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DEGENERACY CURVES IN THE SPECTRA OF DIRICHLET PARALLELOGRAMS

. This set of parameters determines a unique parallelogram as well as a unique triangle. Equivalently a unique parallelogram can be characterized by knowing the two side lengths and the included angle between them.

Using the first method of characterization the parameters of the family of triangles and those of the parallelogram can be made the same. However the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry introduces a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all parallelograms subject to Dirichlet boundary conditions appear to form degeneracy curves (with some exceptions) as opposed to isolated points. For most adjacent normalized eigenvalue levels of the family of parallelograms, the number of degeneracies between levels appears to be uncountably infinite. There are two notable exceptions -the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten eigenvalue levels) contain at least one degeneracy curve.

The first ten levels also contain at least four isolated diabolical points, one found for the 6,7 levels and three for the 8,9 levels. These isolated points or diabolical parallelograms are more difficult to determine numerically and cannot be found as precisely as the component points of the degeneracy curves.

Introduction

Based on an old argument of Von Neumann and Wigner [START_REF] Neumann | On the behavior of eigenvalues in adiabatic processes[END_REF], and revisited by Berry [START_REF] Berry | Aspects of Degeneracy[END_REF][START_REF] Berry | Diabolical points in the spectra of triangles[END_REF], it is known that for real operators (such as the Helmholtz operator) two changing parameters are necessary to produce accidental degeneracies. This need for two changing parameters to produce degeneracies was demonstrated specifically by Berry and Wilkinson [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF] who solved the Helmholtz equation on the space of all triangles subject to Dirichlet boundary conditions. For this family of planar shapes a number of accidental degeneracies were found. These degeneracy points or degenerate triangles were relatively rare; they were isolated points in the space of all triangles and the number of them for each set of adjacent eigenvalue levels was finite. These same characteristics were noted for the problem of solving the Helmholtz equation over the space of all triangles subject to Neumann boundary conditions [START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF].

In this paper we consider the problem of solving the Helmholtz equation over the space of all parallelograms subject to Dirichlet boundary conditions [START_REF] Korsch | On the nodal behavior of eigenfunctions[END_REF] and determining the degeneracies occurring in their spectra upon changing the two parameters, angle and side ratio, using the finite element method (FEM) [8]. The space of all parallelograms consists of those quadrilaterals that have two sets of equal length parallel sides and two sets of identical angles. We can specify uniquely the family of parallelograms (which contains the rectangle, the rhombus, and the square as special cases) in two different but equivalent ways. The parallelogram is composed of two congruent triangles. We can specify this family in the same way Berry and Wilkinson specified the family of triangles using the area and two of the angles [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF]. This set of parameters determines a unique parallelogram as well as a unique triangle. Equivalently a unique parallelogram can be characterized by knowing two of the side lengths and the included angle between them.

Using the first method of characterization the parameters of the family of triangles and those of the parallelogram can be made the same. However the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry introduces a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all Dirichlet parallelograms for levels one through ten appear to form degeneracy curves as opposed to isolated points (with a few exceptions). For most adjacent eigenvalue levels of the family of parallelograms, the number of degeneracies between levels may be uncountably infinite. In general these eigenvalues can only be found numerically (but see Appendix A for exceptions), and it is difficult to determine whether or not there exist gaps in the degeneracy curves. There are two notable exceptions to the rule of degeneracy curves: the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten) contain at least one degeneracy curve.

The first ten levels also include four isolated diabolical points, one found for the 6,7 levels and three for the 8,9 levels. These are shown in Table 3. Such isolated points or diabolical parallelograms are more difficult to determine numerically and cannot be found as precisely as the component points of the degeneracy curves. These isolated diabolical points have been determined for two of the even/odd levels, and we speculate that we were able to find them because these levels do not seem to contain as many degeneracy curves as the odd/even levels. So far no diabolical points have been determined for the odd/even levels. The numbers of degeneracy curves for these levels may be masking the presence of diabolical points.

In the following the eigenvalues, λ i , and the eigenfunctions, ψ i (x, y), are computed numerically by solving the Helmholtz equation [START_REF] Neumann | On the behavior of eigenvalues in adiabatic processes[END_REF] ∆ψ i (x, y)

+ λ i ψ i (x, y) = 0; (x, y) ∈ Ω with (2) ψ i (x, y) = 0; (x, y) ∈ ∂Ω
where (2) refers to the Dirichlet boundary condition. Ω is the interior of any parallelogram while ∂Ω is its boundary.

Degeneracies of the Rectangle

The rectangle shape is one of the few planar domains for which the eigenvalues and eigenfunctions of the Laplacian are known exactly. As a result degeneracies of the adjacent eigenvalue levels for the rectangle can be found exactly also. Assuming a standard rectangle as in Figure 1 with dimensions a = 1 and 0 < b ≤ 1, and area, A = ab, the normalized eigenvalues Λ = λA 4π as functions of the side ratio, b a , can be determined both numerically and exactly. Figure 2 shows the lowest ten normalized eigenvalue levels of the rectangle vs. b a . Figure 2 (top left) shows eigenvalue levels 1 -4, Figure 2 (top right) shows levels 4 -7, and Figure 2 (bottom left) shows levels 7 -10.

The points of degeneracy for the rectangle occur near the close approaches of adjacent eigenvalue levels (see Figure 2) and can be found exactly using the normalized formula

(3) Λ m,n (a, b) = πa 4b m 2 b a 2 + n 2 with m, n ∈ Z. For a = 1, (4) Λ m,n (1, b) = π 4b m 2 b 2 + n 2
There have been several papers on the accidental degeneracy of the impenetrable rectangular and square-well potentials (i.e., the particle in a rectangular/square box), particularly for b a rational [START_REF] Lemus | Accidental degeneracy and hidden symmetry: Rectangular wells with commensurate sides[END_REF][START_REF] Leyvraz | Accidental degeneracy in a simple quantum system: A new symmetry group for a particle in an impenetrable square well potential[END_REF][START_REF] Shaw | Degeneracy in the particle in a box problem[END_REF]. However b a can be the square root of a rational number also and still produce degeneracies [START_REF] Overfelt | Rings, quadratic forms, and complete degeneracy for a subclass of highly overmoded waveguides[END_REF].

Considering Figure 2 (top left), the lowest rectangle degeneracy occurs for normalized eigenvalue levels 2, 3 at b a = 1 (the square). The 3, 4 eigenvalue levels have one degeneracy which occurs at b a = 3 8 = .61237... The rectangle degeneracies for the lowest ten eigenvalue levels are given in Table 1. There is one degeneracy for the 2, 3 levels, one for the 3, 4 levels, two for the 4, 5 levels, three for the 5, 6 levels, four for the 6, 7 levels, five for the 7, 8 levels, five for the 8, 9 levels, and seven for the 9, 10 levels. There is a total of 28 rectangle degeneracies for the lowest ten eigenvalue levels. These degeneracies in the spectra of rectangles are isolated points and for all degeneracies ( b a ) 2 is rational. 

Levels (m,n) Λ(exact) Λ(FEM) b/a(exact

Degeneracies of the Rhombus

The rhombus shape is any parallelogram with l2 l1 = 1 (see Figure 3). Assuming a rhombus with l2 l1 = 1 and an opening angle of α (where 0 < α ≤ 90 deg), by plotting the adjacent normalized eigenvalue levels versus the opening angle, degeneracies (if they are present) are found at those points where close approaches of adjacent eigenvalue levels occur (see Figure 4). A root finding technique was used to compute the rhombus degeneracies accurately (see Table 2).

For the lowest ten eigenvalue levels of the rhombus shape, there are 19 total degeneracies. This number does not include the degeneracies of the square since these are already included with the rectangles and are shown in Table 1 It is important to know the rhombus and rectangle degeneracies for each set of adjacent eigenvalue levels because they are often the limiting cases for the degeneracies of the family of all parallelograms.

Within the lowest ten eigenvalue levels of the rhombus (and omitting the degeneracies of the square), the lowest rhombus degeneracy occurs for the 3, 4 eigenvalue levels at α = 49.1836 deg. There is one rhombus degeneracy for the 3, 4 levels, one for the 4, 5 levels, two for the 5, 6 levels, three for the 6, 7 levels, two for the 7, 8 levels, five for the 8, 9 levels, and five for the 9, 10 levels (see Table 2). These degeneracies in the spectra of rhombi are isolated points. In Table 2, the square degeneracies are included for completeness.

Degeneracies of General Parallelograms

The family of parallelograms has a great deal of structure when compared with any general quadrilateral due to its two sets of parallel sides and equal opposite angles.

The parallelogram can be uniquely characterized using two sides, l 1 and l 2 , and the included angle, α (see Figure 5). Allowing l 1 = 1 and 0 < l 2 ≤ 1 with 0 < α ≤ 90 deg, the eigenvalues of this family can be considered as functions of the two parameters l2 l1 , the side ratio, and α, the opening angle. Equivalently the parallelogram which is composed of two congruent triangles could be characterized using the area and two of the angles of the geometry as in [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF] and [START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF]. These characterization methods give the same (to within the mesh size used) results. Before stating our results and conclusions, it is important to emphasize that the parallelogram family degeneracies are different from the triangle family degeneracies [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF][START_REF] Overfelt | Degeneracies in the Spectra of Neumann Triangles[END_REF]. For the triangle the degeneracies were all isolated points attained by setting the area and the smallest angle to given values and searching via a numerical method for the second angle. The Dirichlet and Neumann triangles that produced degeneracies were somewhat rare (even for triangles with some symmetry), and for each pair of adjacent eigenvalue levels there were a countable finite number of these degeneracies. For the parallelogram this is not the case. Each pair of parallelogram adjacent eigenvalue levels appears to contain at least one eigenvalue degeneracy curve (with the 2,3 levels and the 4,5 levels as notable exceptions), and for most levels there may be an uncountably infinite number of values of α vs. l2 l1 that produce degeneracies.

We have also determined one isolated diabolical point that occurs for the 6,7 levels and three isolated diabolical points for the 8,9 levels. These are given in Table 3. From a numerical perspective, these points are more difficult to find and cannot be determined as precisely as those occurring as part of a degeneracy curve. Thus in the first ten eigenvalue levels of the Dirichlet parallelogram family, we have determined four points that are analogous to the diabolical points of the family of Dirichlet triangles.

In general the eigenvalues can only be found numerically thus it is difficult to determine whether or not there exist gaps in the degeneracy curves. Also since the adjacent pairs of levels behave somewhat differently from one another and degeneracies can be determined only subject to the mesh size used, we will use conjectures to show our conclusions, and then offer the numerical evidence leading to these conjectures.

The following conjectures refer to the space of all general parallelograms governed by Dirichlet boundary conditions. (c

) If 0 < l2 l1 < 1 (2 √ 
2) , then there are no 5, 6 level eigenvalue degeneracies.

(d) If 1 (2 √ 
2) ≤ l2 l1 < 1 2 , then for every value of l2 l1 in this region there is one corresponding value of α that gives a 5, 6 level eigenvalue degeneracy.

(e) If 1 2 ≤ l2 l1 ≤ 1, then for every value of l2 l1 in this region there are two corresponding values of α that give 5, 6 level eigenvalue degeneracies. l1 < 1, then for every value of l2 l1 , in this region there is one corresponding value of α that gives a 6, 7 level eigenvalue degeneracy.

(e) There is one isolated diabolical point for the 6,7 eigenvalue levels (see Table 3). , then for every value of l2 l1 , in this region there is one corresponding value of α that gives a 7, 8 level eigenvalue degeneracy.

Conjecture 9 (8, 9, 10 Eigenvalue Levels).

If l2 l1 = 1 3
, then there is a third degree eigenvalue degeneracy for levels 8, 9, and 10 at α = 90 deg (the rectangle).

Numerical Results Supporting the Conjectures for the Family of Parallelograms

Figures 6 -17 show the numerical results based on the FEM from which the conjectures in Section 4 were drawn. Each adjacent pair of eigenvalue levels is discussed separately. Throughout this section we use the terms larger and smaller to refer to the magnitude of the eigenvalues. The terms first, second, etc. are used to refer to rectangle and rhombus degeneracies as their magnitudes run in increasing order, i.e., the first rectangle degeneracy has the smallest side ratio, and so on while the first rhombus degeneracy has the smallest value of angle, and we no longer use b a to indicate the rectangle side ratio but use l2 l1 for all shapes. All eigenvalues are normalized as in Section 2.

2,3 Eigenvalue levels:

There is one 2, 3 level degeneracy which occurs for the square. (Recall that the triangle family had one 2, 3 level degeneracy that occurred for the equilateral triangle). For the 2, 3 level we have determined only the one eigenvalue degeneracy and it is an isolated point.

3,4 Eigenvalue Levels: The 3, 4 level eigenvalue degeneracies of the space of Dirichlet parallelograms consists of one degeneracy curve in α vs. l2 l1 space (see Figure 6). Figure 6 shows the values of α vs. l2 l1 in two dimensions that give the degeneracies at the 3, 4 level. This curve begins at the rectangle degeneracy at l2 l1 = 3 8 and α = 90 deg and ends at the rhombus degeneracy at l2 l1 = 1 and α = 49.1836 deg. There appears to be an uncountably infinite number of degeneracies along this curve for 3 8 ≤ l2 l1 ≤ 1 with 49.1836 ≤ α ≤ 90 deg. The 3, 4 level degeneracy curve can be shown in three dimensions as in Figure 7 with the eigenvalues shown for the degeneracies found using the associated values of l2 l1 and α. The eigenvalue degeneracy values run between 5.611 (rectangle) ≤ Λ ≤ 5.654 (rhombus). Each point along this curve (to within the mesh value) is a 3, 4 level eigenvalue degeneracy. We have determined no other degeneracies at this level.

To insure that our results are not an artifact of the characterization method used, we have also chosen the parallelogram parameters to be A, the area, and α and γ, two of the angles as in Figure 5. After assuming values for the area and the smallest angle γ, we find the angle α that gives the closest approach of the 3, 4 eigenvalue levels. At some minimum value of γ, γ min , we can obtain a degeneracy for every value of γ in some region, γ min < γ < γ max . Thus in this region there appear to be an uncountably infinite number of degeneracies. By computing l 1 and l 2 as functions of A, α, and γ, we can fit these points into the ( l2 l1 , α) space. All points fall along the curves shown in Figure 6 in two dimensions and Figure 7 in three dimensions. One degeneracy curve has been determined for the 3, 4 eigenvalue levels.

4,5 Eigenvalue levels: The 4, 5 eigenvalue levels are similar to the 2, 3 levels.

There are two 4, 5 level degeneracies which occur for the rectangle at l2 l1 = 1 5 and l2 l1 = 3 5 (with α = 90 deg). There is one 4, 5 level degeneracy for the rhombus at l2 l1 = 1 and α = 32.0015 deg. No other parallelogram degeneracies have been determined for the 4, 5 levels. These degeneracies appear to be isolated points. No degeneracy curve has been determined for the 4, 5 eigenvalue levels.

5,6 Eigenvalue Levels: Figure 8 shows the degeneracy curves computed for the 5, 6 eigenvalue levels. The 5, 6 level degeneracies consist of two curves in (α, l2 l1 ) space. Figure 8 shows the two degeneracy curves and where they occur in relation to the three rectangle degeneracies and the two rhombus degeneracies at the 5, 6 level. Figure 8 gives the values of α vs. l2 l1 that produce these 5, 6 level degeneracies. The leftmost curve in Figure 8 begins at the first rectangle degeneracy, l2 l1 = 1 8 , α = 90 deg and runs to the rhombus degeneracy with smallest angle at α = 23.5730 deg, l2 l1 = 1. The rightmost curve in Figure 8 runs from the second rectangle degeneracy, l2 l1 = 1 2 , α = 90 deg to the second rhombus degeneracy at α = 60 deg, l2 l1 = 1. Figure 9 shows these same two degeneracy curves threedimensionally as functions of l2 l1 and α vs. the eigenvalues, Λ. The eigenvalues of each curve are at different heights along the Λ axis. The leftmost curve in Figure 9 runs between (rectangle) 9.1634 ≤ Λ ≤ 9.9504 (rhombus), while the rightmost curve runs between 7.8540 ≤ Λ ≤ 8.4644 . All 5,6 level degeneracies that have been determined fall on these two curves except for the degeneracy for the square which appears as an isolated point in both Figures 8 and9.

6,7 Eigenvalue Levels: Figure 10 shows the degeneracies for the 6, 7 eigenvalue levels. Although there are four 6, 7 level eigenvalue degeneracies for the rectangle and three for the rhombus, there is only one degeneracy curve for these levels as far as we have determined. For the region 5 8 ≤ l2 l1 < 1, we have found only one corresponding value of α that produces a degeneracy. This curve is shown in Figure 10. It runs between the fourth rectangle degeneracy at l2 l1 = 5 8 and the third rhombus degeneracy ( l2 l1 = 1 and α = 68.2162 deg). Figure 11 shows this curve in the three-dimensional ( l2 l1 , α, Λ) space. For the 6, 7 levels, Λ ranges between 8.8742 (rhombus)≤ Λ ≤ 9.5620 (rectangle). As previously this curve seems to be composed of an uncountably infinite number of values, although it occupies very little of the entire parameter space. The 6,7 level is the lowest eigenvalue level for which a diabolical point has been found. This point occurs at l2 l1 = 0.6263, α = 27.2292 deg (see red dot of Figures 10 and11). Its associated eigenvalue is Λ = 11.5351 which is somewhat larger than the eigenvalues of the points on the single degeneracy curve.

7,8 Eigenvalue Levels: Figure 12 shows the two-dimensional degeneracy curves for the 7, 8 eigenvalue levels. The 7, 8 level degeneracies are quite complicated and follow some of the behavior of lower levels but also are anomalous in certain ways. Figure 12 shows the three eigenvalue curves in (α, l2 l1 ) space. The leftmost curve runs between the first rectangle degeneracy and the first rhombus degeneracy. The second curve from the left runs between the second rectangle degeneracy and the second rhombus degeneracy. The rightmost curve runs between the third rectangle degeneracy and fourth rectangle degeneracy. This is the first degeneracy curve we have found that starts on one rectangle degeneracy and ends on another. As part of this curve, we have the very small region of side ratios within which five degeneracies occur for every value of l2 l1 . The region where five 7, 8 level degeneracies occur is at .7230 ≤ l2 l1 ≤ .7297. Once past l2 l1 = .7297 the number of degeneracies reduces to three in the region .7297 < l2 l1 < Figure 13 shows these same three degeneracy curves three-dimensionally as functions of l2 l1 and α vs. the eigenvalues, Λ. As previously the eigenvalues of each curve are at different heights along the Λ axis. The leftmost curve in Figure 13 runs between (rectangle) 12.7627 ≤ Λ ≤ 14.4023 (rhombus), while the next leftmost curve runs between (rectangle) 11.2223 ≤ Λ ≤ 12.1431 (rhombus). The rightmost curve in Figure 13 runs between 10.2562 ≤ Λ ≤ 11.2347. We have been unable to determine 7, 8 level eigenvalue degeneracies anywhere except on these three curves.

8,9 Eigenvalue Levels: Figure 14 gives the 8, 9 level eigenvalue degeneracies in two dimensions as functions of α and l2 l1 . Figure 14 shows five rectangular degeneracies, five rhombus degeneracies, one degeneracy curve starting at l2 l1 = .7819, and three diabolical points (red dots) as given in Table 3. For this pair of levels the rectangle and rhombus degeneracies play little part in determining possible degeneracy curves. There is only one curve which originates at the fourth rhombus degeneracy and ends on the fifth rhombus degeneracy. This is the first curve we have determined that has this type of behavior. The diabolical points are the isolated red dots in Figure 14 and are confined to parallelograms with opening angles less than 35 deg. For .7819 ≤ l2 l1 < 1 there are two values of α for each value of l2 l1 that produce degeneracies. Figure 15 shows this curve in the three-dimensional ( l2 l1 , α, Λ)-space. The 8, 9 level degeneracy curve has eigenvalues ranging from 11.6344 ≤ Λ ≤ 12.9202. The diabolical points have eigenvalue magnitudes that are a good deal higher than those of the curve. 9, 10 Eigenvalue Levels: Figure 16 shows the degeneracy curves computed for the 9, 10 eigenvalue levels of Dirichlet parallelograms. The 9, 10 level degeneracies consist of five separate degeneracy curves in α vs. l2 l1 space. Figure 16 shows the five degeneracy curves and where they occur in relation to the seven rectangle degeneracies and the five rhombus degeneracies at the 9, 10 levels. It gives those values of α vs. l2 l1 that produce the 9, 10 level parallelogram degeneracies. The leftmost curve on this plot begins at the first rectangle degeneracy which occurs at The degeneracy point at l2 l1 = 1 3 and α = 90 deg is of some interest. It is the lowest point determined to have a third-order degeneracy associated with it. The 8, 9, and 10 eigenvalue levels have this point as a degeneracy. So far the other degeneracies we have determined have been of second-degree.

Conclusions

We have considered the problem of solving the Helmholtz equation over the space of all parallelograms subject to Dirichlet boundary conditions and determining the degeneracies occurring in their spectra upon changing the two parameters, angle and side ratio, using the finite element method (FEM). In comparison with the family of triangles, the addition of the fourth boundary, and the fact that the parallelogram has an extra 180 degree rotation symmetry introduces a difference in the degeneracies found for the two different families of shapes.

Specifically the degeneracies occurring in the spectra of the space of all parallelograms subject to Dirichlet boundary conditions form degeneracy curves as opposed to isolated points. We have found four diabolical Dirichlet parallelograms that are exceptions to this general rule of degeneracy curves. For most adjacent eigenvalue levels of the family of parallelograms, the number of degeneracies between levels may be uncountably infinite. There are two notable exceptions, the 2, 3 eigenvalue levels and the 4, 5 eigenvalue levels. These levels have only isolated degeneracies associated with the rectangle, the rhombus, or the square. No other general parallelogram degeneracies have been determined for these levels. But all other levels (within the lowest ten eigenvalue levels) contain at least one degeneracy curve. We have determined one diabolical parallelogram for the 6,7 eigenvalue levels and three diabolical parallelograms for the 8/9 levels.

The 3, 4 eigenvalue levels are characterized by a single degeneracy curve. The 5, 6 eigenvalue levels are characterized by two degeneracy curves. The 6, 7 eigenvalue levels and the 8, 9 eigenvalue levels are each characterized by one degeneracy curve. The 7, 8 eigenvalue levels contain three degeneracy curves with an unusual region at .7230 ≤ l2 l1 ≤ .7297 with five degeneracies. The 9, 10 eigenvalue levels contain five degeneracy curves. In most cases these degeneracy curves run from a rectangle to a rhombus degeneracy at the same eigenvalue levels. However the 7,8 levels have a curve that runs from one rectangle degeneracy to another. The 8,9 levels have a curve that runs from one rhombus degeneracy to another.

At this time it is unknown whether there are degeneracy gaps in the above curves. But preliminary work on the Neumann boundary condition case indicates that gaps in such degeneracy curves can appear. There are a number of eigenvalues and eigenvalue degeneracies for certain parallelogram opening angles, notably α = 60 deg and α = 45 deg, that can be determined exactly. While it is well known that the spectrum of the 60 deg rhombus contains an incomplete set of exact eigenfunctions and eigenvalues [START_REF] Mccartin | On polygonal domains with trigonometric eigenfunctions of the Laplacian under Dirichlet or Neumann boundary conditions[END_REF], the fact that this is also true for certain eigenvalues of more general parallelograms with α = 60 deg and rational side ratios appears to be (if not unknown) unreported. The following table (Table 4) gives some of these exact eigenvalues and eigenvalue degeneracies and compares this result with the FEM approximation assuming a 10 -6 mesh size. The eigenvalues are given from smallest to largest for those parallelogram geometries having normalized eigenvalues with magnitude less than sixteen. Note that all the exact eigenvalues in Table 4 are multiples of the lowest order Dirichlet equilateral triangle eigenvalue. Parallelogram geometries with 60 deg opening angle and rational side ratio can be comprised of an even number of congruent equilateral triangles. They contain some trigonometric modes, and these modes form incomplete sets of eigenfunctions of the above shapes that can be determined exactly. For example the 60 deg rhombus can be decomposed into two congruent equilateral triangles and its second level eigenvalue magnitude is six times that of the normalized lowest-order equilateral triangle eigenvalue given by π/(3 √ 3) = 0.6046... [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF]. The α = 60 deg, l2 l1 = 1 2 parallelogram can be decomposed into four congruent equilateral triangles and has a 4th level eigenvalue magnitude that is twelve times that of the lowest-order normalized equilateral triangle eigenvalue. Thus McCartin's Theorem 3 [START_REF] Mccartin | On polygonal domains with trigonometric eigenfunctions of the Laplacian under Dirichlet or Neumann boundary conditions[END_REF] can be used to explain these partial sets of trigonometric eigenfunctions and exact eigenvalues found for parallelograms with α = 60 deg and l2 l1 ∈ Q with prototiles that are equilateral triangles. It is also possible to obtain some exact eigenvalues and eigenvalue degeneracies for the α = 45 deg parallelogram case with l2 l1 = 1 √ 2 and l2 l1 = 1 2 √ 2 (even though both are irrational). Some of the exact eigenvalues for this case are given by certain eigenvalues of the isosceles right triangle obeying Dirichlet boundary conditions [START_REF] Berry | Diabolical points in the spectra of triangles[END_REF]. This case contains a few exact simple eigenvalues but no degeneracies within the lowest eleven eigenvalue levels. These are shown in Table 5.

These exact eigenvalues and eigenvalue degeneracies allow us to obtain a direct relative error comparison with the FEM method used [8]. The agreement between the approximate and exact values is very good. 

Conjecture 1 ( 2 , 3

 123 Eigenvalue Levels). The lowest eigenvalue degeneracy occurs at the 2, 3 eigenvalue levels for the square. There are no other 2, 3 level degeneracies. Conjecture 2 (3, 4 Eigenvalue Levels). (a) There is one 3, 4 level eigenvalue degeneracy for the rectangle at b a = 3 8 . (b) There is one 3, 4 level eigenvalue degeneracy for the rhombus at l2 l1 = 1, α = 49.1836 deg. (c) If 0 < l 2 /l 1 < 3/8, then there are no 3, 4 level eigenvalue degeneracies. (d) If

3 8 ≤

 8 l2 l1 ≤ 1, then for every value of l2 l1 in this region, there is one corresponding value of α that gives a 3, 4 level eigenvalue degeneracy. Conjecture 3 (4, 5 Eigenvalue Levels). (a) There are two 4, 5 level eigenvalue degeneracies for the rectangle at b a = There is one 4, 5 level eigenvalue degeneracy for the rhombus at l2 l1 = 1, α = 32.0015 deg. (c) There are no other 4, 5 level eigenvalue degeneracies. Conjecture 4 (5, 6 Eigenvalue Levels). (a) There are three 5, 6 level eigenvalue degeneracies for the rectangle at b a = 1 (2 √ 2) , 1 2 , and 1. (b) There are two 5, 6 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 23.5730 deg and 60 deg.

Conjecture 5 ( 6 , 7

 567 Eigenvalue Levels).(a) There are four 6, 7 level eigenvalue degeneracies for the rectangle at b a = There are three 6, 7 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 18.5106 deg, 38.9301 deg, and 68.2162 deg.(c) If 0 < l2 l1 < 5 8 , then there are no 6, 7 level eigenvalue degeneracies (other than those in (5a) and (5e)).

Conjecture 6 ( 7 , 8

 678 Eigenvalue Levels). (a) There are five 7, 8 level eigenvalue degeneracies for the rectangle at b a There are two 7, 8 level eigenvalue degeneracies for the rhombus at l2 l1 = 1 and α = 15.2282 deg and 28.0661 deg. (c) If 0 < l2 l1 < 1 4 , then there are no 7, 8 level eigenvalue degeneracies. (d) If 1 4 ≤ l2 l1 < 3 32
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 8 is the fourth rectangle degeneracy. In the region 8 15 ≤ l2 l1 ≤ 1, there are only two 7, 8 level degeneracies. . A closeup of the region where a total of five degeneracies occurs is shown as the green curve of the inset in Figure12.
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 3113351 , α = 90 deg and runs to the rhombus degeneracy with smallest angle, α = 11.1815 deg. The next curve begins with the second rectangle degeneracy l2 l1 = , α = 90 deg) and runs to the second rhombus degeneracy at α = 17.7264 deg, l2 The third curve from the left begins with the third rectangle degeneracy at l2 l1 = , α = 90 deg and runs to the third rhombus degeneracy at α = 30.1687 deg, l2 l1 = 1. The fourth curve from the left begins at the fourth rectangle degeneracy at l2 l1 = , α = 90 deg and runs to the fourth rhombus degeneracy at α = 41.5932 deg, l2 l1 = 1. Note that the fifth rectangle degeneracy occurs at l2 l1 = 1 3 , α = 90 deg and that there is no degeneracy curve from the fifth rectangle degeneracy to the fifth rhombus degeneracy. There is a point of inflection for the fourth degeneracy curve at α = 60.6084 deg, l2 l1 = 1 3 . There is a fifth degeneracy curve that runs between the sixth rectangle degeneracy at l2 l1 = , α = 90 deg and the fifth rhombus degeneracy at α = 80.3125 deg, l2 l1 = 1. Figure 17 shows these same five curves three-dimensionally as functions of α, l2 l1 , and Λ. As previously each of these five three-dimensional curves occurs at different heights along the Λ axis. The highest degeneracy curve in terms of Λ runs from 16.3752 ≤ Λ ≤ 18.8983. The second highest curve in Figure 17 runs from 14.7521 ≤ Λ ≤ 16.3497. The third highest curve in Figure 17 runs from 13.4073 ≤ Λ ≤ 14.7243. The fourth highest curve runs from 12.9785 ≤ Λ ≤ 13.9828. The lowest curve in Figure 17 runs from 12.9785 ≤ Λ ≤ 13.5079. There are two isolated rectangle degeneracies, one at l2 l1 = and the other at l2 l1 = 1 (the square).

  Appendix A. Exact Eigenvalues for Dirichlet Parallelograms with 60 deg Opening Angle and Rational Side Ratio
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 9101112 Figure 9. Three Dimensional Degeneracy Curves for the 5,6 Eigenvalue Levels of the General Parallelogram

  

  

  

  

Table 1 .

 1 Rectangle Degeneracies

	) b/a(num)

Table 2 .

 2 . Rhombus Degeneracies

	Levels α(deg)	Λ(FEM)
	2, 3	90	5π/4 = 3.9270...
	3, 4	49.1836	5.6538
	4, 5	32.0015	7.7853
	5, 6	90	5π/2 = 7.8540...
	5, 6	60	8.4644
	5, 6	23.5730	9.9504
	6, 7	68.2162	8.8742
	6, 7	38.9301	10.1453
	6, 7	18.5106	12.1798
	7, 8	90	13π/4 = 10.2102...
	7, 8	28.0661	12.1431
	7, 8	15.2282	14.4024
	8, 9	60.3126	11.6858
	8, 9	42.0697	12.9202
	8, 9	41.2598	13.0060
	8, 9	21.8212	14.2105
	8, 9	12.8974	16.6552
	9, 10	90	17π/4 = 13.3518...
	9, 10	80.3123	13.5079
	9, 10	41.5932	13.0347
	9, 10	30.1687	14.7243
	9, 10	17.7264	16.3497
	9, 10	11.1853	18.8983

Table 3 .

 3 Isolated Diabolical Degeneracies

	Levels α(deg)	l2 l1	Λ(FEM)
	6, 7	27.2292 0.6263 11.5351
	8, 9	29.1691 0.5485 13.5202
	8, 9	26.5894 0.4728 15.1702
	8, 9	16.1664 0.7356 16.0606

Table 4 .

 4 Exact Eigenvalues for Dirichlet Parallelograms with 60 deg Opening Angle and Rational Side Ratio (Λ < 16)

	l2 l1 1 √ 2 1 √ 2 1 2 √ 2	Levels 5 Eigenval 7.853981634781301 Λ (FEM) 11 Eigenval 15.707963274398585 11 Eigenval 15.707963293787456	Exact Λ 5π 2 5π 5π	Exact Λ(num) 7.853981633974483 1.02727 × 10 -10 Relative Error 15.707963267948966 4.10595 × 10 -10 15.707963267948966 1.64493 × 10 -9

Table 5 .

 5 Exact Eigenvalues for Dirichlet Parallelograms with 45 deg Opening Angle and Side Ratio Rational Multiples of 1

	√	2

(Λ < 16)

(e) If (e) There are three isolated diabolical points for the 8,9 eigenvalue levels (see Table 3).