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The variation, with material parameters, of Lamb modes is investigated. Vibration spectra of
traction-free elastic plates are generally presented, for a given isotropic material, as a set of
dispersion curves corresponding to the various Lamb mode branches. Here, the spectrum variations,
with the Poisson ratio �, are plotted in a dimensionless co-ordinate system in the form of a bundle
of curves for each Lamb mode. Except for the fundamental anti-symmetric mode A0, this
representation highlights the same behavior for all Lamb modes. VT denoting the shear wave
velocity, the �� ,k� plane can be divided into two angular sectors separated by the line of slope VT

�2.
In the upper one, corresponding to a phase velocity V=� /k larger than VT

�2, dispersion curves are
very sensitive to the plate material parameters. In the lower sector �V�VT

�2� all the branches,
whatever the value of the Poisson ratio �0���0.5�, are gathered into a thin pencil. Moreover,
curves of a given bundle cross the boundary line at coincidence points equally spaced. These
properties and a specific behavior observed for �=0 are explained in terms of Lamé wave solutions
of the characteristic equations of Lamb modes.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3117685�
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I. INTRODUCTION

The characteristic equations governing the propagation
of symmetric �Sn� and anti-symmetric �An� modes in a free
isotropic plate was derived by Rayleigh.1 First numerical so-
lutions were obtained for the phase velocity V of the lowest
modes by Lamb.2 The propagation of these guided waves
can be represented by a set of dispersion curves giving the
angular frequency �=2�f of each modes versus the wave
number k=2� /�. Plots of dispersion curves, numerically
calculated for various materials, can be found in many
textbooks.3–6 They show the complexity of Lamb waves fre-
quency spectra as a result of the coupling of shear waves
�velocity VT� and longitudinal waves �velocity VL� at the
traction-free surfaces.

Before the extensive use of computers, crossings of
Lamb mode branches were investigated as a guide for
sketching Lamb wave spectra without numerical calcula-
tions. Due to mode orthogonality,7 curves of the same family
never intersect. Crossing points between symmetric and anti-
symmetric curves were first studied by Mindlin.8 This author
developed a method based on mixed boundary conditions for
which shear and dilatational waves are uncoupled. The grid
of intersecting dispersion curves for a plate subjected to
these artificial boundary conditions forms a series of bounds
for the dispersion curves of Lamb modes. Using dimension-
less variables, Lamb wave frequency spectra only depend on
the bulk wave velocity ratio VL /VT or Poisson’s ratio �. Ex-
tending Mindlin’s method, Freedman9 studied the variation
of Lamb mode spectra over the full range of Poisson’s ratio
�−1���0.5�. This author also showed that coincidences of
branches of like symmetry modes occur at intersection of

bounds and for a ratio of the wave number k to the shear
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wave number in the plate material �kT=� /VT� equal to 2−1/2.
In a companion paper,10 the special behavior of Lamb modes
at �=0 was investigated in terms of Mindlin rules. In a third
paper,11 Freedman examined the variation of individual
branches of lower order Lamb modes over the complete
range of Poisson ratio.

In Freedman’s papers, the dispersion curves are gener-
ally presented on an unusual plot of k /kT versus d /�T �d
denoting the plate thickness� and figures are schematic illus-
trations of the variations of Lamb branches. Additionally, a
large number of accurate frequency spectra can be found in
the literature on Lamb waves. However, each spectrum, com-
puted for a given material or a fixed value of the Poisson
ratio, is composed of many branches corresponding to vari-
ous modes. From the juxtaposition of these families of dis-
persion curves, it is not easy to conclude on the evolution of
Lamb modes with the mechanical properties of the plate ma-
terial. It is thus desirable to reach a clear insight on the
variations of the lower order Lamb mode branches with ma-
terial parameters.

The objective of the present paper is to clarify the man-
ner in which the frequency spectrum of Lamb waves varies
with the Poisson ratio. For this purpose, the dispersion
curves are presented in a co-ordinate system giving the nor-
malized frequency F= fd /VT versus the normalized wave
number K=kd /2�=d /�. Moreover, we present the spectrum
in the form of a bundle of curves for a selected Lamb mode.
These plots show general trends and clearly highlight the
specific behavior of Lamb modes at points where they con-
sist solely of shear waves propagating at 45° to the plate

surfaces.
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II. NUMERICAL RESULTS

In a homogeneous isotropic plate, Lamb waves are ei-
ther symmetric or anti-symmetric. For each family the angu-
lar frequency and the wave number satisfy a characteristic or
frequency equation.3 When the faces of the plate are free of
tractions, no energy leakage occurs. Then, for any real k, the
secular equation yields an infinite number of real roots in �.
The dispersion curves of these propagating modes, guided by
the plate, is represented by a set of branches in the �� ,k�
plane. Many frequency spectra can be found in the literature.
Each of them, computed for a given material, testifies the
complexity of Lamb wave propagation.

Elastic properties of an isotropic material are character-
ized by two constants c11 and c66, related to longitudinal and
shear wave velocities, respectively, VL and VT. The use of
dimensionless frequency F= fd /VT and wave number K
=kd /2� allows us to express Lamb wave propagation in
terms of only one material parameter, the bulk wave velocity
ratio �=VL /VT or the Poisson ratio �:

� =
�2 − 2

2��2 − 1�
�1�

and

� =
VL

VT
=�2�1 − ��

1 − 2�
. �2�

The advantage of Poisson’s ratio is that this coefficient
remains finite. With very few special exceptions, isotropic
materials exhibit positive Poisson ratio. Therefore, the study
is limited to the usual range, i.e., from the rigid solid ��=0
→�=�2� to the fluid ��=0.5→�=��.

Numerical calculations have been performed in order to
determine the normalized frequency F versus normalized
wave number K. Dispersion curves were plotted for 0�K
�5 and 0�F�6 and for 11 values of the Poisson ratio �
from 0 to 0.49. The first ten values are separated by a step
equal to 0.05. The limiting case of a fluid, with VT=0 and
�=0.5, is not considered here. Results are presented in Fig. 1
for the first four anti-symmetric modes and in Fig. 2 for the
first four symmetric modes. In these graphs, a straight line of
unit slope corresponds to a phase velocity V=� /k equal to
VT. This representation highlights some conclusions on the
behavior of Lamb modes versus the plate material properties.

For a given mode, the lower curve of a bundle corre-
sponds to �=0 and the upper one to �=0.49. This continuous
evolution of the frequency spectrum observed for all the
Lamb modes can be easily explained. Equation �2� shows
that the bulk wave velocity ratio �=VL /VT increases with the
Poisson ratio. Thus, in a co-ordinate system where the fre-
quency thickness product is normalized to the shear wave
velocity VT, the dispersion curves are pulled toward high
normalized frequencies when the longitudinal wave velocity
VL increases.

Except for the fundamental anti-symmetric mode A0, the
�� ,k� plane can be divided in two angular sectors. In the
upper sector, corresponding to a phase velocity V=� /k
larger than VT

�2, dispersion curves are very sensitive to the
�
material parameters. In the lower sector �V�VT 2� all the
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curves, whatever the value of Poisson’s ratio, are gathered
into a thin pencil. It should be noted that this velocity �VT

�2�
represents the lowest possible value of the longitudinal bulk
wave velocity VL reached at zero Poisson ratio. Thus in the
lower sector, for any material, the phase velocity is smaller
than VL, which dramatically reduces the influence of bulk
wave velocity ratio and Poisson ratio on Lamb mode disper-
sion curves. For large values of kd, i.e., d	�, the non-zero
order symmetric and anti-symmetric branches tend asymp-
totically toward a unit slope, corresponding to a phase veloc-
ity equal to VT. Lamb modes are often used to characterize
material properties in platelike structures.12 This remark in-
dicates that for high order modes �n
1� the sensitivity to
material parameter � or �=VL /VT is much larger in the upper
sector.

Branches of a given Lamb mode cross the line corre-
sponding to the phase velocity VT

�2 at a fixed point inde-
pendent of the Poisson ratio. These points are equally spaced
on this line and their abscissa kd are equal to �2n+1�� for
the symmetric mode Sn �K=n+1 /2� and 2n� for the anti-
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FIG. 1. �Color online� Variation, with Poisson’s ratio in the range 0��
�0.49, of anti-symmetric Lamb modes in an isotropic free plate of thick-
ness d. Bundle of dispersion curves for �a� A0, A1, and A2 modes, and �b� A3

mode. For each mode, the lower curve corresponds to �=0 and the upper
one to �=0.49.
symmetric mode An �K=n�, respectively. Curves of a given
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bundle do not intersect each other. Figure 3 illustrates this
behavior for modes A1 and S1, showing that dispersion
curves cross the line F=�2K at the common point with the
same slope. All branches of a bundle pass through the line so
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FIG. 2. �Color online� Variation, with Poisson’s ratio in the range 0��
�0.49, of symmetric Lamb modes in an isotropic free plate of thickness d.
Bundle of dispersion curves for �a� S0 and S1 modes, �b� S2 mode, and �c� S3

mode. For each mode, the lower curve corresponds to �=0 and the upper
one to �=0.49.
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tangentially that their order does not change at the coinci-
dence point. This property is valid for all the symmetric and
anti-symmetric modes.

In the case of a rigid solid ��=0�, Fig. 4�a� shows that
symmetric Lamb modes exhibit a particular behavior. It ap-
pears that all the segments of the line F=�2K belong to
successive symmetric modes. The change from mode Sn to
mode Sn+1 occurs at the coincidence point of abscissa kd
= �2n+1��, giving rise to a discontinuity of the slope and
thus of the group velocity Vg=d� /dk. These remarks are not

0.75 1 1.25 1.5

1.3

1.5

1.7

F = fd / V
T

K= kd / 2π

A
1

ν = 0.49

ν = 0

V T
√

2

(a)

1 1.25 1.5 1.75 2
1.7

2

2.3

F = fd / V
T

S
1

K= kd / 2π

ν = 0

ν = 0.49

√
2

V T

0.1
ν = 0

0.49
0.2

(b)

FIG. 3. �Color online� Behavior of dispersion curves over the coincidence
points. �a� A1 mode and �b� S1 mode. Dispersion curves of a given mode
cross the line F=�2K with the same slope.
valid for the anti-symmetric modes �Fig. 4�b��.
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In the following part, most of the features observed on
Lamb mode frequency spectra are explained from the spe-
cific conditions for which the modes propagating in the free
isotropic plate are Lamé modes, consisting solely of shear
waves, or a degenerate Lamé mode, consisting of a purely
longitudinal wave.13

III. INTERPRETATION IN TERMS OF LAMÉ MODES

The characteristic equations of Lamb modes result from
the traction-free boundary conditions on the surfaces, located
at x2= �h for a plate of thickness d=2h. Using classical
notations:5,6

q2 = kT
2 − k2 and p2 = kL

2 − k2, �3�

boundary conditions may be expressed, for the symmetric
modes �
=0� and the anti-symmetric modes �
=� /2�, as

�k2 − q2�B cos�ph + 
� + 2ikqA cos�qh + 
� = 0 �4�
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FIG. 4. �Color online� Special behavior at �=0 �rigid solid�. �a� Symmetric
Lamb modes: segments of the Lamé line belong to successive modes. The
change from mode Sn to mode Sn+1 occurs at the coincidence point of ab-
scissa K=n+1 /2 and gives rise to a discontinuity of the slope. �b� This
discontinuous behavior is not observed on anti-symmetric branches.
and
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2ikpB sin�ph + 
� + �k2 − q2�A sin�qh + 
� = 0. �5�

A and B are the amplitudes of the vector and scalar displace-
ment potentials, respectively.

Lamé modes are particular solutions of these equations
for kT

2 =2k2, i.e., for a phase velocity V equal to VT
�2. With

q2 = k2 and p2 = −
�

1 − �
k2, �6�

boundary conditions are satisfied with kh= �n+1 /2�� for the
symmetric modes �
=0� and kh=n� for the anti-symmetric
modes �
=� /2�. In both cases the amplitude B of the scalar
potential vanishes, giving rise to a pure shear wave reflecting
at 45° on the plate boundaries for which no mode conversion
into longitudinal waves occurs.14 The resulting guided wave
propagates along the axis of the plate at the phase velocity
V=VT

�2. These solutions exist for any positive value of ��
and the normalized co-ordinates of their representative points
are the equally spaced values:

K = m/2 and F = m/�2, �7�

where m is an odd �even� integer for the symmetric �anti-
symmetric� modes. Moreover, the acoustic energy is carried
at a velocity equal to the projection of the shear wave veloc-
ity on the plate axis. Thus, the group velocity Vg=d� /dk of
Lamé modes is equal to VT /�2, i.e., half the phase velocity.

Since positions and slopes of Lamé modes are indepen-
dent of the Poisson ratio, each Lamb mode of a given bundle
passes through the Lamé line F=�2K at the same point with
the same slope. This behavior is observed in Figs. 1 and 2 for
all the Lamb modes, except for the anti-symmetrical mode
A0 whose phase velocity is less than the Rayleigh wave ve-
locity VR, thus less than VT.

For the special case �=0→p=0 and for the symmetric
modes, another solution of Eqs. �4� and �5� exists with A
=0 and a non-zero scalar potential �B�0�. In a rigid solid,
the Lamé solutions correspond to a constant longitudinal dis-
placement propagating at the velocity VL=VT

�2. Conversely
to the non-degenerate Lamé modes, the boundary conditions
are satisfied for any wave number k. Thus, as shown in Fig.
4�a�, the Lamé line is a locus for the roots of the Rayleigh–
Lamb equation. Segments of the Lamé line belongs to suc-
cessive symmetric modes, the change from modes Sn to Sn+1

occurring at the coincidence point of abscissa kd= �2n+1��.
At this point, the Sn branch changes direction giving rise to a
discontinuity of the group velocity from VT

�2 to VT /�2. The
inverse change occurs for the mode Sn+1. As predicted, Fig.
4�b� shows that this behavior is specific to symmetric modes.

IV. CONCLUSION

Although the propagation of elastic waves in an isotro-
pic plate has been widely investigated, the influence of plate
material properties on Lamb mode spectra was not easy to
derive from the uncountable frequency spectra found in the
literature. Using a dimensionless co-ordinate system, the way
individual Lamb mode branches vary with the Poisson ratio
� was investigated. A representation in the form of a bundle

of dispersion curves shows that the normalized frequency
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increases continuously with the Poisson ratio and also high-
lights some feature common for all Lamb modes, except for
the fundamental anti-symmetric one A0. The �� ,k� plane can
be divided in two angular sectors separated by a line of slope
equal to the phase velocity VT

�2 of the Lamé modes. In the
upper one, corresponding to a phase velocity V larger than
VT

�2, the frequency spectrum is very sensitive to Poisson’s
ratio. In the lower sector �V�VT

�2�, all curves in a bundle
are gathered into a thin pencil, with a weak dependence on
Poisson’s ratio. Moreover, all the dispersion curves of a
given Lamb mode cross the boundary line at a fixed point
with the same slope. These coincidence points are equally
spaced: their abscissa are such that kd=2n� for the anti-
symmetric mode An and kd= �2n+1�� for the symmetric
mode Sn. In the case of a rigid solid ��=0�, a specific behav-
ior is observed: segments of the Lamé line belong to succes-
sive symmetric modes. The change from modes Sn to Sn+1

occurs at the coincidence point of abscissa kd= �2n+1��.
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