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The method of the time reversal operator decomposition is usually employed to detect and

characterize static targets using the invariants of the time reversal operator. This paper presents a

theoretical and experimental investigation into the impact of small displacements of the target on

these invariants. To find these invariants, the time reversal operator is built from the multistatic

response matrix and then diagonalized. Two methods of recording the multistatic response matrix

while the target is moving are studied: Acquisition either element by element or column by column.

It is demonstrated that the target displacement generates new significant eigenvalues. Using a

perturbation theory, the analytical expressions of the eigenvalues of the time-reversal operator for

both acquisition methods are derived. We show that the distribution of the new eigenvalues strongly

depends on these two methods. It is also found that for the column by column acquisition, the

second eigenvector is simply linked to the scatterer displacements. At last, the implications on

the Maximum Likelihood and Multiple Signal Classification detection are also discussed. The

theoretical results are in good agreement with numerical and 3.4 MHz ultrasonic experiments.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4768797]

PACS number(s): 43.30.Vh, 43.60.Tj, 43.60.Jn [DRD] Pages: 94–107

I. INTRODUCTION

A time reversal mirror (TRM) provides a robust tool to

focus a wave in space and time, whatever the complexity of

the propagating medium. It has been applied in many differ-

ent fields such as non-destructive testing,1,2 medical ther-

apy,3–5 and underwater acoustics, either for detection6,7 or

for telecommunications.8,9 A time reversal experiment is

achieved in two steps: First, the TRM records the wave emit-

ted by a source, and then these signals are flipped in time

and emitted back into the medium. However, time-reversal

invariance requires a stationary medium, thus the focusing

of the time reversed signal is impaired when the medium is

changed between the two steps. The effect of fluctuations on

TRM performance has been quantitatively investigated in

several papers.10–12 For example, in underwater acoustics,

Roux and Fink studied the degradation of the focal spot in a

shallow water environment with waves on the surface, and

Sabra and Dowling presented an analytical study of the

effect of array deformation using modal decomposition and

a statistical model.

This paper focuses on the DORT (French acronym for

Decomposition of the Time Reversal Operator) method

which is derived from the matrix formulation of iterative

time-reversal experiments.13 This method is an efficient way

to detect and localize passive targets. In the frequency

domain, the time reversal operator (TRO) is given by the

Hermitian matrix K†K (or KK†) where K is the Multistatic

Data Matrix (MDM) and the dagger superscript denotes

transpose conjugation. For well-resolved isotropic scatterers,

one eigenvector of the TRO, i.e., one time-reversal invariant,

is generally associated with a single scatterer. Consequently,

the rank of the TRO is equal to the number of scatterers.

However, this property, which is important for detection, is

only valid in a time-invariant environment. Indeed, previous

studies assumed that the propagation medium and the targets

were static during the acquisition of the MDM. But because

the recording of the MDM is not instantaneous, this last

assumption may not be realistic. This is especially true for

at-sea experiments. For instance, in Prada et al.,14 the DORT

method was applied in shallow water using a 12 kHz vertical

array composed of 24 transducers. Hence, 24 emissions and

the 24 sound round-trip travels were necessary to acquire the

MDM on the 24 transducer array. Thus it takes at least 8 s to

detect targets at 250 m. As a consequence, instead of having

1 significant eigenvalue for detecting 1 target, the strongest

eigenvalue is only 5 dB larger than a continuous distribution

of the 23 other eigenvalues.

However, in this complex shallow water experiment, it

is difficult to isolate the effects of the medium fluctuations

from the effect of the ground reverberation that also

increases the number of significant eigenvalues. Moreover,

at sea, there are many possible causes of time fluctuations:
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Array oscillations, gravity waves, non-stationary water cur-

rents, target motion, etc. Thus it is important to understand

the effect of target motion on the time reversal invariants.

Because the general derivation of the invariants of the

TRO is a tough problem, we consider a simple configuration

for which analytical results can be derived: An isotropic

point-like scatterer moving parallel to a linear array of trans-

ducers. Even in this simple case, it is observed that, instead

of a unique time-reversal invariant for a motionless target,

the scatterer is associated with as many invariants as the

number of transducers. Here we study this effect when the

displacements are small compared to the focal width at the

target position. With this assumption, analytical results can

be derived using Taylor expansions. It is very enlightening

to understand the transition from a rank 1 TRO to a full rank

TRO when the displacement range increases.

This paper is organized as follows. In Sec. II, the DORT

method is briefly described and the two MDM acquisition

methods are introduced. The theory describing the eigen-

value distribution is developed in Sec. III for column by col-

umn acquisition, and in Sec. IV for element by element

acquisition. Both models are based on the Taylor expansion

of the MDM with respect to the root-mean-square (rms) dis-

placement of the target. Random matrix theory is used to

describe the eigenvalue distribution for the element by ele-

ment acquisition method. In addition, from the analysis of

the eigenvectors of the TRO obtained with the column by

column acquisition, we derive an original method to extract

the target displacement which is even valid in the presence

of phase aberration. In the last section we discuss how this

approach can be applied to predict the resolution loss of two

well-known non-linear array processing algorithms: Mini-

mum likelihood and multiple classification.

The theoretical results are confirmed with MDM

obtained either numerically or experimentally. The experi-

ments are performed with an ultrasonic transducer array

working at 3.5 MHz central frequency.

II. EIGENVALUES OF THE TRO FOR A MOVING
TARGET

A thorough description of the DORT method can be

found in previous works15,16 (and references therein), there-

fore only a few basic results are recalled in this section. For

a given experiment with two arrays of transducers, two

TROs can be introduced, the transmission operator (Tx-

TRO) and the reception operator (Rx-TRO). They are,

respectively, given by the matrix products K†K and KK†.

The Tx (respectively, Rx) time-reversal invariants are the

eigenvalues, RTx
n (respectively, RRx

n ) and the eigenvectors

UTx
n (respectively, URx

n ) of the Tx-TRO (respectively, Rx-

TRO). It can be easily demonstrated that the nth eigenvalues

of K†K and KK† are identical, i.e., RRx
n ¼ RTx

n ¼ Rn. Vector

UTx
n (respectively, URx

n ) is defined as the nth eigenvector of

K†K (respectively, KK†), i.e., K†KUTx
n ¼ Rn UTx

n (respec-

tively, KK†URx
n ¼ Rn URx

n ). In the present study, a single array

is used for transmission and reception, and acoustic reciproc-

ity is assumed so that K is symmetrical and KK†¼KK*.

We consider an isotropic scatterer moving parallel to a

linear array of transducers, slow enough to ignore the Dopp-

ler effects. In this configuration, we study two ways of

acquiring the MDM. The first one, called “column by

FIG. 1. (Color online) Experimental ge-

ometry and schematic description of the

column by column and element by ele-

ment acquisition methods.

J. Acoust. Soc. Am., Vol. 133, No. 1, January 2013 Philippe et al.: Time reversal and moving target 95

Downloaded 17 Jan 2013 to 193.54.89.65. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



column,” consists of successively transmitting a probing sig-

nal (pulse or chirp) from each of the transducers (Fig. 1). Af-

ter each emission, the backscattered field is simultaneously

recorded on all elements of the array. This method is com-

monly used in DORT experiments and the acquisition time

is 2 Ns, where N is the number of transducers in the array

and s is the one-way wave travel time between the array and

the target. As the target moves between two emissions, each

column of the acquired MDM corresponds to a different

position of the target. The second one, which is used when

there is no parallel processed reception, is the “element by

element” acquisition. This method consists of N2 Tx/Rx

acquisitions, and the total acquisition time is 2N2s. It is

therefore much more time consuming and, in this case, each

element of K corresponds to a different scatterer’s position.

To better understand the consequences of these two ac-

quisition processes, simple numerical computations are per-

formed to generate the TROs. The moving target, which is

assumed to be isotropic and point-like, is set in the water at

distance L¼ 136 mm from a 64-transducer linear array work-

ing at 3.5 MHz. The array pitch d is 0.417 mm. The target

motion is supposed to be parallel to the array. It is random

following a zero-mean Gaussian distribution with a standard

deviation denoted as r. The N2 elements Klm of the MDM

are computed as the product of the Green’s function between

antenna number l and the target’s position, and the Green’s

function between the target and antenna number m. The

synthetic Tx-TRO K†K is then computed and diagonalized.

Figure 2 displays the evolution of the eigenvalues of the Tx-

TRO with respect to r. Note that for a given r, the plotted

eigenvalues are obtained from one realization of the MDM.

Hence, since the diagonalization is a self-averaging process

there is no need for averaging. In these figures, in the static

case (r¼ 0), both acquisition methods give the same single

positive eigenvalue. However, as r increases, the eigenvalue

distributions behave differently. For column by column ac-

quisition, the eigenvalues increase roughly as a power law of

r [Fig. 2(b)]. For element by element acquisition, a continu-

ous distribution of the eigenvalues rises. The distribution

follows a quadratic law r2 for small r. But the second eigen-

value separates from the continuum for r> 0.25 mm and

behaves like the second eigenvalue in the case of the column

by column acquisition [Fig. 2(a)]. In both cases, the presence

of secondary significant eigenvalues may induce false alarms

as if more than one target is present in the medium. In order

to identify these false alarms, the first step consists of solv-

ing the direct problem by predicting the evolution of the

eigenvalues with respect to the target motion.

We propose two models associated with each acquisi-

tion method. The column by column results are explained

thanks to Taylor’s series of the TRO with respect to the rms

displacement r of the target. We show that the leading Tay-

lor’s order of the nth eigenvalue is r2(n � 1). To interpret the

element by element results, we perform a Taylor’s series of

the TRO and also use fundamental results of random matrix

theory (RMT) which predicts the eigenvalue distribution for

a large random matrix. The whole analysis is performed in

the frequency domain. For sake of simplicity, the frequency

dependence is kept implicit.

III. ANALYSIS OF THE TRO FOR A COLUMN BY
COLUMN ACQUISITION

The transfer matrix is acquired column by column by

simultaneously recording the backscattered field on all array

elements after each emission. This acquisition method is

commonly used in experiments where a transmit-receive

array is available, since it is much faster than the element by

element acquisition.

A. Derivation of the TRO

Let us consider a linear array of aperture d with N trans-

ducers and a moving scatterer at a distance L from the array.

Assuming a homogeneous and isotropic propagating media,

Klm is given by the propagation from transducer m at posi-

tion Mm to the scatterer at position S(m) and the backscatter-

ing from the scatterer to the transducer at position Ml. Thus

Klm ¼ GðMl; S
ðmÞÞGðSðmÞ;MmÞ where G is the Green’s func-

tion. Using the free space Green’s function,17 it becomes

FIG. 2. (Color online) Evolutions of the 64 eigenvalues of the Tx-TRO at 3.5 MHz as a function of the rms displacement of the scatterer. (a) Element by ele-

ment acquisition (the scatterer position is different for each MDM element). The inset plot is an enlargement between 0 and 0.4 mm. (b) Column by column ac-

quisition. The scale of the inset plot is log-log.
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Klm ¼
1

16p2jMlSðmÞjjMmSðmÞj e
ikðjMlS

ðmÞjþjMmSðmÞjÞ; (1)

where Mm ð1 � m � NÞ are the transducer positions.18 Posi-

tion SðmÞ does not depend on index l because a whole column

is acquired for one scatterer position. Without loss of gener-

ality, the scattering coefficient is assumed equal to 1.

Because in our configuration the target range is about 5 times

the array size, the target can be considered far enough from

the array to replace 1=jMlS
ðmÞj and 1=jMmSðmÞj by 1/L. Then

Eq. (1) becomes

Klm ¼
1

16p2L2
eikðjMlS

ðmÞjþjMmSðmÞjÞ: (2)

Tx-TRO ðH ¼ K†KÞ is then given by

Hlm ¼
1

ð4pLÞ4
e�ikMlS

ðlÞ
�X

n

eikðMnSðmÞ�MnSðlÞ
�

eþikMmSðmÞ :

(3)

Matrix H is the product of two diagonal matrices and

matrix ~H. Indeed

Hlm ¼ e�ikMlS
ðlÞ ~HlmeþikMmSðmÞ : (4)

Because the diagonal matrices are unitary, H and ~H
have the same eigenvalues and the lth component of the nth

eigenvector of H is equal to the lth component of the nth

eigenvector of ~H multiplied by e�ikMlS
ðlÞ

. For large N, the

transformation of the discrete sum of Eq. (4) into a continu-

ous one yields

~Hlm ¼
1

ð4pLÞ4
N

d

ðd=2

�d=2

eik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þðz�rZðmÞÞ2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þðz�rZðlÞÞ2
p� �

dz;

¼ FðrZðlÞ; rZðmÞÞ (5)

where rZðlÞ is the cross-range scatterer position for the lth
emission (see Fig. 1). Distance r is a displacement factor

that is defined such as
PN

l¼1 ðZðlÞÞ
2 ¼ N. In the following, r

is assumed to be small compared to L, d, and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kL=2p

p
. Thus

a Taylor expansion of the function F in terms of rZðlÞ and

rZðmÞ can be performed. At the qth Taylor order, this series

is written as

FðrZðlÞ; rZðmÞÞ¼
X
p;p0

@ðp;p0ÞFð0;0Þ
p!p0!

ðrZðlÞÞpðrZðmÞÞp
0

þOðrqþ1Þ: (6)

where ðp; p0Þ 2 ½0; q�2; ðpþ p0Þ � q; ðl;mÞ 2 ½1; N�2. In this

equation, the TRO is expressed on a basis generated

by f½ZðlÞ�n; n 2Ng; however, the sequences fZðlÞ; ðZðlÞÞ2;
ðZðlÞÞ3;…; ðZðlÞÞng are not orthogonal (e.g.,

P
l ZðlÞðZðlÞÞ3

6¼ 0). Thus, to simplify the derivation, it is useful to write

Eq. (6) on an orthonormal basis. The chosen basis

f~Vmgð1�m�NÞ is built from the well-known Gram-Schmidt

orthonormalization of the family f½ZðlÞ�n; n 2Ng. The itera-

tive procedure to derive ~Vm is described in Appendix A. Ap-

pendix A also provides the expressions of the first three

vectors. By definition, one element of ~H under this new basis

is given by

Ĥ ðmþ1Þðm0þ1Þ ¼ ~V
†

m
~H ~Vm0 : (7)

Note that the dimension of Ĥ is infinite. But, thanks to

this orthonormalization, the elements of the matrix are sorted

with respect to their Taylor’s order. More precisely, the Tay-

lor order of each element of an anti-diagonal is given by the

number of elements of the anti-diagonal minus 1. For

instance, the Taylor’s fifth order expansion is given by

The method to compute the matrix elements up to order

2 is described in Appendix B. This method can be generalized

to compute them up to an arbitrary order. The use of a sym-

bolic algebra software makes the task much easier to achieve.

Therefore, computation of the eigenvalues and the eigen-

vectors up to the kth Taylor order means the diagonalization

of the upper-left sub-matrix of dimensions ðk þ 1; k þ 1Þ.

B. Eigenvalues

In this section the displacement distribution is assumed

symmetrical with respect to the array axis. We show in Ap-

pendix C that in such a case, the element Ĥmm0 equals zero

when indexes m and m’ are of different parities. Conse-

quently Eq. (8) becomes

The expressions of the matrix elements are given in Ap-

pendix D. Matrix Ĥ can be decomposed into two independ-

ent matrices: The first one is built from Ĥ2n;2n0 elements and

the other from Ĥ2nþ1;2n0þ1 elements. Hence the diagonaliza-

tions of both sub-matrices provide the eigenvalues of Ĥ.

Even with these simplifications, the extraction of the
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eigenvalues is quite laborious. The expansions of the first

three eigenvalues R1, R2, and R3 up to the fourth order are

given in Table I.

Up to order r2, these expressions of the eigenvalues

only require that
P

l ZðlÞ ¼ 0 (there is no statistical assump-

tion on Z(l)). But at higher order, they are based on the law of

large numbers and the displacements are assumed random

with a Gaussian distribution. Within these two assumptions,

r as defined after Eq. (5) is also the standard deviation of the

target motion. The eigenvalues shown in Table I are

obtained using a computer algebra software (MUPAD) and by

performing the diagonalization of a 3� 3 matrix and a 2� 2

matrix. The derivation of the general case is beyond the

scope of this paper.

These analytical results are compared to eigenvalues

deduced from synthetic TRO [Fig. 3(a)] and from experi-

mental TRO [Fig. 3(b)]. The data are measured with a 64-

transducer array working at 3.4 MHz (k¼ 0.43 mm). The

array pitch is d¼ 0.417 mm so that the array aperture is

equal to 26.7 mm. The target is a 0.1 mm diameter steel wire

placed at L¼ 136 mm. A stepping motor translation stage

moves the target following a programmed pseudo random

(zero mean Gaussian distributed) displacement sequence.

As can be seen in Fig. 3, the model successfully predicts

the evolution of the eigenvalues of the TRO as a function of

r when this last is smaller than 0.3 mm.

C. Eigenvectors

After a careful study of the eigenvalues, we now focus

on the eigenvectors and their numerical back-propagation

(i.e., beamforming). The Rx and Tx back-propagated fields

of the qth eigenvector at position P ¼ ðL; zÞ are expressed as

j
P

l expð�ikMlPÞ½URx
q �lj and j

P
l expðþikMlPÞ½UTx

q �lj. In

Figs. 4(a) and 4(b), these back-propagated fields are plotted

at range L and on z-axis for the first four Tx and Rx eigen-

vectors computed for r¼ 0.54 mm. We first note that URx
1

and UTx
1 are close to the eigenvectors in the motionless case

ð½UTx
1 �l � eikjMlS

ðlÞj=
ffiffiffiffi
N
p
Þ. Consequently, they are focused at

the average target location. Second, we see that UTx
q is no

longer equal to ðURx
q Þ
�

when q > 1, as it should be if the

experiment was static. This is due to the symmetry breaking

of K matrix for r > 0. Indeed, the target position is now dif-

ferent for each column. In Figs. 4(c) and 4(d), the experi-

mental results show the same behavior, even if the mean

target position is not exactly centered with the transducer

array.

Matrix Ĥ is not diagonal, i.e., the vectors ~Vm are not the

eigenvectors of ~H. But since the off-diagonal elements are

small compared to the diagonal elements, ~Vm are good

approximations of the mth eigenvectors at zero order.

Hence, the leading term of the second eigenvector of Ĥ

is ~V1 ¼ fZðlÞ=
ffiffiffiffi
N
p
g1�l�N . Using Eq. (4), the second eigen-

vector of H ¼ K†K is then approximated by

½UTx
2 �l �

eikjMlS
ðlÞjZðlÞffiffiffiffi
N
p : (9)

Note that the indexes of the eigenvectors of Ĥ start at 0

while the ones of H start at 1. This difference comes from

the fact that ~Vn is derived from a Taylor expansion while

UTx
m is an experimental observable. The ratio of the lth ele-

ment of UTx
2 by the lth of element of UTx

1 which is equal to

ejk jMlS
ðlÞj=

ffiffiffiffi
N
p

leads to the target position ZðlÞ during the ac-

quisition of the lth column of the MDM. The absolute dis-

placement of the target is rZðlÞ and r is obtained from the

ratio of the two first eigenvalues. Finally it becomes

rZðlÞ ¼
ffiffiffiffiffiffi
R2

R1

r
2
ffiffiffi
3
p

L

kd

ðUTx
2 Þl

ðUTx
1 Þl

: (10)

We recall that R1 and R2 are the first and second eigen-

values, L is the target range, and d is the array width.

TABLE I. Fourth order Taylor expansion of the eigenvalues of Ĥ.

Taylor

order Eigenvalues Rn

1 N2 þ r2ð�d2N2k2=12L2Þ þ r4ðd2N2k2=4L4 þ 7d4N2k4 þ 720L4Þ
2 r2ðd2N2k2 þ 12L2Þ þ r4ðd4N2k4 þ 80L4 � d2N2k2 þ 4L4Þ
3 r4ðd4N2k4 þ 360L4Þ

FIG. 3. (Color online) Eigenvalues (solid line) of synthetic TRO (a) and of the experimental TRO (b) as a function of r for the column by column acquisition.

The results are compared to the analytic expressions obtained with a second order Taylor expansion (dashed lines).
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Experimental results plotted in Figs. 5 and 6 are

obtained with a random displacement and a linearly acceler-

ated target. In both cases, there is an excellent agreement

between the positions deduced from Eq. (10) and the real

ones.

As can be seen in Figs. 5(a) and 6(a), for small values of

r the use of Eq. (10) provides an original way to track a tar-

get. This method differs from the match-filter based techni-

ques proposed in underwater acoustics19–21 as the

displacements of the targets are directly deduced from the

absolute value of UTx
2 .

However as r increases, the zero order Taylor expan-

sions of UTx
1 and UTx

2 are not sufficiently accurate, so it

becomes difficult to compensate for the phase term of UTx
2

[Figs. 5(b) and 6(b)]. This is striking for r> 0.6 mm, where

the third eigenvalue begins to stand out from the noise [see

Fig. 3(a)]. In order to give a quantitative measurement of the

mismatch between derived and real positions, the deviation

induced by the error made on the position derived by Eq.

(10) is compared to Ĥ42=Ĥ22. Indeed, by using the zero

order approximation of UTx
2 , de facto, the term Ĥ42 is

neglected. It stands to reason that the ratio Ĥ42=Ĥ22 will

give an estimation of the error. This approach is confirmed

in Fig. 7 where this quantity is compared to the error made

on the derived positions. In this figure, the standard deviation

of the error clearly follows the coupling term, proving their

relation. Thanks to Ĥ42=Ĥ22 we deduce a validity criterion

for Eq. (10) related to the well-known resolution quantity

kL=d. Indeed, Ĥ42=Ĥ22 < 0.1 when r < 0:06kL=d, only then

the tracking of the target can be trusted.

This tracking technique offers one more advantage com-

pared to matched-filter based methods. Indeed, going back to

Eq. (4), we conclude that this method is working even when

phase aberrations occur in front of the array. If the aberrator

induces a phase shift un at the nth transducer of the array

then the new MDM becomes Kab¼PKP* where the diago-

nal matrix P represents the aberration effect ðPn;n ¼ eiunÞ.
The (l,m) element of Tx-TRO ðHab ¼ K

†
abKabÞ with the

aberrator is expressed as

ðHabÞlm ¼
XN

k

e�i/l K�lke�i/k eþi/k Kkmeþi/m :

ðHabÞlm ¼ e�i/l

XN

k

K�lkKkmeþi/m ¼ e�i/l Hlmeþi/m :

(11)

FIG. 4. (Color online) Back-propagation (or beamforming) of the first four eigenvectors on the z-axis at range L for column by column acquisition with

r¼ 0.54 mm. The eigenvectors UTx
q used for (a) and URx

q used for (b) are deduced from synthetic TRO. The eigenvectors UTx
q used for (c) and URx

q used for (d)

are deduced from the experimental data.

FIG. 5. (Color online) Experimental estimation of the random motion of the

target. Comparison between the real positions of the target (�o) and the

position deduced from the DORT analysis [see Eq. (10)] (–*). (a) is obtained

for r¼ 0.14 mm and (b) for r¼ 0.66 mm.
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This equation is similar to Eq. (4), when doing the same

derivation, the target displacement is also given by Eq. (10),

i.e., it is proportional to the ratio of the elements of the two

first eigenvectors.

With a strong random phase aberrator in front of the

transducer array, we compute the synthetic TRO. We com-

pare the localization using Eq. (10) to the classical beam

forming. We note that when no noise is added [Fig. 8(a)],

both approaches provide very good estimations of the target

positions. Indeed, although the beamformed map looks like a

speckle pattern due to the unknown phase aberrator (there is

no focal spot at the target position), for small target displace-

ments, the speckle pattern is shifted proportionally. But

when strong noise is added, we observe in Fig. 8(b), contrary

to the DORT approach, beamforming does not work any-

more. Thus DORT appears to be more robust to noise.

IV. ANALYSIS OF THE TRO FOR AN ELEMENT BY
ELEMENT ACQUISITION

A. Eigenvalues

The Cartesian coordinates of the target position S(lm)

during acquisition of the Klm element is (L, 0, rZ(lm)) where

Z(lm) is a normal random variable with zero mean and unitary

variance. Contrary to the column by column acquisition, the

position of the scatterer is different (uncorrelated) for each

element of the matrix K.

Using the Green’s function in free space, the elements

of the MDM are written as

Klm ¼
1

16p2jMlSðlmÞjjMmSðlmÞj e
ikðjMlS

ðlmÞjþjMmSðlmÞjÞ; (12)

with k ¼ x=c the intrinsic wavenumber.

Considering that L� d � r, Klm simplifies to

Klm ¼
1

16p2L2
eik

ffiffiffiffiffiffiffiffiffi
L2þz2

l

p
eik

ffiffiffiffiffiffiffiffiffiffi
L2þz2

m

p

� e�ikrðzlZ
ðlmÞ=

ffiffiffiffiffiffiffiffiffi
L2þz2

l

p
þzmZðlmÞ=

ffiffiffiffiffiffiffiffiffiffi
L2þz2

m

p
Þ; (13)

where zl is the transversal position of the first transducer of

the array. In addition, we also consider the case where N is

large enough to apply the law of large numbers.

One can show that the rank of the first order Taylor

expansion of K is equal to N. This is a major difference with

the column by column case where this rank equals 1. Conse-

quently, RMT should be applied to interpret the element by

element MDM. To this end, we distinguish the mean value

of the MDM from its fluctuating part: Klm¼hKlmiþ dKlm.

The analysis of the eigenvalue distribution of the matrix

K†K, where K can be described as a deterministic matrix

hKi perturbed by a random matrix dK has recently attracted

FIG. 6. (Color online) Case of a linear, accelerated motion of the target.

Comparison between the real positions of the target (�o) and the position

deduced from DORT analysis [see Eq. (9)] (–*). (a) is obtained for

r¼ 0.14 mm and (b) is obtained for r¼ 0.66 mm. The TRO is computed

from synthetic data.

FIG. 7. (Color online) Error made on the position deduced from Eq. (10)

(solid line) compared to Ĥ42=Ĥ22 (dashed line).

FIG. 8. (Color online) Displacement of a target with respect to the iteration

index when a strong and random phase aberrator is in front of the array. The

solid line with plus markers is the exact position of the scatterer, solid line

with circle markers is deduced from Eq. (10), and the dotted line with dia-

monds is the position extracted from the displacements of the maximum of

the beamformed map. (a) No noise is added to the MDM. (b) Decorrelated

Gaussian noise is added to each element of the MDM with a SNR equal to 1.
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attention, and we will use some of the results reported in the

literature.22–24 In the following we will first show that the

mean value of the matrix K is indeed a low-rank matrix and

compute its eigenvalues, and then we will show how the

eigenvalue distribution is affected by the addition of random

fluctuations.

The mean value of K, written as hKi, is given by

hKlmi ¼
1

ð4pLÞ2
eik

ffiffiffiffiffiffiffiffiffiffiffiffi
L2þzlm

2
p

eik
ffiffiffiffiffiffiffiffiffiffiffiffi
L2þzlm

2
p

�
ð

dx
e�x2=2ffiffiffiffiffiffi

2p
p e�ikrðzl=

ffiffiffiffiffiffiffiffiffiffi
L2þzl

2
p

þzm=
ffiffiffiffiffiffiffiffiffiffiffi
L2þzm

2
p

Þx: (14)

Assuming zl and zm are small compared to L, it becomes

hKlmi ’
1

ð4pLÞ2
eik

ffiffiffiffiffiffiffiffiffiffi
L2þzl

2
p

eik
ffiffiffiffiffiffiffiffiffiffiffi
L2þzm

2
p

eð�k2r2=2L2ÞðzlþzmÞ2 :

(15)

The distributions of the eigenvalues of hK†ihKi given

by Eqs. (13) and (15) are compared in Fig. 9. The eigenval-

ues of the mean matrix successfully describes the evolution

of the two first eigenvalues of K†K obtained without

averaging.

Next, to find the analytical expression of these two first

eigenvalues, we use the same approach as for the column by

column case. A Taylor expansion of hKi up to the fourth

order is derived,

hKlmi ¼
1

ð4pLÞ2

� eik
ffiffiffiffiffiffiffiffiffiffi
L2þzl

2
p

1� k2r2ðzlþ zmÞ2

2L2
þ k4r4ðzlþ zmÞ4

8L4

" #

� eik
ffiffiffiffiffiffiffiffiffiffiffi
L2þzm

2
p

þOðr6Þ: (16)

To compute the eigenvalues, Eq. (16) is projected onto

a new orthonormal basis built from Gram-Schmidt ortho-

normalization. This part is similar to what has been done in

Sec. III A but instead of using the positions of the target

from the generating family, we use the positions of the

transmit/receive elements ðf1; zi; z2
i ;…gÞ. After some deri-

vations, the two first eigenvalues of hK†ihKi are as

follows:

R1 ’
N2

ð4pLÞ4
1� k2r2d2

12L2
þ 7k4r4d4

720L4

� �2

;

R2 ’
N2

ð4pLÞ4
k2r2d2

12L2
� k4r4d4

80L4

� �2

:

(17)

Here, it is assumed that N is large. As shown in Fig. 9,

the analytical expression of the first eigenvalue up to order 4

is in good agreement with the simulated eigenvalues for

r< 0.6 mm. As for R2, it is primarily below the second

eigenvalue due to the fluctuating part of K. Then it increases

rapidly but the Taylor expansion is no longer valid.

Thus we have shown that the first two eigenvalues of

K†K observed in Fig. 9 are mostly due to hK†ihKi. Next we

show that the other eigenvalues (for clarity they are not

shown in Fig. 9) are mainly originated from the fluctuating

part dK. They are deduced from the variance of element Klm.

For small r, it is given by

hK2
lmi � hKlmi2 ¼

k2r2

256p4L4

zlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ z2

l

q þ zmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ z2

m

p
0
B@

1
CA

2

:

(18)

The result clearly depends on both entries l and m. In

general, there is no analytical formulation in the case of a

random matrix with element variance dependent on the two

element indexes. Nevertheless, we assume that the statistical

properties of the fluctuating part of K mainly depend on the

variance averaged over all the elements of K. From Eq. (18)

the average value over the matrix index is

1

N2

X
lm

hKlm
2i�hKlmi2

¼ k2r2

256p4L4N2

X
lm

z2
l

L2þz2
l

þ 2zlzmffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þz2

l

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þz2

m

p þ z2
m

L2þz2
m

0
B@

1
CA:

(19)

The second term on the right-hand side vanishes

because the array is symmetrical with respect to z¼ 0 axis.

The first and the third terms are equal to ðN2=dÞÐ d=2

�d=2
z2

l =ðL2 þ z2
l Þdzl. The continuous integral replaces the

discrete sum. Hence, the averaged variance is equal to

k2r2=128p4 L4
	
1� ð2L=dÞarctanðd=2LÞ



:

The spectral properties of a uniform random matrix are

well known. In particular, it has been shown25 that, for large

FIG. 9. First two eigenvalues of K†K as a function of r for the element by

element acquisition (continuous lines). For each element of K, the position

of the scatterer is different. Here K is a synthetic MDM, i.e., it has been

numerically computed from the Green’s function (see Sec. II for more

details). These eigenvalues are compared to those of hK†ihKi (dashed line).

An element hKlmi is estimated numerically by averaging Klm over 100 dif-

ferent positions. The dashed–dotted lines correspond to the Taylor expan-

sions of the first and second eigenvalues [Eq. (17)].
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matrices, there is a deterministic maximum to the singular

value distribution.26 Hence, the maximum eigenvalue (the

square of the maximum singular value) is given by

Rvar ¼ 8Nðkr=16p2L2Þ2
	
1� 2L=d arctanðd=2LÞ



:

(20)

Assuming d 	 2L, Eq. (20) can be simplified to

Rvar

R1

¼ 2

3N

dkr
L

� �2

: (21)

In Figs. 10(a) and 10(b), we observe that, for small r,

Eq. (21) approximately fits the eigenvalues of both synthetic

and experimental TRO.

B. Eigenvectors

The phase and the amplitude of the three first transmis-

sion eigenvectors measured at r¼ 0.70 mm are plotted in

Fig. 11(a). As expected, the two first eigenvectors are given

by the diagonalization of the mean matrix hK†ihKi, i.e.,

½UTx
1 �l � eik

ffiffiffiffiffiffiffiffiffi
L2þz2

l

p
=
ffiffiffiffi
N
p

and ½UTx
2 �l � zðlÞeik

ffiffiffiffiffiffiffiffiffi
L2þz2

l

p
=
ffiffiffiffi
N
p

,

respectively. As for the third eigenvector, it is due to the

fluctuating part of the matrix and, consequently, the phase

and amplitude of each component are random. Figure 11(b)

shows that one may use the two first eigenvectors to find the

mean position of the target but unlike the column by column

case, the information on the positions of the target is, to the

authors’ knowledge, not extractable. It is worth noting that

the first eigenvector corresponds to a monopolar focus while

the second eigenvector corresponds to a dipolar focus, even

when the target in itself is an isotropic scatterer. Thus the

mean value of MDM is the MDM of a sort of average

extended target. Indeed, in such a case, we have already

shown that beamforming of the first and second eigenvector

gives rise to such patterns.

V. DISCUSSION ON THE IMPACT ON MUSIC AND ML
DETECTION

Up to now, we have only focused on the analysis of the

invariants of the TRO and their back-propagation. In 2003,

Prada and Thomas27 showed that two classical detection

algorithms, Maximum Likelihood (ML) and MUltiple SIgnal

Classification (MUSIC) can be introduced within the frame-

work of DORT. The ML and MUSIC expressions in terms

of time-reversal invariants are given by

ITx;Rx
ML ðPÞ¼

 XN

q¼1

R�1
q

XN

l¼1

exp 6ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þ z2

l

q� �
½UTx;Rx

q �l













2!�1

;

(22)

ITx;Rx
MUSICðPÞ ¼

XN

q¼2

XN

l¼1

exp 6ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ z2

l

q� �
½UTx;Rx

q �l













2

0
@

1
A
�1

:

(23)

We compare these two non-linear estimators to the ro-

bust beam forming estimator

ITx;Rx
BF ðPÞ ¼

XN

q¼2

Rq

XN

l¼1

expð6ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ z2

l

q
Þ½UTx;Rx

q �l













2

:

(24)

Because the target is moving during acquisition of the

MDM, the three estimators are affected and can provide dif-

ferent results when using the Tx or Rx eigenvectors. Note

that þ (respectively, �) sign in Eqs. (22)–(24) are related to

Tx (respectively, Rx) eigenvectors. These estimators com-

puted from synthetic MDM are plotted in Fig. 12. For a

motionless target [Fig. 12(a)], as expected, the localization is

excellent with both ML and MUSIC estimators. The sharp-

ness of the spot is only limited by the 60 dB signal-to-noise

ratio (SNR). But when the target moves during MDM

FIG. 10. (Color online) Element by element acquisition. Comparison of the eigenvalues of K†K computed from synthetic (a) and experimental (b) MDM

(solid lines) as a function of the standard deviation of the displacement. These curves are compared to Eq. (21) (dotted line). The configuration is the same as

that in Fig. 3 except for L¼ 175 mm.
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acquisition, the spot width dramatically increases in the case

of ML and MUSIC estimators. This sensitivity to target

motion is due to the non-linear behavior of the ML and

MUSIC algorithms.

In the case of the MUSIC estimator, the spot

width is proportional the square root of N

�j
PN

l¼1 expðþik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ z2

l

q
Þ½UTx

1 �lj
2
. In other words, the

width depends on 1� jaj2 where a is the projection of the

first eigenvector on the first vector of the basis resulting

from Gram-Schmidt orthonormalization. Without motion,

the eigenvector is equal to expð�ikMlPÞ=
ffiffiffiffi
N
p

, i.e., jaj2 ¼ 1

and the spot width decays toward 0. With motion, the first

eigenvector is decomposed over all the vectors of the afore-

mentioned orthonormal basis. Because the eigenvector is

normalized, jaj2 is now smaller than 1 and the width of the

MUSIC spot becomes finite. Exact expressions of the singu-

lar vectors can be derived thanks to the same Taylor’s expan-

sion of the time-reversal operator than the one performed in

order to work out analytical expressions of the eigenvalues.

The complete derivation of the vector is quite technical and

out of the scope of this paper. Here, we only give the main

results. The factors 1� jaj2 are equal to a4r4k4=720L4 and

a2r2k2=12L2 for the Rx and Tx column by column acquisi-

tion, respectively. This result explains why the MUSIC spot

is smaller for the estimator computed with Rx eigenvectors

[Fig. 12(b)] than the one computed with Tx eigenvectors

(here ark=L < 1) [Fig. 12(c)]. As for the element by element

acquisition, because the matrix is statistically symmetric, the

Tx and Rx spots are almost identical [Figs. 12(d) and 12(e)].

In that case, one can show that the factor 1� jaj2 is equal to

a2r2k2=6NL2. Applied to the parameters used to obtain the

synthetic results shown in Fig. 12, the last factor, i.e., the

spot width, is between the two previous ones.

The ML results are more complex to analyze. We have

seen that for the element by element acquisition, the first

eigenvalue is much larger than the other ones. In such a case

the ML estimator is close to the MUSIC one: The two estima-

tors provide similar spots. It is different for the column by col-

umn acquisition where the ML spot using Rx eigenvectors

seems worse than the one using Tx eigenvectors. This effect

may be explained by the fact that the Rx eigenvectors are

expressed in terms of the target positions (see Sec. III) while

on the contrary, it can be shown that the Tx eigenvectors

mainly depend on the transducers positions and the average

properties of the target displacement. Consequently, the maxi-

mum of the ML processing is less sensitive to target displace-

ment when using Tx eigenvectors.

FIG. 11. (Color online) Experimental element by element eigenvectors when r¼ 0.70 mm. (a) Amplitude and phase of the three first experimental eigenvectors

UTx
1 ð�Þ, UTx

2 ð�Þ, and UTx
3 ð�Þ. (b) Beamforming of the first five Tx and Rx eigenvectors at a distance L of 175 mm. The first eigenvector shows a monopolar focusing

while the second eigenvector shows a dipolar focusing. We have shown that the first two eigenvalues were dominated for r¼ 0.70 mm by the mean value hKi.

FIG. 12. Lateral target detection at range L¼ 136 mm from synthetic data

using beamforming (dashed line), MUSIC (continuous line), and ML (dashed–

dotted line) estimators. A �60 dB level noise is added. The noise is Gaussian

distributed and decorrelated between all the array transducers. (a) is obtained

for a motionless target. (b) and (c) [respectively, (d) and (e)] are worked out

from a column by column (respectively, element by element) acquisition of

the MDM for a target that moves randomly (r¼ 0.2 mm). (b) and (d) [respec-

tively, (c) and (e)] are computed from Rx (respectively, Tx) invariants.
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VI. CONCLUSION

We have presented a theoretical and experimental study

of the eigenvalues of the TRO for a moving target. We have

shown that target motion increases the rank of the MDM

leading to supplementary “time reversal invariants.” For

detection purposes, this effect may induce false positive

alerts. In the case of column by column acquisition, the

eigenvalues increase as a power law of the displacement

while for element by element acquisition of the MDM, two

phenomena are observed: One is due to the fluctuations of

the MDM and the other is related to the mean value. The

random part of the MDM induces an eigenvalue continuum

that grows linearly with respect to r2 whereas for the mean

part, the eigenvalues follow a power law. Analytical formu-

lations of the evolution of the eigenvalues have been given

for both acquisition methods and confirmed by synthetic

data or ultrasonic water tank experiments. A thorough study

of eigenvalues and eigenvectors provides the target displace-

ment. To finish, we have quantified the effect of such uncon-

trolled target displacements on two non-linear detection

array processing. The degradation of the target localization

strongly depends on the MDM acquisition method and on

the applied detection algorithm.

APPENDIX A: EXPRESSION OF THE VECTORS ~Vm

We use the Gram-Schmidt orthonormalization method

on the family of vectors f½ZðmÞ�n; n 2Ng to construct the

new basis f~Vm; m 2Ng. The mth vector is proportional

to the perpendicular component of ½ðZð1ÞÞm; ðZð2ÞÞm;…;
ðZðNÞÞm� to ~V1; ~V2;…; ~Vn�1. In other words

ð~VmÞl ¼

�
ZðlÞ
�m

�
hX

k

ð~Vm�1Þk
�

ZðkÞ
�mi
ð~Vm�1Þl �…�

hX
k

ð~V0Þk
�

ZðkÞ
�mi
ð~V0Þl����ZðlÞ

�m

�
hX

k

ð~Vm�1Þk
�

ZðkÞ
�mi
ð~Vm�1Þl �…�

hX
k

ð~V0Þk
�

ZðkÞ
�mi
ð~V0Þl

��� : (A1)

For example

ð~V0Þl ¼
1ffiffiffiffi
N
p ;

ð~V1Þl ¼
ZðlÞ

X
k

ZðkÞffiffiffiffi
N
p

" #
1ffiffiffiffi
N
p

�����ZðlÞ �
X

k

ZðkÞ

N

�����
¼ ZðlÞffiffiffiffi

N
p ;

ð~V2Þl ¼

	
ZðlÞ

2
X

k

	
ZðkÞ

3ffiffiffiffi

N
p

" #
ZðlÞffiffiffiffi

N
p �

X
k

	
ZðkÞ

2ffiffiffiffi

N
p

" #
1ffiffiffiffi
N
p

�����	ZðlÞ
2 �
X

k

	
ZðkÞ

3

N

" #
ZðlÞffiffiffiffi

N
p �

X
k

	
ZðkÞ

2

N

" #
1ffiffiffiffi
N
p

�����
¼
	
ZðlÞ

2 � 1ffiffiffiffiffiffi
2N
p :

(A2)

The right-hand side expressions in Eq. (A2) requires

symmetrical displacement. In the case of symmetrical ran-

dom displacement, the law of large numbers is also

mandatory.

APPENDIX B: THE SECOND ORDER TAYLOR
EXPANSION OF Ĥ

We start from Eq. (5)

ð ~HÞml ¼ ð ~K
† ~KÞml

¼ 1

ð4pLÞ4
N

d

ðd=2

�d=2

eik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þðz�rZðmÞÞ2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þðz�rZðlÞÞ2
p� �

dz;

(B1)

where N is the number of elements in the array, L is the dis-

tance between the array and the target, d is the array length,

z denotes the positions of the array elements, and rZðlÞ

ð1 � l � NÞ the positions of the target during acquisition l.
The second order Taylor series expansion of ~H around

r¼ 0 is written as

ð ~K
† ~KÞml ¼

N

ð4pLÞ4
h
1� r2

�
c1ðZðmÞ � ZðlÞÞ2

þ ic2½ðZðmÞÞ2 � ðZðlÞÞ2�
�i
þ oðr4Þ; (B2)

with

c1 ¼
k2

2d

ðd=2

�d=2

x2

x2þ L2
dx¼ k2

2
1� 2L

d
arctan

d

2L

� �� �
;

c2 ¼
k

2d

ðd=2

�d=2

L

x2þ L2
dx¼ k

d
arctan

d

2L

� �
: (B3)
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Assuming d 	 2L, c1 can be approximated by

c1 ’
k2d2

24L2
:

The imaginary term in Eq. (B2) can be neglected as it

will only add a phase term to the eigenvectors and will not

change the eigenvalues of ~H. The computation of the ele-

ments of Ĥ is carried out as follows:

Ĥ ðmþ1Þðm0þ1Þ ¼ ~V
†

m
~H ~Vm0 ¼ N

XN

l¼1

XN

l0¼1

ð ~VmÞl

� ½1� r2c1ðZðlÞ � Zðl
0ÞÞ2�ð ~VmÞl0 : (B4)

For instance, for m¼ 1 and m0 ¼ 3

Ĥ13 ¼ N
XN

l¼1

XN

l0¼1

1ffiffiffiffi
N
p

� ½1� r2c1ðZðlÞ � Zðl
0ÞÞ2� ðZ

ðl0ÞÞ2 � 1ffiffiffiffiffiffi
2N
p : (B5)

Thanks to the orthogonality between ~V0 and ~V2, the

previous expression becomes

Ĥ13 ’ �Nr2 k2d2

24L2

XN

l¼1

XN

l0¼1

ðZðlÞ � Zðl
0ÞÞ2 ðZ

ðl0ÞÞ2 � 1

N
ffiffiffi
2
p

’ �Nr2 k2d2

24L2

XN

l¼1

XN

l0¼1

ðZðlÞÞ2 ðZ
ðl0ÞÞ2 � 1

N
ffiffiffi
2
p � 2

XN

l¼1

XN

l0¼1

ðzðlÞzðl0ÞÞ ðZ
ðl0ÞÞ2 � 1

N
ffiffiffi
2
p þ

XN

l¼1

XN

l0¼1

ðZðl0ÞÞ2 ðZ
ðl0ÞÞ2 � 1

N
ffiffiffi
2
p

#
:

"
(B6)

To simplify the expression, we assume that all Z(1) are uncorrelated random Gaussian variables. The previous equation

can be reduced to its third term. Indeed the odd moments of Z(l) are null, and the variance of Z(l) is equal to 1. Finally, Eq.

(B6) is simplified to

Ĥ13 ’ �Nr2 k2d2

24L2

XN

l¼1

XN

l0¼1

ðZðl0ÞÞ4 � ðZðl0ÞÞ2

N
ffiffiffi
2
p ’ �N2r2 k2d2

24L2

XN

l0¼1

ðZðl0ÞÞ4 � ðZðl0ÞÞ2

N
ffiffiffi
2
p

¼ �N2r2 k2d2

24L2

3N � N

N
ffiffiffi
2
p ’ �

ffiffiffi
2
p

N2r2k2d2

24L2
: (B7)

In Eq. (B7), the law of large numbers is used to replace the sum over l’ by the mean value times N.

APPENDIX C: SYMETRIC DISPLACEMENT DISTRIBUTION

In this appendix, we show that when the parities of m and m’ are different, the elements Ĥmm0 equal zero.

The element Ĥ ðmþ1Þðm0þ1Þ is equal to ~V
†

m
~H ~Vm0 . This expression is a sum of the terms jp;p0

¼
PN;N

l;l0 ðZðlÞÞ
pFðrZðlÞ; rZðl

0ÞÞðZðl0ÞÞp
0
. A symmetric displacement distribution means that for each scatterer position ZðlÞ,

a symmetric one Zðl
0Þ exists, such that Zðl

0Þ ¼ �ZðlÞ. Consequently

jp;p0 ¼
XN;N
l;l0

	
ZðlÞ

p

FðrZðlÞ; rZðl
0ÞÞ
	
Zðl

0Þ
p0 ¼
XN=2;=N=2

lþ;lþ0

	
ZðlÞ

p

FðrZðlþÞ; rZð1þ
0ÞÞ
	
Zðlþ

0Þ
p0

þ
XN=2;=N=2

lþ;lþ0

	
�ZðlþÞ


p
Fð�rZðlþÞ; rZðlþ

0ÞÞ
	
Zðlþ

0Þ
p0 þ
XN=2;=N=2

lþ;lþ0

	
ZðlþÞ


p
FðrZðlþÞ; �rZðlþ

0ÞÞ
	
�Zðlþ

0Þ
p0

þ
XN=2;=N=2

lþ;lþ0

	
�ZðlþÞ


p
Fð�rZðlþÞ;�rZðlþ

0ÞÞ
	
�Zðlþ

0Þ
p0
; (C1)

where the lþ and lþ0 indices only refer to the positive scatterer positions. The function F is symmetric with respect to its two

entries, i.e., FðrZðlþÞ; rZðlþÞÞ ¼ Fð�rZðlþÞ; �rZðlþ0ÞÞ.
The previous equation can be rewritten as
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XN;N
l;m

�
ZðlÞ
�p

FðrZðlÞ; rZðmÞÞ
�

ZðmÞ
�p0

¼
XN=2;=N=2

lþ;lþ0

�
ZðlÞ
�p

FðrZðlÞ; rZðlþ
0ÞÞ
�

Zðlþ
0Þ
�p0

½1þ ð�1Þpþp0 �

þ
XN=2;=N=2

lþ;lþ0

�
ZðlþÞ

�p

Fð�rZðlþÞ; rZð1þ
0ÞÞ
�

Zðlþ
0Þ
�p0

½ð�1Þp þ ð�1Þp
0
�: (C2)

It is now clear that when the parities of p and p0 are

different, the expression is equal to zero. Due to the Gram-

Schmidt orthonormalization method, the lth element of vec-

tor Vp is a polynomial sum of terms Z(l) (see Appendix A).

For symmetrical displacements, all the power exponents

involved in the sum have the same parity than p (if p is odd,

all the power exponents are odd and vice-versa). Conse-

quently,
PN;N

l;m ðVpÞl FðrZðlÞ; rZðmÞÞðVp0 Þm ¼ 0, i.e., ~V
†

m
~H ~Vm0

¼ 0, when the parities of p and p0 are different. Because of

the law of large numbers, this property still holds for random

symmetrical displacements when N � 1.

APPENDIX D: EXPRESSION OF THE ELEMENTS OF Ĥ

Using the method described in Appendix B, the domi-

nant terms of the non-zero elements of the matrix Ĥ are writ-

ten (Ĥ is symmetric) as

Ĥ11 ’ N2 � d2N2k2r2

12L2
;

Ĥ13 ’ �
ffiffiffi
2
p

N2k2r2

24L2
;

Ĥ22 ’
d2N2k2r4

12L2
;

Ĥ15 ’
ffiffiffi
6
p

N2k2r4

4L2
;

Ĥ42 ’
ffiffiffi
6
p

d4N2k4r4

480L4
;

Ĥ33 ’
N2k2r4

2L2
:

(D1)

APPENDIX E: DERIVATION TO THE SECOND TAYLOR
ORDER

Up to the second Taylor order of the derivation the dis-

placement the matrix Ĥ is written as

N2 � d2N2k2r2

12L2
0 �

ffiffiffi
2
p

d2N2k2r2

24L2

0
d2N2k2r2

12L2
0

�
ffiffiffi
2
p

d2N2k2r2

24L2
0 0

2
6666664

3
7777775
:

(E1)

This matrix has obviously a second eigenvalue equal to

d2N2k2r2=12L2 associated with the eigenvector ~V1. The

other eigenvalues are derived by calculating the determinant

of the remaining matrix

N2 � d2N2k2r2

12L2
� R �

ffiffiffi
2
p

d2N2k2r2

24L2

�
ffiffiffi
2
p

d2N2k2r2

24L2
�R






















¼ �N2 þ d2N2k2r2

12L2
þ R

� �
Rþ Oðr4Þ: (E2)

The roots of the determinant give the first and third

eigenvalues R1 ¼ N2 � d2N2k2r2=12L2 þ Oðr4Þ and R3 ¼ 0

þOðr4Þ. Thus the leading term of the third eigenvalue is at

least of fourth Taylor order.

Note that the Gaussian assumption and the law of large

numbers are only required for the off diagonal matrix ele-

ments. Because these terms only contribute at Taylor order

4, up to Taylor order 2, the two first eigenvalue expressions

are also valid for non-Gaussian motions (e.g., a deterministic

motion).
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