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Abstract 

The problem of blind phase offset recovery of low density parity-check (LDPC)-coded 
systems is considered in this paper. We propose a new algorithm of phase offset 
estimation that involves the computation and maximization of a likelihood difference 
(LD)-based cost function calculated from the parity-check matrix of the code. We show 
in this paper that the new cost function has a simplified form compared to another 
algorithm proposed in the literature and presents similar estimation performance. 
Mean squared error (MSE) curves show very good performance of the proposed phase 
offset estimation algorithm, even at low signal-to-noise ratios.

Keywords:  Phase offset estimation, LDPC codes, Likelihood functions, Parity-check 
matrix

1  Introduction
In the Fifth-Generation (5G) New Radio (NR) standards, low density parity-check 
(LDPC) codes have been adopted. This is due to their high throughput, variable code 
rate and length, and high error-correcting capability [1]. The excellent decoding perfor-
mance of LDPC codes is based on the assumption of ideal coherent detection. However, 
a degradation in their performance is seen when a phase offset is present in the system. 
Therefore, an accurate estimation of this phase offset is needed before data decoding and 
detection.

A classical algorithm based on the hard decision directed (HDD) approach is often 
used for phase recovery [2]. Code Aided synchronization algorithms were also proposed 
as in [3–5]. These algorithms use the information provided by the decoder to perform 
synchronization. In [6, 7] the authors introduced novel algorithms of phase and carrier 
frequency offsets estimation for coded systems. Phase synchronization techniques for 
non-binary codes were also proposed in [8].

The algorithm proposed in [6] involved the minimization of cost functions, which 
were based on log-likelihood ratios (LLRs), and obtained from the parity-check 
matrix of the error-correcting code used in the system. In [9–11], the authors solved 
the problem of blind recognition of LDPC codes by using a function of the likelihood 
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difference (LD). A similar function was used in [12] to deal with the problem of frame 
synchronization of LDPC codes.

In this paper, we propose a new technique of phase offset recovery that is based 
on the same concept of [6] but using new simplified cost functions that use the LD 
instead of the LLR. We will show in this paper that these functions are more simpli-
fied than the ones introduced in [6] and can achieve similar performance.

This paper is organized as follows. In Sect. 2, the context of our study and the blind 
phase offset estimation technique of [6] are presented. The simplified algorithm pro-
posed in this paper is presented in Sect.  3. Simulation results are shown in Sect.  4 
where a comparison with existing phase offset estimation algorithms is also shown. 
Section 5 concludes the work.

2 � Blind phase offset estimation
We consider in this paper that information bits are encoded before transmission by an 
LDPC code of rate R = k

n , with k the length of information bits and n the length of a 
coded block. Encoded bits are then modulated by a binary phase shift keying (BPSK) 
modulation and transmitted over an additive white Gaussian channel. Note that the 
BPSK modulation is chosen for simplicity reasons, and the blind phase recovery algo-
rithm proposed in this paper is not restrictive to this type of modulation. An extension 
of the proposed algorithm to any type of modulation is also given in this paper.

By assuming perfect timing recovery and frame synchronization at the receiver side, 
and a negligible frequency offset between local oscillators within the transmitter and 
the receiver, a received sample can be written as:

where x(i) is the ith encoded and modulated symbol, w(i) is a white Gaussian noise sam-
ple and θ0 is the phase offset of the channel. Note that in the context of our paper, we 
considered that the phase offset θ0 is constant on an LDPC code and that it varies from a 
block to another.

The blind phase offset estimation algorithm proposed in [6] is based on a Maximum 
A Posteriori (MAP) approach and it maximizes the probability that a phase corre-
sponds to the correct phase offset, for a given number of received samples.

In a noise-free channel and after correcting the received samples by the phase off-
set, the resultant block should be a valid codeword. As shown in [13], the most effi-
cient way to prove that a block is a codeword is by calculating its syndrome, which is 
obtained from the parity-check matrix of the code used at the transmission. The blind 
phase estimation method proposed in [6] consists of the following:

Once a codeword is received, its corresponding samples are rotated by phase θ̃ as 
per the following equation:

Then, from the real and imaginary parts of the resulting samples, two log-likelihood 
ratio (LLR) functions inspired by [14] are calculated:

(1)r(i) = x(i)ejθ0 + w(i),

(2)rθ̃ (i) = r(i)e−jθ̃ .
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and

with:

•	 k: Length of information bits,
•	 n: Length of a coded block,
•	 ui : Number of nonzero elements in the ith row of the parity-check matrix of the 

LDPC code,
•	 ij : Position of the jth nonzero element in the ith row of the parity-check matrix of the 

code,
•	 σ 2 : Variance of the noise,
•	 E: Statistical expectation operator,
•	 ℜ : Real component of a complex number,
•	 ℑ : Imaginary component of a complex number,

The method proposed in [6] then computes the following function:

which was shown to be minimum at a phase θ̃ = θ0.
By applying the gradient descent algorithm, the method in [6] estimates the phase off-

set of the channel by:

3 � Proposed algorithm of blind phase offset estimation
In [9–11], the authors used a function of the likelihood difference (LD) to solve the prob-
lem of blind recognition of LDPC codes. This function was also used in [12] for the blind 
frame synchronization of LDPC-coded systems.

We propose in this section a new algorithm of blind estimation of the phase offset 
of the channel, based on a new LD function to be applied on the real and imaginary 
parts of the received samples. Note that the proposed estimation algorithm is blind in 
the sense that it does not require any training sequence to be added to the encoded bits.

3.1 � Likelihood difference of parity‑checks

The likelihood difference of the parity-checks of the code was first introduced in [9] to 
solve the problem of blind recognition of channel codes. By applying this algorithm, very 
good identification performance and a reduced computational complexity were reached.

In [9], the authors define the a posteriori LD of a parity-check by:

(3)LSPR(θ̃ ) = E

n−k

i=1

(−1)ui+1atanh

ui

j=1

tanh ℜ
rθ̃ (ij)

σ 2

(4)LSPI (θ̃) = E

[ n−k
∑

i=1

(

(−1)ui+1atanh

( ui
∏

j=1

tanh

(

ℑ

(

rθ̃ (ij)

σ 2

))))]

,

(5)JSP(θ̃) = LSPR(θ̃ )− LSPI (θ̃),

(6)θ̂SP = argmin
θ̃

JSP(θ̃).
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where Si is the ith parity-check of the code, p0 = P(Si satisfied/r) , 
p1 = P(Si unsatisfied/r) , and r is the received block.

The LD of parity-check Si is calculated by:

3.2 � Proposed phase offset estimation algorithm for a BPSK modulation

In [10], the authors propose to maximize the average of the LD value in their codes rec-
ognition problem. In this paper, we propose to estimate the phase offset of the channel 
by maximizing new cost functions that are based on the LD concept. Hence, our new 
phase offset estimation technique is based on the following:

Once a codeword is received, we rotate its samples by a phase θ̃ , we get:

Then, we compute two LD based functions that can be written as:

and

The functions in (10) and (11) can be estimated by:

and

where K is the number of codewords used to estimate LLDR and LLDI . In the remaining of 
this paper and for simplicity reasons, we assume that K = 1.

The variations of LLDR and LLDI in terms of the phase offset estimation error θ̃ − θ0 
are plotted in Figs. 1 and 2, respectively, in a noise-free channel. The LDPC code used in 
these figures has a length n = 512 bits, a rate R = 1/2 and 4 nonzero elements in each 
row of its parity-check matrix. As shown in Figs. 1 and 2, LLDR is maximal for θ̃ = θ0 , 
while LLDI is minimal.

(7)D(Si) = p0 − p1

(8)D(Si) =

ui
∏

j=1

tanh
(−r(t + ij)

σ 2

)

(9)rθ̃ (k) = r(k)e−jθ̃ .
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Therefore we define a new cost function computed from functions LLDR and LLDI , 
which is given by:

(14)JLD(θ̃ ) = LLDR(θ̃)− LLDI (θ̃).

Fig. 1  LLDR
(θ̃) curve versus the phase offset estimation error θ̃ − θ0 in a noise-free channel

Fig. 2  LLDI
(θ̃) curve versus the phase offset estimation error θ̃ − θ0 in a noise-free channel
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Function JLD is plotted in Fig.  3 with the same code as in Figs.  1 and 2, and in a 
noise-free channel. From Fig. 3, it is clear that JLD is maximal for θ̃ − θ0 . Therefore our 
new phase recovery algorithm proposed in this paper estimates the phase offset of the 
channel by:

Function JLD being maximal at θ̃ − θ0 , applying the gradient descent algorithm to find an 
estimate of the phase offset of the channel should give good results.

Note that the main advantage of using the LD approach in the estimation of the 
phase offset of the channel is the simplified form of the cost function compared to the 
one introduced in [6]. This will also yield to a more simplified formula for the partial 
derivative of JLD , which will be used in the gradient descent algorithm. The partial 
derivative of JLD is computed in Appendix of this paper.

Note also that function JLD involves the use of the variance of the noise σ 2 . How-
ever, since σ 2 is considered constant during the transmission of a codeword, it can be 
omitted from functions (10) and (11) without affecting our algorithm performance, as 
will be shown in the simulation section of this paper.

3.3 � Proposed algorithm for a higher‑order modulation

The algorithm proposed in Sect. 3.2 is only applicable for a BPSK modulation. How-
ever, our cost function can be easily updated for any type of modulation. Indeed, once 
the higher-order modulated sample is received and rotated by a phase θ̃ , the Log-
Likelihood Ratio (LLR) of each bit constituting the sample can be estimated by [15]:

(15)θ̂LD = argmax
θ̃

JLD(θ̃ ).

Fig. 3  JLD(θ̃) curve versus the phase offset estimation error θ̃ − θ0 in a noise-free channel
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with:

•	 Q : Set of symbols of the higher-order modulation,
•	 γ : Possible symbol of Q,
•	 aθ̃ (i) : ith coded bit obtained after the received samples are rotated by a phase θ̃.

When the LLRs of all the bits are calculated, the functions in (10), (11) and (14) are com-
puted but with rθ̃ replaced by Ŵ̂

(

aθ̃
)

 . The obtained cost function is then maximized using 
the gradient descent algorithm.

4 � Results and discussion
The performance of the proposed phase recovery algorithm is evaluated in this section 
and compared to existing methods. Monte Carlo simulations were carried out on differ-
ent LDPC codes where for each realization, we chose the information bits, the additive 
white Gaussian noise, and the phase offset to be random. A BPSK modulation was con-
sidered in our system.

An LDPC code of length n = 512 bits, rate R = 1/2 and having 4 nonzero elements 
in each row of its parity-check matrix was considered in Fig. 4. The mean squared error 
(MSE) curve of the proposed algorithm was plotted in terms of the signal to noise ratio.

Based on Figs.  1 and 2 and in addition to the algorithm proposed in this paper 
which maximizes (14), we plotted in Fig.  4 two additional MSE curves obtained after 

(16)

Ŵ̂
(

aθ̃ ((i − 1)q + j)
)

= min
γ ∈ Q

a(j) = 0

|rθ̃ (i)− γ |2

σ 2
− min

γ ∈ Q

a(j) = 1

|rθ̃ (i)− γ |2

σ 2
, j = 1, . . . , q

Fig. 4  MSE curves of the proposed algorithm applied to an LDPC code of length n = 512 bits, rate R = 1/2 
and ui = 4
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maximizing (12) and minimizing (13), respectively. For the gradient descent algorithm 
used in the three curves plotted in this figure, a step ǫi = 1

30i and 50 iterations were set. 
As can be seen in Fig. 4, the proposed phase offset algorithm that maximizes (14) is the 
most powerful algorithm. An MSE of 6.10−3 is reached at 3 dB.

In Fig. 5, our proposed phase offset recovery algorithm was tested on two LDPC codes 
that have same length ( n = 648 ), same rate ( R = 1/2 ), but differ only with the number of 
nonzero elements in each row of their parity-check matrix. Codes C1 and C2 have ui = 4 
and 6, respectively. As can be seen from Fig. 5, the performance of the proposed algo-
rithm is improved when the number of nonzero elements in the parity-check matrix of 
the code decreases. In this same figure, we also plotted the MSE curves of the blind syn-
chronization method proposed in [6], and this for both codes. From Fig.  5, it is clear 
that the algorithm proposed in this paper and the one introduced in [6] have almost the 
same performance. However, the algorithm proposed in this paper has a computational 
complexity less than that proposed in [6]. Indeed, and as shown in Appendix, the par-
tial derivative of the cost function JLD is much more simplified than that proposed in 
[6]. Therefore, for the same number of iterations of the gradient descent, the algorithm 
proposed in this paper will be faster to find an estimate of the phase offset of the chan-
nel, than the one proposed in [6]. Moreover and as shown in Sect. 3, the cost function 
JLD that we are maximizing in the algorithm proposed in this paper does not require the 
knowledge of the variance of the noise.

In Fig. 6, we applied the proposed phase offset estimation algorithm to an LDPC code 
of length n = 648 bits, rate R = 1/3 , which has 4 nonzero elements in each row of its 
parity-check matrix. In this figure, we also plotted the MSE curves of the method pro-
posed in [6], the HDD technique of [2], and the classical algorithm of [16]. Again, the 
proposed algorithm has a performance similar to the one proposed in [6], despite the 

Fig. 5  MSE curves of the proposed algorithm applied to two LDPC codes of length n = 648 bits and rate 
R = 1/2 . Code C1 : ui = 4 , Code C2 : ui = 6
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fact the algorithm proposed in this paper has a lower computational complexity. Fur-
thermore, it is seen from Fig. 6 that the algorithm proposed in this paper clearly out-
performs the HDD algorithm and the one proposed in [16]. By applying the proposed 
algorithm, an MSE of 4.10−3 is obtained at 4 dB.

In Fig. 7, the performance of the proposed algorithm was studied for different number 
of iterations of the gradient descent algorithm. The LDPC code used in this simulation 

Fig. 6  Comparison between the proposed and existing phase offset estimation methods applied to an LDPC 
code of length n = 648 bits, rate R = 1/3 and ui = 4

Fig. 7  MSE curves of the proposed algorithm for an LDPC code of length n = 1944 bits, rate R = 1/2 , and 
ui = 6 , for different number of iterations of the gradient descent



Page 10 of 13Imad and Houcke ﻿EURASIP Journal on Advances in Signal Processing         (2023) 2023:16 

has a length n = 1944 bits, rate R = 1/2 , and 6 nonzero elements in each row of its 
parity-check matrix. As seen from Fig. 7, very good performance of the proposed algo-
rithm is obtained for only 15 iterations of the gradient descent. From this figure, it is also 
shown that no improvement in the algorithm performance is seen after 30 iterations of 
the gradient descent.

4.1 � Complexity study

Table 1 shows the order of complexity of the phase estimation algorithms studied in this 
paper, with:

•	 N: Number of samples used by the HDD algorithm and the algorithm of [16],
•	 M: Number of iterations of the gradient descent algorithm applied in the proposed 

algorithm and the algorithm of [6].

As shown in Table 1, the algorithm proposed in this paper and the existing algorithm of 
[6] have a similar order of complexity.

However, in order to have a better understanding of the computational complexity of 
each algorithm, we ran the proposed algorithm and the existing algorithm of [6] and 
calculated their execution time. We considered two LDPC codes that have same rate 
( R = 1/2 ) and same number of nonzero elements in each row of their parity-check 
matrix ( ui = 4 ). Codes C1 and C3 have n = 648 bits and 1944 bits, respectively. The 
execution time of both algorithms for a different number of iterations of the gradient 
descent algorithm is shown in Table 2. As shown in this table, the algorithm proposed in 
this paper has a lower execution time than the one proposed in [6].

5 � Conclusion
The problem of carrier phase recovery of LDPC codes has been considered in this paper. 
We have proposed a novel blind phase offset estimation algorithm that involves the cal-
culation and maximization of a likelihood Difference (LD) cost function. Using the LD 

Table 1  Order of complexity in terms of number of multiplications

Algorithm Complexity

HDD algorithm O
(

N
)

Algorithm of [16] O
(

N
)

Algorithm of [6] O
(

(n− k)uiM
)

Proposed algorithm O
(

(n− k)uiM
)

Table 2  Execution time of the proposed and existing algorithms

Proposed algorithm Algorithm of [6]

C1 , M = 50 iter. 113 ms 143 ms

C1 , M = 150 iter. 238 ms 310 ms

C3 , M = 50 iter. 322 ms 412 ms

C3 , M = 150 iter. 911 ms 1210 ms
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approach yields to a simplified cost function, hence an algorithm with reduced compu-
tational complexity. The simulation results have shown that the proposed algorithm has 
similar performance to a very powerful technique proposed in the literature, despite the 
fact that the technique proposed in this paper has lower computational complexity.

Appendix

Calculation of the partial derivative of JLD(θ̃)
Our target is to find

For this, the partial derivatives of LLDR(θ̃) and LLDI (θ̃) should be first computed. In (12), 
we consider K = 1 and omit σ 2 since it will not affect our maximization problem as 
stated earlier in this paper. We get:

We know that:

and

The above equation cannot be computed due to unknown variables involved in it. How-
ever, it can be approximated by:

Note that (20) is precise in a noise-free channel. Using the approximation of (20), (18) 
becomes equal to:

(17)
∂JLD(θ̃)

∂θ̃
=

∂LLDR(θ̃)

∂θ̃
−

∂LLDI (θ̃ )

∂θ̃
,

(18)

∂LLDR(θ̃)

∂θ̃
=

n−k
∑

i=1

∂

∂θ̃

[ ui
∏

j=1

tanh
(

−ℜ
(

r(ij)e
−jθ̃

)

)

]

=

n−k
∑

i=1

ui
∑

j=1

(

∂

∂θ̃

[

tanh
(

−ℜ
(

r(ij)e
−jθ̃

)

)]

ui
∏

l=1
l �=j

tanh
(

−ℜ
(

r(il)e
−jθ̃

)

)

)

(19)
∂

∂θ̃

[

tanh
(

−ℜ
(

r(ij)e
−jθ̃

)

)]

=

∂

∂θ̃

[

−ℜ
(

r(ij)e
−jθ̃

)

]

(

cosh
(

−ℜ
(

r(ij)e−jθ̃
)

)

)2

∂

∂θ̃

[

−ℜ
(

r(ij)e
−jθ̃

)

]

= x(ij) cos(θ0) sin(θ̃ )− x(ij) sin(θ0) cos(θ̃)

+ℜ(w(ij)) sin(θ̃ )− ℑ(w(ij)) cos(θ̃)

(20)
∂

∂θ̃

[

−ℜ
(

r(ij)e
−jθ̃

)

]

≈ ℜ
(

r(ij)
)

sin(θ̃ )− ℑ
(

r(ij)
)

cos(θ̃ ).
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 The partial derivative of LLDI (θ̃) is calculated the same way as above. (17) becomes equal 
to:

From the above equation, it is clear that the proposed algorithm has a reduced computa-
tional complexity compared to the one proposed in [6]. In addition, the value of the vari-
ance of the noise σ 2 is not needed for the computation of the cost function.
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