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Introduction

In this work, we are interested in the study of a reaction-diffusion model for population dynamics with a dispersal process in two habitats. This model takes into account the reaction effect of individuals on the interface of these habitats.

Our aim is to show that this dispersal process generates an analytic semigroup in the framework of L p -spaces. The present work completes naturally the results obtained in [START_REF] Favini | Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface[END_REF].

Many authors have worked on different models of reaction-diffusion problems related to biology or various environmental phenomena. We were inspired, in particular, by the work in [START_REF] Cantrell | Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design[END_REF], where the model considered incorporates the response of individuals on the interface between the habitats. This study was detailed in one space dimension and focused mainly on the spectral aspect of the dispersal process, taking into account the dimension of the habitats. Here, the concrete example which illustrates our theory, is modeled by partial differential equations of parabolic type set in two juxtaposed habitats Ω -and Ω + :

Ω = Ω -∪ Γ 0 ∪ Ω + , where               
Ω -= (-, 0) × (0, 1), Γ 0 = {0} × (0, 1), Ω + = (0, L) × (0, 1), Γ ± = ∂Ω ± \Γ 0 , [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF] and , L > 0. The reaction-diffusion equation is

∂u ∂t (t, x, y) = d -∆u -(t, x, y) + F -(u -(t, x, y)) in (0, T ) × Ω -, d + ∆u + (t, x, y) + F + (u + (t, x, y)) in (0, T ) × Ω + , (2) 
under the initial data

u(0, .) = ϕ -in Ω -, ϕ + in Ω + , (3) 
the boundary conditions u -= 0 on Γ -, u + = 0 on Γ + , [START_REF] Cantrell | Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design[END_REF] and the interface conditions

       d - ∂u - ∂x = q (u + -u -) on Γ 0 , d + ∂u + ∂x = q (u + -u -) on Γ 0 ; (5) 
where d ± > 0 is the diffusion coefficient, q > 0 is given and u ± represents a population density in Ω ± . These two last conditions in [START_REF] Cowling | Banach space operator with a bounded H ∞ functional calculus[END_REF] mean that the flux at the interface depends on the density of the population. They are of the Robin type and express the semi-permeability of the interface Γ 0 .

In [START_REF] Favini | Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface[END_REF], the authors have considered different interface conditions in the framework of the space of continuous functions which are the following: the non-continuity of the flux and the continuity of the dispersal at the interface:

     (1 -α)d - ∂u - ∂x = αd + ∂u + ∂x on Γ 0 , d -∆u -+ F -(u -) = d + ∆u + + F + (u + ) on Γ 0 ,
where α ∈ (0, 1) with α = 1/2.

Here, we consider only the linearized part of logistic functions, that is F -(u -) = r -u -on (-, 0) × (0, 1), F + (u + ) = r + u + on (0, L) × (0, 1), where r ± > 0.

The study of the above reaction-diffusion problem depends essentially on the nature of operator P defined, in the stationary case, by 2,p (Ω + ) , u ± = 0 on Γ ± and u ± satisfies [START_REF] Cowling | Banach space operator with a bounded H ∞ functional calculus[END_REF] ,

             D (P) = u ∈ L p (Ω) : u -∈ W 2,p (Ω -) , u + ∈ W
Pu = d -∆u --r -u -in Ω -, d + ∆u + -r + u + in Ω + ,
where p ∈ (1, +∞). Note that the transmission conditions [START_REF] Cowling | Banach space operator with a bounded H ∞ functional calculus[END_REF] are well defined since, for example, if u -∈ W 2,p (Ω -), then ∂u - ∂x | {0}×(0,1) ∈ W 1-1/p,p (0, 1), see [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], Corollary 1, p. 682. Now, let us write the above parabolic equation in an abstract formulation. First, let us introduce, in the Banach space E 0 = L p (0, 1), operator A 0 defined by D(A 0 ) = ϕ ∈ W 2,p (0, 1) : ϕ(0) = ϕ(1) = 0 , (A 0 ϕ) (y) = ϕ (y). [START_REF] Dore | An abstract transmission problem in a thin layer, I: Sharp estimates[END_REF] It is known that this operator is closed linear with a dense domain and verifies the two following properties :

∃ C > 0 : ∀z ∈ S π-ε 0 ∪ {0} , (zI -A 0 ) -1 L(E 0 ) C 1 + |z| , ( 7 
)
where S π-ε 0 = {z ∈ C\ {0} : |arg z| < π -ε 0 } , for any small ε 0 > 0 such that π-ε 0 > 0 and there exists a ball B(0, δ), such that ρ(A 0 ) ⊃ B(0, δ) and the above estimate is still true in S π-ε 0 ∪ B(0, δ); and

   ∀s ∈ R, (-A 0 ) is ∈ L (E 0 ) , ∃ θ A 0 ∈ (0, π/2) : sup s∈R e -θ A 0 |s| (-A 0 ) is L(E 0 ) < +∞, (8) 
see for instance the method used in [START_REF] Labbas | On the resolution of the heat equation with discontinuous coefficients[END_REF], Proposition 3.1, p. 191.

Remark 1. The above problem can be considered in dimension n by setting

Ω = (-, L) × , where ⊂ R n-1 , n > 1, is a bounded regular open set, E 0 = L p ( ) and 
D(A 0 ) = ϕ ∈ W 2,p ( ) : ϕ| ∂ = 0 , A 0 ϕ = ∆ ϕ;
here ∆ denotes the Laplace operator related to variables on .

We will also use the following usual operational notation of vector-valued functions:

u ± (t, x)(y) := u ± (t, x, y), t ∈ (0, T ), (x, y) ∈ Ω ± .
So, we have to analyze the abstract Cauchy problem

u (t) = S 0 u(t), u(0) = u 0 , (9) 
set in the Banach space L p (-, L; E 0 ), where

                 D (S 0 ) =      w ∈ L p (-, L; E 0 ) : w -∈ W 2,p (-, 0; E 0 ), w + ∈ W 2,p (0, L; E 0 ) w -(-) = 0, w + (L) = 0, d -w -(0) = q (w + (0) -w -(0)) and d + w + (0) = q (w + (0) -w -(0))      , (S 0 w) (x) = d -w -(x) + d -A 0 w -(x) -r -w -(x) in (-, 0), d + w + (x) + d + A 0 w + (x) -r + w + (x) in (0, L).
We then consider a more general operator S instead of S 0 where A 0 is replaced by a closed linear operator A in a Banach space E satisfying some assumptions specified in Section 4.

Our method is essentially based on the use of abstract differential equations of elliptic type. The merit of this method lies above all in the fact of having the explicit formula of the resolvent operator of S (and therefore of S 0 ), see Section 6.

This paper is organized as follows.

In Section 2, we only show that problem -Pu = g can be studied in the variational framework. In Section 3, we recall some useful notions on sectorial operators. Section 4 contains our assumptions and the main results. Section 5 is devoted to the establishment of some useful properties on complex numbers. Section 6 is composed of two subsections. In the first subsection, we explain the spectral equation of S which leads to an abstract system to be solved. Thus, we invert the determinant operator of the above system by using among others the H ∞ -calculus. This leads us to obtain the explicit solution of the spectral equation. Then, we study the optimal regularity of this solution. In the second subsection, we give some sharp estimates which lead us to analyze the behavior of the resolvent operator of S. We then obtain our main results which state among others that S generates an analytic semigroup in L p (-, L; E), for p ∈ (1, +∞).

Variational formulation of

-Pu = g Let a, b ∈ R, with a < b. For any ϕ : (a, b) -→ R x -→ ϕ (x) , we set ϕ : R -→ R x -→ ϕ (x) = ϕ (x) for x ∈ (a, b), 0 for x ∈ R\(a, b),
and we define a subspace

H 1/2 (a, b) of H 1/2 (a, b) by H 1/2 (a, b) = ϕ ∈ H 1/2 (a, b) : ϕ ∈ H 1/2 (R) .
In [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF], the authors denoted this space by H 1/2 00 (a, b) which also coincides with the following particular interpolation space

H 1 0 (a, b), L 2 (a, b) 1/2,2
.

The interpolation spaces are described, for instance, in [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF].

Set H 1 Γ ± (Ω ± ) = u ± ∈ H 1 (Ω ± ) : u ±|Γ ± = 0 ; for v ± in H 1 Γ ± (Ω ± ), it is clear that v ±|Γ 0 is in H 1/2 (Γ 0 ) . Problem -Pu = g writes in the form                            -div (d + ∇u + ) + r + u + = g + in Ω + , -div (d -∇u -) + r -u -= g - in Ω -, d + ∂u + ∂ν = q (u + -u -) on Γ 0 , d - ∂u - ∂ν = q (u + -u -) on Γ 0 , u ± = 0 on Γ ± ,
where ν is the normal unit vector oriented towards the interior of Ω + . The variational formulation is set in the hilbertian space

V = H 1 Γ + (Ω + ) × H 1 Γ -(Ω -) , with a ((u + , u -) , (w + , w -)) = Ω + (d + ∇u + .∇w + + r + u + w + ) dxdy + Ω - (d -∇u -.∇w -+ r -u -w -) dxdy,
and

           b ((u + , u -) , (w + , w -)) = Γ 0 q (u + -u -) (w + -w -) dy, l (w + , w -) = Ω + g + w + dxdy + Ω - g -w -dxdy, then a ((u + , u + ) , (w + , w -)) + b ((u + , u -) , (w + , w -)) = l (w + , w -) .
Now, taking w + in D (Ω + ) and w -= 0, we have in the sense of distributions

-div (p + ∇u + ) + r + u + = f + in Ω + .
For g + in L 2 (Ω + ), the trace of d + ∂u + ∂ν on Γ 0 , can be defined in the dual space H 1/2 (Γ 0 ) of H 1/2 (Γ 0 ). In fact, operator ∂/∂ν maps continuously from H 1 (0, 1) into L 2 (0, 1) and L 2 (0, 1) into H -1 (0, 1), then, by interpolation it maps continuously from H 1 (0, 1); L 2 (0, 1) 1/2,2 into L 2 (0, 1), H -1 (0, 1) 1/2,2 ; but we know that H 1 (0, 1), L 2 (0, 1)

1/2,2
= H 1/2 (0, 1), and L 2 (0, 1), H -1 (0, 1))

1/2,2
= H 1 0 (0, 1), L 2 (0, 1) .

1/2,2 = H 1/2 (
Similarly, for -div (d -∇u -) + r -u -= g -in Ω -,
we obtain

Ω - (d -∇u -.∇w -+ r -u -w -) dxdy = Ω - (-∇. (d -∇u -) w -+ r -u -w -) dxdy + Γ 0 d - ∂u - ∂ν w -dy,
as above, the last integral means that

Γ 0 -d - ∂u - ∂ν w -dy := d - ∂u - ∂ν ; w - H 1/2 (Γ 0 ) × H 1/2 (Γ 0 )
.

It follows that

Γ 0 -d + ∂u + ∂ν w + dy + Γ 0 d - ∂u - ∂ν w -dy + Γ 0 q (u + -u -) (w + -w -) dy = 0;
taking w -= 0, we deduce that

-d + ∂u + ∂ν + q (u + -u -) = 0 in H 1/2 (Γ 0 ) ,
in the same way, w + = 0 gives

d - ∂u - ∂ν -q (u + -u -) = 0 in H 1/2 (Γ 0 ) .

Recall on sectorial operators

Let ω ∈ [0, π]. We put

S ω := {z ∈ C\ {0} : |arg z| < ω} if ω ∈ (0, π], (0, +∞) if ω = 0. (10) 
Let us recall some known results from [START_REF] Haase | The functional calculus for sectorial operators[END_REF].

Definition 2. Let ω ∈ [0, π). A linear operator Λ on a complex Banach space E is called sectorial of angle ω if 1. σ(Λ) ⊂ S ω and 2. M (Λ, ω ) := sup λ∈C\S ω λ(Λ -λI) -1 < ∞ for all ω ∈ (ω, π).
We then write: Λ ∈ Sect(ω). The following angle

ω Λ := min {ω ∈ [0, π) : Λ ∈ Sect(ω)} ,
is called the spectral angle of Λ.

We recall the following properties of the set Sect(ω). It is clear that Statement 2. implies necessarily that Λ is closed. For more details, see [START_REF] Haase | The functional calculus for sectorial operators[END_REF], p. 80-81. Set

H ∞ (S ω ) = {f : f is an holomorphic and bounded function on S ω } , with ω ∈ (0, π); we recall that if f ∈ H ∞ (S ω ) is such that 1/f ∈ H ∞ (S ω ) and (1/f )(Λ) ∈ L(E), then f (Λ) is boundedly invertible and [f (Λ)] -1 = (1/f )(Λ), (11) 
see, for instance [START_REF] Cowling | Banach space operator with a bounded H ∞ functional calculus[END_REF].

Assumptions and main results

We suppose that E is a complex Banach space satisfying the following geometrical property E is a U M D space; [START_REF] Haase | The functional calculus for sectorial operators[END_REF] we recall that a Banach space E is a U M D space if and only if for all 1 < p < +∞ the Hilbert transform is continuous from L p (R; E) into itself, see [START_REF] Burkholder | A geometrical characterization of Banach spaces in in which martingale difference sequences are unconditional[END_REF]. Consider a closed linear operator A satisfying:

     ∃ ε 0 ∈ (0, π/2) : S π-ε 0 ∪ {0} ⊂ ρ (A) and ∃ C A > 0 : ∀λ ∈ S π-ε 0 , (A -λI) -1 L(E) C A 1 + |λ| , ( 13 
)    ∀s ∈ R, (-A) is ∈ L (E) , ∃ θ A ∈ (0, ε 0 ] : sup s∈R e -θ A |s| (-A) is L(E) < +∞. ( 14 
)
We deduce in particular that -A ∈ BIP (E, θ A ), see the precise definition in [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF]. Note that -A 0 , defined in (6), satifies -A 0 ∈ BIP (L p (0, 1), ε 0 ). We define operator S by

                 D (S) =      w ∈ L p (-, L; E) : w -∈ W 2,p (-, 0; E), w + ∈ W 2,p (0, L; E) w -(-) = 0, w + (L) = 0, d -w -(0) = q (w + (0) -w -(0)) and d + w + (0) = q (w + (0) -w -(0))      , (Sw) (x) = d -w -(x) + d -Aw -(x) -r -w -(x) in (-, 0), d + w + (x) + d + Aw + (x) -r + w + (x) in (0, L).
Thanks to the fact that the domain is cylindrical, we will give an explicit expression of the resolvent operator of S by using essentially the analytic semigroups theory and the functional calculus.

Therefore, our aim results are the following:

Theorem 5. Assume that (12), ( 13) and ( 14) hold. Then, operator S generates an analytic semigroup in L p (-, L; E).

As corollaries, we obtain. Theorem 6. Operator S 0 generates an analytic semigroup in L p (-, L; E 0 ).

Theorem 7.

Operator P generates an analytic semigroup in L p (Ω).

Preliminary results

In this section, we recall some useful results and we state some technical results.

Proposition 8. Let c ∈ R \ {0} and z ∈ C \ R. Then, we have 0 < | arg(z + c)| < | arg(z)| < π if c > 0, 0 < | arg(z)| < | arg(z + c)| < π if c < 0. Proof. For z ∈ C \ R, we have arg(z) = 2 arctan Im(z) Re(z) + |z| , ( 15 
)
and

1. if c > 0, then |arg(z)| = 2 arctan |Im(z + c)| Re(z) + |z + c -c| > 2 arctan |Im(z + c)| Re(z) + c + |z + c| = |arg(z + c)| . 2. if c < 0, then |arg(z)| = 2 arctan |Im(z + c)| Re(z) + c -c + |z| = 2 arctan |Im(z + c)| Re(z) + c + |c| + |z| < 2 arctan |Im(z + c)| Re(z) + c + |z + c| = |arg(z + c)| . Proposition 9. Let z 1 , z 2 ∈ C \ {0}. We have |z 1 + z 2 | (|z 1 | + |z 2 |) cos arg(z 1 ) -arg(z 2 ) 2 .
This result is given by Proposition 4.9, p. 1879 in [START_REF] Dore | An abstract transmission problem in a thin layer, I: Sharp estimates[END_REF].

Proposition 10. Let 0 < α < π/2 and z ∈ S α . We have

1. |arg (1 -e -z ) -arg (1 + e -z )| < α. 2. |1 + e -z | 1 -e -π/(2 tan(α)) .
This result is given in Proposition 4.10, p. 1880 in [START_REF] Dore | An abstract transmission problem in a thin layer, I: Sharp estimates[END_REF].

Corollary 11. Let α ∈ (0, π/2], β ∈ [0, α/2] and z ∈ C \ {0}. Then 1. if -β arg(z) < α -β, then we have -β arg 1 -e -z -arg 1 + e -z < α -β. 2. if -α + β < arg(z) β, then we have -α + β < arg 1 -e -z -arg 1 + e -z β.
Proof. Since S α is an open sector, then Proposition 10 remains true for α = π/2.

1. First, let β = 0. Then, we have 0 arg(z) < α. As in the proof of statement 1, Proposition 4.10, p. 1880 in [START_REF] Dore | An abstract transmission problem in a thin layer, I: Sharp estimates[END_REF], we have Re(1 -e -z ), Re(1 + e -z ) > 0. Let us prove that arg 1 -e -zarg 1 + e -z 0.

To this end, we must show that

arctan Im(1 -e -z ) Re(1 -e -z ) arctan Im(1 + e -z ) Re(1 + e -z ) , that is Im(1 -e -z ) Re(1 -e -z ) Im(1 + e -z ) Re(1 + e -z ) , or Im(1 -e -z )Re(1 + e -z ) Im(1 + e -z )Re(1 -e -z ). ( 16 
)
Since we have

         Re(1 -e -z ) = 1 -|z| cos(arg(-z)), Re(1 + e -z ) = 1 + |z| cos(arg(-z)), Im(1 -e -z ) = -|z| sin(arg(-z)), Im(1 + e -z ) = |z| sin(arg(-z)),
then, ( 16) is equivalent to

-|z| sin(arg(-z)) (1 + |z| cos(arg(-z))) |z| sin(arg(-z)) (1 -|z| cos(arg(-z))) ;
which is true since sin(arg(-z)) 0. Now, taking into account that 0 arg(z) < α and Proposition 10, we obtain

0 arg 1 -e -z -arg 1 + e -z < α. ( 17 
) Now, let β ∈ 0, α 2 and -β arg(z) < α -β.
If 0 arg(z) < α -β, then from ( 17), we deduce that

-β 0 arg 1 -e -z -arg 1 + e -z < α -β.
If -β < arg(z) < 0, then z ∈ S β and from Proposition 10, we have

-β arg 1 -e -z -arg 1 + e -z < β.
Note that, when arg(z) = -β, then the previous inequality holds true since β < α. Finally, the result follows since β α 2 .

2. In the same way, we obtain the expected result.

Proposition 12. Let z 1 , z 2 ∈ C \ {0}. Assume that z 1 + z 2 = 0 and arg(-z 2 ) arg(z 1 ) arg(z 2 ) if arg(z 2 ) ∈ [0, π], -π arg(z 1 ) arg(z 2 ) if arg(z 2 ) ∈ [-π, 0]. Then, we have arg(z 1 ) arg(z 1 + z 2 ) arg(z 2 ).
Proof.

1. Assume that arg(z 2 ) = π.

If 0 < arg(z 1 ) < π, from Proposition 8, we obtain the expected inequalities.

If arg(z 1 ) = arg(z 2 ) = π, then arg(z 1 ) = arg(z 1 + z 2 ) = arg(z 2 ). ( 18 
)
If arg(z 1 ) = 0, then the expected inequalities hold since we have

arg(z 1 + z 2 ) = arg(z 1 ) if z 1 > |z 2 |, arg(z 2 ) if |z 2 | > z 1 .
2. Assume that arg(z 2 ) = -π, then arg(z 1 ) = arg(z 2 ) = -π and (18) holds.

3. Assume that arg(z 2 ) ∈ (-π, 0]. Then, arg(z 1 ) ∈ (-π, arg(z 2 )], Im(z 2 ) 0 and Im(z 1 ) 0. From (15), we have

Im(z 1 ) Re(z 1 ) + |z 1 | Im(z 2 ) Re(z 2 ) + |z 2 | . Hence Im(z 1 ) (Re(z 2 ) + |z 2 |)+Im(z 2 ) (Re(z 2 ) + |z 2 |) Im(z 2 ) (Re(z 1 ) + |z 1 |)+Im(z 2 ) (Re(z 2 ) + |z 2 |) , wich gives Im(z 1 + z 2 ) (Re(z 2 ) + |z 2 |) Im(z 2 ) (Re(z 1 + z 2 ) + |z 1 | + |z 2 |) .
Since Im(z 2 ) 0, then we have

Im(z 2 ) (|z 1 | + |z 2 |) Im(z 2 )|z 1 + z 2 |. Therefore Im(z 1 + z 2 ) (Re(z 2 ) + |z 2 |) Im(z 2 ) (Re(z 1 + z 2 ) + |z 1 + z 2 |) ,
and due to [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF], we obtain arg(z 1 + z 2 ) arg(z 2 ).

We extend the above result, by rotation, for arg(z 2 ) ∈ (-π, π).

4. Similarly, for arg(z 1 ), arg(z 2 ) ∈ [0, π), following the same steps, we deduce that arg(z 1 ) arg(z 1 + z 2 ), and, by rotation, we obtain the expected result.

6 Proof of Theorem 5

Spectral study of S

In this sections we will focus ourselves to study the spectral equation

Sw -λw = f ∈ E = L p (-, L; E), ( 19 
)
where p ∈ (1, +∞).

Our aim is to estimate the resolvent operator

(S -λI) -1 L(L p (-,L;E))
, where λ is a complex number in some sector to specify. This estimate will allow us to prove that S generates an analytic semigroup in E. So, after the resolution of the spectral equation, we have to estimate w L p (-,L;E) that is

w -L p (-,0;E) and w + L p (0,L;E) .
We recall that all the constants r -, r + , d -, d + , q are strictly positive. In the sequel, we will use the following notations:

λ ± = λ d ± , ρ ± = r ± d ± , q ± = q d ± and g ± = f ± d ± . ( 20 
)

The system verified by the spectral equation

Equation ( 19) can be formulated as

(P A )                          w -(x) + (A -ρ -I -λ -I) w -(x) = g -(x) in (-, 0), w + (x) + (A -ρ + I -λ + I) w + (x) = g + (x) in (0, L), w -(-) = 0, w + (L) = 0, w -(0) = q -(w + (0) -w -(0)) , w + (0) = q + (w + (0) -w -(0)) .
Assume that the complex λ satisfies:

|arg(λ)| < π -ε 0 , ( 21 
)
where ε 0 is a small fixed number. Set

A -= A -ρ -I -λ -I and A + = A -ρ + I -λ + I, so we have D(A -) = D(A + ) = D(A).
Proposition 13. Operators -A -and -A + are sectorial and satisfy

-A -∈ Sect (π -arcsin (1/M (-A -))) , -A + ∈ Sect (π -arcsin (1/M (-A + ))) ,
where M (-A ± ) is defined in Proposition 3.

Proof. If λ ∈ R + , then due to (13), -A -and -A + are sectorial operators. Now, let λ ∈ S π-ε 0 \ R + and t > 0. We will verify that -A -is a sectorial operator in E and (-∞, 0] ⊂ ρ(-A -). Since ρ -+ t > 0, from Proposition 8, we obtain

|arg (ρ -+ t + λ -)| < |arg (λ -)| = | arg(λ)| < π -ε 0 . Then M (-A -) = sup t>0 t(-A -+ tI) -1 = sup t>0 t (-A + (ρ -+ t + λ -) I) -1 L(E)
.

Then, from [START_REF] Labbas | Generation of analytic semigroup for some generalized diffusion operators in Lp-spaces[END_REF] and Proposition 9, we have

(-A + (ρ -+ t + λ -) I) -1 L(E) C A 1 + |ρ -+ t + λ -| C A |ρ -+ t + λ -| C A (|ρ -+ λ -| + t) cos arg(ρ -+λ -) 2 C A t cos |arg(ρ -+λ -)| 2 .
Moreover, from Proposition 8, we obtain

|arg (|ρ -+ λ -|)| < |arg (λ -)| = | arg(λ)| < π -ε 0 , and thus cos |arg (ρ -+ λ -)| 2 > cos π 2 - ε 0 2 = sin ε 0 2 > 0.
Finally, we have

M (-A -) sup t>0     t C A t sin ε 0 2     = C A sin ε 0 2 < +∞.
Hence, due to Proposition 3, we obtain the expected result for -A -. For -A + , the proof is similar.

Therefore, the following operators

B = - √ -A, B -= --A -and B + = --A + , of domain D(B) = D(B -) = D(B + ),
are well defined for all λ ∈ S π-ε 0 ∪ {0} and generate analytic semigroups in E, see [START_REF] Balakrishnan | Fractional powers of closed operators and the semigroups generated by them[END_REF]. By using estimates (28)-( 29) in Lemma 4.2, see [START_REF] Favini | Elliptic differential operator with an abstract Robin boundary condition and two spectral parameters[END_REF], there exist C -, C + > 0, independent of λ such that for all z ∈ S π-ε 0 ∪ {0}, we have

         (B --zI) -1 L(E) C - 1 + |λ -+ ρ -| + |z| C - 1 + |z| , (B + -zI) -1 L(E) C + 1 + |λ + + ρ + | + |z| C + 1 + |z| , ( 22 
)
from which it follows that

B -1 -L(E) C -d - d -+ |λ + r -| and B -1 + L(E) C + d + d + + |λ + r + | . ( 23 
)
Our problem (P A ) can be written in the following form

                         w -(x) -B 2 -w -(x) = g -(x) in (-, 0), w + (x) -B 2 + w + (x) = g + (x) in (0, L), w -(-) = 0, w + (L) = 0, w -(0) = q -(w + (0) -w -(0)) , w + (0) = q + (w + (0) -w -(0)) . ( 24 
)
Then, we have

   w -(x) = e (x+ )B -j -+ e -xB -k -+ v -(g -)(x), x ∈ (-, 0), w + (x) = e xB + j + + e (L-x)B + k + + v + (g + )(x), x ∈ (0, L), with j ± , k ± ∈ E and          v -(g -)(x) = 1 2 B -1 - x - e (x-t)B -g -(t)dt + 1 2 B -1 - 0 x e (t-x)B -g -(t)dt, v + (g + )(x) = 1 2 B -1 + x 0 e (x-t)B + g + (t)dt + 1 2 B -1 + L x e (t-x)B + g + (t)dt;
see for instance Proposition 5.1, p. 1882 in [START_REF] Dore | An abstract transmission problem in a thin layer, I: Sharp estimates[END_REF].

Then, we deduce that

w -(0) = B -e B -j --B -k -+ v -(g -)(0), w + (0) = B + j + -B + e LB + k + + v + (g + )(0), where v -(g -)(0) = 1 2 0 - e -tB -g -(t)dt and v + (g + )(0) = - 1 2 L 0 e tB + g + (t)dt.
The boundary and the interface conditions give

                                     j -= -e B -k --v -(g -)(-), k + = -e LB + j + -v + (g + )(L), d -B -e B -j --B -k -+ v -(g -)(0) = q j + + e LB + k + + v + (g + )(0) -e B -j -+ k -+ v -(g -)(0) , d + B + j + -B + e LB + k + + v + (g + )(0) = q j + + e LB + k + + v + (g + )(0) -e B -j -+ k -+ v -(g -)(0) ;
then, the two last equations lead us to the following system

                                       d -B -e B --e B -k --v -(g -)(-) -B -k -+ v -(g -)(0) = q[ j + + e LB + -e LB + j + -v + (g + )(L) + v + (g + )(0) -e B --e B -k --v -(g -)(-) -k --v -(g -)(0)], d + B + j + -B + e LB + -e LB + j + -v + (g + )(L) + v + (g + )(0) = q[ j + + e LB + -e LB + j + -v + (g + )(L) + v + (g + )(0) -e B --e B -k --v -(g -)(-) -k --v -(g -)(0),
which is equivalent to

                               -B -e 2 B -k --B -e B -v -(g -)(-) -B -k -+ v -(g -)(0) = q -j + -q -e 2LB + j + -q -e LB + v + (g + )(L) + q -v + (g + )(0) + q -e 2 B -k -+ q -e B -v -(g -)(-) -q -k --q -v -(g -)(0), B + j + + B + e 2LB + j + + B + e LB + v + (g + )(L) + v + (g + )(0) = q + j + -q + e 2LB + j + -q + e LB + v + (g + )(L) + q + v + (g + )(0) + q + e 2 B -k -+ q + e B -v -(g -)(-) -q + k --q + v -(g -)(0).
Therefore, the above system becomes

       B -I + e 2 B --q -I -e 2 B -k -+ q -I -e 2LB + j + = (Π ), q + I -e 2 B -k -+ B + I + e 2LB + -q + I -e 2LB + j + = (Π ),
where

                 (Π ) = v -(g -)(0) -B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) -q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0), (Π ) = -v + (g + )(0) -B + e LB + v + (g + )(L) -q + e LB + v + (g + )(L) + q + v + (g + )(0) +q + e B -v -(g -)(-) -q + v -(g -)(0). It follows        I + e 2 B --q -B -1 - I -e 2 B -k -+ q -B -1 - I -e 2LB + j + = B -1 -(Π ), q + B -1 + I -e 2 B -k -+ I + e 2LB + -q + B -1 + I -e 2LB + j + = B -1 + (Π ).
The abstract determinant of this system is

D = I + e 2 B --q -B -1 - I -e 2 B - I + e 2LB + -q + B -1 + I -e 2LB + -q + B -1 + I -e 2 B -q -B -1 - I -e 2LB + = I + e 2 B -I + e 2LB + -I + e 2 B -q + B -1 + I -e 2LB + -q -B -1 - I -e 2 B -I + e 2LB + = I + e 2 B -I + e 2LB + D * ,
where

D * = I -q + B -1 + I -e 2LB + I + e 2LB + -1 -q -B -1 - I -e 2 B -I + e 2 B --1 .
We recall that operators I -e 2LB + , I + e 2LB + , I -e 2 B -and I + e 2 B -are boundedly invertible by using the same method in [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF], Proposition 2.3.6, p. 60.

Invertibility of the determinant

In order to invert D * , we will use the H ∞ -calculus for sectorial operators. To this end, we fix λ ∈ S π-ε 0 ∪ {0} and for all z ∈ S ε 0 , we consider the following function

f (z) =   1 + q + 1 -e -2L √ z+λ + +ρ + z + λ + + ρ + 1 + e -2L √ z+λ + +ρ + + q -1 -e -2 √ z+λ -+ρ - z + λ -+ ρ -1 + e -2 √ z+λ -+ρ -    ,
where the constants ρ ± , q ± and the complex parameter λ ± are defined in [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF].

Proposition 14. Let ε 0 ∈ (0, π/2) and λ ∈ S π-ε 0 ∪ {0}. Then, for all z ∈ S ε 0 , we have

|f (z)| > sin ε 0 2 .
Proof. Let λ = 0. We have to consider the two following cases:

1. -ε 0 arg(λ ± ) < π -ε 0 , 2. -π + ε 0 < arg(λ ± ) ε 0 . Let -ε 0 arg(λ ± ) < π -ε 0 . Since | arg(z)| < ε 0 ,
it is clear that λ ± and z are in the same half-plane and that λ ± + z = 0. Then, from Proposition 12, we have -ε 0 min (arg(λ ± ), arg(z)) arg(z + λ ± ) max (arg(λ ± ), arg(z)) < π -ε 0 , and thus, if arg(z + λ ± ) = 0, from Proposition 8, we deduce that

|arg(z + λ ± + ρ ± )| < |arg(z + λ ± )| < π -ε 0 ,
and if arg(z + λ ± ) = 0, then arg(z + λ ± + ρ ± ) = 0. Moreover, when arg(z + λ ± + ρ ± ) < 0, then due to Proposition 8, we have

-ε 0 arg(z + λ ± ) < arg(z + λ ± + ρ ± ).
Therefore, we obtain that -ε 0 arg(z + λ ± + ρ ± ) < π -ε 0 .

Hence, setting L = 2L or 2 , we deduce that

- ε 0 2 arg z + λ ± + ρ ± = arg L z + λ ± + ρ ± < π 2 - ε 0 2 . ( 25 
)
We set

z 1 = q + 1 -e -2L √ z+λ + +ρ + z + λ + + ρ + 1 + e -2L √ z+λ + +ρ + and z 2 = q -1 -e -2 √ z+λ -+ρ - z + λ -+ ρ -1 + e -2 √ z+λ -+ρ - .
Then, due to Proposition 9, it follows that 

|f (z)| = |1 + z 1 + z 2 | (1 + |z 1 + z 2 |) cos arg(z 1 + z 2 ) 2 > cos arg(z 1 + z 2 ) 2 . Now,
- ε 0 2 arg 1 -e -2L √ z+λ + +ρ + -arg 1 + e -2L √ z+λ + +ρ + < π 2 - ε 0 2 , with - ε 0 2 arg 1 -e -2 √ z+λ -+ρ --arg 1 + e -2 √ z+λ -+ρ -< π 2 - ε 0 2 , hence - ε 0 2 -arg z + λ + + ρ + arg(z 1 ) < π 2 - ε 0 2 -arg z + λ + + ρ + , and - ε 0 2 -arg z + λ -+ ρ - arg(z 2 ) < π 2 - ε 0 2 -arg z + λ -+ ρ -.
Then, due to (25), we obtain

- π 2 < - ε 0 2 -arg z + λ + + ρ + arg(z 1 ) < π 2 - ε 0 2 -arg z + λ + + ρ + π 2 , with - π 2 < - ε 0 2 -arg z + λ -+ ρ - arg(z 2 ) < π 2 - ε 0 2 -arg z + λ -+ ρ - π 2 .
Thus, arg(z 1 ), arg(z 2 ) ∈ -π 2 , π 2 . Then, in virtue of Proposition 12, we deduce that min (arg(z 1 ), arg(z 2 )) arg(z 1 + z 2 ) max (arg(z 1 ), arg(z 2 )) .

Moreover, due to Proposition 10, we have

| arg(z 1 )| = arg 1 -e -2L √ z+λ + +ρ + -arg 1 + e -2L √ z+λ + +ρ + -arg z + λ + + ρ + arg 1 -e -2L √ z+λ + +ρ + -arg 1 + e -2L √ z+λ + +ρ + + arg z + λ + + ρ + < π 2 - ε 0 2 + π 2 - ε 0 2 = π -ε 0 ,
and, in the same way, we have |arg(z 2 )| < π -ε 0 . We then obtain

|arg(z 1 + z 2 )| max (arg(z 1 ), arg(z 2 )) < π -ε 0 ,
and

cos arg(z 1 + z 2 ) 2 > cos π 2 - ε 0 2 = sin ε 0 2 > 0. Now, when -π + ε 0 < arg(λ ± ) ε 0 , then - π 2 + ε 0 2 < arg( z + λ ± + ρ ± ) = arg(L z + λ ± + ρ ± ) ε 0 2 ,
and due to Corollary 11, we have arg(z 1 ), arg(z 2 ) ∈ -π 2 , π 2 . Thus, from Proposition 12, we deduce the expected result. Finally, when λ = 0, it is clear that, following the same steps, we obtain a similar result.

Proposition 15. Operator D is boundedly invertible and

D -1 = D -1 * I + e 2LB + -1 I + e 2 B --1 .
Proof. From Proposition 14, f does not vanish on S ε 0 and 1/f is bounded. Moreover

1 f ∞ 1 sin(ε 0 /2) ,
and taking into account Proposition 10, statement 2, we have

|f (z) -1| = O 1/|z| 1/2 , z ∈ S ε 0 . We deduce that 1 f (-A) = 1 -f f + 1 (-A) = 1 -f f (-A) + I ∈ L(E),
then by using [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], since -A ∈ Sect(ε 0 ), we deduce that

D -1 * = 1 f (-A) ∈ L(E) and D -1 * L(E) 1 sin(ε 0 /2) .
Finally, since (I + e 2 B -) and (I + e 2LB + ) are boundedly invertible, see [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF], p. 60, Proposition 2.3.6, we obtain the expected result.

Now, from equality D

* A -1 = A -1 D * , it follows that D -1 * A = AD -1 * , on D(A), hence D -1
* is a bounded operator from D(A) into itself. Therefore, by interpolation D -1 * is bounded from any interpolation space (D(A), E) α,β , for all α ∈ (0, 1) and β ∈ [1, +∞] (see the definition in [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF]) into itself and clearly we have also the same estimate

D -1 * L((D(A),E) α,β )
1 sin(ε 0 /2) .

Resolution of the system

Recall that

       I + e 2 B --q -B -1 - I -e 2 B -k -+ q -B -1 - I -e 2LB + j + = B -1 -(Π ), q + B -1 + I -e 2 B -k -+ I + e 2LB + -q + B -1 + I -e 2LB + j + = B -1 + (Π ),
where

                 (Π ) = v -(g -)(0) -B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) -q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0), (Π ) = -v + (g + )(0) -B + e LB + v + (g + )(L) -q + e LB + v + (g + )(L) + q + v + (g + )(0), +q + e B -v -(g -)(-) -q + v -(g -)(0), therefore k -= D -1 B -1 -(Π ) q -B -1 -(I -e 2LB + ) B -1 + (Π ) I + e 2LB + -q + B -1 + I -e 2LB + = D -1 B -1 - I + e 2LB + -q + B -1 + I -e 2LB + (Π ) -q -B -1 + B -1 -(I -e 2LB + )(Π ) ,
and

j + = D -1 I + e 2 B --q -B -1 - I -e 2 B - B -1 -(Π ) q + B -1 + I -e 2 B - B -1 + (Π ) = D -1 I + e 2 B --q -B -1 - I -e 2 B -B -1 + (Π ) -q + B -1 + I -e 2 B -B -1 -(Π ) .
We then deduce

                   j -= -e B -D -1 B -1 - I + e 2LB + -q + B -1 + I -e 2LB + (Π ) +q -e B -D -1 B -1 + B -1 -(I -e 2LB + )(Π ) -v -(g -)(-), k + = -e LB + D -1 I + e 2 B --q -B -1 - I -e 2 B -B -1 + (Π ) +q + e LB + D -1 B -1 + I -e 2 B -B -1 -(Π ) -v + (g + )(L).
Finally, we obtain for a.e x ∈ (-, 0)

w -(x) = D -1 e -xB --e (x+2 )B - I + e 2LB + -q + B -1 + I -e 2LB + B -1 -(Π ) +q -D -1 e (x+2 )B --e -xB -B -1 -(I -e 2LB + )B -1 + (Π ) -e (x+ )B -v -(g -)(-) + v -(g -)(x),
and for all a.e x ∈ (0, L)

w + (x) = D -1 e xB + -e (2L-x)B + I + e 2 B --q -B -1 - I -e 2 B -B -1 + (Π ) +q + D -1 e (2L-x)B + -e xB + B -1 + I -e 2 B -B -1 -(Π ) -e (L-x)B + v + (g + )(L) + v + (g + )(x).

Optimal regularity of w -and w +

Since B + generates an analytic semigroup in E, we recall the following known results

   x -→ e xB + ψ ∈ L p (0, L; E) for all ψ ∈ E, x -→ B n + e xB + ψ ∈ L p (0, L; E) ⇐⇒ ψ ∈ D B n + , E 1 np ,p , ( 26 
)
where p ∈ (1, +∞) and n ∈ N\ {0}; see the Theorem in [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF], p. 96.

We have the same result for B -on (-, 0). Note that, for these two results we do not need assumption [START_REF] Haase | The functional calculus for sectorial operators[END_REF].

Let us recall the following well-known important result proved in [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF].

Theorem 16. Let X be a UMD Banach space, -Q ∈ BIP (X, θ) with θ ∈ (0, π/2) and g ∈ L p (a, b; X). Then, for almost every x ∈ (a, b), we have

x a e (x-s)Q g(s) ds ∈ D(Q) and b x e (s-x)Q g(s) ds ∈ D(Q).
Moreover,

x -→ Q x a e (x-s)Q g(s) ds ∈ L p (a, b; X) and x -→ Q b x e (s-x)Q g(s) ds ∈ L p (a, b; X).
We are applying these results to our operators B -and B + . We know that -A ∈ BIP (E, θ A ), with θ A ∈ (0, ε 0 ], 0 < ε 0 < π/2 and | arg(λ ± + ρ ± )| < π -ε 0 . On the other hand, we have

θ A + | arg(λ ± + ρ ± )| < ε 0 + π -ε 0 = π, since λ ± is such that | arg(λ ± )| < π -ε 0 and ρ ± > 0.
In virtue of Theorem 2.4, p. 408 in [START_REF] Monniaux | A perturbation result for bounded imaginary powers[END_REF], we obtain that -A ± ∈ BIP (E, π -ε 0 ). Thus -B ± ∈ BIP (E, (π -ε 0 )/2), from Proposition 3.2.1, e), p. 71 in [START_REF] Haase | The functional calculus for sectorial operators[END_REF].

We then deduce the following lemma by taking Q = B ± .

Lemma 17. Let h -∈ L p (-, 0; E) and h + ∈ L p (0, L; E) with 1 < p < +∞. Assume that (12), ( 13) and ( 14) hold. Then, we have

                   x -→ B - x - e (x-s)B -h -(s)ds ∈ L p (-, 0; E) , x -→ B - 0 x e (s-x)B -h -(s) ds ∈ L p (-, 0; E) , x -→ B - 0 - e (x+s)B -h -(s) ds ∈ L p (-, 0; E) . and                    x -→ B + x 0 e (x-s)B + h + (s) ds ∈ L p (0, L; E) , x -→ B + L x e (s-x)B + h + (s) ds ∈ L p (0, L; E) , x -→ B + L 0 e (x+s)B + h + (s) ds ∈ L p (0, L; E) .

Lemma 18.

Let h -∈ L p (-, 0; E) and h + ∈ L p (0, L; E) with 1 < p < +∞. Assume that (12), ( 13) and ( 14) hold. Then, we have 1.

L 0 e sB + h + (s) ds and

L 0 e (L-s)B + h + (s) ds belong to (D(B + ), E) 1 p ,p = (D(B), E) 1 p ,p , 2. 0 - e sB -h -(s) ds and 0 - e -sB -h -(s) ds belong to (D(B -), E) 1 p ,p = (D(B), E) 1 p ,p .
Proof. Let us indicate the proof of the first statement for instance. Consider the function

ψ 1 (x) = x 0 e (x-s)B + h + (s) ds;
then, from Theorem 16, we know that

ψ 1 ∈ W 1,p (0, L; E) ∩ L p (0, L; D(B + )) ;
by using the notation in [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], pp. 677-678 for the spaces of traces, we deduce that

ψ 1 (L) ∈ T 1 0 (p, 0, D(B + ), E) = (D(B + ), E) 1 p ,p = (D(B), E) 1 p ,p ,
here, the Poulsen condition is verified since 0 < 1/p < 1. By considering the function ,L;E) with 1 < p < +∞. Assume that (12), ( 13) and (14) hold. Then, for all λ ∈ S π-ε 0 ∪ {0}, there exists a unique solution w ∈ D(S) of equation [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF].

ψ 2 (x) = L x e (s-x)B + h + (s) ds, we get ψ 2 (0) ∈ T 1 0 (p, 0, D(B + ), E) = (D(B + ), E) 1 p ,p = (D(B), E) 1 p ,p .
Proof. Now we must show that

w -∈ W 2,p (-, 0; E) ∩ L p (-, 0; D(A)) , w + ∈ W 2,p (0, L; E) ∩ L p (0, L; D(A)) .
It is not difficult to see that all the boundary and transmission conditions in (24) are verified by w -and w + .

We recall that

(Π ) = -B -e B -v -(g -)(-) + v -(g -)(0) + q -e LB + v + (g + )(L) -q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0), and 
(Π ) = -B + e LB + v + (g + )(L) -v + (g + )(0) -q + e LB + v + (g + )(L) + q + v + (g + )(0) +q + e B -v -(g -)(-) -q + v -(g -)(0). The terms -B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) -q -e B -v -(g -)(-), in (Π ) and -B + e LB + v + (g + )(L) -q + e LB + v + (g + )(L) + q + e B -v -(g -)(-),
in (Π ) are clearly regular. From Lemma 18, the terms

v -(g -)(0) = 1 2 B -1 - 0 - e -tB -g -(t)dt,
and

v + (g + )(0) = 1 2 B -1 + L 0 e tB + g + (t) dt, satisfy B -v -(g -)(0) = 1 2 0 - e -tB -g -(t)dt ∈ (D(B -), E) 1 p ,p
, and

B + v + (g + )(0) = 1 2 L 0 e tB + g + (t)dt ∈ (D(B + ), E) 1 p ,p . We also obtain v -(g -)(0) = 1 2 0 - e -tB -g -(t)dt ∈ (D(B -), E) 1 p ,p , and v + (g + )(0) = - 1 2 L 0 e tB + g + (t)dt ∈ (D(B + ), E) 1 p ,p
. Now, due to Proposition 15, we have for a.e x ∈ (-, 0)

w -(x) = -D -1 e (x+2 )B -B -1 - I + e 2LB + -q + B -1 + I -e 2LB + (Π ) +q -D -1 e (x+2 )B -B -1 + B -1 -(I -e 2LB + )(Π ) -e (x+ )B -v -(g -)(-) +D -1 e -xB -B -1 - I + e 2LB + -q + B -1 + I -e 2LB + (Π ) -q -D -1 e -xB -B -1 + B -1 -(I -e 2LB + )(Π ) + 1 2 B -1 - x - e (x-t)B -g -(t)dt + 1 2 B -1 - 0 x e (t-x)B -g -(t)dt,
so, we can write w -as the following superposition of less and less regular functions:

w -(x) = R(x) -q + D -1 B -1 + e -xB -B -1 -(Π ) -q -D -1 B -1 -e -xB -B -1 + (Π ) -e (x+ )B -v -(g -)(-) +D -1 e -xB -B -1 -(Π ) + 1 2 B -1 - x -l e (x-t)B -g -(t)dt + 1 2 B -1 - 0 x e (t-x)B -g -(t)dt,
where, for all x ∈ [-, 0]

R(x) = -e (x+2 )B -D -1 B -1 - I + e 2LB + -q + B -1 + I -e 2LB + (Π ) +q -e (x+2 )B -D -1 B -1 + B -1 -(I -e 2LB + )(Π ) +e 2LB + D -1 e -xB -B -1 -I + q + B -1 + (Π ) +q -e 2LB + D -1 e -xB -B -1 + B -1 -(Π ),
is clearly a regular term.

Replacing (Π ) and (Π ), we obtain

w -(x) = R 1 (x) + S 1 (x) + S 2 (x) + I(x),
where

R 1 (x) = R(x) + D -1 B -1 -e -xB -(-B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) +D -1 B -1 -e -xB --q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0) -q + D -1 B -1 + B -1 -e -xB -(-B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) -q + D -1 B -1 + B -1 -e -xB --q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0) -q -D -1 B -1 + B -1 -e -xB --B + e LB + v + (g + )(L) -q + e LB + v + (g + )(L) -q -D -1 B -1 + B -1 -e -xB -q + v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0) +D -1 B -1 + B -1 -e -xB -q -v + (g + )(0) -q + v -(g -)(0) ,    S 1 (x) = D -1 B -1 -e -xB -v -(g -)(0), S 2 (x) = -e (x+ )B -v -(g -)(-),
and

I(x) = 1 2 B -1 - x - e (x-t)B -g -(t)dt + 1 2 B -1 - 0 x e (t-x)B -g -(t)dt.
It is clear that for all x ∈ [-, 0], we have

R 1 (x) ∈ D(B 2 -) and x -→ B 2 -R 1 (x) ∈ L p (-, 0; E) .
Due to Lemma 18 and (26), for a.e x ∈ (-, 0), it follows that

S 1 (x) ∈ D(B 2 -) and x -→ B 2 -S 1 (x) ∈ L p (-, 0; E) , S 2 (x) ∈ D(B 2 -) and x -→ B 2 -S 2 (x) ∈ L p (-, 0; E) .
Finally, due to Lemma 17, for a.e x ∈ (-, 0), we have

I(x) ∈ D(B 2 -) and x -→ I(x) ∈ L p (-, 0; E).
In the same way, for a.e x ∈ (0, L), we obtain

w + (x) ∈ D(B 2 + ) and x -→ B 2 + w + (x) ∈ L p (0, L; E) .
Finally, we have proved that w ∈ D(S).

Estimate of the resolvent operator

Some sharp estimates

Recall that

B -= --A + ρ -I + λ -I and B + = --A + ρ + I + λ + I,
where

λ ± = λ d ± and ρ ± = r ± d ± , with λ ∈ S π-ε 0 ∪ {0}, r ± , d ± > 0.
In virtue of ( 22) and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], p. 70, we have

     ∃ M > 0, ∃ δ > 0, ∀ t 0, ∀λ ∈ S π-ε 0 ∪ {0} : e tB ± L(E) M e -δt (27) 
On the other hand, using Lemma 2.6, p. 103 in [START_REF] Dore | Semigroup estimates and noncoercive boundary value problems[END_REF], we have more precisely

     ∃ K > 0, ∃ c > 0, ∀ t t 0 > 0, ∀ λ ∈ S π-ε 0 ∪ {0} : B ± e tB ± L(E) Ke -ct|λ ± +ρ ± | 1/2 . ( 28 
)
Lemma 20. There exists a constant M > 0 independent of λ ∈ S π-ε 0 , such that for any λ ∈ S π-ε 0 , operators I ± e 2 B -and I ± e 2LB + are boundedly invertible in L(E) and

I ± e 2 B --1 L(E)
M and

I ± e 2LB + -1 L(E)
M.

The proof is similar to the one of Lemma 5.1 in [START_REF] Favini | Elliptic differential operator with an abstract Robin boundary condition and two spectral parameters[END_REF]. As a consequence of Proposition 15 and Lemma 20, we deduce the following Corollary.

Corollary 21. There exists a constant M > 0 independent of λ ∈ S π-ε 0 , such that for any λ ∈ S π-ε 0 , we have

D -1 L(E) M. Proposition 22. Let λ ∈ S π-ε 0 ∪ {0}, g ∈ L p (0, L; E) and h ∈ L p (-, 0; E) with 1 < p < +∞. Set U (g)(x) = L 0 e |x-t|B + g(t)dt and V (h)(x) = 0 - e |x-t|B -h(t)dt.
Then, there exists a constant C > 0 independent of λ such that

           U (g) L p (0,L;E) C d + |λ + r + | + d + g L p (0,L;E) , V (h) L p (-,0;E) C d - |λ + r -| + d - h L p (-,0;E) .
Proof. We will prove the estimate, for instance, for B + . Let

g ∈ D (0, L; L(E)) ⊂ S (R; L(E)) ,
where D (0, L; L(E)) is the space of all vector-valued test functions on L(E) and S (R; L(E)) is the Schwartz space of rapidly decreasing vector-valued smooth functions on R. Then, we can write

U (g)(x) = e |.|B + * g (x) = g * e |.|B + (x), x ∈ R.
This abstract convolution is well defined, see [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF].

Recall the abstract Fourier transform F defined by

F (ψ)(x) = +∞ -∞ e -2iπξx ψ(ξ)dξ,
for all ψ ∈ L 1 (R; L(E)) and the well known property

F -1 (F (φ)) = φ,
for all φ ∈ S (R; L(E)). We have

F e |.|B + (ξ) = 0 -∞ e -2iπξx e -xB + dx + +∞ 0 e -2iπξx e xB + dx = -(B + + 2iπξI) -1 -(B + -2iπξI) -1 = -2B + (B + + 2iπξI) -1 (B + -2iπξI) -1 ;
the integrals are absolutely convergent from (27); the last equality holds from the resolvent identity. In virtue of Theorem 3.6, p. 17 in [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF], we obtain

U (g)(x) = F -1 F e -|.|B + F (g) (x) = F -1 (mF (g)) (x),
with the Fourier multiplier

m(ξ) = -2B + (B + + 2iπξI) -1 (B + -2iπξI) -1 ∈ L(E).
Using estimate (29), p. 14, in [START_REF] Favini | Elliptic differential operator with an abstract Robin boundary condition and two spectral parameters[END_REF], we obtain

m(ξ) L(E) = -2B + (B + + 2iπξI) -1 (B + -2iπξI) -1 2C (B + -2iπξI) -1 2C |λ + r + | d + + 1 + |2iπξ| . Then m(ξ) L(E) 2C d + |λ + r + | + d + + 2π d + |ξ| 2C d + |λ + r + | + d + , hence sup ξ∈R m(ξ) L(E) 2C d + |λ + r + | + d + . Now, we must estimate sup ξ∈R |ξ| m (ξ) L(E) .
Due to the analyticity of the resolvent operator of B + on the imaginary axis, it follows that

m ∈ C ∞ (R, L(E)), and 
m (ξ) = 2iπ (B + + 2iπξI) -2 -2iπ (B + -2iπξI) -2 .
Therefore, as above, we have

|ξ| m (ξ) L(E) 2iπξ (B + + 2iπξI) -2 + 2iπξ (B + -2iπξI) -2 2iπξ (B + + 2iπξI) -1 (B + + 2iπξI) -1 + 2iπξ (B + -2iπξI) -1 (B + -2iπξI) -1 2C |λ + r + | d + + 1 + |2iπξ| , so sup ξ∈R |ξ| m (ξ) L(E) 2C d + |λ + r + | + d + .
We do similarly with ξ -→ (ξm (ξ)) . Thus, from [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal regularity[END_REF], Proposition 2.5, p. 739, the sets {m(ξ), ξ ∈ R \ {0}} and ξm (ξ), ξ ∈ R \ {0} , are R-bounded. Moreover, applying Theorem 3.4, p. 746 in [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal regularity[END_REF], we obtain

U (g) L p (0,L;E) = F -1 (mF (g)) L p (R;E) C sup ξ∈R m(ξ) + sup ξ∈R |ξ| m (ξ) g L p (0,L;E) C d + |λ + r + | + d + g L p (0,L;E) ,
for all g ∈ D (0, L; E) . The same estimate is true for all g ∈ L p (0, L; E) by density.

We will need also the following result, given by Lemma 4.12 in [START_REF] Labbas | Generation of analytic semigroup for some generalized diffusion operators in Lp-spaces[END_REF].

Lemma 23. Let λ ∈ S π-ε 0 ∪ {0}, g + ∈ L p (0, L; E) and g -∈ L p (-, 0; E) with 1 < p < +∞.
Then, there exists C > 0, such that

1. e (•-a)B ± b a e (t-a)B ± g ± (t) dt L p (a,b;E) C d ± d ± + |λ + r ± | g ± L p (a,b;E) , 2. e (•-a)B ± b a e (b-t)B ± g ± (t) dt L p (a,b;E) C d ± d ± + |λ + r ± | g ± L p (a,b;E) , 3. e (b-•)B ± b a e (b-t)B ± g ± (t) ds L p (a,b;E) C d ± d ± + |λ + r ± | g ± L p (a,b;E) , 4. e (b-•)B ± b a e (t-a)B ± g ± (t) dt L p (a,b;E) C d ± d ± + |λ + r ± | g ± L p (a,b;E) .

Estimate of w L p (-,L;E)

We have to estimate

w -L p (-,0;E) + w + L p (0,L;E) ,
where, due to Proposition 19, w is the unique solution of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. Thus, it suffices to estimate w -L p (-,0;E) . The same techniques apply to w + L p (0,L;E) . We have

w -(x) = D -1 e -xB --e (x+2 )B -B -1 - I + e 2LB + (Π ) -q + D -1 e -xB --e (x+2 )B -B -1 -B -1 + I -e 2LB + (Π ) +q -D -1 e (x+2 )B --e -xB -B -1 + B -1 -(I -e 2LB + )(Π ) -e (x+ )B -v -(g -)(-) +v -(g -)(x) = 5 i=1 a i (x), where                  (Π ) = v -(g -)(0) -B -e B -v -(g -)(-) + q -e LB + v + (g + )(L) -q -v + (g + )(0) -q -e B -v -(g -)(-) + q -v -(g -)(0), (Π ) = -v + (g + )(0) -B + e LB + v + (g + )(L) -q + e LB + v + (g + )(L) + q + v + (g + )(0) +q + e B -v -(g -)(-) -q + v -(g -)(0), and                                v -(g -)(x) = 1 2 B -1 - x - e (x-t)B -g -(t) dt + 1 2 B -1 - 0 x e (t-x)B -g -(t) dt, v + (g + )(x) = 1 2 B -1 + x 0 e (x-t)B + g + (t) dt + 1 2 B -1 + L x e (t-x)B + g + (t) dt, v -(g -)(x) = 1 2 x - e (x-t)B -g -(t) dt - 1 2 0 x e (t-x)B -g -(t) dt, v + (g + )(x) = 1 2 x 0 e (x-t)B + g + (t) dt - 1 2 L x e (t-x)B + g + (t) dt.
We will focus ourselves, for instance, on the first term a 1 , that is

a 1 (x) = D -1 e -xB --e (x+2 )B -B -1 - I + e 2LB + (Π ).
After replacing (Π ) by it expression, we obtain explicitly -e -xB -e LB + v + (g + )(L) + q -D -1 B -1 -e -xB -e 3LB + v + (g + )(L) -q -D -1 e (x+2 )B -B -1 -e LB + v + (g + )(L) -q -D -1 e (x+2 )B -B -1 -e 3LB + v + (g + )(L) -q -D -1 e -xB -B -1 -v + (g + )(0) -q -D -1 e -xB -B -1 -e 2LB + v + (g + )(0) +q -D -1 e (x+2 )B -B -1 -v + (g + )(0) + q -D -1 e (x+2 )B -B -1 -e 2LB + v + (g + )(0) -q -D -1 e -xB -B -1 -e B -v -(g -)(-) -q -D -1 e -xB -B -1 -e 2LB + e B -v -(g -)(-)

a 1 (x) = D -1 B -1 -e -xB -v -(g -)(0) + D -1 B -1 -e -xB -e 2LB + v -(g -) ( 
+q -D -1 e (x+2 )B -B -1 -e B -v -(g -)(-) + q -D -1 e (x+2 )B -B -1 -e 2LB + e B -v -(g -)(-) +q -D -1 e -xB -B -1 -v -(g -)(0) + q -D -1 e -xB -B -1 -e 2LB + v -(g -)(0) -q -D -1 e (x+2 )B -B -1 -v -(g -)(0) -q -D -1 e (x+2 )B -B -1 -e 2LB + v -(g -)(0) = 12 k=1 b k (x).
Let us estimate, for instance, the four first terms. The others can be treated analogously. The same techniques as above lead us to obtain similar estimates for the terms a i , i = 2, ..., 4 in w -.

For the convolution term v -(g -)(.), using Proposition 22, we have v -(g -)(.) L p (-,0;E) Cd - d -+ |λ + r -| g -L p (-,0;E) .

Hence we can conclude that there exists of a constant C > 0, independent of λ ∈ S π-ε 0 , such that w -L p (-,0,;E) C |λ| g -L p (-,0;E) + g + L p (0,L;E) .

Using the same calculus as above, we obtain the existence of a constant C > 0, independent of λ ∈ S π-ε 0 , such that w + L p (0,L;E) C |λ| g -L p (-,0;E) + g + L p (0,L;E) .

Summing up, we obtain

w L p (-,L;E) C |λ| g L p (-,L;E) .
Then, we conclude that there exists C > 0, such that, for all λ ∈ S π-ε 0 , we have (S -λI) -1 L(L p (-,L;E))

C

|λ| , which implies that S generates an analytic semigroup in L p (-, L; E).

Proposition 3 .Proposition 4 .

 34 If (-∞, 0) ⊂ ρ(Λ) andM (Λ) := M (Λ, π) := sup t>0 t(Λ + tI) -1 < ∞, then M (Λ) 1 and Λ ∈ Sect (πarcsin(1/M (Λ))) . Let Λ ∈ Sect(ω Λ ) and ν ∈ (0, 1/2]. Then Λ ν ∈ Sect(νω Λ ), and therefore -Λ ν generates an analytic semigroup.

Proposition 19 .

 19 Statement 2 is obtained by the same way. Let f ∈ L p (-

  0) -D -1 e (x+2 )B -B -1 -v -(g -)(0) -D -1 e (x+2 )B -B -1 -e 2LB + v -(g -)(0) -D -1 e -xB -e B -v -(g -)(-) -D -1 e -xB -e 2LB + e B -v -(g -)(-) +D -1 e (x+2 )B -e B -v -(g -)(-) + D -1 e (x+2 )B -e 2LB + e B -v -(g -)(-) +q -D -1 B -1

b 1 ( 2 D 0 -e 2 D 1 + e 2 B 0 e 0 e- 1 + e 2 B 0 e

 12021200120 .) L p (-,0;E) = D -1 B -1 -e -•B -v -(g -)(0) L p (-,0;E) = 1 -1 B -1 -e -•B - 0 -e -tB -g -(t)dtL p (-,0;E) -tB -g -(t)dt p E dx 1 p ; then, from (23), Corollary 21 and Lemma 23 statement 3. (with [a, b] = [-, 0]), there exists a constant K > 0 independent of λ such that b1 (.) L p (-,0;E) K d -d - d -+ |λ + r -| d -+ |λ + r -| g -L p (-,0;E) = Kd - d -+ |λ + r -| g -L p (-,0;E) .For the second term b 2 , we haveb 2 (.) L p (-,0;E) = D -1 e -•B -e 2LB + e B -v -(g -)(-) L p (-,0;E) = 1 -1 B -1 -e 2LB + e 2 B -e -•B - 0 -e tB -g -(t)dt L p (-,0;E); thus, using the same arguments as above, there exists a constant K > 0 independent of λ such thatb 2 (.) L p (-,0;E) Kd - d -+ |λ + r -| g -L p (-,0;E) .For the third term b 3 , we haveb 3 (.) L p (-,0;E) = q -D -1 B -1 -e 2 B -e 2LB + e .B -v + (g + )(0) L p (-,0;E) -e 2LB + e .B - L tB + g + (t)dt L p (-,0;E); thus, using the same arguments as above, there exists a constant K > 0 independent of λ such thatb 3 (.) L p (-,0;E) qK d + /d - d -+ |λ + r -| d + + |λ + r + | e •B - L tB + g + (t)dt L p (-,0;E). Now, the boundedness of the semigroup e •B -and the Hölder inequality lead us to obtainb 3 (.) L p (-,0;E) qK d + /d - d -+ |λ + r -| d + + |λ + r + | g + L p (0,L;E) .In the same way, for the fourth term b 4 , we haveb 4 (.) L p (-,0;E) = q -D -1 B -1 -e (•+2 )B -e 3LB + v + (g + )(L) L p (-,0;E) -e 4LB + e •B - L -tB + g + (t)dt L p (-,0;E) ; then b 4 (.) L p (-,0;E) qK d + /d - d -+ |λ + r -| d + + |λ + r + | g + L p (0,L;E) .Therefore, we can conclude that there exists M > 0, independent of λ such that a 1 L p (-,L;E) M d - d -+ |λ + r -| g -L p (-,0;E) + qM d + /d - d -+ |λ + r -| d + + |λ + r + | g + L p (0,L;E) .

  + ∇u + .∇w + + r + u + w + ) dxdy = + ∇u + ) w + + r + u + w + ) dxdy

								a, b) ,
	see [17] p. 160.					
	The Green's formula for w + in H 1 Γ + (Ω + ) gives	
	Ω +	(d Ω + (-∇. (d + Γ 0 -d +	∂u + ∂ν	w + dy,
	where the last integral means that		
		Γ 0	-d +	∂u + ∂ν	w + dy := d +	∂u + ∂ν	; w +	H 1/2 (Γ 0 ) × H 1/2 (Γ 0 )
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