
HAL Id: hal-04001619
https://hal.science/hal-04001619

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work-in-Progress: towards a platform to compare
binary parser generators

Olivier Levillain, Sébastien Naud, Aina Toky Rasoamanana

To cite this version:
Olivier Levillain, Sébastien Naud, Aina Toky Rasoamanana. Work-in-Progress: towards a platform
to compare binary parser generators. IEEE Security and Privacy Workshops, SPW (LangSec), May
2021, San Jose, United States. �hal-04001619�

https://hal.science/hal-04001619
https://hal.archives-ouvertes.fr

Work-in-Progress: Towards a Platform to Compare Binary
Parser Generators

Olivier Levillain Sébastien Naud
Aina Toky Rasoamanana

Télécom SudParis
firstname.lastname@telecom-sudparis.eu

Abstract

Binary parsers are ubiquitous in the software we use everyday, be it to interpret file for-
mats or network protocol messages. However, parsers are usually fragile and are a common
place for bugs and security vulnerabilities.

Over the years, several projects have been developed to try and solve the problem,
using different forms such as parser combinators or domain-specific languages. To better
understand this rich ecosystem and offer tools to compare the existing solutions, we initiated
a platform to test and compare such tools against different specifications.

Our so-called “LangSec Platform”, which is a work-in-progress, aims at providing a
framework to implement various specifications using different tools, which allow us to com-
pare the expressiveness, the robustness and the efficiency of the included parser generators.

Parsers are pervasive software basic blocks: as soon as a program needs to communicate with
another program or to read a file, a parser is involved. However, writing robust parsers can be
difficult, as is revealed by the amount of bugs and vulnerabilities related to programming errors
in parsers. One way to solve the problem is to rely on tools to generate the actual parsers from
high-level descriptions.

This approach can be effective, as soon as the target specification is not too much complex,
the description language is expressive enough, and the parser generator produces robust and
reliable code.

Over the years, many tools have been proposed to generate parsers, for different programming
languages and with different flavors. Thus, we tried to analyze a subset of these tools to compare
them and assess their relevance for different kinds of specifications. To this aim, we developed a
platform to confront tools with different specifications.

Sec. 1 describes several existing parser generators that we found, and explains the choices
we made to select several of them for a deeper study. Sec. 2 presents our platform and the
specification we have started to implement with different tools. Sec. 3 contain our first results
on the chosen tools and Sec. 4 gives a conclusion and some perspectives beyond this first step.

1 An Overview of the Parser Generator Landscape
In this section, we present a selection of parser generators. Table 1 presents several of their
properties. In our study, the focus is mainly on binary formats, but several tools such as Hammer
or Nom can also naturally handle textual formats.

Each tool is classified by its type: some tools provide a Domain-Specific Language (DSL) to
describe the format to implement, whereas other rely on helper functions that are directly called
from the programming language (a popular approach is to provide parser combinators).

We also provide some information about each project: the programming language they use
and their public activity.

1

Tool Type Activity Programming Languages
BinPAC [PPSP06] DSL 2010-2021 C++

Hachoir Helper Functions 2007-2021 Python
Haka DSL 2013-2016 C, Lua

Hammer Parser Combinators 2012-2019 C, various bindings
Kaitai Struct DSL 2016-2021 Scala, various bindings
Nail [BZ14] DSL 2013-2015 C

Netzob [Bos14] Helper Functions 2011-2020 Python
Nom [Cou15] Parser Combinators 2014-2021 Rust

Parsifal [Lev14] Embedded DSL 2011-2021 OCaml
RecordFlux [RSCS19] DSL 2018-2021 Python, Ada

Scapy Helper Functions 2003-2021 Python
Spicy [SAH16] DSL 2020-2021 C++

Table 1: Summary of the studied parser generators. Lines in boldface correspond to tools that
were integrated in the platform at the time of writing.

Obviously, the presented list results is far from exhaustive1, and is biased by our knowledge
and experience. For example, having complex high-level network protocols such as TLS in mind
does not lead to the same constructions as if one is looking at lower-level network protocols such
as Ethernet or IPv4. Finally, it is worth noting one of the author of this paper is also the main
developer of a tool in the list, Parsifal. Despite these biases, we believe trying to compare the
tools has its merits, at least as a first step towards more objective analyses.

After a first study, we chose to only select several tools to focus on. Our idea was to obtain
some diversity among our tool set; this is why we chose tools written in/for different programming
languages, and using different paradigms. Table 1 summarizes the described tools and shows the
ones we included in our platform.

When the study grows, we plan to integrate more tools to broaden the analyzed landscape.

2 The LangSec Platform
Our platform2 is made of tools, specifications and implementations, and aims at studying different
properties. Fig. 1 describes the platform and its components.

Dockerfile
+

Runtime helpers

TOOL Base Container
for TOOL

Parser for SPEC
with TOOL

Implem.

Implem.

Implementation
for SPEC

using TOOL

(valid and invalid)

SPEC

Samples

docker build

copy

docker run

Sample validation
Sample interpretation
Performance evaluation
Robustness evaluation (fuzzing)

PROPERTIES

Figure 1: Platform Design.
1A longer list can be obtained on the binary-parsing GitHub repository at https://github.com/dloss/

binary-parsing.
2The platform is available as a GitLab project: https://gitlab.com/pictyeye/langsec-pf.

2

A tool is a parser generator. The integration of a tool consists in writing a Dockerfile to
build a container embedding the tool. Beyond merely compiling the project, each container aims
at properly extracting the “implementation” part of a specification from the runtime required to
make this implementation work. We thus only have to plug the corresponding hole to transform
the generic container into a parser for a given specification.

A specification represents a file format or a network protocol, and is modeled by a set of
good samples (that should be parsed properly) and bad samples (that should be rejected).

Currently, the specifications fall into two categories:
• the elementary constructions required to write binary parsers, such as a magic number, a

list of 32-bit integers, a variable-length string, which allow to assess the basic expressiveness
of each tool;

• more complex, realistic, specifications, such as DNS [Moc87], IP [Pos81b] or ICMP [Pos81a],
which represent the real goal of the platform.

An implementation is a file written for a tool to recognize/parse samples conforming to a
given specification.

Once we have these elements we can run the implementation for a given specification written
for a given tool on the different samples for this specification, to study and compare the following
properties:

• sample validation (which samples are accepted or rejected?);
• object interpretation (what was the actual result from the parsing operation?);
• performance (time, CPU and memory usage);
• implementation/tool robustness using a fuzzer.
For now, only the basic sample validation is functional for the 6 selected tools. Table 2 shows

the status of the feature development.

Hammer Kaitai Nail Netzob Nom Parsifal RecordFluxStruct
Sample Validation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Object Interpretation ✓
Performance measurement Time Time Time Time Time Time Time
Fuzzing ✓ ✓

Table 2: Status of the feature development for each tool.

A concrete run on the platform can be seen on Fig. 2, as well as example results on the IP
Header implementations.

Running test ip-header for nail...
Testing good test cases...

IPV4... OK
IPV4_tcp... OK
IPV4_udp... OK

Testing bad test cases...
empty... NOK
flags_wrong-reserved... NOK
ihl_under_5... NOK
IPV6... NOK
tos_wrong-reserved... NOK
ttl_null... NOK

Test ip-header run for nail: OK

Figure 2: Execution of Nail implementation for the IP Header (on the left). Results for various
IP Header parsers against the samples (on the right).

3

3 First results
An interesting benchmark for these tools was the DNS message format, since it allowed us to
assess the expressiveness of the different tools on several aspects.

Among the tools we integrated to the platform, four of them fetaures a DNS implementation:
Hammer, Kaitai Struct, Nail and Parsifal.

3.1 The DNS Specification in a nutshell
Using a pseudo description language, DNS can be modeled as follows3:

dns_query = sequence {
id: uint16
misc_fields: uint16
qdcount: uin16
ancount: uin16
nscount: uin16
arcount: uin16
questions: array[qdcount] of question
answers: array[ancount+nscount+arcount] of rr

}

question = sequence {
qname : domain
qtype : uint16
qclass : uint16

}

domain = choice {
| domain_label : sequence {

length : uint8 = 1..64
label : string(length)
subdomain : domain

}
| domain_end : uint8 = 0
| domain_ptr : sequence {

ptr_magic : uint2 = 3
ptr_offset : uint14

}
}

A domain is a list of domain_labels (represented by variable length strings), ending either
with a domain_end marker (which is encoded as a zero-length string), or with a domain_ptr
pointer to an already parsed domain. The latter case is signaled by setting the two most sig-
nificant bits of the first byte of a label; it allows for a simple form of compression within the
message.

3.2 Expressiveness
One of the advantage of using a parsing generator is to implement complex formats with few
lines of codes, which are usually mostly descriptive parts. We tried to compare the four DNS
implementations at our disposal to assess the expressiveness of the corresponding tools. We first
assessed the depth of the implementation (in terms of feature), then counted the number of lines
each implementation required.

To compare the five implementations, we used the following samples:
• simple valid DNS requests;
• valid DNS requests with an EDNS0 extension;
• simple valid DNS responses;
• truncated DNS messages;
• messages with invalid pointers in domain names4.
Hammer implementation only accepts simple valid DNS requests, and does not implement

compression at all: pointers are simply ignored, which leads to rejecting well-formed messages.
Kaitai Struct DNS implementation correctly parses the domain names (recognizing a com-

pression pointer), but does not interpret nor validates where the pointer points to.
Nail, which relies on a DSL and a compiler producing C code, uses the concept of transfor-

mations to explicitly call a C function, external to the DSL, and apply an arbitrary computation
to the data. This obviously solves the problem, but since the processing is done using a fully-
fledged programming language (and not a beautiful and restricted description), there is much
less guarantees on the parser correctness.

3The model does not describe resources records (the rr type) and merges the three kinds of answer a DNS
message can contain to keep the explanation shorter.

4The samples contained
• forward pointers (including ones pointing outside the message), invalid backward pointers (with an offset not

corresponding to a valid label) as well as backward pointers leading to loops.

4

Parsifal embeds a DSL to describe the parsers within OCaml files and requires actual OCaml
code to handle DNS compression. Contrary to the Nail approach, the demarcation between
descriptive parts and fully-fledged code is less obvious, since both parts live in the same file.

To count the lines, we tried to separate the descriptive parts from the “real” code parts. For
Kaitai Struct, Parsifal and Nail, which rely on a DSL, the distinction is rather easy to make.
For Hammer, we counted the parts using macros/helper functions corresponding to the parser
combinators as description, and the rest of the files as code. The results are given in Table 3.

Descr. Code Total Comments
Hammer 105 158 263 The code consists in the validate and act functions.

Kaitai Struct 231 0 231 Compression pointers are not validated
Nail 39 70 109 The description and the code live in separate files.

Parsifal 130 79 209 The descriptive part is important since RRs are fully
interpreted, contrary to other implementations.

Table 3: LoC counts for the different DNS implementations.

Obviously, these figures should be taken with a grain of salt, but they offer a first data
point, which we would like to enrich with our platform. For example, it would be interesting to
compare equivalent implementations (in terms of the files they accept/reject) to get a fairer and
more precise comparison. However, from this example, it seems that Hammer is more verbose
than the other tools, even though it implements a smaller subset of the format.

3.3 Robustness
At first, the four implementations did not handle correctly all our samples.

First, as already discussed, two implementations do not really handle (Hammer) or validate
(Kaitai Struct) compression pointers.

For Nail, we found two bugs in the implementation, that were reported with a possible fix5:
• offsets larger than 256 were misinterpreted due to an operator precedence bug6;
• the transformation function (dnscompress_parse) did reject forward pointers correctly,

but did not check anything for backward checks, which could lead to loops in DNS com-
pression pointers.

Finally, despite being able to properly handle all the cases, Parsifal implementation was rather
lax by default, and tolerated invalid pointer (that were kept using their raw form). This did not
lead to crashes or loops as with Nail, but this was not the expected behavior.

To go beyond our samples, we also tried to leverage our platform to automatically find bugs
in the generated parsers. To this aim, we integrated American Fuzzy Lop (AFL) to the tools
written in C: Hammer and Nail. The setup consisted of an Intel Core i5 at 2.90GHz CPU running
on one core for 1-hour session.

AFL was able to find the problems we had already identified in Nail. It also helped us fix the
bugs properly, after finding that our first tentative patch to avoid loops was incomplete.

For Hammer, we produced several assertion failures and a segmentation fault. The latter was
reported and a fix was proposed7. As with the Nail issues described earlier, the bug does not lie
in the description part (which consists in C macros), but in the “code” part, more specifically
in the act_domain function, which interprets domain names once their raw representation has
been parsed. The specific mistake here was a typo in the index used in a loop (i instead of j).

It would also be useful to extend the use of AFL to other tools, or to use other fuzzing
frameworks (e.g. libfuzzer). Another idea would be to use one tool to generate samples and
then test the sample against the other tools. This would help us investigate bugs related to a
difference of interpretation between implementations.

5https://github.com/jbangert/nail/pull/10
6Actually, the bug had already been independently reported 3 years before.
7https://github.com/UpstandingHackers/hammer/pull/199

5

3.4 The need for a robust chain
From the design point of view, we find the external DSL approach the cleanest, since it forces
the developer to explicitly signal when he steps outside the descriptive parts of his implementa-
tion. This is why we really like the DSL proposed in the Nail tool, which allows to write short
and expressive descriptions, with the ability to call arbitrary C functions to handle complex
transformations.

However, while implementing very simple specifications, we stumbled upon a strange bug in
Nail. The minimal working example consists in the parser for a list of integers:

target = {
x many uint32

}

Once compiled and applied to an empty file, the parser will loop for a very long time, because
of an integer underflow in a generated function8.

Beyond our surprise that such a simple specification (and sample) could trigger an unpleasant
situation, we tried to fix it and to better understand the code generated by the Nail to C compiler.
To this aim, we activated several compiler warnings on the generated C code, which produced
a lot of output, some of which were expected for generated code (unused labels, variables or
functions). But we also obtained many warnings regarding possibly dangerous integer conversions
and comparisons.

Despite being fond of the Nail grammar, we find this to be extremely dangerous, because
generating fragile and buggy code will eventually lead to real (and hard-to-fix) bugs, even if the
original code came from a pretty DSL. Thus, we think a good parser generator should not only
offer guarantees and expressiveness at its source, but also all the way down the build chain.

4 Conclusion and perspectives
In this article, we have presented a platform that is currently being developed to host different
parser generators and compare them with regards to several properties: expressiveness, robust-
ness, efficiency. At the time of writing, we support 7 different tools representing some variety
in terms of programming languages and design approaches. This framework already helped us
domesticate the selected tools and find some bugs or interesting behaviors.

In the short term, we would like to continue adding more tools, more specifications, as well
as to develop the missing features we envision, such as performance evaluation and robustness
assessment using modern fuzzing tools. In light of this goal, beyond the first contacts we have
established, we plan to develop collaborations with tool maintainers to help us better implement
specifications and improve the quality of our suggestions and bug reports.

We also have longer-term plans for this platform. First, comparing existing tools and DSLs
might help us design a new, better description language, hopefully building on the best aspects
found in the different tools. It might also give us insights (and concrete arguments) into which
constructions are inherently complex and should be avoided in file formats and network protocols.

Acknowledgments

This work was supported in part by the French ANR GASP project (ANR-19-CE39-0001). The
authors would also like to thank Mathias Payer for his very constructive comments and remarks.

8The bug report online (https://github.com/jbangert/nail/issues/9) gives more details about the problem.

6

References
[Bos14] Georges Bossert. Exploiting Semantic for the Automatic Reverse Engineering of Com-

munication Protocols. PhD thesis, MATISSE, 2014.

[BZ14] Julian Bangert and Nickolai Zeldovich. Nail: A Practical Interface Generator for Data
Formats. In 35. IEEE Security and Privacy Workshops, SPW 2014, San Jose, CA,
USA, pages 158–166, May 2014.

[Cou15] Geoffroy Couprie. Nom, A byte oriented, streaming, zero copy, parser combinators
library in rust. In 2015 IEEE Symposium on Security and Privacy Workshops, SPW
2015, San Jose, CA, USA, May 21-22, 2015, pages 142–148. IEEE Computer Society,
2015.

[Lev14] Olivier Levillain. Parsifal: A Pragmatic Solution to the Binary Parsing Problem. In
35. IEEE Security and Privacy Workshops, SPW (LangSec) 2014, San Jose, CA,
USA, pages 191–197, May 2014.

[Moc87] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035
(Internet Standard), November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034,
4035, 4343, 5936, 5966, 6604, 7766, 8482, 8490, 8767.

[Pos81a] J. Postel. Internet Control Message Protocol. RFC 792 (Internet Standard), Septem-
ber 1981. Updated by RFCs 950, 4884, 6633, 6918.

[Pos81b] J. Postel. Internet Protocol. RFC 791 (Internet Standard), September 1981. Updated
by RFCs 1349, 2474, 6864.

[PPSP06] Ruoming Pang, Vern Paxson, Robin Sommer, and Larry L. Peterson. binpac: A yacc
for Writing Application Protocol Parsers. In Proceedings of the 6th ACM SIGCOMM
Internet Measurement Conference, IMC 2006, Rio de Janeriro, Brazil, pages 289–300,
October 2006.

[RSCS19] Tobias Reiher, Alexander Senier, Jerónimo Castrillón, and Thorsten Strufe. Record-
flux: Formal message specification and generation of verifiable binary parsers. In
Farhad Arbab and Sung-Shik Jongmans, editors, Formal Aspects of Component Soft-
ware - 16th International Conference, FACS 2019, Amsterdam, The Netherlands, Oc-
tober 23-25, 2019, Proceedings, volume 12018 of Lecture Notes in Computer Science,
pages 170–190. Springer, 2019.

[SAH16] Robin Sommer, Johanna Amann, and Seth Hall. Spicy: a unified deep packet inspec-
tion framework for safely dissecting all your data. In Stephen Schwab, William K.
Robertson, and Davide Balzarotti, editors, Proceedings of the 32nd Annual Conference
on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA, December
5-9, 2016, pages 558–569. ACM, 2016.

7

