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Abstract

We study an elliptic differential equation set in two habitats under semi-permeability
conditions at the interface. This equation describes some dispersal process in population
dynamics. Using functional calculus and results in Lutz Weis [22] among others, we show
that the associated space operator generates an analytic semigroup in LP-spaces.
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1 Introduction

In this work, we are interested in the study of a reaction-diffusion model for population dynamics
with a dispersal process in two habitats. This model takes into account the reaction effect of
individuals on the interface of these habitats.

Our aim is to show that this dispersal process generates an analytic semigroup in the frame-
work of LP-spaces. The present work completes naturally the results obtained in [10].

Many authors have worked on different models of reaction-diffusion problems related to
biology or various environmental phenomena. We were inspired, in particular, by the work in
[4], where the model considered incorporates the response of individuals on the interface between
the habitats. This study was detailed in one space dimension and focused mainly on the spectral
aspect of the dispersal process, taking into account the dimension of the habitats.

Here, the concrete example which illustrates our theory, is modeled by partial differential
equations of parabolic type set in two juxtaposed habitats 2_ and €24:

Q=0_UTyuUQy,,

where

Q_ = (—£,0) x(0,1),

Lo = {0} x (0,1),

Qy = (0,L) x (0,1),

Iy = 0Q4\To,
and ¢, L > 0. The reaction-diffusion equation is
ou d_Au_(t,z,y) + F_(u_(t,z,y)) in (0,7) x Q_,
o= { 4B (2,9) + Py us(t,2,9) i (0,7) x Q4



under the initial data

P+ in QJra

w0, = { - Q. (3)

the boundary conditions

u_=0 onl_,
{ ur =0 on Iy, (4)
and the interface conditions
ou_
d_(‘)L =q(uy —u—) onTy,
! (5)
8u+

d.,.a =q(uy —u_) on Ip;

where d+ > 0 is the diffusion coefficient, ¢ > 0 is given and u+ represents a population density
in Q4.

These two last conditions in (5) mean that the flux at the interface depends on the density of
the population. They are of the Robin type and express the semi-permeability of the interface
To.

In [10], the authors have considered different interface conditions in the framework of the
space of continuous functions which are the following: the non-continuity of the flux and the
continuity of the dispersal at the interface:

Ou- _ a0
or " on
d-Au_+ F_(u_) =dyAuy + Fi(uy) on Iy,

(1 - Ol)d, on Fo,

where o € (0,1) with o # 1/2.
Here, we consider only the linearized part of logistic functions, that is

{ F_(u_)=r_u_ on (—£,0)x (0,1),
Fi(uy)=ryuy on (0,L) x (0,1),

where r4 > 0.
The study of the above reaction-diffusion problem depends essentially on the nature of op-
erator P defined, in the stationary case, by

oo

Do — d_Au_ —r_u_ in Q_,
= d+AU+ — r+Uu4 in Q+,

u€LP(Q): u_ e WP (Q_), up € W?P(Qy), ug =0 on 'y
and uy satisfies (5) ’

where p € (1,400). Note that the transmission conditions (5) are well defined since, for example,
if u_ € W2P(Q_), then

ou_ _
W’{o}x(o,l) e WTt/pr(0,1),
see [11], Corollary 1, p. 682.

Now, let us write the above parabolic equation in an abstract formulation. First, let us
introduce, in the Banach space Fy = L? (0,1), operator Ay defined by

{ D(Ap) = {p € W?P(0,1) : 9(0) = (1) = 0}, (©)
(Aow) () = ¢" ().



It is known that this operator is closed linear with a dense domain and verifies the two following
properties :

C
L(Eo) 1+ |z

3C>0:Vz2€ 8,0, U0}, |(21 - 49)7 , (7)

where
Srco = {z € C\{0} : Jarg 2| < 7 — 20},

for any small g > 0 such that m—ep > 0 and there exists a ball B(0, ), such that p(Ag) D B(0,0)
and the above estimate is still true in Sr_., U B(0,9); and

{ Vs e R, (—Ag) € L(Ey), 304, € (0,7/2) :

sup H€—9AO|S|(_AO)1‘5
seR

(8)

< 400,

L(Eo)
see for instance the method used in [14], Proposition 3.1, p. 191.
Remark 1. The above problem can be considered in dimension n by setting

Q= (-¢L) x w,
where © C R"™!, n > 1, is a bounded regular open set, By = LP(w) and

{ D(Ap) = {p € W?P(w) : p|gw = 0},
Aop = Ag;
here Ay denotes the Laplace operator related to variables on .
We will also use the following usual operational notation of vector-valued functions:
ut(t,z)(y) :==us(t,z,y), te€(0,1), (z,y) € Qt.
So, we have to analyze the abstract Cauchy problem
14y —

[tz g
set in the Banach space LP(—¢, L; Ey), where
w € LP(—4,L; Ey) : w_ € W2?P(—£,0; Eg),wy € W2P(0, L; Ey)

D(So) = { w (—0)=0,wy(L)=0,d w (0) = q(ws(0) —w_(0)) ,
and dyw, (0) = g (1w (0) — w_(0))

d_w” (z) +d_Apw_(z) —r_w_(x) in (—¢,0),
dyw’] (x) + dyApwy () — rpwy(z) in (0,L).

(Sow) () = {

We then consider a more general operator S instead of Sy where Ag is replaced by a closed linear
operator A in a Banach space E satisfying some assumptions specified in Section 4.

Our method is essentially based on the use of abstract differential equations of elliptic type.
The merit of this method lies above all in the fact of having the explicit formula of the resolvent
operator of S (and therefore of Sp), see Section 6.

This paper is organized as follows.

In Section 2, we only show that problem —Pu = g can be studied in the variational frame-
work. In Section 3, we recall some useful notions on sectorial operators. Section 4 contains our
assumptions and the main results. Section 5 is devoted to the establishment of some useful prop-
erties on complex numbers. Section 6 is composed of two subsections. In the first subsection,
we explain the spectral equation of § which leads to an abstract system to be solved. Thus, we
invert the determinant operator of the above system by using among others the H°-calculus.
This leads us to obtain the explicit solution of the spectral equation. Then, we study the optimal
regularity of this solution. In the second subsection, we give some sharp estimates which lead us
to analyze the behavior of the resolvent operator of S. We then obtain our main results which
state among others that S generates an analytic semigroup in LP(—¢, L; E), for p € (1, +00).



2 Variational formulation of —Pu =g
Let a,b € R, with a < b. For any

¢: (a,b) — R
r o p(x),
we set
G: R — R
~, v ) e(x) forzxe (a,b),
v cp(x)—{ 0 for z € R\(a,b),
and we define a subspace H1/? (a,b) of HY?(a,b) by
H2(a,h) = {p € H'?(a,0): e H(R)}.

In [15], the authors denoted this space by H%Q (a,b) which also coincides with the following
particular interpolation space

(H5(a,b), L*(a,b))

The interpolation spaces are described, for instance, in [11].
Set

1/2,2°

Hp, (Q) = {Ui € H' (Q4) tugr, = 0};
for vy in Hlli (Q+), it is clear that vy p, is in H'/2 (Ig).
Problem —Pu = g writes in the form

—div (d+VU+) + r+uy = g+ in Q+,
—div(d_-Vu_)+r_u_ = g_ in Q_,
ou
d+7: = ¢(uy —u—) onTy,
Ou_
d‘@ = ¢q(uy —u_) on Iy,
ur = 0 on 'y,

where v is the normal unit vector oriented towards the interior of 2. The variational formula-
tion is set in the hilbertian space

V= HE () x HE (Q),

with
a((uy,u"), (wy,wo)) = /(d+Vu+.Vw++r+u+w+)dxdy
Q4
—l—/(d_Vu_.Vw_—i-r_u_w_)dxdy,
o
and

b () (i) = [ qlur = us) (wy —w) dy,
o

l(wy,w_) = /g+w+dxdy+ /g_w_dxdy,
Qy aQ_



then
a((ug,ug ), (W, w-)) + b ((ug, us) , (Wi, wo)) = Hwy, w-)

Now, taking w4 in D (Q24) and w_ = 0, we have in the sense of distributions

—div (p+Vuy) +ryup = fy in Q4.
Jut
For gy in L? (), the trace of d+a— on I'g, can be defined in the dual space ( H/2 (T )
of HY/2(Ty). In fact, operator §/0v maps continuously from H'(0,1) into L%(0,1) and L?(0,1)
into H~1(0,1), then, by interpolation it maps continuously from (H'(0,1); L*(0 ,1))1/22 into
(L%(0,1), H~Y(0, 1))1/2 5 but we know that

(H#'(0,1), 220, 1)) = = H"(0,1),

1/2,2
and , - ,
(L20,1), H7Y(0, 1)) = [(Hg(o, 1),1;2(0,1))1/2’2] - <H1/2 (a, b)) :

see [17] p. 160.
The Green’s formula for w; in HIIUr (Q4) gives

1/2,2

/ (d4Vur NVNwy +ryuswy)dedy = / (=V.(d+Vugp)wy + reusws ) dedy
o Q4

+ (_dJr@qu) wdy,
Ty ov

where the last integral means that

Ouy ou
/Fo < " on v ) el <d+ v + ><m(ro))lx<m(ro)) |

Similarly, for
—div(d_Vu_) +r_u_ =g_ in Q_,

we obtain

/ (d_NVu_Nw_ +r_u_w_)dzdy = / (=V.(d-Vu_)w_ +r_u_w_)dzdy
— Q_

ou
d_ _d
+ ( ay>w Y,
as above, the last integral means that
/ ( d_f)u )w_dy = <d_8u_ w_> - r .
Ty 8V 0y (HI/Q(FO)) % (Hl/Q(FO))
It follows that

/Fo( d+0(‘9 )w+dy+/ < “1/>w dy+/ q(uy —u_) (wy —w_)dy = 0;

taking w_ = 0, we deduce that

/

—d+8; +q(uy —u_)=01in (P/IT//2 (I‘O)) ,
in the same way, w4 = 0 gives
Ou_ ) — '
d,ﬁ —q(uy —u_)=0in (Hl/2 (F0)> .
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3 Recall on sectorial operators

Let w € [0, 7]. We put

w T

{ {z € C\ {0} : Jargz| < w} if w € (0, 7],
(0,400) if w=0.

Let us recall some known results from [12].

Definition 2. Let w € [0,m). A linear operator A on a complex Banach space E is called
sectorial of angle w if

1. o(A) C S, and

2. M(A,w'):= sup [[AMA—=X)"Y| < oo forallw € (w,m).
)\G(C\SW/

We then write: A € Sect(w). The following angle
wp = min{w € [0,7) : A € Sect(w)},
1s called the spectral angle of A.

We recall the following properties of the set Sect(w). It is clear that Statement 2. implies
necessarily that A is closed.

Proposition 3. If (—o0,0) C p(A) and

M(A) := M(A,m) := sup Ht(A + tI)_lH < 00,
t>0

then M(A) > 1 and
A € Sect (m — arcsin(1/M(A))) .

Proposition 4. Let A € Sect(wy) and v € (0,1/2]. Then AV € Sect(vwy), and therefore —AY
generates an analytic semigroup.

For more details, see [12], p. 80-81.
Set

H®°(S,) ={f: f is an holomorphic and bounded function on S, },

with w € (0,7); we recall that if f € H>(S,,) is such that 1/f € H*(S,,) and
(1/f)(A) € L(E),
then f(A) is boundedly invertible and
[FN] = (/5 @), (11)

see, for instance [5].



4 Assumptions and main results

We suppose that F is a complex Banach space satisfying the following geometrical property
E is a UMD space; (12)

we recall that a Banach space F is a UM D space if and only if for all 1 < p < 400 the Hilbert

transform is continuous from LP(R; E) into itself, see [3]. Consider a closed linear operator A

satisfying:

Jege (0,m/2): Spr_ee U{0} C p(A) and 3C4 >0
- C (13)
1 A

YA€ Sr_e,, H(A Y ch) ST

{ VseR, (—A)* e L(E), 304 € (0,e) :
(14)

sup He*QAM (—A)ss
seR

£(B) < +00.

We deduce in particular that —A € BIP (E,604), see the precise definition in [20]. Note that
—Ap, defined in (6), satifies —Ay € BIP (LP(0,1),¢&p).
We define operator S by

w € LP(—4,L; E) : w_ € W*P(—£,0; E),wy € W?P(0,L; E)
D(S) = { w-(—4)=0,wy(L)=0,d-w"(0) = ¢ (wi(0) — w—(0)) :

(0)
d_w" (z) +d_Aw_(z) —r_w_(z) in (=¢,0),
dyw (z) + dyAwg (z) —rpwg(x) i

(Sw) (z) = {

Thanks to the fact that the domain is cylindrical, we will give an explicit expression of the
resolvent operator of S by using essentially the analytic semigroups theory and the functional
calculus.

Therefore, our aim results are the following:

Theorem 5. Assume that (12), (13) and (14) hold. Then, operator S generates an analytic
semigroup in LP(—{, L; E).

As corollaries, we obtain.
Theorem 6. Operator Sy generates an analytic semigroup in LP(—{, L; Ep).

Theorem 7. Operator P generates an analytic semigroup in LP(S2).

5 Preliminary results
In this section, we recall some useful results and we state some technical results.
Proposition 8. Let c € R\ {0} and z € C\ R. Then, we have

{O < Jarg(z+¢)| < Jarg(z)] < 7 ife>0,

0 < Jarg(z)] < Jarg(z+¢)| < 7 ife<O.

Proof. For z € C\ R, we have

B Im(z)
arg(z) = 2arctan (W) , (15)

and



1. if ¢ > 0, then

|Im(z + ¢)] )
= 2 t
larg(z)] arctan <Re(z) Iy p—
I
> 2arctan ( | m(z + C)’ )
Re(z) +c+ |z + ¢
= |arg(z + ¢)|.
2. if ¢ < 0, then
Im(z + ¢)] >
= 2 t
[arg (2)| arctat (Re(z) +c—c+ |z

= 2arctan ( |Im(z + C)’ )

Re(z) + ¢+ |c| + |7]

IIm(z + ¢)| )
Re(z) + ¢+ |z + |

= l|arg(z + ¢)|.

< 2arctan (

Proposition 9. Let z1,20 € C\ {0}. We have

oo (2282) —er8(] |

|21 + 22| > (|21] + |22]) 5

This result is given by Proposition 4.9, p. 1879 in [6].
Proposition 10. Let 0 < o < 7/2 and z € S,. We have

1. larg(1—e *) —arg (1 +e7?)| < a.

2. [1+e? >1— e/ (2tan(a)),

This result is given in Proposition 4.10, p. 1880 in [6].
Corollary 11. Let a € (0,7/2], 5 € [0,/2] and z € C\ {0}. Then

1. if =B < arg(z) < a — 3, then we have
—B<arg(l—e?)—arg(l+e?) <a-—p.
2. if —a+ B < arg(z) < S, then we have
—a+pB<arg(l—e %) —arg(l+e7) <B.
Proof. Since S, is an open sector, then Proposition 10 remains true for a = 7 /2.

1. First, let 4 = 0. Then, we have 0 < arg(z) < «. As in the proof of statement 1,
Proposition 4.10, p. 1880 in [6], we have Re(1 —e™?), Re(1 +e7%) > 0. Let us prove that

arg (1 —e™®) —arg(14+e77) > 0.

To this end, we must show that

Re(l—e2) )~ Re(l1+e2) )’

8



that is
Im(1 —e?) S Im(1+e77?)

Re(1 —e=%) 7 Re(l +e?)’

Im(l —e *)Re(1+e %) > Im(l+e *)Re(l —e 7). (16)

Since we have
Re(l —e™*

( )
Re(1+e77)
( )
( )

1+ |z| cos(arg(—=2))
—|z[ sin(arg(—z)),
|2| sin(arg(—2)),

1 — |z| cos(arg(—z)),

Im(1 —e™*
Im(1+ e %

then, (16) is equivalent to
—|z]sin(arg(—2)) (1 + |z| cos(arg(—2))) > [2|sin(arg(—2)) (1 — || cos(arg(—2))) ;

which is true since sin(arg(—z)) < 0. Now, taking into account that 0 < arg(z) < o and
Proposition 10, we obtain

O<arg(l—e?) —arg(l+e?) <a. (17)

‘;] and —f < arg(z) < a — .

If 0 < arg(z) < a — B, then from (17), we deduce that

Now, let 8 € (0,

—f<0<arg(l—e?)—arg(l+e ) <a—p.
If —p < arg(z) <0, then z € Sz and from Proposition 10, we have
—B<arg(l—e?) —arg(l+e %) < f.

Note that, when arg(z) = —f, then the previous inequality holds true since 5 < «. Finally,
!

the result follows since 8 < 5"

2. In the same way, we obtain the expected result.

O
Proposition 12. Let 21,22 € C\ {0}. Assume that z1 + z2 # 0 and
{ arg(—z0) < arg(z1) < arg(zg) if arg(zs) € [0, 7],
- < arg(z) < arg(ze) if arg(ze) € [—,0].
Then, we have
arg(z1) < arg(z1 + 22) < arg(z2).
Proof.
1. Assume that arg(zy) = 7.
If 0 < arg(z1) < 7, from Proposition 8, we obtain the expected inequalities.
If arg(z1) = arg(z2) = 7, then
arg(z1) = arg(z1 + 22) = arg(z2). (18)

If arg(z1) = 0, then the expected inequalities hold since we have

arg(z1) if z1 > |22,

arg(21 + 22) = { arg(zz) if |z2] > 21.

9



2. Assume that arg(z2) = —m, then arg(z;) = arg(z2) = —7 and (18) holds.

3. Assume that arg(zz) € (—m,0]. Then, arg(z1) € (—m,arg(z2)], Im(z2) < 0 and Im(z;) < 0.
From (15), we have
Im(z1) < Im(z9)
Re(z1) + |21| — Re(z2) + 22|

Hence
Im(z1) (Re(z2) + [22])+Im(22) (Re(z2) + [22]) < Im(22) (Re(21) + |21|)+Im(22) (Re(22) + |22]) ,
wich gives

Im(z1 + 22) (Re(22) + [22]) < Im(22) (Re(z1 + 22) + [21] + [22]) -
Since Im(z2) < 0, then we have

Im(22) (Jz1] + |22]) < Im(22)[21 + 22].

Therefore

Im(z1 + 22) (Re(22) + |22]) < Im(22) (Re(z1 + 22) + |21 + 22])

and due to (15), we obtain
arg(z1 + z2) < arg(z2).

We extend the above result, by rotation, for arg(zs) € (—m, 7).
4. Similarly, for arg(z1), arg(z2) € [0, 7), following the same steps, we deduce that
arg(z1) < arg(z + 22),

and, by rotation, we obtain the expected result.

O
6 Proof of Theorem 5
6.1 Spectral study of S
In this sections we will focus ourselves to study the spectral equation
Sw—Iw=fe&=LP(—( L;E), (19)

where p € (1, 400).
Our aim is to estimate the resolvent operator
(CREUN ’
L(LP(—¢,L;E))
where X is a complex number in some sector to specify. This estimate will allow us to prove

that § generates an analytic semigroup in £. So, after the resolution of the spectral equation,
we have to estimate ||w||;p_ 1, p) that is

||w—||Lp(_€’O;E) and Hw+||LP(O,L;E) :

We recall that all the constants r—,r,d_,d,q are strictly positive. In the sequel, we will use
the following notations:
fx

q
- d = 1=, 20
i =g, and oge= (20)

A T4
)\ = — =
+ ds P+

10



6.1.1 The system verified by the spectral equation

Equation (19) can be formulated as

—_(x) in (—¢,0),
+(l‘) in (0>L)7

I

{ w () +(A—p_I—XA_Dw_(z) =

Assume that the complex A satisfies:
larg(\)| < m — e, (21)
where ¢( is a small fixed number. Set
A_=A—p_IT—X_T and AL =A—p I — )1,

so we have

D(A_) =D(A;) = D(A).
Proposition 13. Operators —A_ and —Ay are sectorial and satisfy

—A_ € Sect (m —arcsin (1/M(—A_))),
— A, € Sect (m — arcsin (1/M(—A4))) ,

where M(—Ay) is defined in Proposition 3.

Proof. If A € R4, then due to (13), —A_ and —A are sectorial operators.
Now, let A € Sz, \Ry and ¢t > 0. We will verify that —A_ is a sectorial operator in E and
(—00,0] C p(—A_). Since p_ +t > 0, from Proposition 8, we obtain

larg (p— + 1+ A-)| < farg (A-)] = |arg(A)| <7 — eo.

Then
M(—A_) = sup Ht(—A, n u)—1H — supt H(—A F(po+t+ ) 1)—1H :
>0 t>0 L(E)
Then, from (13) and Proposition 9, we have
_ Ca Ca
—A+(p_+t+r )7 < <
H( G /D Hﬁ(E) L+ |p—+t+A| " |p—+t+ |
< Ca -
(I~ + A + ) cos (285220
< Ca

£ cos ( Iarg(p—2+>\—)| ) '

Moreover, from Proposition 8, we obtain

larg (|p— + A_])| < |arg (A-)| = |arg(A\)] < 7 — e,

\arg(p_ﬂ_)\) (2-2) o (2)
cos< 2 > CcoS 5" 3 = sin > > 0.

and thus

11



Finally, we have

M(—A_) <sup _ 0 = _Ca < +00.

>0\ tgin (820> sin (?)

Hence, due to Proposition 3, we obtain the expected result for —A_. For —A,, the proof is
similar. O

Therefore, the following operators

—v—-A, B_=—-y/—-A_ and By=-y-A4,
of domain
D(B) = D(B_) = D(B.),

are well defined for all A € S;_., U {0} and generate analytic semigroups in E, see [2].
By using estimates (28)-(29) in Lemma 4.2, see [9], there exist C_, Cy > 0, independent of
A such that for all z € S;_., U {0}, we have

C_ C_
[B-==07 0y < T < T
ew) S TF P A+l 1T )
_ C C
H(B+—ZI) 1H < - <——,
oo S TE g tpdd 41 S 1117
from which it follows that
ST < S O S 0
L(E) d_ + [N+ r_| L(E) de + [N+ ry]
Our problem (P4) can be written in the following form
w” (z) — B2w_ (z) = g_(x) in (—£,0),
w'l (z) — Biwy () = g1 (z) in (0, L),
w_(—¢) =0,
{ w4 (L) =0, (24)
w’ (0) = g (w4 (0) —w-(0)),
w/y (0) = g1 (14 (0) — w_(0))

Then, we have
w(z) = OB fem Bk 4o (g9 )(x), e (=L0),
wy (x) = e Prjy+eEmBeky 40, (g4 )(x), =€ (0,L),

with j+, k+ € F and

1 1
v-(g)@) = 5B [ eI e+ B / =08y (t)dt,
1 . 1 .
vrlg)@) = 5B [Pyt + 5B / =008+ g, (1)

see for instance Proposition 5.1, p. 1882 in [6].
Then, we deduce that

{ w_ (0) = B_eP-j_ —B_k_+v' (9-)(0),
Bijy — ByetPrky + ) (94)(0),

g\
+
—~
=

I

12



where

g0 =3 [ Pg @it ad o0 = [ Prgiar

The boundary and the interface conditions give

jo = —ePko —v_(g-)(—0),
ki = —eMPr iy —ui(g4)(L),

d_(B_e'B-j_ — Bk +v (9-)(0)) =

0 [(J + P oks +0a(90)(0)) = (P + ke +o(9)(0))]

dy <B+j+ — ByelPrky + 0 (9+)(0)) =

g (54 + PP ks +v4(94)(0)) = (B + ko +v_(9)(0))];
then, the two last equations lead us to the following system

d_ [B_eZB— (—ezB— ko —ov_ (g_)(—ﬁ)) —B_k_+ UL(g_)(O)}
= q[(j+ +elPr (—eLBWJr - U+(g+)(L)) + U+(9+)(0))

— !B (—eBk_ —v_(g)(—0)) — k- —v_(g-)(0)],

di [Bijy — BretBr (—ebPji — vy (g0)(L)) + v (94)(0)]
= ql(jy + "2+ (=ePPHjs —vi(gi)(D)) +v4(94)(0))

— e (=B — v (g )(~0)) = k- —v_(g-)(0),
which is equivalent to

—B_e*B-k_ — B _eB-v_(g_)(—f) — B_k_ + 1" (9-)(0)

=q-j+ —q-e*Pr i —qe"Prui(g1) (L) + g-v1(9+)(0)
+q-e?P kot qePro_(g-)(—0) — q-k- — g-v_(g-)(0),

Bijs + By Prj + BiretPrui(g1) (L) + v (94)(0)

= q1dy — g+ gy — qretProg(940) (L) + gv4(94)(0)
+are? ko +qrePro_(9-)(—0) — ark- — grv_(9-)(0).

Therefore, the above system becomes

{B, (I+ eQ@B,) —q (I _ 62@3,)} k_+q_ (I _ 62LB+) i = (1),

qr (I — e%B—) k_+ [BJr (I+ €2LB+) —qy (I — eQLBJr)} Jy = ("),

where
) = v (9-)(0) = B_e"P-v_(g_)(—0) + g-e"Prvy (94)(L) — q-v4(9+)(0)
—q-ePv_(g_)(=0) + g-v_(9-)(0),
1) = =, (94)(0) = ByelProy (g4 ) (L) — qre™Pruy (91)(L) + qrv4(g4)(0)
+apePu_(g-)(=0) — qv-(g-)(0).

13



It follows

{(14_6283_) — ¢ B! (I— 62z3_>] k_ +q B! (I— €2LB+)j+ — B-l(Ir),

q+B;1 (I _ 6253_) k_ + [(I+€2LB+) _ q+B;1 (I _ 62LB+>} = B;l(H”).
The abstract determinant of this system is
D = [(1+e¥P) —q Bt (1 -] [(14e*P+) = qu B (1 - 254
—q+B;1 (I . ezzB,) qu:I (If 62LB+)
_ (I_i_eQEB,) (I+62LB+> _ (I+62é3,) q+B;1 (I— 62LB+>
—q_B~! (I — e%B—) (I—i— eZLB+>
— (1 + e%B*) (I T eQLB+) D.,

where

D, = {I By (T M) (T 284) 7 BT (1P (14 e”B—)_l} .

We recall that operators (I — 62L3+), (I + 62LB+), (I - 62“3—) and (I + e”B—) are boundedly

invertible by using the same method in [16], Proposition 2.3.6, p. 60.

6.1.2 Invertibility of the determinant

In order to invert D,, we will use the H°-calculus for sectorial operators. To this end, we fix
A € Sz, U{0} and for all z € S,,, we consider the following function

s (1 _ 2L z+A++P+) g (1 e z+>\_+p_>

\/m(1+6721: z+)\++ﬂ+) + m(l—ke*% z+)\_+p_)

where the constants p+, ¢+ and the complex parameter A+ are defined in (20).

fz)= |1+

I

Proposition 14. Let g9 € (0,7/2) and X\ € Sz_-, U{0}. Then, for all z € S;,, we have
|f(2)] > sin (50> .
2
Proof. Let A # 0. We have to consider the two following cases:
1. —gp < arg(Ay) < m — o,

2. —m+¢gp < arg(Ay) < ep.

Let —ep < arg(Ay) < m —gp. Since |arg(z)| < ey, it is clear that Ay and z are in the same
half-plane and that A+ + z # 0. Then, from Proposition 12, we have

—eo < min (arg(A+), arg(z)) < arg(z + A+) < max (arg(A+),arg(z)) < 7 — o,
and thus, if arg(z + A1) # 0, from Proposition 8, we deduce that

larg(z + At + p1)| < |arg(z + A1) < 7 — €p,

14



and if arg(z + A\y) = 0, then arg(z + A+ + p+) = 0. Moreover, when arg(z + Ay + p+) < 0, then
due to Proposition 8, we have

—eo < arg(z + A\x) < arg(z + A+ + p+).

Therefore, we obtain that
—go <arg(z 4+ Ap +py) <7 — £op.

Hence, setting L = 2L or 2/, we deduce that

£ _ T €
—;garg< Z+)\i+,0i>:arg<l/ Z+/\i+,0i)<2_20- (25)
We set
a4 (1 _ 2L z+)\++p+>
2+ Ay +pg (1 + e_QL\/m)

Then, due to Proposition 9, it follows that

9 (1 e z+)\_+p_)

VEF A T (L4 e 2VEAse)

and 29 =

zZ1 =

F =11+ 21+ 2] > (1+ |21 + 22]) 5 5

cos (arg(z1 + 22))‘ > cos (arg(zl i Zz)) .

Now, in order to use Proposition 12, we have to prove that z; and 29 are in the same half-plane.
Since we have

arg(z1) = arg (1 —e 2k Z+)‘++p+) —arg (1 +e 2L Z+)‘++p+) —arg («/z + A+ p+) ,

and

arg(ze) = arg (1 —e ¥ Z+’\*+p*) —arg (1 +e2 Z+/\*+p*) —arg (w/z + A+ p_> ,

from (25) and Corollary 11, with @ = ~ and § = %0 it follows that

2
€0 —2L\/z 4 s +p —2L\/z4 A +p T _ %o
_Y < _ ++o+Y) _ ++p+ 2 _ =
2\zabrg<1 e ) arg(1+e )<2 5
with
_fo arg (1 o2 z+)\_+p_) _arg (1 L2 z+)\_+p_) <cT_%o
2 2 27
hence
€ T €
—50 — arg (\/Z+>\++P+> <arg(z1) < 5—50 — arg (\/Z+>\++P+>,
and

Then, due to (25), we obtain

T £ T € ™
-3 < —Eo—arg <\/2+)\+—|—p+) <arg(z) < 5—50—arg <\/z—|—)\++p+) < 5

< ( + A )< ( )< £o < b\ )<
—— < —— —ar + < ar — — — —arg|+/z+ + < —.
5 5 arg z p arg(zo 5 5 arg p 5

15



m™ T

Thus, arg(z1),arg(z2) € ( 575

) Then, in virtue of Proposition 12, we deduce that

min (arg(z1), arg(z2)) < arg(z1 + 22) < max (arg(z1), arg(z2)) .

Moreover, due to Proposition 10, we have

arg (1 _ 2L z+>\++p+) —arg (1 4+ e 2L z+)\++p+) — arg ( [z + Ay + p+>’
< ‘arg (1 — 2k Z+’\++”+> —arg (1 +e 2k Z+>‘++p+>’ + |arg (\/z + A+ p+>

|arg(z1)] =

and, in the same way, we have |arg(z2)| < m — g9. We then obtain

larg(z1 + 22)| < max (arg(z1),arg(z2)) < m — &o,

arg(zl+22)> (7T_€o)_ . (50>
(:os<2 > CoSs 5 5 = sin 5 > 0.

Now, when —7 4 €9 < arg(A+) < g9, then

c _ £
—g+50<arg( Z2+ At +px) = arg(L Z+)‘i+pi)<§0’

and

and due to Corollary 11, we have arg(z),arg(z2) € (_;r’;r . Thus, from Proposition 12, we
deduce the expected result. Finally, when A = 0, it is clear that, following the same steps, we
obtain a similar result. O

Proposition 15. Operator D is boundedly invertible and

D7t =D (1+ e2LB+)_1 (1+ 6263_)_1

Proof. From Proposition 14, f does not vanish on S;, and 1/f is bounded. Moreover

I7l. < s

and taking into account Proposition 10, statement 2, we have

F(z) =1 =0 (1/|:['?), =5,

(en = (i

_ (1;f> (—A)+ 1 € L(E),

then by using (11), since —A € Sect(eg), we deduce that

We deduce that

1 1
Di'=(=)(-A) eLE d ||D;? < ——-
S () cveem ama D7, AT
Finally, since (I + ¢*B-) and (I + ¢?"B+) are boundedly invertible, see [16], p. 60, Proposi-
tion 2.3.6, we obtain the expected result. ]
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Now, from equality D,A~! = A~ D,, it follows that
D'A=ADY,

on D(A), hence D; ! is a bounded operator from D(A) into itself. Therefore, by interpolation
D! is bounded from any interpolation space (D(A), E)q.p, for all a € (0,1) and 3 € [1, +0oc]
(see the definition in [11]) into itself and clearly we have also the same estimate

_ 1
HD* 1 ‘E((D(A),E)aﬁ) S sin(gg/2)"

6.1.3 Resolution of the system
Recall that
{(14_ G%B,) — ¢ B! (I _ eze&ﬂ k_+q B! (I _ 62LB+)j+ — B-l(1r),

¢ B! (I _ 62£B_) [ [<I+€2LB+) — ¢ B7! (I _ 62LB+>} j+ = BT,

where
(1) = o/ (g-)(0) = B_eB-v_(g-)(—£) +q_e"Prv,(g:)(L) — q_vs(g:)(0)
—g-ePu_(g-)(—=0) + g-v_(g-)(0),
(") = =/ (g4)(0) = Bre"Proy (g4)(L) — qre™Proy (94 )(L) + g4 (94)(0),
+qreP v (g-)(=0) — qrv_(9-)(0),
therefore
BZ'(IT) q-B~'(I — *LB+)
k. = D!
BII(H//) Kl—i_ e2LB+) . q+B;1 (I . €2LB+)}
— p! :B:l [(I+€2LB+> . q+B;1 (I . 62LB+>} (H’) . qu_T_lBil(I - 62LB+)(H//)] ’
and
(T+e#P-) —q B2 (1—-eB-)| B2
jr = D . -
Q+B+ (I _ €2€B_> B+1(H”)
= D [[(1 4¢P ) —q B (1 - e*P)| BENI) — gy By (1 - P ) BZN(IT))

We then deduce
j— _ _efB_Dlezl |:(I+ 62LB+> - q+BJ:1 (I o 62LB+):| (H/)
+q-eP- DT BT BIN(I = 2HP)(I) — v (g-)(—0),

ke = —elBipTt {(1—_’_ eQZB_) _ ¢ B~} (I _ 62@3_)] B;l(H”)
gyt P DB (1 - P ) BENAT) — v (g4)(L):

Finally, we obtain for a.e z € (—¢,0)
w_(z) = D! (e—xB, _ e(;z;+2e)B,) [(I—i— 62LB+) . q+B;1 (I . 62LB+)} B:l(H’)
Jrq_D—l (e(x—i—%)B_ _ e—xB_) B_l(I . eZLB+)BII(H//)

—elHOB0_(g_)(—0) +v-(g-)(2),
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and for all a.e z € (0, L)
wy (z) = D1 (e:cB+ . e(ZL—z)B+) {(14_ ezeB,) . q_B:1 (I . eQﬁB,ﬂ BII(H”)
+q+D’1 <€(2sz)B+ . exB+) B;l (I . 6223_) B:l(H')

—eEm0 By (g)(L) + vy (g4) (@).

6.1.4 Optimal regularity of w_ and w
Since By generates an analytic semigroup in E, we recall the following known results
{ x s e"Prap € LP (0, L; E) for all ¢ € E,

x— Bie*Pryp € P (0,1 E) <=y € (D (BY), E) .,
np’

(26)

where p € (1,400) and n € N\ {0}; see the Theorem in [21], p. 96.

We have the same result for B_ on (—/,0). Note that, for these two results we do not need
assumption (12).

Let us recall the following well-known important result proved in [7].

Theorem 16. Let X be a UMD Banach space, —Q € BIP(X,0) with § € (0,7/2) and
g € LP(a,b; X). Then, for almost every x € (a,b), we have

/I e(x_S)Qg(S) ds € D(Q) and /b €(S_x)Qg(3) ds € D(Q).

Moreover,
r— Q /x e=)9y(s)ds € LP(a,b; X) and x> Q/b e (s) ds € LP(a,b; X).
a x
We are applying these results to our operators B_ and B.. We know that —A € BIP (E,04),
with 64 € (0,e0], 0 < &9 < 7/2 and |arg(A+ + p+)| < ™ — €. On the other hand, we have
04+ |arg(Asr + pi)| <o+ 7 —eo =,

since A4 is such that |arg(A+)| < m—¢p and p+ > 0. In virtue of Theorem 2.4, p. 408 in [18], we
obtain that —A4 € BIP (E, 7 — gp). Thus —By € BIP (E, (7 — £0)/2), from Proposition 3.2.1,
e), p- 71 in [12].

We then deduce the following lemma by taking ) = By.

Lemma 17. Let h_ € LP (—{,0; FE) and hy € LP (0, L; E) with 1 < p < +00. Assume that (12),
(13) and (14) hold. Then, we have

x— B,/ e@=9B-p_(s)ds € LP (—(,0; E)
—L

0
T — B,/ e=B-p_ (s)ds € LP (—(,0; E) ,

0
x> B_/ e@)B-p_ (s)ds € LP (—¢,0; E).
¢

and
x

x — B+/ e@=)B+p (s)ds € LP (0, L; E) ,
0

L
x> B+/ =B h (s)ds € LP (0, L; E),

x

L
x> B+/ e@+)Brp, (s)ds e LP(0,L; E).
0
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Lemma 18. Let h_ € LP (—{,0; E) and hy € LP (0, L; E) with 1 < p < +00. Assume that (12),
(13) and (14) hold. Then, we have

L L
1. / e*Brhy (s)ds and/ elL=9)B+ 1\ (s)ds belong to (D(B,), E)1 , = (D(B), E):
0 0 P’

0 0

2. / e*B-h_(s)ds and/ e *B=h_(s)ds belong to (D(B_),E)1 = (D(B),E)1
—0 —¢

Proof. Let us indicate the proof of the first statement for instance. Consider the function

vi@) = [ e (s)ds
then, from Theorem 16, we know that
Y1 € WY (0,L; E) N LP (0, L; D(BL));
by using the notation in [11], pp. 677-678 for the spaces of traces, we deduce that

U1(L) € Ty (p.0, D(By), B) = (D(By), E)1 , = (D(B), E)1

pp =p?

here, the Poulsen condition is verified since 0 < 1/p < 1. By considering the function

Yo(x) = /L e(s—a:)B+hJr (s)ds,

we get

¢2(0) € T()1 (p7 0>D(B+)7E) = (D(BJr)?E)l,

1, = (D(B), B);

;717.

Statement 2 is obtained by the same way. O

Proposition 19. Let f € LP (—{,L; E) with 1 < p < +oo. Assume that (12), (13) and (14)
hold. Then, for all X € Sy_., U {0}, there exists a unique solution w € D(S) of equation (19).

Proof. Now we must show that
{ w_ € WP (—£,0; E) N LP (—£,0; D(A)),
wy € WP (0, L; E) N LP (0, L; D(A)) .

It is not difficult to see that all the boundary and transmission conditions in (24) are verified
by w_ and wy.
We recall that

(') = —B_ePo_(g_)(—0) + ' (9-)(0) + q—e"Prvi(g4)(L) — q—vi(94)(0)
—q-ePv_(g-)(—0) + q-v_(g-)(0),

and
(") = —Bye" o (g4)(L) — v/ (94)(0) — qre"P oy (g4 )(L) + g (94)(0)
+qreP v (g-)(=0) — grv_(g-)(0).
The terms
—B_e"Pu_(g)(=0) + q-e"Prui(g4)(L) — g-ePru_(g-) (),
in (IT') and

—By "oy (g0)(L) — qre"Prup(90) (L) + qre™v_(9-)(—0),
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in (II"”) are clearly regular.
From Lemma 18, the terms

o)) =387 [ g

and 1 L
v(g)(0) = 5B [T ePegy (t)ar
satisfy
—tB_
B v (g 2/ (t)dt € (D(B-),E)s .
and

1 L tB
By (g0)(0) = 5 [ ePrgp(t)dt € (D(By). B),

p7p'

We also obtain

1 (0
V(g0 =5 [ e g (tydt € (D(B-), B,
2 .y pP
and
I I tB
vy (9+)(0) = —2/0 ety (t)dt € (D(B+)»E)%,p-
Now, due to Proposition 15, we have for a.e x € (—¢,0)
w_(z) = _ D lel@t20)B- g1 [(I+ 62LB+) . q+B;1 (I . eQLB+)] (H')

+q7D_ (27+2€) B 1B (I . 62LB+)(H//)
—e 0By _(g_)(=0)
+D lem2B-p~1 KI + 62L3+> — q+B;1 (I — €2LB+)} (1)
_q D*l —xB_ B—lB—l(I _ 2LB+)(H/I)
+5 Lp- / (@=t)B- g (e + lp- / (t=2)B—g_(t)dt,
so, we can write w_ as the following superposition of less and less regular functions:
w— (r) = R(x)

_q+D—1B;16—$B, B:l(l—[/)

_qiD—lBile—CCB, B;l(]._.[,/)

—eHBy_(g)(=0)

_|_D—1 —:EB,Bfl(H/)

0
+5 Lp- / @=t)B-g_(t)dt + B / e=2B-g_(t)dt,

where, for all z € [, 0]

R(I’) — _6(1‘+2£)B_D71‘B:1 |:(I 4 62LB+) - q+B4_,1 (I o 62LB+>:| (H/)
_‘_qie(:l‘-‘rQZ)B,D—lB;lB:l(I _ 62LB+)(HII)
+e2LBr p-l—B- pg-1 [I + q+Bjrl] (H’)
+q7€2LB+D_1€_xB7 B;lel(H//)’

is clearly a regular term.
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Replacing (II') and (IT”), we obtain

and

w—(x) = Ry(x) + S1(x) + Sa2(x) + I(x),

R(z) + D7 B2 e™P= [(=B_e'Pv_(g_)(~0) + "+ vy (g4)(L)]

+D71 B2l [~ vy (g4)(0) — g v_(g-)(~0) + q-v_(g-)(0)]

~qy D BB e B [(=BeP o (g )(—0) + q-e"Pruy(g1) (L)

—qy D B B e =g vy (g4)(0) — g ePu_(g)(—0) + ¢-v_(9-)(0)]
—¢-D'B{'Ble - {—B+€LB+’U+(9+)(L) - Q+€LB+’U+(9+)(L)}

~q D B BB g0 (g4)(0) — g u(g-)(—0) + g-v-(9-)(0)]
+D7' BB e P (g0 (91)(0) — g4 v (9-)(0))

Si(z) = DT'BIle Pl (9.)(0),
Sa() = —e@H0B-y_(g.)(~0),

T 0
I(z) = %Bil /_ T g (B + %le / et=DB-g_(t)dt,

It is clear that for all x € [—¢, 0], we have

Ri(z) € D(B*) and z+— B?>Ri(z) € LP (1,0, E).

Due to Lemma 18 and (26), for a.e z € (—¢,0), it follows that

Si(x) € D(B%) and z+— B%2Si(x) € LP (—(,0; E),
So(x) € D(B%) and x+— B%2Sy(x) € LP (—£,0; E).

Finally, due to Lemma 17, for a.e z € (—¢,0), we have

I(z) € D(B*) and xz+— I(z) € LP(—(,0; E).

In the same way, for a.e z € (0, L), we obtain

wy(r) € D(BY) and z+— Biw; (z) € IP(0,L; E).

Finally, we have proved that w € D(S).

6.2 Estimate of the resolvent operator

6.2.1 Some sharp estimates

Recall that

where

B,:—\/—A—I—p,l—l—)\,l and B+:—\/—A—|—p+l—|—)\+1,
A T4
)\ = — d = —
+ ds and O+ Az’

with A € Sy_e, U {0}, rs,ds > 0.
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In virtue of (22) and [19], p. 70, we have

IM >0,36>0,Vt>0,VA € Sp_o, U{0}:

27
o < 07 .
L(E)
On the other hand, using Lemma 2.6, p. 103 in [8], we have more precisely
dK >0,3¢>0,Vt >ty >0,VAe S, U{0}:
1/2 (28)

B etBiH < Ke—ctlAs+pz|7
H + LE)

Lemma 20. There exists a constant M > 0 independent of X € Sr_c,, such that for any
A\ € Sy .y, operators I &+ e*B- and I + 2B+ are boundedly invertible in L(E) and

<M.

-1
[ ®

<M and H(IiezLB+)1

L(E)

The proof is similar to the one of Lemma 5.1 in [9].
As a consequence of Proposition 15 and Lemma 20, we deduce the following Corollary.

Corollary 21. There exists a constant M > 0 independent of X € Sr—_.,, such that for any
A € Sr—zy, we have

27 ) <

L(E)

Proposition 22. Let A € S;_.,U{0}, g € L (0,L; E) and h € LP (—£,0; F) with 1 < p < +00.
Set

U(g)(x) = /0 Ve lB gt and V(R (x) = /_ Ze"”‘tBh(t)dt.

Then, there exists a constant C' > 0 independent of A such that
Cy/dy
U : < )
| (g)HLp(o,L,E) Nt +ds ”g”LP(O,L,E)
Cy/d-
V(R rpi_po. < Plipi_so.m) -
IV o (—e0.m) IETEETE 12l Lo (—,0:)

Proof. We will prove the estimate, for instance, for By. Let

g€D(0,L; L(E)) C 7 (R; L(E)),

where D (0, L; L(E)) is the space of all vector-valued test functions on L(F) and .7 (R; L(E))
is the Schwartz space of rapidly decreasing vector-valued smooth functions on R. Then, we can
write

U(g)(x) = <e|'|B+ *g) (x) = (g * eHB*) (), xeR.

This abstract convolution is well defined, see [1].
Recall the abstract Fourier transform F' defined by

F@)) = [ e

for all ¢ € L' (R; £(E)) and the well known property
FH(F(9) = ¢,
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for all ¢ € .7 (R; L(E)). We have

0 +
F (eHB*) & = / e 2mEr =By Iy —|—/ - e 2T ot By 1y
—00 0

— (B + 2in€I) ' — (B, — 2inel) !
—2B, (B, + 2in€l)" (B, — 2in€I) ™,

the integrals are absolutely convergent from (27); the last equality holds from the resolvent
identity. In virtue of Theorem 3.6, p. 17 in [1], we obtain

U(g)(z) = F~' (F (e HP+) F(9)) (2) = F~' (mF(9)) (),
with the Fourier multiplier
m(€) = —2B, (B + 2in€I) " (B, — 2inel) ™! € L(E).

Using estimate (29), p. 14, in [9], we obtain

Im(@lle = ||~2Bs+ (By + 2imel)™ (B, - 2imeD) ™|
< 20| (By —2imeD) 7|
20
< )
,/LM+| 14 [2in€]
dy
Then
2C\/d 2C\/d
1Ml o) € < e,
’)\+T+‘+d++2ﬂ'\/d+’§‘ |A+T’+’+d+
hence
20/d;

sup ||m < .

Now, we must estimate
sup |€] ||/ (& .
£€R| [ |’ )Hc(E)

Due to the analyticity of the resolvent operator of By on the imaginary axis, it follows that
m € C(R, L(E)),

and
m/(€) = 2im (By + 2in€l) ™% — 2w (B, — 2in€I) 2.

Therefore, as above, we have
€l m Ol omy < ||2ime (By + 2imeD) ™| + || 2ime (B4, — 2imen) 7|
< Hzmg (By + 2m51)*1H H(B+ + 2m§I)*1H

+ |[2ime (By — 2imen) ™| || (B — 2imen) 7|
20

A )
AT i
dy

. 2C/d+
< .
zlel]g\ﬂ [m (f)“c(E) X+ 7|+ dy
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We do similarly with & — (£ém/(€))". Thus, from [22], Proposition 2.5, p. 739, the sets

{m(&), £ €R\{0}} and {&m/(¢), £ € R\{0}},

are R-bounded. Moreover, applying Theorem 3.4, p. 746 in [22], we obtain

U @loomy = |F (mF(9))

LP(R;E)

N

C lsup [ (&[] + sup [¢] Hm'(é)H] 1911 Lo 0,: )
£eR £eR

<« Ny
S VRt rd, oL

for all g € D (0, L; E) . The same estimate is true for all g € LP(0, L; E) by density. O

We will need also the following result, given by Lemma 4.12 in [13].

Lemma 23. Let A € S;_.,U{0}, g+ € LP(0,L; E) and g— € L (—¢,0; E) with 1 < p < +o0.
Then, there exists C' > 0, such that

<y
S +lLr(a,b;E)
LP(ab: ) \/di+|)\+ri| ( )

b
1m0 [Tet=0Peg, 1) dr

b
9 ||ele—a)Bs / et=Bxg, (1) dt < Cvids 191 2o a5 -
a LP(a,b;E) di + |)\ * 'I"i| -

b C\/d+
3. e(b_’)Bi/ OB (1) ds < B s
) g+ (t) - Ry 191 Lo (a,5: )

. b C\/dy
4. e(b )Bi/a e(t )Bigi(t) dt : < d:l: +\/’;_ r:t‘ Hg:‘:HLP(a,b;E) :

Lr(a,b;E

6.2.2 Estimate of ||w|/zr(—s 1)

We have to estimate
||w*||LP(_£,O;E) + ”w+HLp(0,L;E) )

where, due to Proposition 19, w is the unique solution of (19). Thus, it suffices to estimate
lw—1lp(—,0;)- The same techniques apply to |[w | 1r (o, .5)-
We have

w_(r) = D7} (e—xB_ _ e(x+2£)B_) B! (I+ eZLB+) (Ir')
—q+D*1 (efxB_ _ e(x+2z)B_) B:lBjrl (I . e2LB+) (H’)
+q D7 (208 _ 7B ) gl BTl (1 — 2P ) (1)
—elT 0By (g)(~0)
+u-(9-)()

5
= > ai(x),
=1
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where

() = v (9-)(0) = B_eB-v_(g-)(—0) + ¢—e"Prvy (g4)(L) — q¢-v4(94)(0)
—q-eB-v_(g-) (=€) + q-v_(g9-)(0),

@) = —v,(9:)(0) — ByerBroi (g4 )(L) — qretBroy(94)(L) + g1 v4(94)(0)
+qyePo_(g-)(—0) — g4v-(9-)(0),

and
(g )@) = 5B [ ey (1) et 5B / =98¢ (1) at,
1

vilg)@) = 3B [T g @) de+ BT / e=DPeg, (1) dt,

g )@) = g [P g @y~ [y o),

1L,
V@) = g [T gty de— 5 [P g ) ar

We will focus ourselves, for instance, on the first term aq, that is
ay(x) = D71 (e*’”B— - e(x“e)B‘) B~! (I + 62L3+) (Ir').
After replacing (IT') by it expression, we obtain explicitly

a1(z) = D7'BT'e B4/ (g.)(0) + DTI1BZlem*B-e2LB+y) (g)(0)
_DLeEF20B- g1y (g )(0) — D@ +20B- B12LBiy/ (g )(0)
D e BBy (g_)(—f) — D~ e "B 2L+ By (g_)(—0)
D@+ 20B- B, (g Y(_g) 4 D@ +20B- 2LB+e£B_ (g)(=0)
+q_D 1B te®B-elBry (g, ) (L) + ¢ D 'B7! ~e3EBry, (g)(L)
gD le@+20)B- g1l (0 V(L) — g D~ e(x+2€) - BBy (g, )(L)
—¢-D'e "= BTl (94)(0) — gD 'e P BZ1e? P o, (94)(0)
+q- D108 BT 1y, (,)(0) + gDl H2OB- BT By (g1)(0)
—q_D e "B BBy (g )(—f) — q_Dte~B- BL2LB+ By, (g )(—1)
g Dl 208 B,l ZB_U_(g_)( —0) 4 gD L@ 20 B- g=12LB LBy (g y(_yp)

+q-Dle "By ( )(0) + gD~ e =Bl Pro_(g)(0)

—q_D~ e(m+2€) (g )(0) q_D~ 1 (:r:+2€) B:162LB+U_(g_)(0)

12

= > bi(x)
k=1
Let us estimate, for instance, the four first terms. The others can be treated analogously.
_ ~1p—1_—eB_ 1
11O o romy = [D7BZNe Pl (g ) O, o

1 0
— 2HD_1]5’:16_'B/ e_tB*g,(t)dt
)

10 e 1 e |
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then, from (23), Corollary 21 and Lemma 23 statement 3. (with [a,b] = [—¢,0]), there exists a
constant K > 0 independent of A\ such that

K\/d_\/d_
1Ol < Vi_yi 19 n e
Vdo+ N+ r_|[do+ A+ r_]
Kd_
m Hg—HLp(fz,O;E) :

For the second term by, we have

b2 M zr(—e0my = [P e Pt PretPu (g )(-0) _
( ) LP(~L,0;E)
_ HlDlB—1€2LB+€2€B_ o+ B /0 B g_()dt )
2 - —t LP(—0,0:E)

thus, using the same arguments as above, there exists a constant K > 0 independent of A such

that
Kd

162l Lo (—e,0:) < m l9-1zo(~e0:E) -

For the third term b3, we have

103l Lo (—r0:m) = H(J—Dleilezw‘ BBy (94)(0)

LP(—£,0;E)

I

1 L
_ H §q,D_1B:IB;162€B* (2LBy B / Bt g, ()dt
0 LP(—L,0;E)

thus, using the same arguments as above, there exists a constant K > 0 independent of A such
that

qK\/d /d_

bs(. B S
H 3()||LP(—€,O,E) \/d_+‘)\+7a_’\/d++’)\+r+‘

L
e*B- / etBr g, (t)dt
0

Lp(—,0;E)

Now, the boundedness of the semigroup e * - and the Hélder inequality lead us to obtain

qK/\/d_;_/d_

bs(. B < B -
s luo e < et Ao 19+ s

In the same way, for the fourth term b4, we have

15O o comy = oD Bl F20B-¢3Ewy (g,)(L)|

LP(—£,0;F)

1 L
§Dle:1B;1€2£B_ ALBy B /0 e tBig, (t)dt

)

LP(—£,0,F)

then
qK/\/ d+/d_

byl(. o < .
[|ba( )HLP(—E,O,E) \/d_ T \)\+r_\\/d++ IR H9+HLP(O,L,E)

Therefore, we can conclude that there exists M > 0, independent of A such that

Md_
larll ooy < m||9—||m(4,0;15)

gM/dy /d_

+ B -
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The same techniques as above lead us to obtain similar estimates for the terms a;, 1 = 2,...,4 in
w_.
For the convolution term v_(g—_)(.), using Proposition 22, we have

Cd_
[v—(9-) (M Lo (—e0.8) < TPt 1911 Lo (—e,0.) -

Hence we can conclude that there exists of a constant C' > 0, independent of A € S;_.,, such

that
C

o llneosy < 157 (18-l + 19+ oo i) -

Using the same calculus as above, we obtain the existence of a constant C' > 0, independent of
A € Sz—c,, such that

C
||w+||Lp(o,L;E) < W (||9—||Lp(—e,o;E) + Hg—l-HLP(O,L;E)) :

Summing up, we obtain

C

lwll zo(—e,:m) < i 190l Lo (—t, L) -
Then, we conclude that there exists C' > 0, such that, for all A € S;_.,, we have

C

H(S - ’\I)_IHL(LP(—K,L;E)) S (A

which implies that S generates an analytic semigroup in LP(—¢, L; E).
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