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Identification of microbialexopolymer producers in sandy andmuddy intertidal sediments bycompound-specific isotope analysis
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Abstract
Extracellular polymeric substances (EPS) refer to a wide variety of high molecular weightmolecules secreted outside the cell membrane by biofilm microorganisms. In the presentstudy, EPS from marine microphytobenthic biofilms were extracted and their isotope ratioswere analysed. A comparison of these ratios with the carbon isotope ratios of fatty acidbiomarkers allowed the identification of the main EPS producers of two contrasting typesof intertidal marine sediments. Our study reveals that EPS sources aremore diverse in sandysediments than in muddy sediments. We also found distinct patterns in the production andbreakdown of EPS in sandy and muddy environments. The main difference observed wasin how epipelic and epipsammic diatoms affected the chemistry of EPS, which had signifi-cant implications for the growth of bacteria specialized in utilizing EPS. These differenceswere likely linked to variations in the functioning of epipelic and epipsammic communities,specifically in how EPS was used either for motility or for cell attachment.
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Introduction
The term extracellular polymeric substances (EPS) is generic and refers to a wide varietyof macromolecules whose main characteristic is to be of high molecular weight (> 10 kDa) andsecreted by microbes outside the cell membrane. In intertidal sediments, these molecules are,for instance, secreted as a protection in response to changing environmental conditions or toallow cell motility (Tolhurst et al., 2003). But these secretions can also indirectly serve a numberof ecosystem functions such as increasing the cohesion and adhesion properties of sediments(Lubarsky et al., 2010), or providing a significant source of organic matter at the base of the foodweb (Bellinger et al., 2009; Middelburg et al., 2000). They also represent a privileged pathwayfor cooperation between ecosystem engineers, leading to an improvement of the engineeringeffects on benthic communities (Passarelli et al., 2014).Although many authors have studied these compounds and reviewed their multiple rolesin aquatic ecosystems (Cescutti, 2010; Costerton et al., 1994; Decho, 2000; Underwood andPaterson, 2003; Wotton, 2004), there is currently no clear classification probably because oftheir high chemical diversity and complexity. Exopolymers are generally classified into three cat-egories which are basically distinguished by the proximity of the polymers to the membrane ofthe producing cells.Capsular polymer substances (CPS) are often defined as linked to the cell surface by a co-valent bond to phospholipid or lipid A molecules, whereas EPS are released on the cell surfacewithout being chemically attached to it and are often excreted to form a matrix more or lessadherent to the surfaces (Cescutti, 2010). EPS are further separated in two distinct fractions:bound-EPS which are tightly-bound long-chain material, and colloidal-EPS which are less refrac-tory, small chain, easily extractable molecules. Colloidal EPS can be extracted by water at roomtemperature, while bound-EPS extraction requires hot water or bicarbonate (Underwood andPaterson, 2003) or even cationic resins that trap the bivalent cations linking the EPS together, al-lowing the extraction of bound compounds (Takahashi et al., 2009). Thus, EPS are also sometimesdescribed according to the extraction procedures. For instance, hot-bicarbonate and hot-waterEPS (EPSHB , EPSHW ), correspond to insoluble compounds solubilised using hot bicarbonate orwater extraction protocols (Bellinger et al., 2005; Hanlon et al., 2006).These different EPS fractions differ in their biochemical composition (Passarelli et al., 2015)and it has been shown that different types of diatom-derived EPS drive changes in heterotrophicbacterial communities in intertidal sediments (Bohórquez et al., 2017; Haynes et al., 2007).The most significant progress on the subject concerns bacterial exopolysaccharides from mi-crobial cultures (in particular pathogenicmicroorganisms), whose EPSmetabolism and regulationmechanisms have been very well described. The genomic characterisation of these bacterialmodels of interest has led to fascinating discoveries. For example, it has been shown that EPSproduction (which underlies the development of bacterial biofilms) is under close control of asocial behaviour called Quorum Sensing that allows interactions between members of microbial
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communities (Branda et al., 2005; Solano et al., 2014). Quorum sensing is based on the produc-tion and release of signalling molecules called autoinducers, which increase in concentration asa function of cell density (Camilli and Bassler, 2006). It was shown that these compounds werealso present and particularly diverse in microbial mats (Decho, 2010; Decho et al., 2009).However, in the natural environment, the precise composition of EPS is still largely unknown.
13C-labelling experiment have highlighted the role of diatom organic matter as a growth sub-strate for benthic bacteria (Middelburg et al., 2000;Oakes et al., 2010; Veuger et al., 2012). Thesestudies traced diatom carbon and found that diatom EPS likely represent a link between benthicmicroalgae and higher trophic levels. Furthermore, the precise origin of these compounds in in-tertidal food webs is still subject to debate. Are diatoms the main, if not the only, producers ofEPS in microphytobenthic assemblages, or do exopolymers present themselves rather as a poolof extracellular compounds of diverse origin?In this study, we extracted colloidal and bound EPS from intertidal biofilms and analysedthe natural stable isotope ratios (SIR) of carbon (δ13C) and nitrogen (δ15N). In order to identifythe main contributors of EPS in muddy and sandy sediments, the SIR of EPS were compared tothose of fatty acid biomarkers. These fatty acids are specific indicators of certainmicroorganisms,as their relative proportions vary distinctly across different organisms. For example, the majorfatty acid in diatoms is 20:5n-3 (Dijkman et al., 2010; Dunstan et al., 1994; Leu et al., 2007). Byexamining the isotope ratios of EPS alongside these fatty acid biomarkers, the study aimed todetermine the primary microorganisms responsible for EPS production.Fatty acids are well recognised chemotaxonomic markers although they have a very limitedtaxonomic resolution and are hardly exclusive of a given organism (De Carvalho and Caramujo,2014). However, the ratios between the different fatty acids (for instance, the 16:0/16:1n-7ratio, Kharlamenko et al., 1995) have shown convincing results in the identification and quantifi-cation of algal and bacterial groups and have already been successfully used to determine thecomposition ofmicrobial mat (Dijkman et al., 2010) and sedimentmicrobial communities (Findlayet al., 1989; Gaubert-Boussarie et al., 2020; Hubas et al., 2017; Passarelli et al., 2015).The aim of this study was therefore to compare data of the natural stable isotopes of EPSwith those of fatty acid biomarkers in two sediment types representative of intertidal environ-ments (i.e. a muddy site and a sandy site), in order 1/ to accurately identify the main exopolymerproducers and 2/ determine whether EPS production and dynamics was comparable betweenthe microbial communities of contrasting sediment types.

Material and methods
Sampling site

The sediment sampling took place in June 2017 at 2 tidal flat sites in France near LaCoupelasse (Baie of Bourgneuf, France, Fig. 1). Bourgneuf Bay is a macrotidal bay located southof the Loire estuary on the French Atlantic coast, containing large intertidal mudflats (100 km2)colonized by microphytobenthic biofilms. The site is characterised by the extensive aquacultureof the Pacific oyster Crassostrea gigas. Oyster farms cover about 10% of the intertidal area, whilemost of the rocky areas (about 17 % of the intertidal area) are colonized by wild oysters (Le Briset al., 2016) or macroalgae (Combe et al., 2005; Kazemipour et al., 2012). Two contrasting siteswere selected: a muddy site (47◦470′ 53.326′′ N, 2◦1′ 24.919′′ W) characterised by epipelicdiatom communities and a high mud content (i.e. 50-90%, Meleder et al., 2005) and a sandysite (47◦0′ 57.453′′ N, 2◦ 1′ 33.676′′ W) characterised by epipsammic diatom communities anda low mud content (i.e. 40-60%, Meleder et al., 2007). The muddy site was sampled 4 timesbetween 23th and 28th June 2017 (between 5 and 12 replicates depending on the date) whilethe sandy site was sampled 3 times (between 4 and 10 replicates).
Chlorophyll a analysis

Chlorophyll a concentration was measured using High Performance Liquid Chromatography(HPLC) following the method described by (Van Heukelem and Thomas, 2001). Briefly, approxi-mately 1 cm3 of freeze-dried sediment (i.e. subsample of 10 cm diameter, 0.5 cm depth sediment
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Figure 1 – Studied area. Top panel: Map of Bourgneuf Bay (France) and location of thesampling sites (Pleiades image acquired on the 2017/06/24 at 11:15 - UTC). left = truecolors, right = Normalized Difference Vegetation Index (NDVI); Bottom panel: samplingoccasions according to the tidal level at the study sites (data provided by the Naval Hy-drographic andOceanographic Service (SHOM) for coordinates: 047°06’00.0"N, 002°07’00.0"W (Pornic). The first capital letter indicates the type of sediment (M=mud, S=sand),the other letters (s1 to s4) indicate the sampling point.
cores) was utilised for the analysis. The sediment was treatedwith 3ml of 90% acetone, followedby sonication (1 min) and overnight extraction in darkness at 4◦C. The extracts were then filteredthrough a 0.2 µm PTFE filter prior to HPLC analysis. The concentration of chlorophyll a was de-termined by injecting progressively diluted samples of a standard with a known concentrationof chlorophyll a. This allowed the establishment of a calibration curve, correlating the peak areaon the chromatogram obtained using a diode array detector (DAD) with the final chlorophyll aconcentration (in µg/g sediment dry weight (SDW)).
Exopolymeric substances (EPS)

Colloidal EPS were extracted by rotating sediment (for each sampling occasion, a minimumnumber of 3 replicates of sediment core 10 cm diameter, 0.5 cm depth) in artificial sea water(salinity 30, Sea salts, NutriSelect Basic) 1.5 h at 4◦C. Samples were then centrifuged (1500 g,
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15 min) and the supernatant retrieved. Bound EPS were thereafter recovered by adding 2 g ofa previously PBS (Phosphate Buffered Saline)-activated (4◦C) Dowex Marathon C resin (sodiumform, Sigma-Aldrich, Inc.) to the remaining pellet (Jahn and Nielsen, 1995; Takahashi et al., 2009).After homogenisation, a second extraction was performed by rotating in artificial sea water 1.5 hat 4◦C. Samples were then centrifuged (1500 g) again and the supernatant retrieved. Both su-pernatants form respectively the colloidal and bound fraction of EPS and were freeze-dried.Freeze-dried colloidal and bound EPS were weighted (in average 60 ± 11mg ) and the wholecontent was encapsulated in tin (Sn) capsules. They were placed in a 96 wells tray and analysedby an Elementar Vario EL Cube or Micro Cube elemental analyzer (Elementar AnalysensystemeGmbH, Hanau, Germany) interfaced to either an Isoprime VisION IRMS (Elementar UK Ltd, Chea-dle, UK) or a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) byUC Davis Stable Isotope Facility. Samples were combusted at 1080[ per-mode = symbol]◦C in areactor packed with chromium oxide and silvered copper oxide. Following combustion, oxideswere removed in a reduction reactor (reduced copper at 650°C). The helium carrier then flowsthrough a water trap (magnesium perchlorate and phosphorous pentoxide). CO2 is retained onan adsorption trap until the N2 peak is analyzed; the adsorption trap is then heated releasing theCO2 to the IRMS.In parallel, carbohydrate and protein concentrations were measured following the phenolassay protocol (Dubois et al., 1956) and the Lowry procedure (Lowry et al., 1951), respectively.For carbohydrate analyses, 200 µL phenol (5%) and 1 mL sulphuric acid (98%) were added to
200 µL of previously extracted colloidal and bound supernatants. They were then incubated for
35 min at 30◦C and the carbohydrate concentration was measured using a spectrophotometer(Milton Roy Spectronic Genesys 2). The optical density of the solution was measured at 488 nm.For protein analyses, 250 µL subsamples were incubated for 15 min at 30◦C with 250 µL of 2%sodium dodecyl sulphate salt (SDS) and 700 µL of a chemical reagent prepared as described inLowry et al., (1951). The subsamples were then incubated for another 45 min at 30◦Cwith 100µLof Folin reagent (diluted with distilled water 5:6 v/v). The protein concentration was measuredby spectrophotometry at 750 nm. Calibration curves were prepared using glucose and bovineserum albumin (BSA) as standards for carbohydrates and proteins, respectively.
Fatty acid extraction

Fatty acid (FA) analysis was performed on triplicates of sediment core (10 cm diameter, 0.5 cmdepth) following the method of Bligh and Dyer, (1959) as modified by Meziane and Tsuchiya(2000) and Passarelli et al., (2015). Lipidswere extractedwith a 20 min ultrasonication (sonicationbath, 80kHz , FisherbrandTM ) in a mixture of distilled water, chloroform and methanol in ratio1:1:2 (v:v:v, inmL ). Lipids were concentrated under N2 flux, and saponified, in order to separateFA, with a mixture of NaOH (2 mol/L) and methanol (1:2, v:v, in mL ) at 90◦C during 90 min.Saponification was stopped with 500 µL hydrochloric acid. Samples were then incubated withBF3-methanol at 90◦C during 10 min to transform free fatty acids into fatty acid methyl esters(FAME), which were isolated and kept frozen in chloroform. Just before analysis, samples weredried under N2 flux and transferred to hexane.
Fatty acid quantification and identification

Fatty acids were further quantified by flame ionisation detection (FID) and identified by massspectrometry (GCMS, Varian 450GCwith Varian 220MS). Compound annotationwas performedby comparing mass spectra with NIST 2017 library. Corresponding fatty acids are designated asX:Yn-Z, where X is the number of carbons, Y the number of double bonds and Z the position ofthe ultimate double bond from the terminal methyl (see Fahy et al., 2005 for additional informa-tion about naming convention).
Compound specific isotope analysis (CSIA) of FAME

Carbon stable isotope ratios (expressed in‰) of individual fatty acids were measured by gas-chromatography-isotope ratiomass spectrometry (GC-IRMS).Measurementswere performed atthe Stable Isotope Platform of the European Institute for Marine Studies (IUEM, Brest, France).
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FAMEs were injected in splitless mode and separated using a B5HT column 30 m × 0.25 mm ID× 0.2 µL, Phenomenex) with a Thermo Fisher Scientific TRACE GC ULTRA equipped with GCisolink combustion, Conflo IY interace and Delta V plus (Thermo Fisher Scientific) isotope ratiomass spectrometer (IRMS). Fatty acids were converted into CO2 by combustion in the ISOLINKfurnace and transferred to the CONFLO IV interface and then introduced to the IRMS. Fattyacid methyl esters were identified by comparison of their retention time with those of commer-cial standards and in-house standard mixtures. Both FA 18:1n-9 and 18:3n-3 coeluted and wereanalysed simultaneously. Fatty acids kept for δ13C analyses were selected based on their abun-dance and detection in CSIA (i.e., with amplitudes > 800mV ). Stable carbon isotope ratios forindividual FA were calculated from FAME data by correcting for the one carbon atom in themethyl group that was added during the derivatization process. This correction was made ac-cording to Gladyshev et al., (2012) by taking into account the isotope ratio of the derivatizedmethanol (BF3 methanol), and the fractional carbon contribution of the free FA to the ester.
(1) δ13CFA =

(δ13CFAME − (1 − f )δ13CCH3OH)

f

where δ13CFA and δ13CFAME (in ‰) are the isotopic composition of the free FA, and the FAmethyl ester respectively, f is the fractional carbon contribution of the free FA to the ester and
δ13CCH3OH is the isotopic composition of the methanol derivatization reagent (–39.1‰).
Statistical analyses

Univariate statisticswere carried out by checking the normality of the data per group (Shapirotest) and the homogeneity of the variances (Bartlett or Levene test).Where the data did notmeetthese criteria or the sample size were too small, we applied van der Waerden normal scorestest followed by Fisher’s least significant difference (LSD) post-hoc test. In case the sample sizewas larger but the conditions were still not met, we used Permutation one-way Welch’s Anovafollowed by Tukey HSD posthoc test.In case we had to compare two samples, we checked for normality and equality of variance(Fisher-Snedecor test) and usedWelch’s permutation t-test, student t-test orWilcoxon rank sumexact test. All analyses were performed using R version 4.0.3 using the "stats" package.We performed a smoothed density estimation on the fatty acid isotope ratio data using thegeom_smooth function of the "ggplot2" package. The function, computed and drawn kernel den-sity estimate based on the observed distribution of the stable isotopes ratio.
Results and discussion

Comparison of the study sites
As indicated by the 16:0/16:1n-7 ratio (see suppl. figure SF1, both sites were predominantlycomposed of diatoms (average ratio > 1, Kharlamenko et al., 1995). However, a slightly higherratio was observed in the muddy sediment (Wilcoxon rank sum exact test: W = 232, p-value =0.02), suggesting a higher dominance of diatoms in the microphytobenthic (MPB) assemblagesof muddy sediments. The mud site also exhibited a higher total phototrophic biomass, as indi-cated by the higher chlorophyll a concentration compared to the sandy site (Welch Two Samplet-test: t = 17.291, df = 42.215, p-value < 0.001). Furthermore, the analysis of the proportionof branched fatty acids, which serve as bacterial biomarkers, indicates a higher abundance ofbacteria in muddy sediments as well (Wilcoxon rank sum exact test: W = 264, p-value <0.001).No significant differences between the two sites were found in term of saturated fatty acid (SFA)content (Wilcoxon rank sum exact test:W = 219, p-value = 0.05) but significant differences werefound in terms of polyunsaturated (PUFA) and monounsaturated (MUFA) content (PUFA: TwoSample t-test, t = 2.68, df = 34, p-value = 0.01; MUFA: Wilcoxon rank sum exact test, W = 84,p-value = 0.02). Fatty acids, particularly mono- and poly-unsaturated fatty acids, are commonlyused as chemotaxonomic markers (De Carvalho and Caramujo, 2014). In diatoms, the propor-tions of unsaturated fatty acids can be utilised to differentiate morphotypes (such as Pennales

6 Cédric Hubas et al.

Peer Community Journal, Vol. 3 (2023), article e104 https://doi.org/10.24072/pcjournal.336

https://doi.org/10.24072/pcjournal.336


Table 1 – Comparison of Carbon and Nitrogen contents and isotopic ratios of colloidaland bound EPS at all sampling occasions using the van derWaerden (Normal Scores) nonparametric test. df = degree of freedom. Results of the post-hoc test using the criteriumFisher’s least significant difference (LSD) are shown in Fig. 2
Variable χ2 df p-valueCarbon content 46.83024 13 1.03209e-05Nitrogen content 27.364 14 6.74533e-06
δ13C 36.31005 13 0.00053
δ15N 35.02141 13 0.00084

Table 2 – Comparison of Carbon and Nitrogen contents and isotopic ratios of colloidaland bound EPS inmud and sand. The sampling occasions formud (Ms) and sand (Ms)weregrouped together. The van der Waerden (Normal Scores) non-parametric test was used,with consideration of degrees of freedom (df). The post-hoc test results using Fisher’sleast significant difference (LSD) as the criterion are shown in the table
Carbon content Nitrogen content δ13C δ15NVan der Waerden test statistics χ2, df, p-value 26.7, 3, <0.001 31.1, 3, <0.001 32.1, 3, <0.001 23.7, 3, <0.001

Posthoc tests
Bound EPS - Mud a a a aBound EPS - Sand ab b a bColloidal EPS - Mud b b b bcColloidal EPS - Sand c c c c

vs. Centrales) or even specific species (Dunstan et al., 1994). The observed differences couldthus be attributed to variation in the composition of the microphytobenthic (MPB) communitiesbetween the two sites.
Elemental EPS compositions

Carbon and nitrogen contents were significantly different between sampling occasions aswell as between bound and colloidal EPS (table 1, Fig. 2). Bound EPS were almost always richerin carbon and nitrogen than colloidal EPS (fig. 2a,c). The only noticeable exception was at Ms1.We also noted a very significant decrease in the N and C contents in the colloidal fraction at thissite (i.e. muddy site) between Ms1 and Ms2. Both were sampled the same day but respectivelyat ebbing and rising tide. These findings are partly consistent with those of Hanlon et al., (2006).During periods of diurnal emersion at a muddy site, these authors reported that bacteria con-verted bound EPS into more labile colloidal EPS. By analogy, we can hypothesise that bacteria atour site were very efficient at converting bound EPS to colloidal EPS (hence the slight decreasein N and C content in bound EPS) but that they probably also consume colloidal EPS at very highrates.The same patterns were observed for sugar and protein concentrations measured by col-orimetry, but with greater variability between measurements (supplementary figure SF2). If wefocus on colloidal EPS, we notice that the consumption of these between Ms1 and Ms2 mainlyconcerned carbohydrates. Exopolymers are mainly composed of carbohydrates and proteins(Wotton, 2004) which therefore represent the main sources of C and N in EPS. Overall, bacterialEPS contain more proteins and higher molecular diversity than diatomaceous EPS (Decho andMoriarty, 1990). The carbohydrates produced bymicrophytobenthos aremainly heteropolymers,with a large diversity of molecules. They range in molecular weight from few monosaccharidesto highly complex molecules whose relative proportion in terms of monomers determines thephysicochemical structure and hydrophobic characteristics of the EPS matrix (Passarelli et al.,2015; Underwood and Paterson, 2003). The higher C content of the EPS is therefore probablypartly related to a higher proportion of sugars of diatom origin.We also examined the crossed impact of EPS and sediment type (i.e. BoundMud, BoundSand,ColloidalMud, and ColloidalSand). Our findings revealed significant differences between theselevels in terms of C and N content and stable isotope ratios. For detailed information on thesedifferences, please refer to table 2.
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Figure 2 – Chemical composition of the EPS. a,c: Carbon (C) and Nitrogen (N) contentsinµg permg of freeze dried EPS. b,d: Carbon and Nitrogen stable isotope ratio (δ nota-tion against atmospheric N2 and Vienna PDB respectively) of the EPS. Colloidal EPS cor-responded to loose, water-extractable exopolymers whereas bound EPS correspond toion exchange resin-extractable exopolymers. Letters within the graph represent resultsof Fisher’s least significant difference (LSD) post-hoc test. For the corresponding van derWaerden test, please see Table 1
EPS isotopic compositions

At the muddy site, bound EPS were always 13C or 15N depleted in comparison to colloidalEPS at this site (Fig. 2b,d). At the sandy site, the same pattern is observed but both nitrogen andcarbon stable isotope ratio showed a higher variability.All sampling dates together, δ13C (Fig. 3a, top panel) and δ15N values were significantly differ-ent between bound and colloidal EPS at the muddy site (Permutation two Sample t-tests, δ13C:t = -10.678, p-value = 0.002; δ15N: t = -4.4325, p-value = 0.002).At the sandy site, δ13C values were also significantly different (Fig. 3a, bottom panel) betweenbound and colloidal EPS (two Sample Student’s t-test, t = -4.9474, df = 22, p-value = 5.984e-05)but δ15N was not significantly different (two Sample Student’s t-test, t = -0.97547, df = 22, p-value = 0.3399).All sampling dates grouped together δ13C between bound and colloidal EPS were thus al-ways significantly different at both sites (Fig. 3a), indicating that these two fractions were fromdifferent EPS producers. Comparison with the literature is difficult as it is the first time that Cand N natural stable isotopes ratio are reported on intertidal bound and colloidal EPS. The valuesreported in the literature for the main monosaccharides constituting the extracellular sugars arehowever in agreement with our results (i.e. a natural δ13C of -15 to -18‰, Oakes et al., 2010)
Carbon isotope ratio of fatty acid classes

In sandy sediment δ13C were significantly different between fatty acids classes (F=23.128,df1=3, df2=109, p= 1.16 10−11) and showed a gradual 13C enrichment (Fig. 3b) from branchedfatty acids (BFA) to mono- (MUFA) and poly-unsaturated (PUFA) fatty acids. Such differences
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were not observed in the muddy site. In the mud, δ13C of BFA, saturated (SFA) and MUFA werenot significantly different. Only PUFA showed a slightly higher mean δ13C (Permutation one-wayWelch Anova followed by Tukey HSD posthoc test, F=33.588, p < 2.2 10−16).In comparison with similar ecosystems (i.e. intertidal muddy sediments), the isotope ratiosof the main fatty acids are quite consistent. Previous studies recorded δ13C ranging from -16 to-21‰ for branched, -14 to -26‰ for saturated, -13 to -22‰ for monounsaturated and -15 to-22‰ for polyunsaturated fatty acids (Middelburg et al., 2000; Taylor et al., 2013; Veuger et al.,2012). Taylor et al., (2013) also showed that natural carbon isotope ratios were highly variableeven over relatively short periods (i.e. 30h). These changes indicate that subtle modifications inthe metabolic processes of carbon assimilation as well as interactions between microorganismscan take place over very short periods and could explain the variability of our δ13C values.The tetracosanoic acid (SFA, 24:0) was excluded from the above mentioned analyses as itincreased dramatically the variability because of extreme and unusually negative δ13C valuesindicative of a specific metabolism. The mean δ13C of 24:0 was −66.89 ± 35.84‰ and −59.24 ±
71.82‰ in the mud and sand respectively. It also sometimes showed a plurimodal distribution (asshown by density plots figure 4b) which indicate that 24:0 had likely variedmicrobial origins. Thisparticular fatty acid was the only one to show extremely low δ13C values in line with the isotopicratios generally found in methane-rich ecosystems for which direct links could be establishedbetween δ13C values and the presence of methane-oxidizers in bacterial communities (Paul etal., 2017; Uhlig et al., 2018). It is indeed possible that the 24:0 originated from anaerobic bacteria
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related to the oxidation of methane or the sulphur cycle. The most negative δ13C values wererecorded in highly reduced muddy sediments. Unfortunately, it is not possible to establish adirect link in our study.
Biomarkers revealed contrasting EPS producers between sites

In the present study, compound-specific isotope analysis (CSIA) of fatty acid biomarkers wasused to infer the possible origin of microbial EPS. Our main assumption was that isotopic frac-tionation between the microoganisms and the product of their metabolism (i.e. EPS, fatty acids)is null or negligible. At present, no study has been able to demonstrate with certainty whetherthis hypothesis is true or false. There is, however, evidence that fractionation exists betweenmicroorganisms and their food sources. In bacteria, substantial isotopic fractionation has beenshown between biomarker lipids and their growth substrate (Summons et al., 1994) with bacte-rial biomarkers being significantly depleted in 13C compared to the food source. In Escherichiacoli, respired CO2 was 3.4‰ depleted in 13C relative to glucose (used as the carbon source) al-though total cellular carbon was only 0.6‰ depleted in 13C, and lipid fractions by 2.7‰ (Blair etal., 1985). But to date however, there is no evidence in the literature that the same phenomenonexists between microorganisms and their metabolites.Based on this reasoning, we compared the distribution of individual fatty acids (Fig. 4a-d)with the carbon isotope ratio of the EPS (Fig. 4e). This approach allowed us to easily identify thefatty acids that exhibited the closest isotope ratios to those of bound and colloidal EPS. Basedon figure 4 and taking into account the quality of the alignment between fatty acids and EPS, adetailed literature review of the potential origins of EPS in the studied sediments was performed.The result is available in the supplementary table ST1. The analysis revealed that EPS producerswere very different between the two sites. In the mud, colloidal EPS were potentially mainlyproduced by bacteria, whereas bound EPS were mainly produced by diatoms with a significantcontribution from cyanobacteria and bacteria. In the sand, the origins of EPS were more diversi-fied. Colloidal EPS were mainly produced by diatoms and bacteria with a potential contributionfrom cyanobacteria. Bound EPS were mainly produced by bacteria. The sediments of the studysite are, indeed, known to harbour microphytobenthic assemblages dominated by diatoms (i.e.97%). Depending on the site, these are accompanied by cyanophyceae, euglenophyceae andchlorophyceae (Méléder et al., 2007).
Epipelic and epipsammic diatoms contributed differently to the EPS chemistry

Most common fatty acids in diatoms are myristic acid (14:0), palmitic acid (16:0), palmitoleicacid (16:1n-7), docosahexaenoic acid (DHA, 22:6n-3), and eicosapentaenoic acid (EPA, 20:5n-3)(Yi et al., 2017). In terms of relative proportions, however, 16:1n-7 and 20:5n-3 generally domi-nate the total fatty acids (Dunstan et al., 1994). These two fatty acids had relatively close δ13Cvalues that best aligned respectively with bound EPS in muddy sediments (−20.3 ± 1.1‰) andwith colloidal EPS (−13.4±4.5‰) in sandy sediments. This indicated a very different functioningbetween the assemblages at these two sites.The microphytobenthic (MPB) assemblages at the two sites exhibited notable differences, asevidenced by biomass indicators (chlorophyll a and bacterial biomarkers) and chemotaxonomicmarkers (see Supplementary Figure SF1). This was further confirmed by microscopic observa-tions (unpubl. obs.) which indicated that the muddy site hosted an epipelic MPB communitytypical of these environments (i.e. presence of characteristic migratory behaviour). In contrast,the sandy site MPB community had all the characteristics of epipsammic communities. Theseobservations were in line with previous observations on nearby sites of the Baie of Bourgneuf(Méléder et al., 2007).Thus, by analogy, it appears that epipelic diatoms mainly contributed to the bound EPS frac-tion while epipsammic diatoms mainly contributed to the colloidal EPS pool. This differentialcontribution according to habitat can be explained by the implementation of different adapta-tion strategies of diatoms to environmental parameters.Epipelic diatoms secrete large quantities of extracellular exopolymers that are involved inmotility. Mucilage is secreted from the raphe and adheres to the sediment following hydration.
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Figure 4 – C and N isotopic ratio of fatty acids and EPS fractions. a-d: Kernel densityestimates of δ13C of fatty acid biomarkers (corrected according to equation 1). e: δ13Cand δ15N biplots of bound and colloidal EPS. All sampling points were grouped together.In panels a-d, fatty acids are grouped by classes they belong to according to fig.3
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Cellular movement is then generated when the EPS associated with the trans-membrane com-plexes is displaced along the raphe line by actine microfilament bundles (Cartaxana et al., 2008;Underwood and Paterson, 2003). The products necessary for the migration of the diatoms aretherefore secreted and used in the immediate vicinity of the cell. This is most probably the reasonwhy we observed a massive contribution of diatoms to bound EPS at the muddy site.In a previous study, our teammeasured the monosaccharide compositions of sandy intertidalsediment EPS (Passarelli et al., 2015). As a result of the accumulation of silt in these sediments(caused by the implantation of biogenic structures), and the evolution of the diatom assemblagetowards an epipelic community, we observed a modification of the sugars produced, which onlyoccurred in the bound fraction. This further confirms the large contribution of epipelic diatomsto the bound EPS pool of muddy sediments.In contrast, epipsammic diatoms mainly contributed to colloidal extracellular polymers to-gether with cyanobacteria, green algae and bacteria. Epipsammic diatoms do not migrate be-cause they live in sediments which are very dynamic and which have a low light extinction co-efficient over achievable distances of the order of hundreds of micrometers (Cartaxana et al.,2011). As a result, these diatoms do not migrate but instead used adhesion to sand particleto avoid being resuspended. In the absence of photomigratory response, they much more relyon strong photophysiological protection mechanisms than epipelic motile diatoms (Cartaxanaet al., 2011). Capsular and bound EPS were thus instead rather produced sparingly and used forattachment and fixation purposes.In a benthic freshwater diatom, it has been shown that capsular EPS mainly consist of gly-coprotein that develop from fibrillar precursors and that bacteria preferentially attach to encap-sulated diatom cells (Leinweber and Kroth, 2015). This is probably a strategy of the bacteria tomaximise the chances of success in terms of adhesion and also to ensure access to an importantfood source. This may explain why bound EPS were mainly aligned with bacterial biomarkers atthe this site.
Multiple EPS origins favour the development of EPS-specialised bacteria

Since bound EPS best aligned with branched fatty acids, 18:1n-7 and some SFA at the sandysite (Table ST1), we could conclude that bound EPS were mainly of bacterial origin (Boon etal., 1977; Hubas et al., 2013; Kharlamenko et al., 1995; Middelburg et al., 2000; Perry et al.,1979; Taylor et al., 2013) at this site either as a direct production or as a result of degradation ofbound and capsular diatomic EPS. Therefore, diatomsmainly contributed directly to the colloidalfraction which was also degraded by specialised bacteria (as shown by 18:1n-7).It is very difficult and even impossible to assign a given branched fatty acid to a specificbacterial taxon. Certain fatty acids may represent a significant proportion of total fatty acids incertain bacterial groups or taxa. Vaccenic acid (18:1n-7), for example, can account for more than30% of the total in purple bacteria (Kharlamenko et al., 1995). Similarly, 15:0iso and 15:0anteisofatty acids may be dominant in Desulfovibrio sp. species (Boon et al., 1977). But only a limitednumber of bacteria have unusual fatty acids. By contrast, branched-chain fatty acids of the isoand anteiso series occur widely in bacteria, give a complex pattern, and are therefore valuablein bacterial systematics (Kaneda, 1991). In the present study, it is therefore the changes in therelative composition and/or dominance of bacterial fatty acids within the different EPS fractionsthat indicated changes in microbial assemblages, rather than the presence of any particular fattyacid.In addition, we also observed that branched fatty acids 15:0anteiso and 15:0iso (Fig. 4a)showed a bimodal distribution of their δ13C value at the sandy site. This can be explained by thefact that these fatty acids originated from different bacterial species with different C sources (i.e.bound vs. colloidal EPS) and further confirm the existence of prokaryotic assemblages dedicatedto each EPS fractions.Earlier 13C enrichment experiments have already shown EPS consumption by bacteriathrough 15:0anteiso and 15:0iso enrichment but also provided additional evidence that sometaxa (e.g. Acinetobacter) might be considered specialist EPS-degrading bacteria (Taylor et al.,2013).
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Similarly, the presence of "EPS degraders" can also be demonstrated at the muddy site. Atthis site, colloidal EPS aligned well with 17:0iso indicating that specific taxa rich in this branchedfatty acid are predominantly involved in the production of colloidal EPS, probably from the degra-dation of diatom bound EPS.
Conclusions

By comparing the natural C and N stable isotope ratios of fatty acids and bound and colloidalEPS fractions in intertidal sediments, we identified a very different dynamics of EPS produc-tion and degradation between sandy and muddy sites. The most noticeable difference was thatepipelic and episammic diatoms contributed differently to the chemistry of the EPS, which hadan important implication for the development of EPS specialised bacteria. These differences arethought to be related to differences in the functioning of the epipelic and epipsammic commu-nities and in particular to the use of EPS either for motility or for cell attachment purposes.
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