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Abstract

Kernel methods are learning algorithms that enjoy solid theoretical foundations
while suffering from important computational limitations. Sketching, which con-
sists in looking for solutions among a subspace of reduced dimension, is a well
studied approach to alleviate these computational burdens. However, statistically-
accurate sketches, such as the Gaussian one, usually contain few null entries, such
that their application to kernel methods and their non-sparse Gram matrices remains
slow in practice. In this paper, we show that sparsified Gaussian (and Rademacher)
sketches still produce theoretically-valid approximations while allowing for impor-
tant time and space savings thanks to an efficient decomposition trick. To support
our method, we derive excess risk bounds for both single and multiple output kernel
problems, with generic Lipschitz losses, hereby providing new guarantees for a
wide range of applications, from robust regression to multiple quantile regression.
Our theoretical results are complemented with experiments showing the empirical
superiority of our approach over SOTA sketching methods.

1 Introduction

Kernel methods hold a privileged position in machine learning, as they allow to tackle a large variety
of learning tasks in a unique and generic framework, that of Reproducing Kernel Hilbert Spaces
(RKHSs), while enjoying solid theoretical foundations (Steinwart and Christmann, 2008b; Scholkopf
and Smola, 2018). From scalar-valued to multiple output regression (Micchelli and Pontil, 2005;
Carmeli et al., 2006, 2010), these approaches play a central role in nonparametric learning, showing a
great flexibility. However, when implemented naively, kernel methods raise major issues in terms
of time and memory complexity, and are often thought of as limited to “fat data”, i.e., datasets of
reduced size but with a large number of input features. One way to scale up kernel methods are
the Random Fourier Features (Rahimi and Recht, 2007; Rudi and Rosasco, 2017; Sriperumbudur
and Szabó, 2015; Li et al., 2021), but they mainly apply to shift-invariant kernels. Another popular
approach is to use sketching methods, first exemplified with Nyström approximations (Williams and
Seeger, 2001; Drineas et al., 2005; Bach, 2013). Indeed, sketching has recently gained a lot of interest
in the kernel community due to its wide applicability (Yang et al., 2017; Lacotte et al., 2019; Kpotufe
and Sriperumbudur, 2020; Lacotte and Pilanci, 2020; Gazagnadou et al., 2022) and its spectacular
successes when combined to preconditioners and GPUs (Meanti et al., 2020).

Sketching as a random projection method (Mahoney et al., 2011; Woodruff, 2014) is rooted in the
Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984), and consists in working in reduced
dimension subspaces while benefiting from theoretical guarantees. Learning with sketched kernels
has mostly been studied in the case of scalar-valued regression, in particular in the emblematic case
of Kernel Ridge Regression (Alaoui and Mahoney, 2015; Avron et al., 2017; Yang et al., 2017;
Chen and Yang, 2021a). For several identified sketches (e.g., Gaussian, Randomized Orthogonal
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Systems, adaptive subsampling), the resulting estimators come with theoretical guarantees under
the form of the minimax optimality of the empirical approximation error. However, an important
blind spot of the above works is their limitation to the square loss. Few papers go beyond Ridge
Regression, and usually exclusively with subsampling schemes (Zhang et al., 2012; Li et al., 2016;
Della Vecchia et al., 2021). In this work, we derive excess risk bounds for sketched kernel machines
with generic Lipschitz-continuous losses, under standard assumption on the sketch matrix, solving an
open problem from Yang et al. (2017). Doing so, we provide theoretical guarantees for a wide range
of applications, from robust regression, based either on the Huber loss (Huber, 1964) or ϵ-insensitive
losses (Steinwart and Christmann, 2008a), to quantile regression, tackled through the minimization of
the pinball loss (Koenker, 2005). Further, we address this question in the general context of single and
multiple output regression. Learning vector-valued functions using matrix-valued kernels (Micchelli
and Pontil, 2005) have been primarily motivated by multi-task learning. Although equivalent in
functional terms to scalar-valued kernels on pairs of input and tasks (Hein and Bousquet, 2004,
Proposition 5), matrix-valued kernels (Álvarez et al., 2012) provide a way to define a larger variety
of statistical learning problems by distinguishing the role of the inputs from that of the tasks. The
computational and memory burden is naturally heavier in multi-task/multi-output regression, as
the dimension of the output space plays an inevitable role, making approximation methods for
matrix-valued kernel machines a crucial issue. To our knowledge, this work is the first to address
this problem under the angle of sketching. It is however worth mentioning Baldassarre et al. (2012),
who explored spectral filtering approaches for multiple output regression, and the generalization of
Random Fourier Features to operator-valued kernels by Brault et al. (2016).

An important challenge when sketching kernel machines is that the sketched items, e.g., the Gram
matrix, are usually dense. Plain sketches, such as the Gaussian one, then induce significantly more
calculations than subsampling methods, which can be computed by applying a mask on the Gram
matrix. Sparse sketches (Clarkson and Woodruff, 2017; Nelson and Nguyên, 2013; Cohen, 2016;
Derezinski et al., 2021) constitute an important line of research to reduce complexity while keeping
good statistical properties when applied to sparse matrices (e.g., matrices induced by graphs), which
is not the case of a Gram matrix. Motivated by these considerations, we analyze a family of sketches,
unified under the name of p-sparsified sketches, that achieve interesting tradeoffs between statistical
accuracy (Gaussian sketches can be recovered as a particular case of p-sparsified sketches) and
computational efficiency. The p-sparsified sketches are also memory-efficient, as they do not require
to compute and store the full Gram matrix upfront. Besides a theoretical analysis, we provide
extensive experiments showing the superiority of p-sparsified sketches over SOTA approaches such
as accumulation sketches (Chen and Yang, 2021a).

Contributions. Our general goal is therefore to provide a framework as general as possible to speed
up both scalar and matrix-valued kernel methods, while maintaining theoretical guarantees. For that
purpose, we present three contributions, which may be of independent interest.

• We derive excess risk bounds for sketched kernel machines with generic Lipschitz-
continuous losses, both in the scalar and multiple output case.

• We show that sparsified Gaussian and Rademacher sketches provide valid approximations
when applied to kernels methods, while inducing important space and computation savings,
as opposed to plain sketches.

• We discuss how to learn these new sketched kernel machines, and present experiments using
Lipschitz losses, such as robust and quantile regression, on both synthetic and real-world
datasets.

Notation. For any matrix A ∈ Rm×p, A† is its pseudo-inverse, ∥A∥op its operator norm, Ai: ∈ Rp

its i-th row, and A:j ∈ Rm its j-th column. The identity matrix of dimension d is Id. For a random
variable (X,Y ) ∈ X ×Y with distribution P , PX is the marginal distribution ofX . For f : X −→ Y ,
we use E [f ] = EPX

[f(X)], and E [ℓf ] = EP [ℓ (f(X), Y )] for any function ℓ : Y × Y −→ R.

2 Sketching Kernels Machines with Lipschitz-Continuous Losses

In this section, we derive excess risk bounds for sketched kernel machines with generic Lipschitz
losses, for both scalar and multiple output regression.
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2.1 Scalar Kernel Machines

We consider a general regression framework, from an input space X to some scalar output space
Y ⊆ R. Given a loss function ℓ : Y ×Y → R such that z 7→ ℓ(z, y) is proper, lower semi-continuous
and convex for every y, our goal is to estimate f∗ = arg inff∈H E(X,Y )∼P [ℓ (f(X), Y )], where
H ⊂ YX is a hypothesis set, and P is a joint distribution over X × Y . Since P is usually unknown,
we assume that we have access to a training dataset {(xi, yi)}ni=1 composed of i.i.d. realisations
drawn from P . We recall the definitions of a scalar-valued kernel and its RKHS (Aronszajn, 1950).

Definition 1 (Scalar-valued kernel). A scalar-valued kernel is a symmetric function k : X × X → R
such that for all n ∈ N, and any (xi)

n
i=1 ∈ Xn, (αi)

n
i=1 ∈ Rn, we have

∑n
i,j=1 αi k (xi, xj)αj ≥ 0.

Theorem 1 (RKHS). Let k be a kernel on X . Then, there exists a unique Hilbert space of functions
Hk ⊂ F (X ,R), where F (X ,R) denotes the set of functions from X to R, such that k (·, x) ∈ Hk

for all x ∈ X , and such that we have h (x) = ⟨h, k (·, x)⟩Hk
for any (h, x) ∈ Hk ×X .

A kernel machine computes a proxy for f∗ by solving

min
f∈Hk

1

n

n∑
i=1

ℓ(f(xi), yi) +
λn
2
∥f∥2Hk

, (1)

where λn > 0 is a regularization parameter. By the representer theorem (Kimeldorf and Wahba,
1971), the solution to Problem (1) is given by f̂n =

∑n
i=1 α̂i k(·, xi), with α̂ ∈ Rn the solution to

the problem

min
α∈Rn

1

n

n∑
i=1

ℓ([Kα]i, yi) +
λn
2
α⊤Kα , (2)

where K ∈ Rn×n is the kernel Gram matrix such that Kij = k(xi, xj). Given a matrix S ∈ Rs×n,
with s << n, sketching consists in imposing the substitution α = S⊤γ. We then obtain an
optimisation problem of reduced size on γ, that yields the estimator f̃s =

∑n
i=1[S

⊤γ̃]ik(·, xi),
where γ̃ ∈ Rs is a solution to

min
γ∈Rs

1

n

n∑
i=1

ℓ([KS⊤γ]i, yi) +
λn
2
γ⊤SKS⊤γ. (3)

Works about sketched kernel machines usually assess the performance of f̃s by upper bounding its
squared L2(PN ) error, i.e., (1/n)

∑n
i=1(f̃s(xi)− fHk

(xi))
2, where fHk

is the minimizer of the true
risk overHk, supposed to be attained (Yang et al., 2017, Equation 2), or through its (relative) recovery
error ∥f̃s − f̂n∥Hk

/∥f̂n∥Hk
, see Lacotte and Pilanci (2020, Theorem 3). In contrast, we focus on

the excess risk of f̃s, as it is the original quantity (i.e., prior to sketching) we want to minimize. As
revealed by the proof of Theorem 2, the approximation error of the excess of risk can be controlled
in terms of the L2(PN ) error, and we actually recover the results from Yang et al. (2017) when we
consider the square loss with bounded outputs (second bound in Theorem 2). Furthermore, studying
the excess risk allows to better position the performances of f̃s among the known off-the-shelf
kernel-based estimators available for the targeted problem. To achieve this study, we rely on the key
notion of K-satisfiability for a sketch matrix (Yang et al., 2017; Liu et al., 2019; Chen and Yang,
2021a).

Let K/n = UDU⊤ be the eigendecomposition of the Gram matrix, where D = diag (µ1, . . . , µn)
stores the eigenvalues of K/n in decreasing order. Let δ2n be the critical radius of K/n, i.e., the
lowest value such that ψ(δn) = ( 1n

∑n
i=1 min(δ2n, µi))

1/2 ≤ δ2n. The existence and uniqueness of
δ2n is guaranteed for any unit ball in the RKHS associated with a positive definite kernel (Bartlett
et al., 2006; Yang et al., 2017). Note that δ2n is similar to the parameter ε̃2 used in Yang et al. (2012)
to analyze Nyström approximation for kernel methods. We define the statistical dimension of K as
dn = min

{
j ∈ {1, . . . , n} : µj ≤ δ2n

}
, with dn = n if no such index j exists.

Definition 2 (K-satisfiability (Yang et al., 2017)). Let c > 0 independent of n. Let U1 ∈ Rn×dn

and U2 ∈ Rn×(n−dn) be the the left and right blocks of the matrix U previously defined, and
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D2 = diag (µdn+1, . . . , µn). A sketch matrix S is said to be K-satisfiable for c if S we have∥∥∥(SU1)
⊤
SU1 − Idn

∥∥∥
op
≤ 1/2 , (4)∥∥∥SU2D

1/2
2

∥∥∥
op
≤ cδn . (5)

Roughly speaking, a sketch is K-satisfiable if it defines an isometry on the largest eigenvectors of
K, and has small operator norm on the smallest eigenvectors. For random sketches, it is common
to show K-satisfiability with high probability under some condition on the size s, see e.g., Yang
et al. (2017, Lemma 5) for Gaussian sketches, Chen and Yang (2021a, Theorem 8) for Accumulation
sketches. In Section 3, we show similar results for p-sparsified sketches.

To derive our excess risk bounds, we place ourselves in the same framework as Li et al. (2021),
see Sections 2.1 and 3 therein. Namely, we assume that the true risk is minimized over Hk at
fHk

:= arg inff∈Hk
E [ℓ (f (X) , Y )]. The existence of fHk

is standard in the literature (Caponnetto
and De Vito, 2007; Rudi and Rosasco, 2017; Yang et al., 2017), and implies that fHk

has bounded
norm, see e.g., Rudi and Rosasco (2017, Remark 2). Similarly to Li et al. (2021), we also assume
that estimators returned by Empirical Risk Minimization have bounded norm. Hence, all estimators
considered in the present paper belong to some ball of finite radius R. However, we highlight that our
results do not require prior knowledge on R, and hold uniformly for all finite R. As a consequence,
we consider without loss of generality as hypothesis set the unit ball B (Hk) in Hk, up to an a
posteriori rescaling of the bounds by R to recover the general case.
Assumption 1. The true risk is minimized at fHk

.
Assumption 2. The hypothesis set considered is B (Hk).
Assumption 3. For all y ∈ Y , z 7→ ℓ(z, y) is L-Lipschitz.
Assumption 4. For all x, x′ ∈ X , we have k(x, x′) ≤ κ.
Assumption 5. The sketch S is K-satisfiable.

Note that we discuss some directions to relax Assumption 2 in Appendix B. Many loss functions
satisfy Assumption 3, such as the hinge loss (L = 1), used in SVMs (Cortes and Vapnik, 1995),
the ϵ-insensitive ℓ1 (Drucker et al., 1997), the κ-Huber loss, known for robust regression (Huber,
1964), the pinball loss, used in quantile regression (Steinwart and Christmann, 2011), or the square
loss with bounded outputs. Assumption 4 is standard (e.g., κ = 1 for the Gaussian kernel). Under
Assumptions 1 to 5 we have the next result.
Theorem 2. Suppose that Assumptions 1 to 5 hold, and let C = 1 +

√
6c, with c the constant from

Assumption 5. Then, for any δ ∈ (0, 1) with probability at least 1− δ we have

E
[
ℓf̃s
]
≤E

[
ℓfHk

]
+ LC

√
λn + δ2n +

λn
2

+ 8L

√
κ

n
+ 2

√
8 log (4/δ)

n
.

Furthermore, if ℓ (z, y) = (z − y)2 /2 and Y ⊂ [0, 1], with probability at least 1− δ we have

E
[
ℓf̃s
]
≤E

[
ℓfHk

]
+

(
C2 +

1

2

)
λn + C2δ2n

+ 8
κ+
√
κ√

n
+ 2

√
8 log (4/δ)

n
.

Proof sketch. The proof relies on the decomposition of the excess risk into two generalization error
terms and an approximation error term. The two generalization errors (of f̃s and fHk

) can be
bounded using Bartlett and Mendelson (2003, Theorem 8) together with Assumptions 1 to 4. For
the last term, we can use Jensen’s inequality and the Lipschitz continuity of the loss to upper bound
this approximation error by the square root of the sum of the square residuals of the Kernel Ridge
Regression with targets the fHk

(xi). The latter can in turn be upper bounded using Assumptions 1
and 5 and Lemma 2 from Yang et al. (2017). When considering the square loss, Jensen’s inequality
is not necessary anymore, leading to the improved second term in the r.h.s. of the last inequality in
Theorem 2. ■
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Recall that the rates in Theorem 2 are incomparable as is to that of Yang et al. (2017, Theorem 2),
since we focus on the excess risk while the authors study the squared L2(PN ) error. Precisely,
we recover their results as a particular case with the square loss and bounded outputs, up to the
generalization errors. Instead, note that we do recover the rates of Li et al. (2021, Theorem 1), which
considered a similar framework. Our bounds feature two different terms: a quantity related to the
generalization errors, and a quantity governed by δn deriving from the K-satisfiability analysis. The
behaviour of the critical radius δn crucially depends on the choice of the kernel. In Yang et al. (2017),
the authors compute its decay rate for different kernels. For instance, we have δ2n = O(

√
log (n)/n)

for the Gaussian kernel, δ2n = O (1/n) for polynomial kernels, or δ2n = O(n−2/3) for first-order
Sobolev kernels. Similarly, setting λn ∝ 1/

√
n we attain a rate of O (1/

√
n), that is minimax for the

kernel ridge regression, see Caponnetto and De Vito (2007).
Remark 1. Note that a standard additional assumption on the second order moments of the functions
inHk (Bartlett et al., 2005) allows to derive refined learning rates for the generalization errors. These
refined rates are expressed in terms of r̂⋆Hk

, the fixed point of a new sub-root function ψ̂n. In order to
make the approximation error of the same order, it is then necessary to prove the K-satisfiability of S
with respect to r̂⋆

2

Hk
instead of δ2n. Whether it is possible to prove such a K-satisfiability for standard

sketches is however a nontrivial question, left as future work.

2.2 Matrix-valued Kernel Machines

In this section, we extend our results to multiple output regression, tackled in vector-valued RKHSs.
Note that the output space Y is now a subset of Rd, with d ≥ 2. We start by recalling important
notions about Matrix-Valued Kernels (MVKs) and vector-valued RKHSs (vv-RKHSs).
Definition 3 (Matrix-valued kernel). An MVK is an application K : X × X → L(Rd), where L(Rd)

is the set of bounded linear operators on Rd, such that K (x, x′) = K (x′, x)
⊤ for all (x, x′) ∈ X 2,

and such that for all n ∈ N and any (xi, yi)
n
i=1 ∈ (X × Y)n we have

∑n
i,j=1 y

⊤
i K (xi, xj) yj ⩾ 0.

Theorem 3 (Vector-valued RKHS). Let K be an MVK. There is a unique Hilbert space HK ⊂
F(X ,Rd), the vv-RKHS of K, s.t. for all x ∈ X , y ∈ Rd and f ∈ HK we have x′ 7→ K (x, x′) y ∈
HK, and ⟨f,K (·, x) y⟩H = f(x)⊤y.

Note that we focus in this paper on the finite-dimensional case, i.e., Y ⊂ Rd, such that for all
x, x′ ∈ X , we have K(x, x′) ∈ Rd×d. For a training sample {x1, . . . , xn}, we define the Gram
matrix as K = (K(xi, xj))1≤i,j≤n ∈ Rnd×nd. A common assumption consists in considering
decomposable kernels: we assume that there exist a scalar kernel k and a positive semidefinite
matrix M ∈ Rd×d such that for all x, x′ ∈ X we have K(x, x′) = k(x, x′)M . The Gram matrix
can then be written K = K ⊗M , where K ∈ Rn×n is the scalar Gram matrix, and ⊗ denotes
the Kronecker product. Decomposable kernels are widely spread in the literature as they provide a
good compromise between computational simplicity and expressivity —note that in particular they
encapsulate independent learning, achieved with M = Id. We now discuss two examples of relevant
output matrices.
Example 1. In joint quantile regression, one is interested in predicting d different conditional
quantiles of an output y given the input x. If (τi)i≤d ∈ (0, 1) denote the d different quantile levels,
it has been shown in Sangnier et al. (2016) that choosing Mij = exp(−γ(τi − τj)2) favors close
predictions for close quantile levels and limits crossing effects.
Example 2. In multiple output regression, it is possible to leverage prior knowledge on the task
relationships to design a relevant output matrix M . For instance, let P be the d× d adjacency matrix
of a graph in which the vertices are the tasks and an edge exists between task i and j if and only they
are (thought to be) related. Denoting by LP the graph Laplacian associated to P , Evgeniou et al.
(2005); Sheldon (2008) have proposed to use M = (µLP + (1− µ)Id)−1, with µ ∈ [0, 1]. When
µ = 0, we have M = Id and all tasks are considered independent. When µ = 1, we only rely on the
prior knowledge encoded in P .

Given a sample (xi, yi)
n
i=1 ∈

(
X ,Rd

)n
and a decomposable kernel K = kM (its associated vv-

RKHS isHK), the penalized empirical risk minimisation problem is

min
f∈HK

1

n

n∑
i=1

ℓ(f(xi), yi) +
λn
2
∥f∥2HK

, (6)
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where ℓ : Rd × Rd → R is a loss such that z 7→ ℓ(z, y) is proper, lower semi-continuous and
convex for all y ∈ Rd. By the vector-valued representer theorem (Micchelli and Pontil, 2005), we
have that the solution to Problem (6) writes f̂n =

∑n
j=1K(·, xj)α̂j =

∑n
j=1 k(·, xj)Mα̂j , where

Â = (α̂1, . . . , α̂n)
⊤ ∈ Rn×d is the solution to the problem

min
A∈Rn×d

1

n

n∑
i=1

ℓ
(
[KAM ]

⊤
i: , yi

)
+
λn
2

Tr
(
KAMA⊤) .

In this context, sketching consists in making the substitution A = S⊤Γ, where S ∈ Rs×n is a sketch
matrix and Γ ∈ Rs×d is the parameter of reduced dimension to be learned. The solution to the
sketched problem is then f̃s =

∑n
j=1 k(·, xj)M

[
S⊤Γ̃

]
j
, with Γ̃ ∈ Rs×d minimizing

1

n

n∑
i=1

ℓ
([
KS⊤ΓM

]
i:
, yi
)
+
λn
2

Tr
(
SKS⊤ΓMΓ⊤) .

Theorem 4. Suppose that Assumptions 1 to 5 hold, that K = kM is a decomposable kernel with M
invertible, and let C as in Theorem 2. Then for any δ ∈ (0, 1) with probability at least 1− δ we have

E
[
ℓf̃s
]
≤E

[
ℓfHK

]
+ LC

√
λn + ∥M∥op δ2n +

λn
2

+ 8L

√
κTr (M)

n
+ 2

√
8 log (4/δ)

n
.

Furthermore, if ℓ (z, y) = ∥z − y∥22 /2 and Y ⊂ B
(
Rd
)
, with probability at least 1− δ we have that

E
[
ℓf̃s
]
≤ E

[
ℓfHk

]
+

(
C2 +

1

2

)
λn + C2∥M∥op δ2n

+ 8Tr (M)
1/2 κ ∥M∥

1/2
op + κ1/2
√
n

+ 2

√
8 log (4/δ)

n
.

Proof sketch. The proof follows that of Theorem 2. The main challenge is to adapt Yang et al. (2017,
Lemma 2) to the multiple output setting. To do so, we leverage that K is decomposable, such that the
K-satisfiability of S is sufficient, where K the scalar Gram matrix. ■

Note that for M = Id (independent prior), the third term of the r.h.s. of both inequalities become of
order

√
d/n, that is typical of multiple output problems. If moreover we instantiate the bound for

d = 1, we recover exactly Theorem 2. To the best of our knowledge, Theorem 4 is the first theoretical
result about sketched vector-valued kernel machines. We highlight that it applies to generic Lipschitz
losses and provides a bound directly on the excess risk.

2.3 Algorithmic details

We now discuss how to solve single and multiple output optimization problems. Let {(µ̃i, ṽi), i ∈ [s]}
be the eigenpairs of SKS⊤ in descending order, Ũ = [Ũij ]s×s = (ṽ1, . . . , ṽs), r = rank(SKS⊤),
and K̃r = ŨrD̃

−1/2
r , where D̃r = diag(µ̃1, . . . , µ̃r), and Ũr = (ṽ1, . . . , ṽr).

Proposition 5. Solving Problem (3) is equivalent to solving

min
ω∈Rr

1

n

n∑
i=1

ℓ
(
ω⊤zS (xi) , yi

)
+
λn
2
∥ω∥22 , (7)

where zS (x) = K̃⊤
r S (k (x, x1) , . . . , k (x, xn))

⊤ ∈ Rr.

Problem (7) thus writes as a linear problem with respect to the feature maps induced by the sketch,
generalizing the results established in Yang et al. (2012) for sub-sampling sketches. When consid-
ering multiple outputs, it is also possible to derive a linear feature map version when the kernel is
decomposable. These feature maps are of the form zS ⊗M1/2, yielding matrices of size nd× rd
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that are prohibitive in terms of space, see Appendix E. Note that an alternative way is to see sketching
as a projection of the k(·, xi) into Rr (Chatalic et al., 2021). Instead, we directly learn Γ. For both
single and multiple output problems, we consider losses not differentiable everywhere in Section 4
and apply ADAM Stochastic Subgradient Descent (Kingma and Ba, 2015) for its ability to handle
large datasets.
Remark 2. In the previous sections, sketching is always leveraged in primal problems. However, for
some of the loss functions we consider, dual problems are usually more attractive (Cortes and Vapnik,
1995; Laforgue et al., 2020). This naturally raises the question of investigating the interplay between
sketching and duality on the algorithmic level. Due to space limitations, this discussion is postponed
to Appendix F.

3 p-Sparsified Sketches

We now introduce the p-sparsified sketches, and establish their K-satisfiability. The p-sparsified
sketches are composed of i.i.d. Rademacher or centered Gaussian entries, multiplied by independent
Bernoulli variables of parameter p (the non-zero entries are scaled to ensure that S defines an isometry
in expectation). The sketch sparsity is controlled by p, and when the latter becomes small enough, S
contains many columns full of zeros. It is then possible to rewrite S as the product of a sub-Gaussian
and a subsampling sketch of reduced size, which greatly accelerates the computations.
Definition 4. Let s < n, and p ∈ (0, 1]. A p-Sparsified Rademacher (p-SR) sketch is a random
matrix S ∈ Rs×n whose entries Sij are independent and identically distributed (i.i.d.) as follows

Sij =


1√
sp with probability p

2

0 with probability 1− p
−1√
sp with probability p

2

(8)

A p-Sparsified Gaussian (p-SG) sketch is a random matrix S ∈ Rs×n whose entries Sij are i.i.d. as
follows

Sij =

{
1√
sp Gij with probability p

0 with probability 1− p
(9)

where the Gij are i.i.d. standard normal random variables. Note that standard Gaussian sketches
are a special case of p-SG sketches, corresponding to p = 1.

Several works partially addressed p-SR sketches in the past literature. For instance, Baraniuk et al.
(2008) establish that p-SR sketches satisfy the Restricted Isometry Property (based on concentration
results from Achlioptas (2001)), but only for p = 1 and p = 1/3. In Li et al. (2006), the authors
consider generic p-SR sketches, but do not provide any theoretical result outside of a moment analysis.
The i.i.d. sparse embedding matrices from Cohen (2016) are basically m/s-SR sketches, where
m ≥ 1, leading each column to have exactly m nonzero elements in expectation. However, we were
not able to reproduce the proof of the Johnson-Linderstrauss property proposed by the author for
his sketch (Theorem 4.2 in the paper, equivalent to the first claim of K-satisfiability, equation (4)).
More precisely, we think that the assumptions considering “each entry is independently nonzero with
probability m/s” and “each column has a fixed number of nonzero entries” (m here) are conflicting.
As far as we know, this is the first time p-SG sketches are introduced in the literature. Note that both
(8) and (9) can be rewritten as Sij = (1/

√
sp)BijRij , where the Bij are i.i.d. Bernouilli random

variables of parameter p, and the Rij are i.i.d. random variables, independent from the Bij , such that
E[Rij ] = 0 and E[RijRi′j′ ] = 1 if i = i′ and j = j′, and 0 otherwise. Namely, for p-SG sketches
Rij = Gij is a standard Gaussian variable while for p-SR sketches it is a Rademacher random
variable. It is then easy to check that p-SR and p-SG sketches define isometries in expectation. In the
next theorem, we show that p-sparsified sketches are K-satisfiable with high probability.
Theorem 6. Let S be a p-sparsified sketch. Then, there are some universal constants C0, C1 > 0 and
a constant c(p), increasing with p, such that for s ≥ max

(
C0dn/p

2, δ2nn
)

and with a probability at

least 1− C1e
−sc(p), the sketch S is K-satisfiable for c = 2√

p

(
1 +

√
log (5)

)
+ 1.

Proof sketch. To prove (4), we use Boucheron et al. (2013, Theorem 2.13), which shows that any
i.i.d. sub-Gaussian sketch matrix satisfies the Johnson-Lindenstrauss lemma with high probability.
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To prove (5), we work conditionally on a realization of the Bij , and use concentration results of
Lipschitz functions of Rademacher or Gaussian random variables (Tao, 2012). We highlight that
such concentration results do not hold for sub-Gaussian random variables in general, preventing from
showing K-satisfiability of generic sparsified sub-Gaussian sketches. Note that having Sij ∝ BijRij

is key, and that subsampling uniformly at random non-zero entries instead of using i.i.d. Bernoulli
variables would make the proof significantly more complex. ■

In addition to be statistically accurate, p-sparsified sketches can be computed efficiently. Indeed,
recall that the main quantity to compute when sketching a kernel machine is the matrix SKS⊤.
With standard Gaussian sketches, that are known to be theoretically accurate, this computation
takes O(sn2) operations. Subsampling sketches are notoriously less precise, but since they act as
masks over the Gram matrix K, computing SKS⊤ can be done in O(s2) operations only, without
having to store the entire Gram matrix upfront. Now, let S ∈ Rs×n be a p-sparsified sketch, and
s′ =

∑n
j=1 I{S:j ̸= 0s} be the number of columns of S with at least one nonzero element. The

crucial observation that makes S computationally efficient is that we have

S = SSG SSS , (10)

where SSG ∈ Rs×s′ is obtained by deleting the null columns from S, and SSS ∈ Rs′×n is a sub-
Sampling sketch whose sampling indices correspond to the indices of the columns in S with at least
one non-zero entry1. We refer to (10) as the decomposition trick. This decomposition is key, as we
can apply first a fast subsampling sketch, and then a sub-Gaussian sketch on the sub-sampled Gram
matrix of reduced size. Note that s′ is a random variable. By independence of the entries, each column
is null with probability (1− p)s. Then, by the independence of the columns we have that s′ follows a
Binomial distribution with parameters n and 1− (1− p)s, such that E [s′] = n(1− (1− p)s).
Hence, the sparsity of the p-sparsified sketches, controlled by parameter p, is an interesting degree
of freedom to add: it preserves statistical guarantees (Theorem 6) while speeding-up calculations
(10). Of course, there is no free lunch and one looses on one side what is gained on the other: when
p decreases (sparser sketches), the lower bound to get guarantees s ≳ dn/p

2 increases, but the
expected number of non-null columns s′ decreases, thus accelerating computations (note that for
p = 1 we exactly recover the lower bound and number of non-null columns for Gaussian sketches).
By substituting s = C0dn/p

2 into E[s′], one can show that it is optimal to set p ≈ 0.7, independently
from C0 and dn. This value minimizes computations (−10% compared to full Gaussian when
C0dn = 1) while maintaining the guarantees. However, the lower bound in Theorem 6 is a sufficient
condition, that might be conservative. Looking at the problem of setting s and p from the practitioner
point of view, we also provide more aggressive empirical guidelines. Indeed, although this regime is
not covered by Theorem 6, experiments show that setting s as for the Gaussian sketch and p smaller
than 1/s yield very interesting results, see Figure 1(c). Overall, p-sparsified sketches (i) generalize
Gaussian sketches by introducing sparsity as a new degree of freedom, (ii) enjoy a regime in which
theoretical guarantees are preserved and computations (slightly) accelerated, (iii) empirically yield
competitive results also in aggressive regimes not covered by theory, thus achieving a wide range of
intesting accuracy/computations tradeoffs.

Sparse sketches have been widely studied in the literature, see Clarkson and Woodruff (2017); Nelson
and Nguyên (2013); Derezinski et al. (2021). However these sketches are well-suited when applied to
parse matrices (e.g., matrices induced by graphs). In fact, given a matrix A, computing SA with these
types of sketching has a time complexity of the order of nnz (A), the number of nonzero elements of
A. Besides, these sketches usually are constructed such that each column has at least one nonzero
element (e.g. CountSketch, OSNAP), hence no decomposition trick is possible. Regarding kernel
methods, since a Gram matrix is typically dense (e.g., with the Gaussian kernel, nnz (K) = n2), and
since no decomposition trick can be applied, one has to compute the whole matrix K and store it,
such that time and space complexity implied by such sketches are of the order of n2. In practice,
we show that we can set p small enough to computationally outperform classical sparse sketches
and still obtain similar statistical performance. Note that an important line of research is devoted to
improve the statistical performance of the (fast but inaccurate) Nyström approximation, either by
adaptive sampling (Kumar et al., 2012; Wang and Zhang, 2013; Gittens and Mahoney, 2013), or
leverage scores (Alaoui and Mahoney, 2015; Musco and Musco, 2017; Rudi et al., 2018; Chen and

1Precisely, SSS is the identity matrix Is′ , augmented with n− s′ null columns inserted at the indices of the
null columns of S.
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Figure 1: Trade-off between Accuracy and Efficiency for p-SG sketches with κ-Huber loss.

Yang, 2021b). We somehow took the opposite route, as p-SG sketches are accelerated but statistically
degraded versions the Gaussian sketch.

4 Experiments

We now empirically compare the performance of p-sparsified sketches against SOTA approaches,
namely Nyström approximation (Williams and Seeger, 2001), Gaussian sketch (Yang et al., 2017),
Accumulation sketch (Chen and Yang, 2021a), CountSketch (Clarkson and Woodruff, 2017) and
Random Fourier Features (Rahimi and Recht, 2007). We chose not to benchmark ROS sketches as
CountSketch has equivalent statistical accuracy while being faster to compute.

Scalar regression. Robust regression. We generate a dataset composed of n = 10, 000 dat-
apoints: 9, 900 input points drawn i.i.d. from U ([010,110]) and 100 other drawn i.i.d. from
N (1.5110, 0.25I10). The outputs are generated as y = f⋆(x) + ϵ, where ϵ ∼ N (0, 1) and

f⋆(x) = 0.1e4x1 +
4

1 + e−20(x2−0.5)
+ 3x3 + 2x4 + x5 ,
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Table 1: Empirical test pinball and crossing loss and training times (in sec) without sketching and
with sketching (s = 50).
Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20 CountSketch

Boston
Pinball loss 51.28 ± 0.67 54.75± 0.74 54.78± 0.72 54.73± 0.75 54.60± 0.72

Crossing loss 0.34± 0.13 0.26± 0.08 0.11± 0.07 0.15± 0.07 0.10 ± 0.05
Training time 6.97± 0.25 1.43± 0.07 1.38± 0.08 1.48± 0.05 1.23 ± 0.07

otoliths
Pinball loss 2.78 2.66± 0.02 2.64 ± 0.02 2.67± 0.03 2.65± 0.02

Crossing loss 5.18 5.46± 0.06 5.43± 0.05 5.46± 0.06 5.44± 0.05
Training time 606.8 20.4± 0.5 20.0 ± 0.3 22.1± 0.4 20.9± 0.3

Table 2: ARRMSE and training times (in sec) with square loss and s = 100 when using Sketching.
Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20 CountSketch

rf1 ARRMSE 0.575 0.584± 0.003 0.583± 0.003 0.592± 0.001 0.575 ± 0.0005
Training time 1.73 0.22 ± 0.025 0.25± 0.005 0.60± 0.0004 0.66± 0.013

rf2 ARRMSE 0.578 0.671± 0.009 0.656± 0.006 0.796± 0.006 0.715± 0.011
Training time 1.77 0.28± 0.003 0.27 ± 0.003 0.82± 0.003 0.62± 0.001

scm1d ARRMSE 0.418 0.422± 0.002 0.423± 0.001 0.423± 0.001 0.420± 0.001
Training time 9.36 0.45 ± 0.022 0.45 ± 0.019 0.86± 0.006 2.49± 0.035

scm20d ARRMSE 0.755 0.754± 0.003 0.754± 0.003 0.753 ± 0.001 0.754± 0.002
Training time 6.16 0.38 ± 0.016 0.38 ± 0.017 0.70± 0.032 1.91± 0.047

as introduced in Friedman (1991). We used the Gaussian kernel and selected its bandwidth —as
well as parameters κ (and ϵ for ϵ-SVR)— via 5-folds cross-validation. We solve this 1D regression
problem using the κ-Huber loss, described in Appendix G. We learn the sketched kernel machines
for different values of s (from 40 to 140) and several values of p, the probability of being non-null in
a p-SR sketch. Figure 1(a) presents the test error as a function of the sketch size s. Figure 1(b) shows
the corresponding computational training time. All methods reduce their test error, measured in terms
of the relative Mean Squared Error (MSE) when s increases. Note that increasing p increases both the
precision and the training time, as expected. This behaviour recalls the Accumulation sketches, since
we observe a form of interpolation between the Nyström and Gaussian approximations. The behaviour
of all the different sketched kernel machines is shown in Figure 1(c), where each of them appears as
a point (training time, test MSE). We observe that p-SR sketches attain the smallest possible error
(MSE ≤ 0.05) at a lowest training time budget (mostly around 5.6 < time < 6.6). Moreover,
p-SR sketches obtain a similar precision range as the Accumulation sketches, but for smaller training
times (both approaches improves upon CountSketch and Gaussian sketch in that respect). Nyström
sketching, which similarly to our approach needs not computing the entire Gram matrix, is fast to
compute. The method is however known to be sensitive to the non-homogeneity of the marginal
distribution of the input data (Yang et al., 2017, Section 3.3). In contrast, the sub-Gaussian mixing
matrix SSG in (10) makes p-sparsified sketches more robust, as empirically shown in Figure 1(c).
See Appendix H.1 for results on p-SG sketches.

Vector-valued regression. Joint quantile regression. We chose the quantile levels as follows
τ = (0.1, 0.3, 0.5, 0.7, 0.9). We apply a subgradient algorithm to minimize the pinball loss described
in Appendix G with ridge regularization and a kernel K = kM with M discussed in Example 1,
and k a Gaussian kernel. We showcase the behaviour of the proposed algorithm for Joint Sketched
Quantile Regression on two datasets: the Boston Housing dataset (Harrison Jr and Rubinfeld, 1978),
composed of 506 data points devoted to house price prediction, and the Fish Otoliths dataset (Moen
et al., 2018; Ordoñez et al., 2020), dedicated to fish age prediction from images of otoliths (calcium
carbonate structures), composed of a train and test sets of size 3780 and 165 respectively. The results
are averages over 10 random 70%− 30% train-test splits for Boston dataset. For the Otoliths dataset
we kept the initial given train-test split, and for each sketch type, averaged over 30 replicates. The
results are reported in Table 1. Sketching allows for a massive reduction of the training times while
preserving the statistical performances. As a comparison, according to the results of Sangnier et al.
(2016), the best benchmark result for the Boston dataset in terms of test pinball loss is 47.4, while
best test crossing loss is 0.48, which shows that our implementation does not compete in terms of
quantile prediction but preserves the non-crossing property.

Multi-output regression. We finally conducted experiments on multi-output kernel ridge regression.
We used decomposable kernels, and took the largest datasets introduced in Spyromitros-Xioufis et al.
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(2016). They consist in four datasets, divided in two groups: River Flow (rf1 and rf2) both composed
of 4108 training data, and Supply Chain Management (scm1d and scm20d) composed of 8145 and
7463 training data respectively (more details and additional results can be found in Appendix H.2).
We compare our non-sketched decomposable matrix-valued kernel machine with the sketched version.
For the sake of conciseness, we only report here the Average Relative Root Mean Squared Error
(ARRMSE), see Table 2 and Appendix H.2. For all datasets, sketching shows strong computational
improvements while maintaining the accuracy of non-sketched approaches.

Note that for both joint quantile regression and multi-output regression the results obtained after
sketching (no matter the sketch chosen) are almost the same as that attained without sketching. It
might be explained by two factors. First, the datasets studied have relatively small training sizes
(from 354 training data for Boston to 8145 for scm1d). Second, predicting jointly multiple outputs is
a complex task, so that it appears more natural to obtain less differences and variance using various
types of sketches (or no sketch). However, in all cases sketching induces a huge time saver.
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A Technical Proofs

In this section are gathered all the technical proofs of the results stated in the article.

Notation. We recall that we assume that training data (xi, yi)
n
i=1 are i.i.d. realisations sampled

from a joint probability density P (x, y). We define

En[ℓf ] =
1

n

n∑
i=1

ℓ(f(xi), yi),

E[ℓf ] = EP [ℓ(f(X), Y ].

For a class of functions F , the empirical Rademacher complexity (Bartlett and Mendelson, 2003) is
defined as

R̂n(F ) = E

[
sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(xi)

∣∣∣∣∣ |x1, . . . , xn
]
,

where σ1, . . . , σn are independent Rademacher random variables such that P {σi = 1} =
P {σi = −1} = 1/2. The corresponding Rademacher complexity is then defined as the expec-
tation of the empirical Rademacher complexity

Rn(F ) = E
[
R̂n(F )

]
.

A.1 Proof of Theorem 2

We first prove first inequality in Theorem 2 for generic Lipschitz losses.

Proof. The proof follows that of (Li et al., 2021, Theorem 3). We decompose the expected learning
risk as

E[ℓf̃s ]− E[ℓfHk
] = E[ℓf̃s ]− En[ℓf̃s ] + En[ℓf̃s ]− En[ℓfHk

] + En[ℓfHk
]− E[ℓfHk

]. (11)

We then use (Bartlett and Mendelson, 2003, Theorem 8) to bound E[ℓf̃s ]− En[ℓf̃s ] and En[ℓfHk
]−

E[ℓfHk
].

Lemma 7. (Bartlett and Mendelson, 2003, Theorem 8) Let {xi, yi}ni=1 be i.i.d samples from P and
letH be the space of functions mapping from X to R. Denote a loss function with l : Y ×R→ [0, 1]
and recall the learning risk function for all f ∈ H is E [lf ], together with the corresponding empirical
risk function En [lf ] = (1/n)

∑n
i=1 l (yi, f (xi)). Then, for a sample of size n, for all f ∈ H and

δ ∈ (0, 1), with probability 1− δ/2, we have that

E [lf ] ≤ En [lf ] +Rn(l ◦ H) +
√

8 log(4/δ)

n

where l ◦ H = {(x, y)→ l(y, f(x))− l(y, 0) | f ∈ H}.

Thus, since f̃s lies in the unit ball B (Hk) of Hk by Assumption 1, we obtain thanks to the above
lemma, with a probability at least 1− δ

E
[
ℓf̃s
]
− En

[
ℓf̃s
]
≤ Rn

(
ℓ ◦ B (Hk)

)
+

√
8 log(2/δ)

n
.

Then, by the Lipschitz continuity of ℓ (Assumption 3) and point 4 of Theorem 12 from Bartlett and
Mendelson (2003), we have that

Rn (ℓ ◦ B (Hk)) ≤ 2LRn (B (Hk)) .

Finally, Assumption 4 combined with Lemma 22 from Bartlett and Mendelson (2003) then yields

Rn (B (Hk)) ≤
2

n

√√√√ n∑
i=1

k (xi, xi) ≤ 2

√
κ

n
.
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As a consequence, we obtain

E
[
ℓf̃s

]
− En

[
ℓf̃s

]
≤ 4L

√
κ√
n

+

√
8 log(4/δ)

n
, (12)

and the exact same result applies to En[ℓfHk
]− E[ℓfHk

], by Assumption 1 and the opposite side of
Lemma 7.

We now focus on the last quantity to bound. LetHS =
{
f =

∑n
i=1

[
S⊤γ

]
i
k (·, xi) | γ ∈ Rs

}
. By

Assumptions 2 and 3 and Jensen’s inequality we have

En

[
ℓf̃s

]
− En

[
ℓfHk

]
=

1

n

n∑
i=1

ℓ
(
f̃s(xi), yi

)
− 1

n

n∑
i=1

ℓ (fHk
(xi), yi)

≤ 1

n

n∑
i=1

ℓ
(
f̃s(xi), yi

)
+
λn
2

∥∥∥f̃s∥∥∥2
Hk

− 1

n

n∑
i=1

ℓ (fHk
(xi), yi)

= inf
f∈HS

∥f∥Hk
≤1

1

n

n∑
i=1

ℓ (f(xi), yi)−
1

n

n∑
i=1

ℓ (fHk
(xi), yi) +

λn
2
∥f∥2Hk

≤ inf
f∈HS

∥f∥Hk
≤1

L

n

n∑
i=1

|f (xi)− fHk
(xi)|+

λn
2

≤ L inf
f∈HS

∥f∥Hk
≤1

√√√√ 1

n

n∑
i=1

|f (xi)− fHk
(xi)|2 +

λn
2

= L

√√√√ inf
f∈HS

∥f∥Hk
≤1

1

n

∥∥fX − fXHk

∥∥2
2
+
λn
2
,

where, for any f ∈ Hk, fX = (f(x1), . . . , f(xn)) ∈ Rn. Let f̃Rs =
∑n

i=1

[
S⊤γ̃R

]
i
k (·, xi), where

γ̃R is a solution to

inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ

⊤SKS⊤γ .

It is easy to check that f̃Rs is also a solution to

inf
f∈HS

∥f∥Hk
≤∥f̃R

s ∥Hk

1

n

∥∥fX − fXHk

∥∥2
2
.

Since we have ∥f̃Rs ∥Hk
≤ 1 by Assumption 2, it holds

inf
f∈HS

∥f∥Hk
≤1

1

n

∥∥fX − fXHk

∥∥2
2
≤ inf

f∈HS

∥f∥Hk
≤∥f̃R

s ∥Hk

1

n

∥∥fX − fXHk

∥∥2
2

= inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ

⊤SKS⊤γ .

As a consequence,

En

[
ℓf̃s

]
− En

[
ℓfHk

]
≤ L

√
inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ⊤SKS⊤γ +

λn
2
.

Finally, since S is a K-satisfiable sketch matrix, using Lemma 2 from Yang et al. (2017),

En

[
ℓf̃s

]
− En

[
ℓfHk

]
≤ LC

√
λn + δ2n +

λn
2
, (13)

where C = 1 +
√
6c and c is a universal constant coming from K-satisfiable property. The desired

bound is obtained by combining Equations (11), (12) and (13). ■
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We now give the proof of the second claim i.e., the excess risk bound for kernel ridge regression.

Proof. We now assume that the outputs are bounded, hence, without loss of generality, let assume
Y ⊂ [0, 1]. First, we prove Lipschitz-continuity of the square loss under Assumptions 1 and 4. Let
Hk(X ) = {f (x) : f ∈ Hk, x ∈ X} and g : z ∈ Hk (X ) 7→ 1

2 (z − y)
2, for y ∈ [0, 1]. Hence,

g′(z) = z − y and by Assumptions 1 and 4

|g′(z)| ≤ |z|+ |y| ≤ |f(x)|+ 1 ≤ |⟨f, k (·, x)⟩Hk
|+ 1 ≤ ∥f∥Hk

κ1/2 + 1 = κ1/2 + 1 ,

for some f ∈ Hk and x ∈ X since z ∈ Hk (X ). As a consequence, we obtain that g is
(
κ1/2 + 1

)
-

Lipschitz, i.e.

|ℓ (f (x) , y)− ℓ (f ′ (x′) , y)| ≤
(
κ1/2 + 1

)
|f (x)− f ′ (x′)| .

We can then obtain the same generalisation bounds as above. Finally, looking at the approximation
term,

En

[
ℓf̃s

]
− En

[
ℓfHk

]
=

1

2n

∥∥∥f̃Xs − Y ∥∥∥2
2
− 1

2n

∥∥fXHk
− Y

∥∥2
2

≤ 1

2n

∥∥∥f̃Xs − fXHk

∥∥∥2
2

≤ inf
f∈HS

∥f∥Hk
≤1

1

2n

∥∥fX − fXHk

∥∥2
2
+
λn
2

≤ inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ

⊤SKS⊤γ +
λn
2

≤
(
C2 +

1

2

)
λn + C2δ2n .

We obtain the same bound as above without the square root since we do not need to invoke Jensen
inequality as the studied loss is the square loss. Gathering all arguments, we obtain last inequality in
Theorem 2. ■

A.2 Refined analysis in the scalar case

As said in Remark 1, and similarly to Li et al. (2021), we can conduct a refined analysis, leading to
faster convergence rates for the generalization errors, with the following additional assumption.
Assumption 6. There is a constant B such that, for all f ∈ Hk we have

E [f − fHk
]
2 ≤ B E

[
ℓf − ℓfHk

]
. (14)

It has be shown that many loss functions satisfy this assumption such as Hinge loss (Steinwart and
Christmann, 2008b; Bartlett et al., 2006), truncated quadratic or sigmoid loss (Bartlett et al., 2006).
Under Assumptions 1, 3 to 5 and 6, the following result holds:

Theorem 8. We define, for δ ∈ (0, 1), the following sub-root function ψ̂n

ψ̂n(r) = 2LC1

(
2

n

n∑
i=1

min {b2r, µi}

)1/2

+
C2

n
log

1

δ
,

and let r̂∗Hk
be the fixed point of ψ̂n, i.e., ψ̂n

(
r̂∗Hk

)
= r̂∗Hk

. Then, we have for all D > 1 and
δ ∈ (0, 1) with probability greater than 1− δ,

E
[
ℓf̃s

]
≤ E

[
ℓfHk

]
+

D

D − 1

(
LC
√
λn + δ2n +

λn
2

)
+

12D

B
r̂⋆Hk

+
2C3

n
log

1

δ
, (15)

whereC is as in Theorem 2 andC1, C2, C3 and b2 are some constants and r̂∗Hk
can be upper bounded

by

r̂⋆Hk
≤ min

0≤h≤n

b0 h
n
+

√
1

n

∑
i>h

µi

 ,

where B and b0 are some constants.
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Hence, we see that, in order to obtain faster learning rates than Theorem 2 as Li et al. (2021), we
need to replace δ2n by r̂⋆

2

Hk
. However, according to the expression of ψ̂n and its dependencies to

non-explicit constants, it appears very difficult to prove that
(

1
n

∑n
i=1 min(r̂⋆

2

Hk
, µi)

)1/2
≤ r̂⋆

2

Hk
,

which is a necessary condition to prove that a sketch matrix S is K-satisfiable. We still prove the
above result following the proof of Theorem 4 in Li et al. (2021), and leave as an open problem to
find faster rates than δn.

Proof. We use the decomposition of the expected learning risk from Li et al. (2021)

E[ℓf̃s ]− E[ℓfHk
] = E[ℓf̃s ]−

D

D − 1
En[ℓf̃s ]

+
D

D − 1

(
En[ℓf̃s ]− En[ℓfHk

]
)

+
D

D − 1
En[ℓfHk

]− E[ℓfHk
] ,

for D > 1. The generalization errors can be bounded as in Li et al. (2021) by Theorem 8. The
approximation error is bounded using (13). ■

A.3 Proof of Theorem 4

Here, the proof uses the same decomposition of the excess risk (Equation (11)) as in single output
settings. Since some works (Maurer, 2016) exist to easily extend generalisation bounds of functions
in scalar-valued RKHS to functions in vector-valued RKHS, the main challenge here is to derive an
approximation error for the multiple output settings. Hence, let us first state a needed intermediate
results that we will prove later.

Lemma 9. For all f ∈ HK, such that ∥f∥HK ≤ 1, we have z
⊤ (
K−1 ⊗M−1

)
z ≤ 1, where

z =
(
f(x1)

⊤, . . . , f(xn)
⊤)⊤ ∈ Rnd.

We are now equipped to state the main result that generalises Lemma 2 from Yang et al. (2017).

Lemma 10. Let Z⋆ = (f⋆(x1), . . . , f
⋆(xn))

⊤ ∈ Rn×d for any f⋆ ∈ HK such that ∥f⋆∥HK
≤ 1,

where K = kM , and S ∈ Rs×n a K- satisfiable matrix. Then we have

inf
Γ∈Rs×d

1

n
∥KS⊤ΓM − Z⋆∥2F + λn Tr

(
KS⊤ΓMΓ⊤S

)
≤ C2

(
∥M∥opδ2n + λn

)
, (16)

where C = 1 +
√
6c and c is the universal constant from Definition 2.

Proof. We adapt the proof of Lemma 2 from Yang et al. (2017) to the multidimensional case. If we
are able to find a Γ ∈ Rs×d such that

1

n
∥KS⊤ΓM − Z⋆∥2F + λn Tr

(
KS⊤ΓMΓ⊤S

)
≤ C2

(
∥M∥opδ2n + λn

)
,

then in particular it also holds true for the minimizer. We recall the eigendecompositions 1
nK =

Knorm = UDU⊤ and M = V∆V ⊤. Then the above problem rewrites as

∥DS̃⊤ΓV∆−Θ⋆∥2F + λn Tr
(
S̃DS̃⊤ΓMΓ

)
≤ C2

(
∥M∥opδ2n + λn

)
,

where S̃ = SU and Θ⋆ = 1
n1/2U

⊤Z⋆V . We can rewrite θ⋆ = (Θ⋆
1:, . . . ,Θ

⋆
n:)

⊤
=

1
n1/2

(
U⊤ ⊗ V ⊤) z⋆ ∈ Rnd, hence ∥

(
D−1/2 ⊗∆−1/2

)
θ⋆∥22 = z⋆

⊤ (
K−1 ⊗M−1

)
z⋆, with

z⋆ = (Z⋆
1:, . . . , Z

⋆
n:)

⊤
=
(
f⋆(x1)

⊤, . . . , f⋆(xn)
⊤)⊤ ∈ Rnd. By Lemma 9, we have that

∥
(
D−1/2 ⊗∆−1/2

)
θ⋆∥2 ≤ 1, and using the notation γ = (Γ1:, . . . ,Γs:)

⊤ ∈ Rsd, we can rewrite
the above problem as finding a γ such that

∥θ⋆ −
(
DS̃⊤ ⊗∆V ⊤

)
γ∥22 + λnγ

⊤
(
S̃DS̃⊤ ⊗M

)
γ ≤ C2

(
∥M∥opδ2n + λn

)
.
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As in (Yang et al., 2017), we partition vector θ⋆ ∈ Rnd into two sub-vectors, namely θ⋆1 ∈ Rdnd and
θ⋆2 ∈ R(n−dn)d, the diagonal matrix D into two blocks D1 ∈ Rdn×dn and D2 ∈ R(n−dn)×(n−dn)

and finally, under the condition s > dn, we let S̃1 ∈ Rs×dn and S̃2 ∈ Rs×(n−dn) denote the left and
right block of S̃ respectively. By the K-satisfiablility of S we have

∥S̃⊤
1 S̃1 − Idn

∥op ≤
1

2
and ∥S̃2D

1/2
2 ∥op ≤ cδ2n . (17)

By the first inequality, we have that S̃⊤
1 S̃1 is invertible. In fact, assuming that there exists x ∈ Rdn

such that ∥x∥2 = 1 and S̃⊤
1 S̃1X = 0, then

∥∥(S̃⊤
1 S̃1 − Idn)x

∥∥ = 1 > 1
2 . Then, we can define

γ̂ =

(
S̃1

(
S̃⊤
1 S̃1

)−1

D−1
1 ⊗ V∆−1

)
θ⋆1 . (18)

Hence,∥∥θ⋆ − (DS̃⊤ ⊗∆V ⊤)γ̂
∥∥2
2
=
∥∥θ⋆1 − (D1S̃

⊤
1 ⊗∆V ⊤)γ̂

∥∥2
2
+
∥∥θ⋆2 − (D2S̃

⊤
2 ⊗∆V ⊤)γ̂

∥∥2
2
,

and we have∥∥θ⋆1 − (D1S̃
⊤
1 ⊗∆V ⊤)γ̂

∥∥2
2
=
∥∥θ⋆1 − (D1S̃

⊤
1 ⊗∆V ⊤)(S̃1(S̃

⊤
1 S̃1)

−1D−1
1 ⊗ V∆−1

)
θ⋆1
∥∥2
2

=
∥∥θ⋆1 − (D1S̃

⊤
1 S̃1(S̃

⊤
1 S̃1)

−1D−1
1 ⊗∆V ⊤V∆−1

)
θ⋆1
∥∥2
2

= ∥θ⋆1 − θ⋆1∥22
= 0 ,

and∥∥∥θ⋆2 − (D2S̃
⊤
2 ⊗∆V ⊤

)
γ̂
∥∥∥
2

=

∥∥∥∥θ⋆2 − (D2S̃
⊤
2 S̃1

(
S̃⊤
1 S̃1

)−1

D−1
1 ⊗ Ip

)
θ⋆1

∥∥∥∥
2

≤ ∥θ⋆2∥2 +
∥∥∥∥(D2S̃

⊤
2 S̃1

(
S̃⊤
1 S̃1

)−1

D
−1/2
1 D

−1/2
1 ⊗∆1/2∆−1/2

)
θ⋆1

∥∥∥∥
2

= ∥θ⋆2∥2 +
∥∥∥∥(D2S̃

⊤
2 S̃1

(
S̃⊤
1 S̃1

)−1

D
−1/2
1 ⊗∆1/2

)(
D

−1/2
1 ⊗∆−1/2

)
θ⋆1

∥∥∥∥
2

≤ ∥θ⋆2∥2 +
∥∥∥∥(D2S̃

⊤
2 S̃1

(
S̃⊤
1 S̃1

)−1

D
−1/2
1 ⊗∆1/2

)∥∥∥∥
op

∥∥∥(D−1/2
1 ⊗∆−1/2

)
θ⋆1

∥∥∥
2

= ∥θ⋆2∥2 +
∥∥∥∥D2S̃

⊤
2 S̃1

(
S̃⊤
1 S̃1

)−1

D
−1/2
1

∥∥∥∥
op

∥∥∥∆1/2
∥∥∥
op

∥∥∥(D−1/2
1 ⊗∆−1/2

)
θ⋆1

∥∥∥
2

≤ ∥θ⋆2∥2 +
∥∥∥D1/2

2

∥∥∥
op

∥∥∥S̃2D
1/2
2

∥∥∥
op

∥∥∥S̃1

∥∥∥
op

∥∥∥∥(S̃⊤
1 S̃1

)−1
∥∥∥∥
op

∥∥∥D−1/2
1

∥∥∥
op

∥∥∥∆1/2
∥∥∥
op

∥∥∥(D−1/2
1 ⊗∆−1/2

)
θ⋆1

∥∥∥
2
.

(19)

We now bound all terms involved in (19). Since ∥
(
D−1/2 ⊗∆−1/2

)
θ⋆∥2 ≤ 1, then

∥
(
D

−1/2
1 ⊗∆−1/2

)
θ⋆1∥2 ≤ 1 and,

∥θ⋆2∥22 =

d∑
i=1

n∑
j=dn+1

(
θ⋆2ji

)2

≤ δ2n∥M∥op
d∑

i=1

1

∆ii

n∑
j=dn+1

(
θ⋆2ji

)2
µj

≤ δ2n∥M∥op
d∑

i=1

n∑
j=1

(
θ⋆2ji

)2
µj∆ii

= δ2n∥M∥op
∥∥∥(D−1/2 ⊗∆−1/2

)
θ⋆
∥∥∥2
2

≤ δ2n∥M∥op,
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since µj ≤ δ2n, for all j ≥ dn + 1 and ∆ii ≤ ∥M∥op for all 1 ≤ i ≤ d. Moreover, since

∥S̃⊤
1 S̃1 − Idn

∥op ≤ 1
2 , ∥S̃⊤

1 S̃1∥op ≤ 3
2 , then ∥S̃1∥op ≤

√
3
2 . Besides, for all x ∈ Rdn such that

∥x∥2 = 1, we have

|∥S̃⊤
1 S̃1x∥2 − 1| = |∥S̃⊤

1 S̃1x∥2 − ∥x∥2| ≤
∥∥∥(S̃⊤

1 S̃1 − Idn

)
x
∥∥∥
2
≤ 1

2
,

Then, we obtain that ∥S̃⊤
1 S̃1x∥2 − 1 ≥ − 1

2 and then ∥S̃⊤
1 S̃1x∥2 ≥ 1

2 , taking x the eigenvector of

S̃⊤
1 S̃1 corresponding to its smallest eigenvalue, we obtain that ∥

(
S̃⊤
1 S̃1

)−1

∥−1
op ≥ 1

2 , and finally

∥
(
S̃⊤
1 S̃1

)−1

∥op ≤ 2. Moreover we have

∥D−1/2
1 ∥op ≤

1

δn
,

∥D1/2
2 ∥op ≤ δn,

∥S̃2D
1/2
2 ∥op ≤ cδn.

Thus, ∥∥∥θ⋆2 − (D2S̃
⊤
2 ⊗∆V ⊤

)
γ̂
∥∥∥
2
≤
(
δ2n∥M∥op

)1/2
+ δncδn

(
3

2

)1/2

2
1

δn
∥M∥1/2op

=
(
δ2n∥M∥op

)1/2 (
1 + c

√
6
)

Finally, ∥∥∥θ⋆ − (DS̃⊤ ⊗∆V ⊤
)
γ̂
∥∥∥2
2
≤ δ2n∥M∥op

(
1 + c

√
6
)2
. (20)

Furthermore, looking into the second term,

γ̂⊤
(
S̃DS̃⊤ ⊗M

)
γ̂ =

∥∥∥(D1/2S̃⊤ ⊗∆1/2V ⊤
)
γ̂
∥∥∥2
2

=
∥∥∥(D1/2

1 S̃⊤
1 ⊗∆1/2V ⊤

)
γ̂
∥∥∥2
2
+
∥∥∥(D1/2

2 S̃⊤
2 ⊗∆1/2V ⊤

)
γ̂
∥∥∥2
2

=
∥∥∥(D−1/2

1 ⊗∆−1/2
)
θ⋆1

∥∥∥2
2
+

∥∥∥∥(D1/2
2 S̃⊤

2 S̃1

(
S̃⊤
1 S̃1

)−1

D−1
1 ⊗∆−1/2

)
θ⋆1

∥∥∥∥2
2

≤ 1 +
∥∥∥S̃2D

1/2
2

∥∥∥2
op

∥∥∥S̃1

∥∥∥2
op

∥∥∥∥(S̃⊤
1 S̃1

)−1
∥∥∥∥2
op

∥∥∥D−1/2
1

∥∥∥2
op

∥∥∥(D−1/2
1 ⊗∆−1/2

)
θ⋆1

∥∥∥2
2

≤ 1 + c2δ2n
3

2
4
1

δ2n

= 1 + 6c2

=
(
1 +
√
6c
)2
− 2
√
6c

≤
(
1 +
√
6c
)2
.

Finally, we obtain that∥∥∥θ⋆ − (DS̃⊤ ⊗∆V ⊤
)
γ̂
∥∥∥2
2
+ λnγ̂

⊤
(
S̃DS̃⊤ ⊗M

)
γ̂ ≤

(
1 +
√
6c
)2 (
∥M∥opδ2n + λn

)
, (21)

and as a conclusion

inf
Γ∈Rs×d

1

n
∥KS⊤ΓM − Z⋆∥2F + λn Tr

(
KS⊤ΓMΓ⊤S

)
≤ C2

(
∥M∥opδ2n + λn

)
, (22)

where C = 1 +
√
6c. ■

Now, as for the proof of Theorem 2, let us prove equation first inequality in Theorem 4.
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Proof. For any function in B (HK) = {f ∈ HK : ∥f∥HK ≤ 1}, Lemma 7 still holds, then

E [ℓf ] ≤ En [ℓf ] +Rn(l ◦ B (HK)) +

√
8 log(2/δ)

n
. (23)

Then, using Corollary 1 from Maurer (2016), we have that:

Rn(ℓ ◦ B (HK)) ≤
√
2LRn(B (HK)), (24)

where

Rn(F ) = E

sup
f∈F

∣∣∣∣∣∣ 2n
n∑

i=1

d∑
j=1

σijf(xi)j

∣∣∣∣∣∣ | x1, . . . , xn


= E

[
sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

⟨σi, f(xi)⟩Rd

∣∣∣∣∣ | x1, . . . , xn
]
,

where σ11, . . . , σnp are nd independent Rademacher variables, and for all 1 ≤ i ≤ n, σi =

(σi1, . . . , σid)
⊤. Hence

Rn(B (HK)) = E

[
sup

∥f∥HK≤1

∣∣∣∣∣ 2n
n∑

i=1

⟨σi, f(xi)⟩Rd

∣∣∣∣∣ | x1, . . . , xn
]

= E

 sup
∥f∥HK≤1

∣∣∣∣∣∣
〈
2

n

n∑
i=1

Kxi
σi, f

〉
HK

∣∣∣∣∣∣ | x1, . . . , xn


≤ 2

n
E

∥∥∥∥∥
n∑

i=1

Kxiσi

∥∥∥∥∥
2

HK

| x1, . . . , xn

1/2

=
2

n
E

 n∑
i,j=1

⟨σi,K(xi, xj)σj⟩Rd | x1, . . . , xn

1/2

=
2

n
E

 n∑
i,j=1

k(xi, xj) ⟨σi,Mσj⟩Rd |x1, . . . , xn

1/2

=
2

n

 n∑
i,j=1

k(xi, xj)

d∑
i′,j′=1

E [Mi′j′σii′σjj′ |x1, . . . , xn]

1/2

=
2

n

(
n∑

i=1

k(xi, xi)

d∑
i′=1

Mi′i′

)1/2

=
2

n
(Tr (K ⊗M))

1/2

Rn(B (HK)) ≤
2

n1/2
κ1/2 Tr (M)

1/2
.

Finally, for any function f ∈ B (HK), for all δ ∈ (0, 1), we have for a probability at least 1− δ,

|E [ℓf ]− En [ℓf ]| ≤ 4L

√
2κ

n
Tr (M) + 2

√
8 log(2/δ)

n
. (25)
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Now, for the approximation error term, we proceed as in the proof of Theorem 2. Let HS ={
f =

∑n
i=1 k(·, xi)M

[
S⊤Γ̃

]
i
| γ ∈ Rs×d

}
. By Assumptions 2 and 3 and Jensen’s inequality,

En

[
ℓf̃s

]
− En

[
ℓfHK

]
=

1

n

n∑
i=1

ℓ
(
f̃s(xi), yi

)
− 1

n

n∑
i=1

ℓ (fHK(xi), yi)

≤ 1

n

n∑
i=1

ℓ
(
f̃s(xi), yi

)
+
λn
2

∥∥∥f̃s∥∥∥2
HK
− 1

n

n∑
i=1

ℓ (fHK(xi), yi)

= inf
f∈HS

∥f∥HK
≤1

1

n

n∑
i=1

ℓ (f(xi), yi)−
1

n

n∑
i=1

ℓ (fHK(xi), yi) +
λn
2
∥f∥2HK

≤ inf
f∈HS

∥f∥HK
≤1

L

n

n∑
i=1

∥f (xi)− fHK (xi)∥2 +
λn
2

≤ L inf
f∈HS

∥f∥HK
≤1

√√√√ 1

n

n∑
i=1

∥f (xi)− fHK (xi)∥22 +
λn
2

= L

√√√√ inf
f∈HS

∥f∥HK
≤1

1

n

∥∥fX − fXHK

∥∥2
F
+
λn
2
,

where, for any f ∈ HK, fX = (f(x1), . . . , f(xn))
⊤ ∈ Rn×d. Let f̃Rs =

∑n
i=1 k(·, xi)M

[
S⊤Γ̃R

]
i
,

where Γ̃R is a solution to

inf
Γ∈Rs×d

1

n

∥∥KS⊤ΓM − fXHK

∥∥2
F
+ λn Tr

(
KS⊤ΓMΓ⊤S

)
.

It is easy to check that f̃Rs is also a solution to

inf
f∈HS

∥f∥HK
≤∥f̃R

s ∥HK

1

n

∥∥fX − fXHK

∥∥2
F
.

Since we have ∥f̃Rs ∥HK ≤ 1 by Assumption 2, it holds

inf
f∈HS

∥f∥HK
≤1

1

n

∥∥fX − fXHK

∥∥2
F
≤ inf

f∈HS

∥f∥HK
≤∥f̃R

s ∥HK

1

n

∥∥fX − fXHK

∥∥2
F

= inf
Γ∈Rs×d

1

n

∥∥KS⊤ΓM − fXHK

∥∥2
F
+ λn Tr

(
KS⊤ΓMΓ⊤S

)
.

As a consequence, we have

En[ℓf̃s ]− En[ℓfHk
] ≤ L

√
inf

Γ∈Rs×d

1

n
∥KS⊤ΓM − fXHk

∥2F + λn Tr (KS⊤ΓMΓ⊤S) +
λn
2
.

Finally, by Lemma 10 and Equation (25), we obtain the result stated. ■

Furthermore, we give the proof of the second claim, i.e. the excess risk bound for kernel ridge
multi-output regression.

Proof. We now assume that the outputs are bounded, hence, without loss of generality, let assume
Y ⊂ B

(
Rd
)
. First, we prove Lipschitz-continuity of the square loss under Assumptions 1 and 4. Let

g : z ∈ HK (X ) 7→ 1
2 ∥z − y∥

2
2. We have that∇g(z) = z − y, and hence ∥∇g(z)∥2 ≤ ∥f(x)∥2 + 1,

for some f ∈ HK and x ∈ X . By Assumptions 1 and 4 and Cauchy-Schwartz inequality, it is easy to
check that

∥f (x)∥22 ≤
(
κ ∥M∥op ∥f(x)∥

2
2

)1/2
,
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which gives us that ∥f (x)∥2 ≤ κ1/2 ∥M∥1/2op and then ∥∇g(z)∥2 ≤ κ1/2 ∥M∥1/2op + 1. We finally
obtain that

|ℓ (f (x) , y)− ℓ (f ′ (x′) , y)| ≤
(
κ1/2 ∥M∥1/2op + 1

)
||f (x)− f ′ (x′)∥2 .

We can then obtain the same generalisation bounds as above. Finally, looking at the approximation
term,

En

[
lf̃s

]
− En

[
lfHk

]
=

1

2n

∥∥∥f̃Xs − Y ∥∥∥2
2
− 1

2n

∥∥fXHk
− Y

∥∥2
2

≤ 1

2n

∥∥∥f̃Xs − fXHk

∥∥∥2
2

≤ inf
f∈HS

∥f∥Hk
≤1

1

2n

∥∥fX − fXHk

∥∥2
2
+
λn
2

≤ inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ

⊤SKS⊤γ +
λn
2

≤
(
C2 +

1

2

)
λn + C2δ2n .

Here again, as in second claim of Theorem 2, we can directly use bound (16) and then, in combination
with (25), we obtain the stated second claim in Theorem 4. ■

Finally, we here prove Lemma 9.

Proof. Let f ∈ HK such that ∥f∥HK ≤ 1 and z =
(
f(x1)

⊤, . . . , f(xn)
⊤)⊤ ∈ Rnd. We define the

linear operator SX : HK → Rnd such that SX(f) =
(
f(x1)

⊤, . . . , f(xn)
⊤)⊤ for all f ∈ HK. Then

for all f ∈ HK and z =
(
z⊤1 , . . . , z

⊤
n

)⊤ ∈ Rnd we have

⟨SX(f), z⟩Rnd =

n∑
i=1

⟨f(xi), zi⟩Rd =

n∑
i=1

⟨f,Kxi
zi⟩HK

=

〈
f,

n∑
i=1

Kxi
zi

〉
HK

= ⟨f, S⋆
X(z)⟩HK

.

Hence

z⊤
(
K−1 ⊗M−1

)
z =

〈
(K ⊗M)

−1
SX(f), Sx(f)

〉
Rnd

=
〈
S⋆
X

(
(K ⊗M)

−1
SX(f)

)
, f
〉
HK

.

We recall the eigendecompositions of K and M

K = U (nD)U⊤ =

n∑
i=1

nµiuiu
⊤
i

M = V∆V ⊤ =

d∑
j=1

µivjv
⊤
j .

Then,

K ⊗M =

(
n∑

i=1

nµiuiu
⊤
i

)
⊗

 d∑
j=1

µivjv
⊤
j


=

n∑
i=1

d∑
j=1

nµiµi

(
uiu

⊤
i

)
⊗
(
vjv

⊤
j

)
=

n∑
i=1

d∑
j=1

nµiµi (ui)⊗ (vj)
(
u⊤i
)
⊗
(
v⊤j
)

=

n∑
i=1

d∑
j=1

nµiµi (ui)⊗ (vj) ((ui)⊗ (vj))
⊤
,
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and for all 1 ≤ i, i′ ≤ n and 1 ≤ j, j′ ≤ d, if (i, i′) ̸= (j, j′), then (ui)⊗ (vj)
⊤
((ui′)⊗ (vj′)) = 0

and otherwise (ui)⊗ (vj)
⊤
((ui′)⊗ (vj′)) = 1. Then, this allows to show that the operator norm of

a Kronecker product is the product of the operator norms, and that

(K ⊗M)
−1

=

n∑
i=1

d∑
j=1

(nµiµi)
−1

(ui)⊗ (vj) ((ui)⊗ (vj))
⊤
. (26)

We define, for all 1 ≤ i ≤ n and 1 ≤ j ≤ d,

φij =
1

√
nµiµj

n∑
l=1

uilKxl
vj . (27)

By definition, span
(
(φij)1≤i≤n,1≤j≤d

)
⊂ span

(
(Kxivj)1≤i≤n,1≤j≤d

)
and we show that the φijs

are orthonormal,

⟨φij , φi′j′⟩HK
=

〈
1

√
nµiµj

n∑
l=1

uilKxl
vj ,

1
√
nµi′µj′

n∑
l′=1

ui′
l′
Kxl′ vj′

〉
HK

=
1

√
nµiµj

1
√
nµi′µj′

n∑
l,l′

uilui′l′
〈
Kxl

vj ,Kxl′ vj′
〉
HK

=
1

√
nµiµj

1
√
nµi′µj′

n∑
l,l′

uilui′l′
〈
vj ,Kxl,xl′ vj′

〉
Rd

=
1

√
nµiµj

1
√
nµi′µj′

n∑
l,l′

uilui′l′k(xl, xl
′) ⟨vj ,Mvj′⟩Rd

=
1

√
nµiµj

1
√
nµi′µj′

n∑
l,l′

uilui′l′k(xl, xl
′)µj′ ⟨vj , vj′⟩Rd

= 0 if j ̸= j′.

Otherwise, if j = j′,

⟨φij , φi′j′⟩HK
=

1
√
nµi

1
√
nµi′

n∑
l,l′

uilui′l′k(xl, xl
′)

=
1
√
nµi

1
√
nµi′

⟨Kui, ui′⟩Rn

=
1
√
nµi

1
√
nµi′

nµi ⟨ui, ui′⟩Rn

= 0 if i ̸= i′.

Hence, ⟨φij , φi′j′⟩HK
= 0 if (i, i′) ̸= (j, j′) and if (i, i′) = (j, j′),

⟨φij , φi′j′⟩HK
= 1.

Finally, span
(
(φij)1≤i≤n,1≤j≤d

)
⊂ span

(
(Kxi

vj)1≤i≤n,1≤j≤d

)
and

dim
(
(φij)1≤i≤n,1≤j≤d

)
= nd = dim

(
(Kxi

vj)1≤i≤n,1≤j≤d

)
, hence (φij)1≤i≤n,1≤j≤d

yields an orthonormal basis of span
(
(Kxi

vj)1≤i≤n,1≤j≤d

)
. As a consequence, all

f ∈ HK can be decomposed as f = f1 + f2, with f1 ∈ span
(
(Kxivj)1≤i≤n,1≤j≤d

)
and
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f2 ∈ span
(
(Kxi

vj)1≤i≤n,1≤j≤d

)⊥
. Thus, for all y ∈ Rd, y can be written as y =

∑d
j=1 yjvj and

⟨SX(f), z⟩Rnd =

n∑
i=1

⟨f(xi), zi⟩Rd

=

n∑
i=1

d∑
j=1

zij ⟨f(xi), vj⟩Rd

=

n∑
i=1

d∑
j=1

zij ⟨f,Kxi
vj⟩HK

=

n∑
i=1

d∑
j=1

zij ⟨f1,Kxivj⟩HK
+

n∑
i=1

d∑
j=1

zij ⟨f2,Kxivj⟩HK

=

n∑
i=1

d∑
j=1

zij ⟨f1,Kxi
vj⟩HK

= ⟨SX(f1), z⟩Rnd .

Hence, let f ∈ HK such that ∥f∥HK ≤ 1, written as f =
∑n

i=1

∑d
j=1 fijφij + f⊥, with

fij ∈ R for all 1 ≤ i ≤ n and 1 ≤ j ≤ d and such that
∑n

i=1

∑d
j=1 f

2
ij ≤ 1 and

f⊥ ∈ span
(
(Kxi

vj)1≤i≤n,1≤j≤d

)⊥
such that ∥f⊥∥HK ≤ 1 (since ∥f∥HK =

∑n
i=1

∑d
j=1 f

2
ij +

∥f⊥∥HK ≤ 1, we have that

SX(f) =

n∑
i=1

d∑
j=1

fijSX (φij) ,

and, for all 1 ≤ l ≤ n,

φij(xl) =
1

√
nµiµj

n∑
l′=1

uil′k(xl′ , xl)Mvj

=

√
µj

nµi
K⊤

l: uivj ,

and then

SX (φij) =

√
µj

nµi
(Kui)⊗ vj =

√
nµiµjui ⊗ vj . (28)

Finally,

SX(f) =

n∑
i=1

d∑
j=1

fij (nµiµj)
1/2

ui ⊗ vj . (29)

Besides,

(K ⊗M)
−1
SX(f) =

 n∑
i=1

d∑
j=1

(nµiµi)
−1

(ui)⊗ (vj) ((ui)⊗ (vj))
⊤


×

 n∑
i′=1

d∑
j′=1

fi′j′ (nµi′µj′)
1/2

ui′ ⊗ vj′


=

n∑
i=1

d∑
j=1

fij (nµiµi)
−1/2

ui ⊗ vj .
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Then,

S⋆
X

(
(K ⊗M)

−1
SX(f)

)
=

n∑
i=1

d∑
j=1

fij (nµiµi)
−1/2

S⋆
X (ui ⊗ vj)

=

n∑
i=1

d∑
j=1

fij (nµiµi)
−1/2

n∑
i′=1

Kxi(uii′ vj),

and finally,〈
S⋆
X

(
(K ⊗M)

−1
SX(f)

)
, f
〉
HK

=

n∑
i,i′=1

d∑
j,j′=1

n∑
l=1

fijfi′j′ (nµiµi)
−1/2

uil ⟨Kxl
vj , φi′j′⟩HK

=

n∑
i,i′=1

d∑
j,j′=1

fijfi′j′

〈
(nµiµi)

−1/2
n∑

l=1

uilKxl
vj , φi′j′

〉
HK

=

n∑
i,i′=1

d∑
j,j′=1

fijfi′j′ ⟨φij , φi′j′⟩HK

=

n∑
i=1

d∑
j=1

f2ij〈
S⋆
X

(
(K ⊗M)

−1
SX(f)

)
, f
〉
HK
≤ 1.

Thus, we do have the ellipse constraint

∥
(
K−1/2 ⊗M−1/2

)
z∥2 ≤ 1. (30)

■

A.4 Proof of Theorem 6

A.4.1 First claim of K-satisfiability

Let us now prove the first claim (equation (4)) of the K-satisfiability for p-SR and p-SG sketches. It
is articulated around the following two lemmas.
Lemma 11. Let M ∈ Rd×d be a symmetric matrix, ε ∈ (0, 1), and Cε be an ε-cover of Bd. Then we
have

∥M∥op ≤
1

1− 2ε− ε2
sup
v∈Cε

∣∣⟨v,Mv⟩
∣∣ .

Proof. Let M , ε and Cε as in Lemma 11. Let u ∈ Bd. By definition, there exist v ∈ Cε and w ∈ Bd
such that u = v + εw. We thus have

⟨u,Mu⟩ = ⟨v,Mv⟩+ 2ε⟨v,Mw⟩+ ε2⟨w,Mw⟩ . (31)
Taking the supremum on both sides of (31) we obtain

sup
u∈Bd

|⟨u,Mu⟩| = sup
v∈Cε, w∈Bd

(
|⟨v,Mv⟩|+ 2ε|⟨v,Mw⟩|+ ε2|⟨w,Mw⟩|

)
≤ sup

v∈Cε

|⟨v,Mv⟩|+ 2ε sup
v∈Cε, w∈Bd

|⟨v,Mw⟩|+ ε2 sup
w∈Bd

|⟨w,Mw⟩|

≤ sup
v∈Cε

|⟨v,Mv⟩|+ 2ε sup
v′∈Bd,w∈Bd

|⟨v′,Mw⟩|+ ε2∥M∥op

= sup
v∈Cε

|⟨v,Mv⟩|+
(
2ε+ ε2

)
∥M∥op ,

or again

∥M∥op ≤
1

1− 2ε− ε2
sup
v∈Cε

∣∣⟨v,Mv⟩
∣∣ .

■
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Lemma 12. Let S ∈ Rs×n be a p-SR or a p-SG sketch. Let v ∈ Bn, then for every t > 0, we have

P

{∣∣ ∥Sv∥22 − ∥v∥22 ∣∣ > 4

p

√
2t

s
+

4t

sp

}
≤ 2e−t .

Proof. The proof of Lemma 12 is largely adapted from the proof of Theorem 2.13 in Boucheron et al.
(2013). Let S ∈ Rs×n be a p-SR or a p-SG sketch, and v ∈ Bn. It is easy to check that for all i ≤ s
we have E

[
[Sv]

2
i

]
= 1

s ∥v∥
2
2, such that

∣∣ ∥Sv∥22 − ∥v∥22 ∣∣ =
∣∣∣∣∣

s∑
i=1

(
[Sv]

2
i −

1

s
∥v∥22

) ∣∣∣∣∣ .
The proof then consists in applying Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10) to
the random variables [Sv]2i . We now have to find some constants ν and c such that

∑s
i=1 E

[
[Sv]

4
i

]
≤

ν and
s∑

i=1

E
[
[Sv]

2q
i

]
≤ q!

2
νcq−2 for all q ≥ 3 .

From (8) and (9), it is easy to check that the Sij are independent and 1/(sp) sub-Gaussian. Then, for
all λ ∈ R, we have

E
[
exp (λ [Sv]i)

]
= E

exp
λ n∑

j=1

Sijvj


=

n∏
j=1

E
[
exp (λSijvj)

]
≤ exp

(
λ2

2sp
∥v∥22

)
≤ exp

(
λ2

2sp

)
.

The random variable [Sv]i is therefore 1/(sp) sub-Gaussian, and Theorem 2.1 from Boucheron et al.
(2013) yields that for every integer q ≥ 2 it holds

E
[
[Sv]

2q
i

]
≤ q!

2
4

(
2

sp

)q

≤ q!

2

(
4

sp

)q

.

Choosing q = 2, we obtain
s∑

i=1

E
[
[Sv]

4
i

]
≤

s∑
i=1

(
4

sp

)2

=
16

sp2
,

such that we can choose ν = 16/(sp2) and c = 4/(sp). Applying Theorem 2.10 from Boucheron
et al. (2013) to the random variables [Sv]2i finally gives that for any t > 0 it holds

P

{∣∣ ∥Sv∥22 − ∥v∥22 ∣∣ > 4

p

√
2t

s
+

4t

sp

}
≤ 2e−t .

■

Proof of the first claim of the K-satisfiability. Let K ∈ Rn×n be a Gram matrix, and S ∈ Rs×n

be a p-SR or a p-SG sketch. Recall that we want to prove that there exists c0 > 0 such that

P
{∥∥U⊤

1 S
⊤SU1 − Idn

∥∥
op
>

1

2

}
≤ 2e−c0s ,

where K/n = UDU⊤ is the SVD of K, and U1 ∈ Rn×dn contains the left part of U . Let ε ∈ (0, 1),
and Cε = {v1, . . . , vNε} be an ε-cover of Bdn . We know that such a covering exists with cardinality
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Nε ≤
(
1 + 2

ε

)dn , see e.g., Matoušek (2013). Let Q = U⊤
1 S

⊤SU1 − Idn
, applying Lemma 11, we

have

P
{
∥Q∥op >

1

2

}
≤ P

{
sup
i≤Nε

∣∣⟨vi, Qvi⟩∣∣ > 1− 2ε− ε2

2

}
≤
∑
i≤Nε

P
{∣∣⟨vi, Qvi⟩∣∣ > 1− 2ε− ε2

2

}

=
∑
i≤Nε

P
{∣∣ ∥Swi∥22 − ∥wi∥22

∣∣ > 1− 2ε− ε2

2

}
, (32)

where wi = U1v
i ∈ Bn. Now, by Lemma 12, for any w ∈ Bn, we have

P

{∣∣ ∥Sw∥22 − ∥w∥22 ∣∣ > 4

p

√
2t

s
+

4t

sp

}
≤ 2e−t .

Let s ≥ 32t/(α2p2), for some α ≤ 1. Then, we have 4
p

√
2t
s + 4t

sp ≤ α+ α2p
8 ≤ 2α, and therefore

P
{∣∣ ∥Sw∥22 − ∥w∥22 ∣∣ > 2α

}
≤ 2e−t .

If we take α = (1− 2ε− ε2)/4, we obtain

P
{∣∣ ∥Sw∥22 − ∥w∥22 ∣∣ > 1− 2ε− ε2

2

}
≤ 2e−t

as long as s ≥ 512t
p2(1−2ε−ε2)2 . Now, let t = p2(1−2ε−ε2)2

1024 s+ log(Nε), and s ≥ 1024 log(1+2/ε)
p2(1−2ε−ε2)2 dn.

We do have

512t

p2(1− 2ε− ε2)2
=
s

2
+

512

p2(1− 2ε− ε2)2
log(Nε) ≤

s

2
+
s

2
= s ,

such that

P
{∣∣ ∥Sw∥22 − ∥w∥22 ∣∣ > 1− 2ε− ε2

2

}
≤ 2e−t =

2e−c0s

Nε
,

where c0 = p2(1−2ε−ε2)
1024 . Plugging this result into (32), we get that as soon as s ≥

1024 log(1+2/ε)
p2(1−2ε−ε2)2 dn it holds

P
{
∥Q∥op >

1

2

}
≤ 2e−c0s .

Finally, we can tune ε to optimize the lower bound on s. If we take ε = 0.1, we obtain s ≥ 5120dn/p
2,

and c0 ≥ p2/2560. ■

A.4.2 Second claim of K-satisfiability

We now turn to the proof of the second claim (equation (5)) of the K-satisfiability for p-SR and p-SG
sketches. It builds upon the following two intermediate results, about the concentration of Lipschitz
functions of Rademacher or Gaussian random variables.

Lemma 13. Let K > 0, and let X1, . . . , Xn be independent real random variables with |Xi| ≤ K
for all 1 ≤ i ≤ n. Let F : Rn → R be a L-Lipschitz convex function. Then, there exist C, c > 0 such
that for any λ one has

P{|F (X)− EF (X)| ≥ Kλ} ≤ C ′ exp
(
−c′λ2/L2

)
.

Lemma 14. Let X1, . . . , Xn be i.i.d. standard Gaussian random variables. Let F : Rn → R be a
L-Lipschitz function. Then, there exist C, c > 0 such that for any λ one has

P{|F (X)− EF (X)| ≥ λ} ≤ C ′ exp
(
−c′λ2/L2

)
.
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The above two lemmas are taken from Tao (2012), see Theorems 2.1.12 and 2.1.13 therein, but are
actually well known results in the literature. In particular, Lemma 13 is adaptated from Talagrand’s
inequality (Talagrand, 1995), while Lemma 14 is stated as Theorem 5.6 in Boucheron et al. (2013),
with explicit constants. We however choose the writing by Tao (2012) in order to be consistent with
the Rademacher case.

Remark 3. Note that thanks to Lemma 13, we are even able to prove K-satisfiability for any sketch
matrix S whose entries are i.i.d. centered and reduced bounded random variables.

Proof of the second claim of the K-satisfiability. Let K ∈ Rn×n be a Gram matrix, and S ∈
Rn×s be a p-SR or a p-SG sketch. Recall that we want to prove that there exist positive constants
c, c1, c2 > 0 such that

P
{∥∥SU2D

1/2
2

∥∥
op
> cδn

}
≤ c1e−c2s ,

where K/n = UDU⊤ is the SVD of K, U2 ∈ Rn×(n−dn) is the right part of U , and D2 ∈
R(n−dn)×(n−dn) is the right bottom part of D. Note that we have SU2D

1/2
2 = SUD̄1/2, where

D̄ = diag (0dn
, D2) ∈ Rn×n. Following Yang et al. (2017), we have∥∥SUD̄1/2

∥∥
op

= sup
u∈Bs, v∈E

|⟨u, Sv⟩| ,

where E =
{
v ∈ Rn : ∃w ∈ Sn−1, v = UD̄1/2w

}
. Now, let u1, . . . uN be a 1/2-cover of Bs. We

know that such a covering exists with cardinality N ≤ 5s. We then have∥∥∥SUD̄1/2
∥∥∥
op

= sup
u∈Bs, v∈E

|⟨u, Sv⟩|

≤ max
i≤N

sup
v∈E

∣∣ 〈ui, Sv〉 ∣∣+ 1

2
sup

u∈Bs, v∈E
|⟨u, Sv⟩|

= max
i≤N

sup
v∈E

∣∣ 〈ui, Sv〉 ∣∣+ 1

2

∥∥∥SUD̄1/2
∥∥∥
op
,

and rearranging implies that ∥∥∥SUD̄1/2
∥∥∥
op
≤ 2max

i≤N
sup
v∈E

∣∣ 〈ui, Sv〉 ∣∣ .
Hence, for every c > 0 we have

P
(∥∥∥SU2D

1/2
2

∥∥∥
op
> cδn

)
≤ P

(
max
i≤N

sup
v∈E

∣∣ 〈ui, Sv〉 ∣∣ > c

2
δn

)
≤
∑
i≤N

P
{
sup
v∈E

∣∣ 〈ui, Sv〉 ∣∣ > c

2
δn

}
. (33)

Now, recall that

S =
1
√
sp

B ◦R ,

where B ∈ Rn×s is filled with i.i.d. Bernoulli random variables with parameter p, R ∈ Rn×s is filled
with i.i.d. Rademacher or Gaussian random variables for p-SR and p-SG sketches respectively, and ◦
denotes the Hadamard (termwise) matrix product. The next step of the proof consists in controlling
the right-hand side of (33) by showing that, conditionally on B, we have Lipschitz functions of
Rademacher or Gaussian random variables, whose deviations can be bounded using Lemmas 13
and 14. Therefore, from now on we assume B to be fixed, and only consider the randomness with
respect to R. Let u ∈ Bs, and define F : Rn×s → R as

F (R) =
1
√
sp

sup
v∈E

∣∣ ⟨u, (B ◦R)v⟩ ∣∣ .
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It is direct to check that F is a convex function. Moreover, we have
√
spF (R) = sup

v∈E
|⟨u, (B ◦R)v⟩|

= sup
v∈Sn−1

|⟨u, (B ◦R)UD̄1/2v⟩|

= sup
v∈Sn−1

|⟨D̄1/2U⊤(B ◦R)⊤u, v⟩|

=
∥∥∥D̄1/2U⊤(B ◦R)⊤u

∥∥∥
2
.

Thus, for any R,R′ we have
√
sp
∣∣F (R)− F (R′)

∣∣ = ∣∣∣ ∥∥∥D̄1/2U⊤(B ◦R)⊤u
∥∥∥
2
−
∥∥∥D̄1/2U⊤(B ◦R′)⊤u

∥∥∥
2

∣∣∣
≤
∥∥∥D̄1/2U⊤(B ◦ (R−R′)

)⊤
u
∥∥∥
2

≤
∥∥∥D̄1/2

∥∥∥
op

∥∥U⊤∥∥
op
∥B ◦ (R−R′)∥op ∥u∥2

≤ δn ∥B ◦ (R−R′)∥F
≤ δn ∥R−R′∥F , (34)

such that F is
√
δ2n/(sp)-Lipschitz. Moreover, we have

√
sp E [F (R)] = E

[∥∥∥D1/2
2 U⊤

2 (B ◦R)⊤u
∥∥∥
2

]
≤
√

E
[
u⊤(B ◦R)U2D2U⊤

2 (B ◦R)⊤u
]

=

√√√√ s∑
k,k′=1

ukuk′ E
[ [

(B ◦R)U2D2U⊤
2 (B ◦R)⊤

]
kk′

]

=

√√√√ s∑
k,k′=1

n∑
l,l′=1

ukuk′ [U2D2U⊤
2 ]ll′ E

[
[B ◦R]kl[B ◦R]k′l′

]

=

√√√√ s∑
k=1

n∑
l=1

B2
klu

2
k[U2D2U⊤

2 ]ll

≤
√
Tr(D2) ,

which implies

E [F (R)] ≤
√

n

sp

√∑n
j=dn+1 µj

n
≤
√

n

sp

√√√√ 1

n

n∑
j=dn+1

min(µj , δ2n) ≤

√
δ2n
p
, (35)

where we have used the definition of δ2n and the assumption s ≥ δ2nn. Coming back to (33), we
obtain

P
{∥∥SU2D

1/2
2

∥∥
op
> cδn

}
≤ 5s E

[
P
{
sup
v∈E

∣∣ ⟨u, Sv⟩ ∣∣ > c

2
δn
∣∣B}]

= 5s E
[
P
{
F (R) >

c

2
δn

}]
≤ 5s E

[
P
{
F (R)− E[F (R)] > δn

(
c

2
− 1
√
p

)}]
(36)

≤ C 5s exp

(
−c′

(
c

2
− 1
√
p

)2

δ2n
sp

δ2n

)
(37)

≤ C exp

(
−c′

((
c

2
− 1
√
p

)2

p− log(5)

)
s

)
,
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where (36) comes from the upper bound on E[F (R)] we derived in (35), and (37) derives from
Lemmas 13 and 14 applied to the function F whose Lipschitz constant has been established in (34).
Therefore, taking c = 2√

p

(
1 +

√
log (5)

)
+ 1, we have

P
{∥∥SU2D

1/2
2

∥∥
op
> cδn

}
≤ c1e−c2s

with c1 = C ′ and c2 = c′
(√

p log (5) + p
4

)
. ■

A.5 Proof of Proposition 5

We prove Proposition 5 thanks to duality properties.

Proof. Since problems (3) and (7) are convex problems under Slater’s constraints, strong duality
holds and we will show that they admit the same dual problem

min
ζ∈Rn

n∑
i=1

ℓ⋆i (−ζi) +
1

2λnn
ζ⊤KS⊤(SKS⊤)†SKζ . (50)

First, we compute dual problem of (3), that can be rewritten

min
γ∈Rs,u∈Rn

n∑
i=1

ℓi (ui) +
λnn

2
γ⊤SKS⊤γ

s.t. u = KS⊤γ.

Therefore the Lagrangian writes

L(γ, u, ζ) =
n∑

i=1

ℓi (ui) +
λnn

2
γ⊤SKS⊤γ +

n∑
i=1

ζi(ui − [KS⊤γ]i)

=

n∑
i=1

ℓi (ui) +
λnn

2
γ⊤SKS⊤γ +

n∑
i=1

ζiui − ζ⊤KS⊤γ.

Differentiating with respect to γ and using the definition of the Fenchel-Legendre transform, one gets
g(ζ) = inf

γ∈Rs,u∈Rn
L(γ, u, ζ)

=

n∑
i=1

inf
ui∈R

{ℓi (ui) + ζiui}+ inf
γ∈Rs

{
λnn

2
γ⊤SKS⊤γ − ζ⊤KS⊤γ

}

=

n∑
i=1

−ℓ⋆i (−ζi)−
1

2λnn
ζ⊤KS⊤(SKS⊤)†SKζ

together with the equality SKS⊤γ̃ = 1
λnn

SKζ̃, implying γ̃ = 1
λnn

(SKS⊤)†SKζ̃, where ζ̃ ∈ Rn

is the solution of the following dual problem

min
β∈Rn

n∑
i=1

ℓ⋆i (−βi) +
1

2λnn
β⊤KS⊤(SKS⊤)†SKβ . (50)

Then, we compute dual problem of (7), that can be rewritten

min
ω∈Rr,u∈Rn

n∑
i=1

ℓ (ui, yi) +
λnn

2
∥ω∥22

s.t. u = KS⊤K̃rω.

Therefore the Lagrangian writes

L(ω, u, ζ) =
n∑

i=1

ℓi (ui) +
λnn

2
∥ω∥22 +

n∑
i=1

ζi(ui − [KS⊤K̃rω]i)

=

n∑
i=1

ℓi (ui) +
λnn

2
∥ω∥22 +

n∑
i=1

ζ⊤i ui − ω⊤K̃⊤
r SKζ.
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Differentiating with respect to ω and using the definition of the Fenchel-Legendre transform, one gets

g(ζ) = inf
ω∈Rr,u∈Rn

L(ω, u, ζ)

=

n∑
i=1

inf
ui∈R

{ℓi (ui) + ζiui}+ inf
ω∈Rr

{
λnn

2
∥ω∥22 − ω⊤K̃−1/2⊤SKζ

}
.

We have that
∂

∂ω

(
∥ω∥22

)
= 2ω

∂

∂ω

(
ω⊤K̃⊤

r SKζ
)
= K̃⊤

r SKζ,

Then, setting the gradient to zero, we obtain

ω̃ =
1

λnn
K̃⊤

r SKζ̃. (38)

Hence, putting it into the Lagrangian,

− 1

λnn
ζ⊤KS⊤K̃−1/2K̃⊤

r SKζ = − 1

λnn
KS⊤ (SKS⊤)† SKζ,

and
1

2λnn
ζ⊤KS⊤K̃rK̃

⊤
r SKζ =

1

2λnn
KS⊤ (SKS⊤)† SKζ.

Hence, ζ̃ ∈ Rn is the solution to the following dual problem

min
β∈Rn

n∑
i=1

ℓ⋆i (−βi) +
1

2λnn
β⊤KS⊤(SKS⊤)†SKβ . (50)

Finally, since both problems are convex and strong duality holds, we obtain through KKT conditions

ω̃ =
(
SKS⊤)−1/2⊤ (

SKS⊤) γ̃ =
(
D̃1/2

r 0r×s−r

)
Ṽ ⊤γ̃

and

min
γ∈Rs

1

n

n∑
i=1

ℓ([KS⊤γ]i, yi) +
λn
2
γ⊤SKS⊤γ = min

ω∈Rr

n∑
i=1

ℓ
(
ω⊤zS (xi) , yi

)
+
λn
2
∥ω∥22 .

■

B On relaxing Assumption 2

In this section, we detail the discussion about relaxing Assumption 2, i.e. the restriction of the
hypothesis set to the unit ball of the RKHS. Assumption 2 is a classical assumption in kernel literature
to apply generalisation bounds based on Rademacher complexity of a bounded ball of a RKHS.
Moreover, it is also useful in our case to derive an approximation error bound, describing how
K-satisfiability of a sketch matrix allows to obtain a good approximation of the minimiser of the
risk. However, let us discuss the consequences of relaxing this assumption. Indeed, all we need is
a bound on the norm of the estimators f̃s – minimiser of the regularised ERM sketched problem –
and f̃Rs – minimiser of the regularised ERM sketched denoised KRR problem. By definition, noting
HS =

{
f =

∑n
i=1

[
S⊤γ

]
i
k (·, xi) | γ ∈ Rs

}
, we have that

f̃s = argmin
f∈HS

1

n

n∑
i=1

ℓ(f(xi), yi) +
λn
2
∥f∥2Hk

.

Hence,
λn
2
∥f̃s∥2Hk

≤ 1

n

n∑
i=1

ℓ(f̃s(xi), yi) +
λn
2
∥f̃s∥2Hk

≤ 1

n

n∑
i=1

ℓ(0, yi) ≤ 1 ,
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if we assume that max1≤i≤n ℓ(0, yi) ≤ 1 to simplify the derivations. As a consequence, we obtain
that

∥f̃s∥Hk
≤
√

2

λn
. (39)

Similarly, we have that

f̃Rs = argmin
f∈HS

1

n

∥∥fX − fXHk

∥∥2
2
+
λn
2
∥f∥2Hk

,

that gives

∥f̃Rs ∥Hk
≤
(

1

λnn
∥fHk

∥2Hk

)1/2

.

By Assumptions 1 and 4,

1

n
∥fHk

∥2Hk
=

1

n

n∑
i=1

⟨fHk
, k (·, xi)⟩Hk

≤ 1

n

n∑
i=1

∥fHk
∥2Hk

k (xi, xi)

≤ κ ,

and finally

∥f̃Rs ∥Hk
≤
√

κ

λn
. (40)

Remark 4. Note that in the multiple output settings, we obtain

∥f̃Rs ∥Hk
≤

√
κTr(M)

λn
. (41)

We are now equipped to derive the generalisation error bound E
[
ℓf̃s

]
−En

[
ℓf̃s

]
and the approxima-

tion error bound En

[
ℓf̃s

]
− En

[
ℓfHk

]
. We first focus on the generalisation bound, and following

the proof given in Appendix A.1 and given the new norm upper bound
√

2
λn

, for any δ ∈ (0, 1), with
probability 1− δ/2, we have that

E
[
ℓf̃s

]
− En

[
ℓf̃s

]
≤ 4L

√
2κ√

λnn
+

√
8 log(4/δ)

n
. (42)

This dependence in 1/
√
λn shows that, as expected by a regularisation penalty, with a fixed n,

when λn increases, the generalisation bound decreases and then we obtain a better generalisation
performance. However, this behaviour does not reflect completely the role of λn, since there exists a
tradeoff between overfitting and underfitting, and then it should not be set too large. We now focus
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on the approximation error bound. As in Appendix A.1, we obtain that

En

[
ℓf̃s

]
− En

[
ℓfHk

]
=

1

n

n∑
i=1

ℓ
(
f̃s(xi), yi

)
− 1

n

n∑
i=1

ℓ (fHk
(xi), yi) (43)

= inf
f∈HS

∥f∥Hk
≤∥f̃s∥Hk

1

n

n∑
i=1

ℓ (f(xi), yi)−
1

n

n∑
i=1

ℓ (fHk
(xi), yi)

≤ inf
f∈HS

∥f∥Hk
≤∥f̃s∥Hk

L

n

n∑
i=1

|f (xi)− fHk
(xi)|

≤ L inf
f∈HS

∥f∥Hk
≤∥f̃s∥Hk

√√√√ 1

n

n∑
i=1

|f (xi)− fHk
(xi)|2

= L

√√√√ inf
f∈HS

∥f∥Hk
≤∥f̃s∥Hk

1

n

∥∥fX − fXHk

∥∥2
2
, (44)

where, for any f ∈ Hk, fX = (f(x1), . . . , f(xn)) ∈ Rn. Let f̃Rs =
∑n

i=1

[
S⊤γ̃R

]
i
k (·, xi), where

γ̃R is a solution to

inf
γ∈Rs

1

n

∥∥KS⊤γ − fXHk

∥∥2
2
+ λnγ

⊤SKS⊤γ .

It is easy to check that f̃Rs is also a solution to

inf
f∈HS

∥f∥Hk
≤∥f̃R

s ∥Hk

1

n

∥∥fX − fXHk

∥∥2
2
. (45)

Now, comparing (44) and (45), as done in Appendix A.1, essentially boils down to comparing∥∥f̃s∥∥Hk
and

∥∥f̃Rs ∥∥Hk
, which is a highly nontrivial question. In particular, the upper bounds (39)

and (40) are not informative enough. Another solution could consist in adding λn

2

∥∥f̃s∥∥Hk
to (43).

However, the upper bound (39) then transforms this term into a constant bias. This can be explained
as (39) is very crude. Instead, having

∥∥f̃s∥∥Hk
bounded by λαn for α ≥ −1/2 would be enough to

exhibit a bias term that vanishes as λn goes to 0. Note that it would still degrade the tradeoff with the
genealisation term. Hence, if generalization errors can be dealt with when removing Assumption 2, it
is much more complex to control (43).

C Some background on statistical properties when using a p-sparsified sketch

In this section, we focus on p-sparsified sketches, and give, according to different standard choices of
kernels (Gaussian, polynomial and first-order Sobolev), the different learning rates obtained for the
excess risk as well as the condition on s.

We can first derive the following corollaries for the excess risk of p-sparsified sketched estimator in
both single and multiple output settings.
Corollary 15. For a p-sparsified sketch matrix S with s ≥ max

(
C0dn/p

2, δ2nn
)
, we have with

probability greater than 1− C1e
−sc(p) in the single output setting for a generic Lipschitz loss,

E
[
ℓf̃s
]
≤ E

[
ℓfHk

]
+ LC

√
λn + δ2n +

λn
2

+ 8L

√
κ

n
+O

(√
s

n

)
, (46)

and if ℓ (z, y) = (z − y)2 /2 and Y ⊂ [0, 1], with probability at least 1− δ we have that

E
[
ℓf̃s
]
≤ E

[
ℓfHk

]
+

(
C2 +

1

2

)
λn + C2δ2n + 8

κ+
√
κ√

n
+O

(√
s

n

)
. (47)

35



Table 3: Statistical dimension for different kernels.

Kernel δ2n dn

Gaussian O
(√

log(n)

n

)
∝
√
log(n)

Polynomial O
(
1
n

)
∝ 1

Sobolev O
(

1
n2/3

)
∝ n1/3

Table 4: Learning rate obtained for excess risk and lower bound obtained on s for p-sparsified
sketches.

Kernel s Learning rate

Gaussian Ω
(√

log(n)/p2
)
O
(

(log(n))1/4

n1/2

)
Polynomial Ω

(
1
p2

)
O
(

1√
n

)
Sobolev Ω

(
n1/3/p2

)
O
(

1
n1/3

)
Corollary 16. For a p-sparsified sketch matrix S with s ≥ max

(
C0dn/p

2, δ2nn
)
, we have with

probability greater than 1− C1e
−sc(p) in the multiple output setting for a generic Lipschitz loss,

E
[
ℓf̃s
]
≤ E

[
ℓfHk

]
+ LC

√
λn + ∥M∥op δ2n +

λn
2

+ 8L

√
κTr (M)

n
+O

(√
s

n

)
. (48)

and if ℓ (z, y) = ∥z − y∥22 /2 and Y ⊂ B
(
Rd
)
, with probability at least 1− δ we have that

E
[
ℓf̃s
]
≤ E

[
ℓfHk

]
+

(
C2 +

1

2

)
λn+C

2∥M∥op δ2n+8Tr (M)
1/2 κ ∥M∥

1/2
op + κ1/2
√
n

+O
(√

s

n

)
.

(49)

We summarize the different behaviours of δ2n and dn in the different spectrum considered in Table 3
to get the exact condition on s at each time. More specifically, for a Dth-order polynomial kernel, dn,
for any n is at most D + 1, leading to s of order D + 1 to be sufficient.

Finally, we can derive learning rate obtained as well as the exact condition on s for each scenario
in Table 4. Compared with Random Fourier Features (Li et al., 2021), we see that we obtain very
slightly degraded learning rates for Gaussian and first-order Sobolev kernels in comparison with
O (1/

√
n), but they remain very close.

D Detailed algorithm of the generation and the decomposition of a
p-sparsified sketch

In this section, we detail the process of generating a p-sparsified sketch and decomposing it as a
product of a sub-Gaussian sketch SSG and a sub-Sampling sketch SSS.

Algorithm 1 Generation of a p-sparsified sketch
input :s, n and p

Generate a s× n matrix B whose entries are i.i.d. Bernouilli random variables of parameter p.

indices←− indices of non-null columns of B.

B′ ←− B where all null columns have been deleted.

Generate a matrixMSG of the same size asB′ whose entries are either i.i.d. Gaussian or Rademacher
random variables.

SSG ←−MSG ◦B′, where ◦ denotes the component-wise Hadamard matrix product.

return SSG and indices
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Table 5: Complexity of matrix operations for each sketching type.

Sketching type Complexity type SK SKS⊤

Gaussian time O
(
n2s
)

O
(
n2s
)

space O
(
n2
)

O
(
n2
)

p-sparsified time O
(
n2s2p

)
O
(
n2s3p2

)
space O

(
n2sp

)
O
(
n2s2p2

)
Accumulation time O (nsm) O

(
s2m2

)
space O (ns) O

(
s2
)

CountSketh time O
(
n2
)

O
(
n2
)

space O
(
n2
)

O
(
n2
)

Sub-Sampling time O (ns) O
(
s2
)

space O (ns) O
(
s2
)

E Some background on complexity for single and multiple output regression

In this section, we detail the complexity in time and space of various matrix operations and iterations
of stochastic subgradient descent in both single and multiple output settings for various sketching
types.

We first recall the time and space complexities for elementary matrix products. The main advantage
of using Sub-Sampling matrices is that computing SK is equivalent to sampling s training inputs
and construct a s× n Gram matrix, hence we gain huge time complexity since we do not compute a
matrix multiplication, as well as space complexity since we do not compute a n× n Gram matrix.
As a consequence, the main advantage of our p-sparsified sketches is their ability to be decomposed
as S = SSGSSS, where SSG ∈ Rs×s′ is a sparse sub-Gaussian sketch and SSS ∈ Rs′×n is a sub-
Sampling sketch, as explained in Section 3 and Appendix D. This decomposition trick is particularly
interesting when p is small, and since s′ follows a Binomial distribution of parameters n and
1− (1− p)s and we assume in our settings that n is large, hence we have that s′ ≈ E [s′] ∼

p→0
nsp. In

the following, we take s′ = nsp. We recall that Accumulation matrices from Chen and Yang (2021a)
writes as S =

∑m
i=1 S(i), where the S(i)s are sub-sampling matrices whose each row is multiplied

by independent Rademacher variables. Hence, both p-sparsified and Accumulation sketches are
interesting since it completely benefits from computational efficiency of sub-sampling matrices. See
table 5 for complexity analysis of matrix multiplications.

Going into the complexity of the learning algorithms, the main difference between single and multiple
output settings are the computation of feature maps, relying on the construction of SKS⊤ and the
computation of the square root of its pseudo-inverse for the single output setting which is not present
in the multiple output settings. We assume in our framework that d and even d2 are typically very
small in comparison with n. Hence, we have that the complexity in the single output case is dominated
by the complexity of the operation SKS⊤, whereas in the multiple output case it is dominated by
the complexity of the operation SK. We see that from a time complexity perspective, p-sparsified
sketches outperform Accumulation sketches in single output settings as long as p ≤ m/n

√
s, and in

multiple output settings as long as p ≤ m/ns. From a space complexity perspective, Accumulation
is always better as nsp is typically greater than s, otherwise it shows poor performance. However, p
is usually chosen such that nsp is not very large compared with s.

F Discussion with dual implementation

In this section we detail the discussion about duality of kernel machines when using sketching. A
first idea consists in computing the dual problem to the sketched problem (3). It writes

min
ζ∈Rn

n∑
i=1

ℓ⋆i (−ζi) +
1

2λnn
ζ⊤KS⊤(SKS⊤)†SKζ , (50)

where ℓi = ℓ(·, yi), and f⋆ denotes the Fenchel-Legendre transform of f , such that f⋆(θ) =
supx⟨θ, x⟩−f(x). First note that sketching with a subsampling matrix in the primal is thus equivalent
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to using a Nyström approximation in the dual. This remark generalizes for any loss function the
observation made in Yang et al. (2017) for the kernel Ridge regression. However, although the ℓ⋆i
might be easier to optimize, solving (50) seems not a meaningful option, as duality brought us back
to optimizing over Rn, what we initially intended to avoid. The natural alternative thus appears to
use duality first, and then sketching. The resulting problem writes

min
θ∈Rs

n∑
i=1

ℓ⋆i
(
−[S⊤θ]i

)
+

1

2λnn
θ⊤SKS⊤θ . (51)

It is interesting to note that (51) is also the sketched version of Problem (50), which we recall is
itself the dual to the sketched primal problem. Hence, sketching in the dual can be seen as a double
approximation. As a consequence, the objective value reached by minimizing (51) is always larger
than that achieved by minimizing (3), and theoretical guarantees for such an approach are likely
to be harder to obtain. Another limitation of (51) regards the ℓ⋆i (−[S⊤θ]i). Indeed, these terms
generally contain the non-differentiable part of the objective function (for the ϵ-insensitive Ridge
regression we have

∑
i ℓ

⋆
i (θi) =

1
2∥θ∥

2
2 + ⟨θ, y⟩+ ϵ∥θ∥1 for instance), and are usually minimized

by proximal gradient descent. However, using a similar approach for (51) is impossible, since the
proximal operator of ℓ⋆i (S

⊤·) is only computable if S⊤S = In, which is never the case. Instead, one
may use a primal-dual algorithm (Chambolle et al., 2018; Vu, 2011; Condat, 2013), which solves the
saddle-point optimization problem of the Lagrangian, but maintain a dual variable in Rn. Coordinate
descent versions of such algorithms (Fercoq and Bianchi, 2019; Alacaoglu et al., 2020) may also be
considered, as they leverage the possible sparsity of S to reduce the per-iteration cost. In order to
converge, these algorithms however require a number of iteration that is of the order of n, making
them hardly relevant in the large scale setting we consider.

For all the reasons listed above, we thus believe that minimizing (50) or (51) is not theoretically
relevant nor computationally attractive, and that running stochastic (sub-)gradient descent on the
primal problem, as detailed at the beginning of the section, is the best way to proceed algorithmically
despite the possibly more elegant dual formulations. Finally, we highlight that although the condition
S⊤S = In is almost surely not verified (we have S ∈ Rs×n with s < n), we still have E[S⊤S] = In
for most sketching matrices. An interesting research direction could thus consist in running a
proximal gradient descent assuming that S⊤S = In, and controlling the error incurred by such an
approximation.

G Examples of Lipschitz-continuous losses

Robust losses for multiple output regression: For p ≥ 1, Y ⊂ Rp, and for all y, y′ ∈ Y ,
ℓ(y, y′) = g(y − y′), where g is:

For κ-Huber: For κ > 0:

∀y ∈ Y, g(y) =
{

1
2∥y∥

2
Y if ∥y∥Y ≤ κ

κ
(
∥y∥Y − κ

2

)
otherwise .

For ϵ-SVR (i.e. ϵ-insensitive ℓ1 loss): For ϵ > 0:

∀y ∈ Y, g(y) =
{
∥y∥Y − ϵ if ∥y∥Y ≥ ϵ

0 otherwise .

The pinball loss (Koenker, 2005) for joint quantile regression: For d quantile levels, τ1 < τ2 <
. . . < τd with τi ∈ (0, 1), we define:

ℓτ (f(x), y) = Lτ (f(x)− y1d),

with the following definition for Lτ the extension of pinball loss to Rd (Sangnier et al., 2016):
For r ∈ Rd:

Lτ (r) =

d∑
j=1

{
τjrj if rj ≥ 0,
(τj − 1)rj if rj < 0.
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(c) Test relative MSE w.r.t. training times with κ-Huber.

Figure 2: Trade-off between Accuracy and Efficiency for p-SG sketches with κ-Huber loss.

H Additional experiments

In this section, we bring some additional experiments and details.

H.1 Simulated dataset for single output regression

First, we report the plots obtained with κ-Huber for p-SG sketches (see Figure 2) and note that we
observe a behaviour similar to p-SR sketches when varying p and in comparison to other types of
sketching and RFFs. However, we see that the MSE obtained is slightly worse than p-SR sketches.
An explanation might be that, in a very sparse regime, i.e. very low p, a p-SG sketch is too different
than a Gaussian sketch, making it lose some good statistical properties of Gaussian sketches. We
however observe that the larger p is, the smaller is the statistical performance between p-SR and p-SG
sketches.

We then report in the following the corresponding plots obtained with ϵ-SVR, that witnesses the same
phenomenon observed earlier with κ-Huber about the interpolation between Nyström method and
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(c) Test relative MSE w.r.t. training times with ϵ-SVR.

Figure 3: Trade-off between Accuracy and Efficiency for p-SR sketches with ϵ-SVR problem.

Table 6: Numbers of training samples (ntr), test samples (nte), features (q) and targets (d).

Dataset ntr nte q d
Boston 354 152 13 5
otoliths 3780 165 4096 5

rf1 4108 5017 64 8
rf2 4108 5017 576 8

scm1d 8145 1658 280 16
scm20d 7463 1503 61 16

Gaussian sketching while varying the probability of being different than 0 p, with p-SR sketches (see
Figure 3) and p-SG sketches (see Figure 4).

H.2 Multi-Output Regression on real datasets

We here first a brief presentation on River Flow and Supply Chain Management:
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Figure 4: Trade-off between Accuracy and Efficiency for p-SG sketches with ϵ-SVR problem.

1. River Flow datasets aim at predicting the river network flows for 48 hours in the future at
specific locations. These locations are 8 sites in the Mississippi River network in the United
States and were obtained from the US National Weather Service. Dataset rf2 extends rf1
since it contains additional precipitation forecast information for each of the 8 sites.

2. The datasets scm1d and sm20d come from the Trading Agent Competition in Supply Chain
Management (TAC SCM) tournament from 2010. More details about data preprocessing
can be found in Groves and Gini (2015). The dataset contains prices of products at specific
days, and the task is to predict to the next day mean price (scm1d) or mean price for 20-days
in the future (scm20d) for each product in the simulation.

To conduct these experiments, the train-test splits used are the ones available at http://mulan.
sourceforge.net/datasets-mtr.html. Besides, we used multi-output Kernel Ridge Regression
framework and an input Gaussian kernel and an operator M = Id. We selected regularisation
parameter λ and bandwidth of kernel σ2 via a 5-fold cross-validation. Results are averages over 30
replicates for sketched models.
We compare our non-sketched framework with the sketched one, and we furthermore compare our
p-sparsified sketches with Accumulation sketch from Chen and Yang (2021a) and CountSketch from
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Clarkson and Woodruff (2017). Moreover, we report the range of results obtained by SOTA methods
available at Spyromitros-Xioufis et al. (2016). All results in terms of Test RRMSE are reported in
Table 7, we see that our p-sparsified sketches allow to ally statistical and computational performance,
since we maintain an accuracy of the same order as without sketching, and these sketches outperform
Accumulation in terms of training times (see Table 2). In comparison to SOTA, our framework does
not compete with the best results obtained in Spyromitros-Xioufis et al. (2016), but almost always
remains within the range of results obtained with SOTA methods.
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Table 7: Test RRMSE and ARRMSE for different methods on the MTR datasets. For decomposable
kernel-based models, loss here is square loss and s = 100 when performing Sketching.

Dataset Targets w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20 CountSketch SOTA

rf1

Mean 0.575 0.584 ± 0.003 0.583 ± 0.003 0.592 ± 0.001 0.575 ± 0.0005 [0.091, 0.983]
chsi2 0.351 0.356 ± 0.005 0.357 ± 0.004 0.361 ± 0.002 0.350 ± 0.002 [0.033, 0.797]
nasi2 1.085 1.124 ± 0.003 1.124 ± 0.003 1.082 ± 0.0004 1.110 ± 0.0003 [0.376, 1.951]

eadm7 0.388 0.397 ± 0.004 0.398 ± 0.003 0.387 ± 0.001 0.387 ± 0.001 [0.039, 1.019]
sclm7 0.660 0.659 ± 0.008 0.661 ± 0.005 0.681 ± 0.002 0.648 ± 0.002 [0.047, 1.503]
clkm7 0.283 0.281 ± 0.001 0.282 ± 0.001 0.293 ± 0.0005 0.281 ± 0.0004 [0.031, 0.587]
vali2 0.614 0.633 ± 0.008 0.635 ± 0.010 0.656 ± 0.003 0.611 ± 0.003 [0.037, 0.571]

napm7 0.593 0.628 ± 0.020 0.614 ± 0.016 0.627 ± 0.003 0.601 ± 0.003 [0.038, 0.909]
dldi4 0.629 0.597 ± 0.004 0.597 ± 0.003 0.646 ± 0.001 0.614 ± 0.002 [0.029, 0.534]

rf2

Mean 0.578 0.671 ± 0.009 0.656 ± 0.006 0.796 ± 0.006 0.715 ± 0.011 [0.095, 1.103]
chsi2 0.318 0.382 ± 0.016 0.358 ± 0.010 0.478 ± 0.006 0.426 ± 0.013 [0.034, 0.737]
nasi2 1.099 1.084 ± 0.005 1.092 ± 0.006 1.018 ± 0.003 1.036 ± 0.002 [0.384, 3.143]

eadm7 0.342 0.390 ± 0.013 0.369 ± 0.007 0.456 ± 0.004 0.417 ± 0.010 [0.040, 0.737]
sclm7 0.610 0.719 ± 0.030 0.672 ± 0.021 0.948 ± 0.014 0.852 ± 0.030 [0.049, 0.970]
clkm7 0.311 0.328 ± 0.009 0.330 ± 0.009 0.614 ± 0.005 0.436 ± 0.006 [0.041, 0.891]
vali2 0.712 0.960 ± 0.044 0.894 ± 0.043 0.890 ± 0.017 0.939 ± 0.028 [0.047, 0.956]

napm7 0.589 0.812 ± 0.014 0.831 ± 0.017 1.110 ± 0.023 0.856 ± 0.032 [0.039, 0.617]
dldi4 0.646 0.696 ± 0.010 0.701 ± 0.011 0.855 ± 0.004 0.761 ± 0.007 [0.032, 0.770]

scm1d

Mean 0.418 0.422 ± 0.002 0.423 ± 0.001 0.423 ± 0.001 0.420 ± 0.001 [0.330, 0.457]
lbl 0.358 0.365 ± 0.003 0.364 ± 0.002 0.367 ± 0.001 0.363 ± 0.001 [0.294, 0.409]

mtlp2 0.352 0.360 ± 0.003 0.362 ± 0.003 0.362 ± 0.001 0.358 ± 0.001 [0.308, 0.436]
mtlp3 0.409 0.419 ± 0.003 0.416 ± 0.002 0.417 ± 0.001 0.416 ± 0.002 [0.315, 0.442]
mtlp4 0.417 0.427 ± 0.002 0.426 ± 0.003 0.426 ± 0.001 0.423 ± 0.002 [0.325, 0.461]
mtlp5 0.495 0.491 ± 0.006 0.492 ± 0.006 0.502 ± 0.002 0.492 ± 0.003 [0.349, 0.530]
mtlp6 0.534 0.524 ± 0.008 0.527 ± 0.006 0.537 ± 0.002 0.527 ± 0.002 [0.347, 0.540]
mtlp7 0.531 0.519 ± 0.008 0.523 ± 0.006 0.534 ± 0.002 0.523 ± 0.003 [0.338, 0.526]
mtlp8 0.542 0.536 ± 0.010 0.540 ± 0.008 0.547 ± 0.002 0.537 ± 0.003 [0.345, 0.504]
mtlp9 0.385 0.395 ± 0.003 0.395 ± 0.002 0.390 ± 0.001 0.390 ± 0.002 [0.323, 0.456]

mtlp10 0.389 0.398 ± 0.003 0.397 ± 0.003 0.394 ± 0.002 0.394 ± 0.001 [0.339, 0.456]
mtlp11 0.424 0.430 ± 0.003 0.429 ± 0.003 0.426 ± 0.001 0.426 ± 0.001 [0.327, 0.445]
mtlp12 0.420 0.422 ± 0.003 0.421 ± 0.004 0.423 ± 0.001 0.421 ± 0.002 [0.350, 0.466]
mtlp13 0.349 0.358 ± 0.004 0.354 ± 0.004 0.351 ± 0.001 0.351 ± 0.001 [0.322, 0.419]
mtlp14 0.347 0.364 ± 0.004 0.363 ± 0.003 0.350 ± 0.001 0.355 ± 0.002 [0.356, 0.472]
mtlp15 0.361 0.371 ± 0.004 0.370 ± 0.003 0.363 ± 0.001 0.364 ± 0.001 [0.314, 0.406]
mtlp16 0.376 0.382 ± 0.003 0.384 ± 0.003 0.376 ± 0.001 0.378 ± 0.001 [0.322, 0.407]

scm20d

Mean 0.755 0.754 ± 0.003 0.754 ± 0.003 0.753 ± 0.001 0.754 ± 0.002 [0.394, 0.763]
lbl 0.613 0.618 ± 0.002 0.618 ± 0.002 0.614 ± 0.001 0.613 ± 0.001 [0.356, 0.678]

mtlp2a 0.628 0.635 ± 0.002 0.634 ± 0.003 0.632 ± 0.001 0.631 ± 0.002 [0.352, 0.688]
mtlp3a 0.603 0.608 ± 0.002 0.608 ± 0.003 0.607 ± 0.001 0.605 ± 0.002 [0.363, 0.683]
mtlp4a 0.635 0.645 ± 0.002 0.645 ± 0.003 0.644 ± 0.001 0.638 ± 0.002 [0.374, 0.730]
mtlp5a 0.974 0.977 ± 0.008 0.977 ± 0.007 0.978 ± 0.003 0.975 ± 0.006 [0.413, 0.846]
mtlp6a 0.981 0.986 ± 0.009 0.992 ± 0.008 1.002 ± 0.004 0.989 ± 0.008 [0.424, 0.843]
mtlp7a 0.996 1.001 ± 0.008 1.004 ± 0.007 1.005 ± 0.006 1.000 ± 0.009 [0.404, 0.833]
mtlp8a 0.995 0.997 ± 0.010 0.997 ± 0.011 1.008 ± 0.005 0.994 ± 0.005 [0.407, 0.851]
mtlp9a 0.708 0.704 ± 0.003 0.702 ± 0.003 0.698 ± 0.001 0.705 ± 0.002 [0.382, 0.737]
mtlp10a 0.718 0.722 ± 0.004 0.722 ± 0.004 0.716 ± 0.001 0.723 ± 0.003 [0.413, 0.753]
mtlp11a 0.729 0.730 ± 0.003 0.729 ± 0.003 0.725 ± 0.001 0.728 ± 0.002 [0.402, 0.769]
mtlp12a 0.720 0.718 ± 0.004 0.717 ± 0.004 0.712 ± 0.002 0.716 ± 0.003 [0.429, 0.787]
mtlp13a 0.711 0.703 ± 0.005 0.699 ± 0.004 0.697 ± 0.001 0.705 ± 0.003 [0.400, 0.751]
mtlp14a 0.683 0.673 ± 0.004 0.670 ± 0.003 0.668 ± 0.001 0.675 ± 0.002 [0.411, 0.779]
mtlp15a 0.684 0.674 ± 0.004 0.671 ± 0.004 0.666 ± 0.001 0.678 ± 0.002 [0.384, 0.727]
mtlp16a 0.689 0.677 ± 0.005 0.676 ± 0.005 0.672 ± 0.001 0.682 ± 0.003 [0.386, 0.754]
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