Md
n | y ∈ I}

for the subcategory of Md
n associated to a subset I ⊆ osd+1

n .

Theorem 5.13. Consider a subset I ⊆ osd+1
n . The subcategory UI is a d-torsion class in Md

n

if and only if the following hold for any elements x, z ∈ osd+1
n :

(1) If x ≤ z and xd = zd, then x ∈ I implies z ∈ I.
(2) If x τd(z) and x, z ∈ I, then any y ∈ osd+1

n with yi ∈ {xi, zi} for each i must be in I.

Remark 5.14. The product order on Nd+1
n restricts to a partial order on the subset

{y ∈ osd+1
n | yd = m} ⊆ Nd+1

n .

Theorem 5.13 (1) tells us that {y ∈ I | yd = m} is an upper set in {y ∈ osd+1
n | yd = m} for each

m = 0, . . . , n− 1.

Proof of Theorem 5.13. By Corollary 5.12, condition (1) holds if and only if UI is closed under
d-quotients. It follows from Proposition 5.3 and Remark 5.4 that condition (2) is equivalent
to UI being closed under d-extensions by indecomposables. Moreover, if UI is closed under
d-quotients, it is closed under d-extensions by indecomposables if and only if it is closed under
all d-extensions by Theorem 3.20. From Theorem 3.17, we know that UI is a d-torsion class if
and only if it is closed under d-extensions and d-quotients, which proves the claim. �

5.3. Computational results. We are now ready to present two algorithms for explicitly com-
puting higher torsion classes associated to higher Auslander algebras of type A. The first algo-
rithm computes the minimal d-torsion class containing a given module. The second computes
all d-torsion classes associated to a higher Auslander algebra. The code for the algorithms is
available as a Google Colab notebook.1

We extend our notation for the sake of readability. In particular, for an element x ∈ osd+1
n ,

we set dq(x) = {y ∈ osd+1
n |My ∈ dq(Mx)}. By Corollary 5.9, we know that

dq(x) =
{
y ∈ osd+1

n | x ≤ y and xd = yd
}
.

Given a set of indecomposable modules Mx1 , . . . ,Mxr in Md
n, we let U(Mx1 , . . . ,Mxr) denote the

smallest d-torsion class in Md
n containing Mx1 , . . . ,Mxr . For a set X = {x1, . . . , xr} ⊆ osd+1

n , we
let U(X) be the set of (d+1)-tuples corresponding to the indecomposables in U(Mx1 , . . . ,Mxr).
If the set X is empty, then U(X) is also empty and corresponds to the trivial d-torsion class {0}.

Algorithm 5.15. Given a set of initial indecomposable modules in Md
n, or equivalently a subset

of osd+1
n , this algorithm computes the minimal d-torsion class containing those modules.

Input: Integers d ≥ 1, n ≥ 1 and a set X = {x1, . . . , xr} ⊆ osd+1
n .

(1) Let I = X .
(2) For each pair x, y ∈ I such that x τd(y), add the (d+1)-tuple (x0, . . . , xd−1, yd) to I.
(3) For every x ∈ I, add the elements of dq(x) to I.
(4) If new elements were added to I in step (2) or (3), repeat from step (2). Otherwise,

terminate the process.

Output: The set I.

Since osd+1
n is a finite set, Algorithm 5.15 will always terminate and give a subset I ⊆ osd+1

n

as output. Recall that we use the notation

UI := add{My ∈ Md
n | y ∈ I}

for the corresponding subcategory of Md
n. Proposition 5.16 shows that the set I produced in

Algorithm 5.15 indeed corresponds to the minimal d-torsion class containing the indecomposable
modules we started with.

1https://colab.research.google.com/drive/172Q-UZHvdPOhngGkl1T_xdYLzntg31dY

https://colab.research.google.com/drive/172Q-UZHvdPOhngGkl1T_xdYLzntg31dY
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Proposition 5.16. The set I constructed in Algorithm 5.15 satisfies UI = U(Mx1 , . . . ,Mxr).

Proof. We need to show that UI is the minimal d-torsion class containing Mx1 , . . . ,Mxr . Step
(1) of the algorithm ensures that Mx1 , . . . ,Mxr ∈ UI . By Proposition 5.11, step (3) implies that
UI is closed under d-quotients.

Consider two indecomposable modules Mx,My ∈ UI with ExtdAd
n
(My,Mx) 6= 0. This means

that the pair x, y ∈ I satisfies x  τd(y) by Proposition 5.3. Moreover, if Mz is a direct
summand in one of the middle terms in the non-trivial d-extension from Mx to My described
in Proposition 5.3, then either z ∈ dq(x) or z ∈ dq((x1, . . . , xd−1, yd)). Step (2) followed by
step (3) thus ensures that Mz ∈ UI , so UI is closed under d-extensions with indecomposable end
terms. By Theorem 3.20, this implies that UI is closed under all d-extensions. We can hence
conclude that UI is a d-torsion class by Theorem 3.17.

We now know that UI is a d-torsion class containing the modules Mx1 , . . . ,Mxr . However,
objects added to I in the algorithm corresponds to either Mx1 , . . . ,Mxr or to indecomposable
direct summands obtained from minimal d-quotients or minimal d-extensions, see Remark 5.4,
and the result follows. �

Remark 5.17. An improvement of Algorithm 5.15, omitted for the sake of readability, is that on
subsequent iterations it suffices to only consider (d+1)-tuples added in the previous iteration in
step (3). Similarly, in step (2), one only needs to to consider pairs where at least one (d+1)-tuple
was added in the previous iteration.

Building on Algorithm 5.15, we give an algorithm that determines all d-torsion classes in Md
n.

Algorithm 5.18. This algorithm computes all higher torsion classes associated to a higher
Auslander algebra.

Input: Integers d ≥ 1, n ≥ 1.

(1) Let U be the singleton set containing the empty set. Set l = 1.
(2) For all sets X consisting of l distinct (d + 1)-tuples in osd+1

n , compute U(X) using
Algorithm 5.15 and add it to U.

(3) If new elements were added to U in step (2), increase l by one and repeat from step (2).
Otherwise, terminate the process.

Output: The set U.

Similarly as in the case of Algorithm 5.15, it should be noted that the algorithm above must
terminate as osd+1

n is a finite set.

Proposition 5.19. The d-torsion classes in Md
n are indexed by U. In other words,

d-tors(Md
n) = {UI | I ∈ U} .

Proof. First observe that the trivial d-torsion class {0} = U∅, and ∅ ∈ U. As Md
n has finitely

many indecomposable objects, any non-trivial d-torsion class V in Md
n can be written as

V = U(Mx1 , . . . ,Mxm) for some positive integer m.
Let r be the lowest positive integer for which any d-torsion class of the form U(Mx1 , . . . ,Mxr)

can also be written as U(My1 , . . . ,Mys) for some s < r. By construction, the set U indexes all
d-torsion classes of the form U(Mx1 , . . . ,Mxl) for l < r.

Suppose that V is a non-trivial d-torsion class, and let m ≥ 0 be minimal such that

V = U(Mx1 , . . . ,Mxm).

We claim that V = UI for some I ∈ U, i.e. that m < r. Indeed, if m ≥ r, consider the d-torsion
class V ′ = U(Mx1 , . . . ,Mxr). By the assumption on r, we can write V ′ as U(Mz1 , . . . ,Mzs)
for some s < r. But then V is of the form U(Mz1 , . . .Mzs ,Mxr+1, . . .Mxm), and can hence be
generated by m + s − r < m indecomposable modules. This contradicts the minimality of m,
and the result follows. �
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Remark 5.20. As before, Algorithm 5.18 is presented in its simplest form for the sake of
readability. For efficient computations, we use the following improvements:

• We precalculate whether x y and x τd(y) for all x, y ∈ osd+1
n .

• If a set X contains x, y with y ∈ dq(x), then U(X) has already been added to U, so we
skip the computation of U(X) in step (2).

Using Algorithm 5.18, we can compute the number of higher torsion classes associated to a
higher Auslander algebra. These computational results are summarised in Table 2.

n
1 2 3 4 5 6

d

1 2 5 14 42 132 429
2 2 6 25 140 1036 10040
3 2 7 46 643 22224
4 2 8 87 4147
5 2 9 168 36543
6 2 10 329 427527
7 2 11 650
8 2 12 1291

Table 2. The number of d-torsion classes in the d-cluster tilting subcategory
Md

n of the higher Auslander algebra Ad
n.

In addition to computing the full set of d-torsion classes in Md
n, our code also produces the

associated Hasse diagram. Note that it gives a fully annotated version of the Hasse diagram,
specifying the indecomposable modules contained in each d-torsion class.

Example 5.21. Consider the higher Auslander algebra A3
3. The Hasse diagram of the 3-torsion

classes in the 3-cluster tilting subcategory M3
3 is shown in Figure 3. We note that the vertices

labelled w, x and v have valency 3, 4 and 5, respectively, so the lattice is not Hasse-regular.
We moreover note that the lattice is not semi-distributive. Indeed, using the notation ∨ for join
and ∧ for meet, we see that x ∧ y = v = x ∧ z, but that x ∧ (y ∨ z) = x ∧ w = x 6= v.

6. Higher Nakayama algebras

Higher Nakayama algebras were introduced in [JKPK] as a higher-dimensional generalisation
of classical Nakayama algebras. In this section we extend the combinatorial description of higher
torsion classes from Theorem 5.13 to the setup of higher Nakayama algebras. We first consider
higher Nakayama algebras of type A in Section 6.1, before moving on to type A∞

∞ in Section 6.2.

6.1. Higher Nakayama algebras of type A. We start by giving a brief introduction to the
construction of higher Nakayama algebras of type A. Let n and d be positive integers, and recall
the definitions of osdn, Ad

n, Md
n and Mx from Section 5.1.

A (connected) Kupisch series of type An is a tuple ℓ = (ℓ0, ℓ1, . . . , ℓn−1) of positive integers
satisfying

ℓ0 = 1 and 2 ≤ ℓi ≤ ℓi−1 + 1 for i = 1, . . . , n− 1.

Given such a Kupisch series ℓ, consider the subset

osd+1
ℓ

:= {y ∈ osd+1
n | ℓℓ(y) ≤ ℓyd

}

where ℓℓ(y) = yd − y0 + 1. Note that ℓℓ(y) is equal to the Loewy length of the module My in
modAd

n, see [JKPK, Lemma 2.9]. For d ≥ 2, the d-th Nakayama algebra with Kupisch series ℓ
is the idempotent quotient

Ad
ℓ := Ad

n/(os
d
n \ os

d
ℓ ).
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Figure 3. The Hasse diagram of the 3-torsion classes in the 3-cluster tilting
subcategory M3

3 of the higher Auslander Algebra A3
3.
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In other words, if we let eℓ be the idempotent consisting of the sum of the vertices in osdn \ os
d
ℓ ,

then Ad
ℓ is isomorphic to Ad

n/A
d
neℓA

d
n. It follows from [JKPK, Proposition 2.24] that the sub-

category Md
ℓ := Md

n ∩ modAd
ℓ is d-cluster tilting in modAd

ℓ , and that Md
ℓ = add(Md

ℓ ) for

Md
ℓ =

⊕

x∈osd+1

ℓ

Mx.

Note that the isomorphism classes of indecomposable modules in Md
ℓ are in bijection with

elements of osd+1
ℓ . Using our results, we can characterise the subsets of osd+1

ℓ which correspond

to higher torsion classes in Md
ℓ . We use the notation

UI := add{My ∈ Md
ℓ | y ∈ I}

for the subcategory of Md
ℓ associated to a subset I ⊆ osd+1

ℓ .

Theorem 6.1. Let ℓ be a Kupisch series of type An and consider a subset I ⊆ osd+1
ℓ . The

subcategory UI is a d-torsion class in Md
ℓ if and only if the following hold for any elements

x, z ∈ osd+1
ℓ :

(1) If x ≤ z and xd = zd, then x ∈ I implies z ∈ I.

(2) If x τd(z) and x, z ∈ I, then any y ∈ osd+1
ℓ with yi ∈ {xi, zi} for each i must be in I.

Proof. By Corollary 5.12, condition (1) is equivalent to UI being closed under d-quotients in
Md

n. For objects in Md
ℓ , the minimal d-quotients in Md

ℓ are the same as the minimal d-quotients

in Md
n by Proposition 4.6 (3) and Remark 4.7. Hence, condition (1) is also equivalent to UI

being closed under d-quotients in Md
ℓ .

Note next that d-extensions in Md
ℓ coincide with d-extensions in Md

n with all terms in Md
ℓ . By

Proposition 5.3 and Remark 5.4, condition (2) hence implies that UI is closed under d-extensions
by indecomposables in Md

ℓ . Assuming both (1) and (2) thus yields that UI is closed under all

d-extensions in Md
ℓ by Theorem 3.20, so UI is a d-torsion class in Md

ℓ by Theorem 3.17.

It remains to show that if UI is a d-torsion class in Md
ℓ , then condition (2) is satisfied. We

will use that we already know condition (1) holds. Consider x, z ∈ osd+1
ℓ with x  τd(z), and

suppose that y ∈ osd+1
ℓ satisfies yi ∈ {xi, zi} for each i. We need to show that y ∈ I.

As x τd(z), there is a minimal d-extension

0 →Mx → E1 → · · · → Ed →Mz → 0 (8)

in Md
n with My as a direct summand in one of the middle terms by Proposition 5.3 and

Remark 5.4. Let us first assume zd − x0 + 1 ≤ ℓzd . Using that x, z ∈ osd+1
ℓ and x0 ≤ z0 − 1, we

see that all the terms in (8) are in Md
ℓ in this case. Hence, we must have My ∈ UI and y ∈ I

as UI is closed under d-extensions in Md
ℓ .

Consider now the case zd − x0 + 1 > ℓzd . Note that we have x ≤ y. If yd = xd, condition
(1) hence yields that y ∈ I, so we can assume yd = zd. Now y0 = x0 would contradict the

assumption zd − x0 + 1 > ℓzd as y ∈ osd+1
ℓ , so we must have y0 = z0.

If y = z, we have y ∈ I, so assume that yi = xi for some 1 ≤ i ≤ d − 1. This ensures that
k := min{i | zi−1 ≤ xi} exists. Let w = (z0, z1, . . . , zk−1, xk, . . . , xd−1, zd), and observe that

w ∈ osd+1
ℓ with w ≤ y and wd = yd. Consequently, it suffices to show that w ∈ I, as this implies

y ∈ I by condition (1).
To this end, define

x = (z0, z1, . . . , zk−1, xk, . . . , xd)

z = (z0 + 1, z1 + 1, . . . , zk−1 + 1, zk, . . . , zd).

We see that x, z ∈ osd+1
ℓ . Observe moreover that x ≤ x with xd = xd and z ≤ z with zd = zd,

so x, z ∈ I by condition (1). Furthermore, we have x τd(z) and wi ∈ {xi, zi} for all i. Finally,
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notice that zd − x0 + 1 = zd − z0 + 1 ≤ ℓzd
. It follows that w ∈ I by the same argument as

earlier in this proof, and we can conclude that y ∈ I. �

The following example illustrates the use of Theorem 6.1.

Example 6.2. Fix n = 4, d = 2 and ℓ = (1, 2, 2, 3). The higher Nakayama algebra A2
ℓ has a

2-cluster tilting subcategory M2
ℓ , whose associated quiver can be found in Figure 4. Note that

we identify the indecomposable objects of M2
ℓ with os3ℓ , and that we use a shortened notation

for the sake of simplicity. The following subcategories are examples of 2-torsion classes in M2
ℓ :

• add{0}
• M2

ℓ

• add{000, 133, 222, 223, 233, 333}
• add{112, 113, 122, 123, 222, 133, 223, 233, 333}

000 111 222 333

001 011 112 122 223 233

113 123 133

Figure 4. The quiver of the 2-cluster tilting subcategory M2
ℓ in Example 6.2

.

6.2. Higher Nakayama algebras of type A∞
∞. The goal of this subsection is to further extend

the combinatorial description of d-torsion classes to higher Nakayama algebras of type A∞
∞ as

introduced in [JKPK]. We start by giving a brief introduction to this class of algebras.
In contrast to earlier in this paper, we now need to consider quivers with infinitely many

vertices. Hence, associated to a quiver with relations is a category C rather than an algebra. The
objects of C are the vertices of the quiver, and a basis of the morphisms spaces are given by the
arrows modulo the given relations. A right module over C is a k-linear functor M : Cop → Modk.
The module M is called finite-dimensional if the sum

⊕

x∈CM(x) is finite-dimensional. We let
fd C denote the category of finite-dimensional right modules over C. For more details, see [JKPK,
Sections 1.1 and 1.2].

Let osd denote the set of non-decreasing d-tuples x = (x0, . . . , xd−1) over Z. Consider Zd as a
k-linear category given by the k-linearisation of the poset Zd endowed with the product order.
The mesh category of type ZAd−1

∞ is defined to be the additive quotient

Ad
∞ := Z

d/(Zd \ osd).

Note that Ad
∞ can be represented by the opposite of an infinite quiver Qd with relations. The

vertices of Qd are elements in osd, and there is an arrow from vertex x to vertex y if yi = xi +1
for exactly one i = 0, . . . , d−1 and yj = xj for j 6= i. The relations of Ad

∞ are given by a certain
admissible ideal making squares commutative and sending certain compositions of two arrows
to zero, see [JKPK, Section 3.1] for more details.

Following [JKPK, Appendix B], we say that a Kupisch series of type A∞
∞ is an infinite tuple

ℓ = (. . . , ℓ−1, ℓ0, ℓ1, . . . ) where ℓi is either a non-negative integer or equal to ∞, and where the
inequality

ℓi ≤ ℓi−1 + 1

holds for all i ∈ Z. We write KS(A∞
∞) for the set of Kupisch series of type A∞

∞. Given such a
Kupisch series ℓ, define the subset

osd+1
ℓ

:= {y ∈ osd+1 | ℓℓ(y) ≤ ℓyd
},
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where ℓℓ(y) = yd − y0 + 1 as before. For d ≥ 2, the category Ad
ℓ is defined as the idempotent

quotient

Ad
ℓ := Ad

∞/(os
d \ osdℓ ).

Note that we have an inclusion fdAd
ℓ → fdAd

∞ between the categories of finite-dimensional

modules. Associated to the Kupisch series ℓ, we also have the subcategory

Md
ℓ := add{Mx ∈ fdAd

∞ | x ∈ osd+1
ℓ }

of fdAd
∞. Here, we use the notation Mx for the indecomposable Ad

∞-module with support in all
vertices y ∈ osd satisfying x0 ≤ y0 ≤ x1 ≤ · · · ≤ xd−1 ≤ yd−1 ≤ xd. This extends the analogous
definition in Section 5.1. By [JKPK, Appendix B], the subcategory Md

ℓ is d-cluster tilting in

fdAd
ℓ . For certain choices of ℓ, this gives an example of a d-cluster tilting subcategory of an

abelian category with no projective or injective objects, e.g. if ℓi = ∞ for all i ∈ Z, see [JKPK,
Proposition 3.6].

Now consider the partial order on the set KS(A∞
∞) given by the product order. If ℓ ≤ ℓ′, then

we have a natural functor Ad
ℓ′ → Ad

ℓ of categories. This gives an inclusion fdAd
ℓ → fdAd

ℓ′ such

that the equality

Md
ℓ = Md

ℓ′ ∩ fdAd
ℓ

holds. Similarly, if ℓ1 ≤ ℓ2 ≤ · · · is an increasing sequence of Kupisch series which converges to
ℓ ∈ KS(A∞

∞) (in the natural way), then

fdAd
ℓ =

⋃

i≥1

fdAd
ℓi and Md

ℓ =
⋃

i≥1

Md
ℓi .

A Kupisch series ℓ ∈ KS(A∞
∞) is called finite if ℓj = 0 for all but finitely many j ∈ Z. Note that

for any ℓ ∈ KS(A∞
∞), we can find a sequence ℓ1 ≤ ℓ2 ≤ · · · of finite Kupisch series in KS(A∞

∞)
which converges to ℓ. We use this to give a characterisation of the d-torsion classes in Md

ℓ in

Theorem 6.4 below.

Remark 6.3. Let ℓ be a Kupisch series of type An. Then ℓ can be identified with a finite
Kupisch series ℓ′ of type A∞

∞ which is non-zero only in positions 0, . . . , n− 1. In this case there
is a bijection between the sets osdℓ and osdℓ′ , so the algebra Ad

ℓ and the category Ad
ℓ′ can be

naturally identified. Note that up to isomorphism, the set osdℓ′ and the category Ad
ℓ′ remain

unchanged when shifting ℓ′ some number of steps to the left or right.
In general, if ℓ is a finite Kupisch series of type A∞

∞, then ℓ is obtained by gluing together shifts
of Kupisch series of type A. Hence, the set osdℓ is in bijection with a disjoint union

⋃m
j=1 os

d
ℓj

where ℓj is a Kupisch series of type Anj
for some integer nj ≥ 1. The associated category Ad

ℓ

can thus be identified with a finite product

Ad
ℓ
1
× · · · ×Ad

ℓm

where Ad
ℓj

is a higher Nakayama algebras of type Anj
. With this identification, the category

fdAd
ℓ is equivalent to the product modAd

ℓ
1
×· · ·×modAd

ℓm
, and the d-cluster tilting subcategory

Md
ℓ is equivalent to the product Md

ℓ
1
× · · · ×Md

ℓ
m

. Since any Kupisch series ℓ of type A∞
∞ can

be represented by a converging sequence of finite Kupisch series, it follows that the associated
d-cluster tilting subcategory Md

ℓ is the union of finite products of d-cluster tilting subcategories
of higher Nakayama algebras of type A.

As before, we use the notation

UI := add{My ∈ Md
ℓ | y ∈ I}

for the subcategory of Md
ℓ associated to a subset I ⊆ osd+1

ℓ .
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Theorem 6.4. Let ℓ be a Kupisch series of type A∞
∞ and consider a subset I ⊆ osd+1

ℓ . The

subcategory UI is a d-torsion class in Md
ℓ if and only if the following hold for any elements

x, z ∈ osd+1
ℓ :

(1) If x ≤ z and xd = zd, then x ∈ I implies z ∈ I.

(2) If x τd(z) and x, z ∈ I, then any y ∈ osd+1
ℓ with yi ∈ {xi, zi} for each i must be in I.

Proof. Choose an increasing sequence ℓ1 ≤ ℓ2 ≤ · · · of finite Kupisch series which converges to
ℓ. Then we have that

UI ∩Md
ℓi = U

I∩osd+1

ℓi

for each i ≥ 1. Fix i ≥ 1, and set J i = I ∩ osd+1
ℓi

. We have an equivalence between Md
ℓi

and

a finite product Md
ℓi
1

× · · · × Md
ℓim

as in Remark 6.3. The subcategory UJi of Md
ℓi

is hence

equivalent to a product U1 × · · · × Um, where Uk is a subcategory of Md
ℓi
k

for each k. Note that

osd+1
ℓi

is in bijection with the disjoint union
⋃m

k=1 os
d+1
ℓi
k

as in Remark 6.3. We let J i
k denote the

intersection of osd+1
ℓi
k

with the image of J i under this bijection. Then we get Uk = UJi
k
.

Note that I satisfies the conditions (1) and (2) in the statement if and only if the set J i

satisfies the same conditions for each i ≥ 1. Furthermore, this holds if and only if each J i
k

satisfies the conditions of Theorem 6.1. By Theorem 6.1, this is again equivalent to UJi
k

being a

d-torsion class in Md
ℓi
k

for all i and k, i.e. that UJi ≃ UJi
1
× · · · ×UJi

m
is a d-torsion class in Md

ℓi

for all i ≥ 1. Hence, it suffices to show that UI is a d-torsion class in Md
ℓ if and only if UJi is a

d-torsion class in Md
ℓi

for all i ≥ 1.

If UI is a d-torsion class in Md
ℓ , then UJi = UI∩Md

ℓi
is a d-torsion class in Md

ℓi
= Md

ℓ ∩fdA
d
ℓi

for all i ≥ 1 by Proposition 4.6(1). Conversely, assume UJi is a d-torsion class in Md
ℓi

for all

i ≥ 1. Since we have

UJ1 ⊆ UJ2 ⊆ · · · and UI =
⋃

i≥1

UJi ,

the subcategory UI must be closed both under d-extensions and d-quotients in Md
ℓ =

⋃

i≥1 M
d
ℓi

,

since UJi is closed under d-extensions and d-quotients in Md
ℓi

for all i ≥ 1. By Theorem 3.17,

this shows that UI is a d-torsion class. �
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