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Existence of modified wave operators and infinite
cascade result for a half wave Schrodinger
equation on the plane

Xi Chen

Abstract
We consider the following half wave Schrodinger equation,
(0, + 02 — \Dy|) U=IU]PU

on the plane R, xR,. We prove the existence of modified wave operators between small
decaying solutions to this equation and small decaying solutions to the non chiral cubic
Szegd equation, which is similar to the the existence result of modified wave operators
on R, x T, obtained by H. Xu [16]. We then combine our modified wave operators
result with a recent cascade result [7] for the cubic Szegd equation by P. Gérard and
A. Pushnitski to deduce that there exists solutions U to the half wave Schréodinger
equation such that [[U(?)||rzp; tends to infinity as log¢ when ¢ — +oo. It indicates
that the half wave Schrédinger equation on the plane is one of the very few dispersive
equations admitting global solutions with small and smooth data such that the H?
norms are going to infinity as ¢ tends to infinity.

Keywords Half wave Schrodinger equation, Modified wave operators, Energy cascade.
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1 Introduction

Consider the following half wave Schrodinger equation on the plane,

(10 + A) U = |U|?U, (z,y) € R xR, (1.1)
where
A= 02— |D,.
The corresponding Hamiltonian function is
HU) =5 [ (00 + 1D,V n)0() dady + 5 [ UGy dody.
RxR RxR

We observe that this equation enjoys the mass conservation
/ U(t,z,y)[dzdy = / U0, 2,y) [*dzdy.
RxR RxR

The local well-posedness of the Cauchy problem in the energy space H, L N LﬁHy% is still an open
problem. Moreover, Y. Bahri, S. Ibrahim and H. Kikuchi have proved the local well-posedness of
the Cauchy problem in higher regularity spaces Hgst N LiH; with s > % [1], but we still do not
have the global existence in these higher regularity spaces. In lower regularity space, as N. Burq, P.
Gérard and N. Tzvetkov did in [2], one can prove that the time flow map on H2*L2NL2 H; with § <
s < % is not C? at the origin. Also, an adaptation of the arguments from [2] implemented in I. Kato
[9] implies the ill-posedness in H2*L2 N L2 H} with s < 1. In this paper, we prove the existence of
modified wave operators and corresponding cascade result for (1.1) with small decaying data.



Remark 1.1. The sign in front of the nonlinearity is not relevant as far as we are dealing with
small data, so the conclusions we obtain in Theorem 1.1/ and Theorem 1.15 are also available in
the focusing case.

1.1 Some previous results

In this subsection, we introduce some important results for the cubic Szeg6 equation, the half wave
equation and the half wave Schrédinger equation.

1.1.1 The cubic Szeg6 equation
The cubic Szegd equation on the circle reads as follows,

{ i =1, (Jul*u), (t,z) eRxT,

w(0) — e, (1.2)

where ©, it
T _ u § ) i pe ZZO7
Hulp) = { 0, if p € Z — Zo. (1.3)

Also, the cubic Szeg6 equation on the line is stated as follows,

i0u =1y (Jul*u), (t,z) e RxR,
{ u(B) _ uG* (1.4)
where N ; 0

For the cubic Szegd equation on the circle (1.2), P. Gérard and S. Grellier have proved the global
well-posedness in H3 (T) for s > 1 [4]. With slight modifications of the proof in [4], O. Pocovnicu
has shown the global well-posedness of the cubic Szegd equation (1.4) in H{ (R) for s > 1 [13].

Theorem 1.2 (13, Theorem 1.1). The cubic Szegd equation (1.4) is globally well-posed in H? (R)
for s > %, i.e. given ug € HY(R) with s > %, there exists a unique global-in-time solution u €
C (R; Hi(R)) of (1.4).

See also [14] for the explicit formula of the solution to the Szegd equation (1.4) with some
special initial data.

In fact, P. Gérard and S. Grellier have also studied the large time behavior of solutions to the
cubic Szegd equation with some initial data in [6], and this result is stated as follows.

Proposition 1.3 (6, Theorem 1). There exist initial data ug € C3°(T) := (), H*(T) and sequences
(£.) , (t") tending to infinity such that Vs > 3, YM € Z., the corresponding solution to (1.2) satifies

)| .
— |M

— 00,
.

n—oo

and u(t") — wug in C°. Furthermore, the set of such initial data is a dense G5 subset of C°(T).
n—oo



Remark 1.4. As shown in Proposition 1.3, for s > %, there exist solutions to (1.2) with the initial
data in a dense Gs subset of C°(T) which satisfy

t s
i sup L@l _

oo |tM ’

liminf ||u(t)|| gs < 00.
|t] =00

However, we do not know if there exists a solution to (1.2) such that the H® norm of this solution
tends to infinity as t tends to infinity.

Before introducing the following proposition, we recall the definition (4.5) of Hankel operator
H, in Section 4, and we say that A > 0 is a singular value of H, if the corresponding Schmidt
subspace

Ey,(\) = Ker (H2 — X°I)

is not {0}.
Recently, P. Gérard and A. Pushnitski have shown the cascade result for the equation (1.4) [7],
and this result is stated as follows.

Proposition 1.5 (7, Proposition 9.3). Let u € HL(R) be a rational solution of the cubic Szegd
equation on the line (1.4) such that the Hankel operator H, has singular values A1, -+ , Ay, with
A1 being multiple and A being simple for every j > 2. Then

[0z u(t)

Dyt
0 < liminf lz2 < i sup 1224l
t=o0 2| P It]

< 400

1.1.2 The half wave equation

The half wave equation reads as follows,

. _ _ 2
{z(“)tv |Dlv = |v]*v, (1.6)

v(0) = vp.

The equation (1.6) is usually studied on T or R. P. Gérard and S. Grellier have proved the global
well-posedness of (1.6) in H*(T) with s > % [5], and one can use the analogous method to deduce
the global well-posedness of (1.6) in H*(R) with s > 1.

Theorem 1.6 (5, Proposition 1). Given ug € H*(T) with s > L, there exists a unique solution
u € C(R,H*(T)) to (1.6). Also, for ug € H*(R) with s > L, there ewists a unique solution

we C (R, H (R)) to (1.6). >

Moreover, O. Pocovnicu has studied partially about its long time behavior for the problem (1.6),
she has proved that if the initial condition is of order O(e) and supported on positive frequencies
only, then the corresponding solution can be approximated by the solution of the Szegd equation
[15].



1.1.3 The half wave Schrodinger equation on the plane

For (1.1), by using the endpoint Strichartz estimate, Y. Bahri, S. Ibrahim and H. Kikuchi have
deduced the local well-posedness of the Cauchy problem in H2*LZ N L2H} with s > § [1]. We state
this result as follows.

Theorem 1.7 (1, Theorem 1.6). For any Uy € H2*L N LZH; with s > 1, there exists Trpax > 0
and a unique local solution U € C ((—TmaX,TmaX);HgsLi N LQQCH;) to (1.1) with the initial data
Up.

An adaptation of the arguments from [2] implemented in [9] implies the following ill-posedness
result for (1.1).

Theorem 1.8 (9, Norm inflation). Let s < § and H*® := H2*L2 N L2H;. There exists a positive
sequence (tn)nen tending to zero and a sequence (un(t))nen of C*° (R?) solutions to (1.1) defined
fort € [0,ty,], which satisfy

[[1n(0)|| s — 0
and
[un (tn) [l s — o0

as n — 0.

1.1.4 The half wave Schrédinger equation on the cylinder
Consider the half wave Schrédinger equation on the cylinder,
(10 + A) U = |U|*U, (z,y) € R x T. (1.7)

Inspired by the work of Kato-Pusateri [10], Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia have
proved modified scattering for the cubic Schrédinger equation on R x T? [8]. H. Xu has adapted the
method in [8] to establish a modified scattering theory between small decaying solutions to (1.7)
and small decaying solutions to the non-chiral cubic Szeg6 equation (1.8).

Before introducing H. Xu’s result, we define the following norms,

4
VFllv = 1Py, + 2l o [Fllve = IFllv +]|(1 = 82)" F|| -+ l2Filv.

The non chiral cubic Szegé equation on R x T is stated as follows,

i0,G(t) = R[G(t),G(t),G(t)],

AL ~ ~ 1.8
ForeRIG, G, G) = 11, (|G4 PG + 11 (G- PG ). (18)

Here G(¢,) = Fr,G(&,-) with & € R, II; is the Szegd projector onto the non-negative Fourier
modes on the variable y, II_ :=Id — II;, and G :=IIL(G).
To obtain the following results, H. Xu assumed that the initial data satisfies

Uo(z,y+m) = =Up(z,y). (1.9)

In fact, the modified scattering consists of two parts: the existence of modified wave operators and
the asymptotic completeness. We introduce the existence of modified wave operators obtained by
H. Xu in [16] as follows.



Theorem 1.9 (16, Theorem 1.4). Given N’ > 13, there exists ¢ = ¢(N') > 0 such that if Go € V'
satisfies

1Golly+ <

and if G(t) solves (1.8) with initial data Gy, then there exists U € C(]0,00) : V') a solution of (1.7)
such that

He_”AU(t) - G(7rlnt)HV — 0 ast— oo.
Also, H. Xu has obtained the following asymptotic completeness in [16].

Theorem 1.10 (16, Theorem 1.3). Given N’ > 13, there ezists e = e(N') > 0 such that if Uy € V'
satisfies

Uolly+ <,

and if U(t) solves (1.7) with initial data Uy, then U € C(]0,+00) : V') exists globally and exhibits
modified scattering to its resonant dynamics (1.8) in the following sense: there exists Gy € V' such
that if G(t) is the solution of (1.8) with initial data G(0) = Gy, then

He_”AU(t) - G(7rlnt)HV — 0 ast — 0.

Theorem 1.9 and 1.10 make up the modified scattering theory of (1.7). H. Xu has also combined
Theorem 1.9 with Proposition 1.3 by P. Gérard and S. Grellier, and she has obtained the following
infinite cascade result.

Theorem 1.11 (16, Corollary 5.1). Given N’ > 13, then for any € > 0, there exists Uy € VT with
|Uolly+ < e, such that the corresponding solution to (1.7) satisfies

U@Lz
Hmsup —— % = 0o, Vs>1/2, VM >0.
o (1 + log [t)M /

Remark 1.12. Theorem 1.11 shows that the limit superior at infinity of |U(t)| L2y with s > i
is infinity. However, we cannot deduce liminf; ||U(t)||L§H; < oo for any s > 0 directly from
Proposition 1.3. Here we show the sketch of the proof of Theorem 1.11 and we show also why we
cannot infer iminf, oo [U(t)||r2 s < o0.

We choose a cutoff function ¢ € C2°(R) as follows: ¥(€) = 1 when || <1, 0 < ¢(€) < 1 when
1< €] <2 and (&) =0 when || > 2. Let p > 0 be a constant to be determined, and we construct
@0(5, y) = pp(&)uo(y) with uo(y) in a dense G5 subset of C°(T) as in Proposition 1.3. We verify
that Go(z,y) € VT, and for any € > 0, we choose p. small enouth to have ||Go(z,y)||v+ < €, which
satisfies the condition of Theorem 1.9. Let u(t,y) be the corresponding solution to (1.2) with the
initial data uo(y), then G(t,z,y) == ]-'g_lm (P00 (Oul(p2v(€)?t,y)) is the solution to

i0;G = R|G,G,G], (x,y) e RxT,
{ G(0) = Gy.



For s > % and M > 0, by Proposition 1.3, we verify that

1
~ 3
. G, z,y)llL2m: . (f\g|§1 ||G(t,§,y)”§{5df)
lim sup ———————* > limsup i Y
2
o \[ 2M+1 Hu(patv y)”H; B
20 ISP T ety
oo Pz

Combining (1.10) with Theoerem 1.9, we deduce Theorem 1.11.
Yet, the above method is not sufficient to prove liminf; . ||G (¢, z, ZU)HL?EH; < oo. From Propo-

sition 1.3, we know that there exists a sequence {t"},, with t™ — oo such that lim, . ||u(t™, y) ||H; <
oo for any s > 0. Then we have
2 dg)
Yy

< pe lim inf </£ , IIU(w(ﬁ)Qt",y)?f;%)
<

(NI

n—oo

hmmeG(pZ,5 y)||Lsz = lim inf (/ ||G( 275, Y)
€l<

< V2p. Jim [t 9)]; + Tt ( / |u<w<£>2t”,y>nipds)
n—oo n—oo Yy

1<|€|<2
(1.11)
From (1.11), we cannot deduce liminf,, . ||G(f)—2,x7y)||LgTH5 < oo because we do not even know

whether liminf,, oo [[u(¥ (€)™, y)||%. < oo when 1 < €] < 2.

Remark 1.13. Let u(t,y) be the corresponding solution to (1.2) with the initial data ug(y) in a
dense G subset of C°(T) as in Proposition 1.3. In fact, from [11], we have

1 T
lim sup — / |w(t)]| grdt = +o0. (1.12)
T—~+oco T 0

Formula (1.12) indicates the relative length of the time intervals where Sobolev norms of u are large
is large enough. Let o > 0 be a constant to be determined, and we take x(§) = oe —€/2 Wwe

construct éo(f,y) = x(&uo(y), and we verify that Go(z,y) € V. For any ¢ > 0, we choose 2
small enouth to satisfy |Go(x,y)|lv+ < €. Then we have G(t,x,y) := ]:§~>z( (©u(x(€)t,y)) is
the solution to

i0,G = R[G,G,G), (z,y) R xT,
G(0) = Go.

We have

T
7 | 16Oz ma
- / PR GRIGRRI



1 [eeT
— [ luts. )l ( [ dg) ds
0 x(&)2>+%
9 oiT ) 3
2 [7 iy (log( )) ds

QET
2

1 2
27 [ lutsiyds
0
2

0T
S

oz T

[ sl
w(s,y)|| g1 ds
22T Jo s

2
2 0z

By (1.12), we deduce that

1 /7
lim sup —/ |GE)|32 g dt = +o0. (1.13)
T—+oo 1 Jo vy

Formula (1.13) indicates the relative length of the time intervals where Sobolev norms of G are large
is large enough. However, (1.13) is not sufficient to prove liminf; o0 |G(t)[| L2 5 = 00 for any s >

0, so we cannot deduce that the corresponding solution U to (1.7) satisfies liminf;_, HU(t)HLiH; =
oo for any s > 0 either.

1.2 Our main results

The aim of this paper is to prove the existence of modified wave operators and corresponding
cascade result for the half wave Schrodinger equation (1.1) with small decaying data. In our case,
we set IV > 3 is an arbitrary integer, and we define the following norms,

|1F||z := ||ﬁ(§,y)||Lgogy,

1F s = [Fllmy, + |lzF| L2 12,

1Flly = [|F|ls + [|1F]|z,

[Flls+ = Flls + leFllz2ms + | (1 + |Da]) Flls + [[2F |5,

[Flly+ = [1Flls+ + [I1Fllz + | (1 +|Dz]) Fliz + |2Flz + |2°F| 2,

where G := L2(R) B%’I(R).
We introduce the following non chiral cubic Szeg6 equation on R x R,

i0G(t) = R[G(t),G(t), G(1)],

~ ~ ~ ~ 1.14
Fo cRIG,G,G] =1, (1G4 G + T1_(IG_°G). (1.14)

Here G(¢,-) = Fr,G(&,-) with & € R, II; is the Szeg6 projector onto the non-negative Fourier
modes in the variable y, II_ :=Id — II, and G4 :=IIL(G).

Our first result provides the existence of modified wave operators.



Theorem 1.14. Given N > 3, there ezists e(N) > 0 such that if Go € YT satisfies
||G0||y+ <e. (1.15)

If G is the solution of (1.14) with initial data Go, then there exists a unique solution U of (1.1)
such that e="*AU(t) € C([0,00) : V) and

||efitAU(t) - G(w 1nt)||y — 0 ast — o0.
Combining Theorem 1.14 with the Proposition 1.5, we deduce the following cascade result.

Theorem 1.15. Given N > 3, then for any e > 0, there exists Uy € YT with ||Ug|ly+ < €, such
that the corresponding solution to (1.1) satisfies

102 102
0 <liminf ——= Y% <limsup ——% < +o00. 1.16
i T og ) = S (T log 1) (1.16)

Remark 1.16. Unlike Theorem 1.11, Theorem 1.15 shows that [|U(t)||r2m: tends to infinity as
logt when t — oco. This shows that the half wave Schrédinger equation on the plane is one of the
very few dispersive equations admitting global solutions with small and smooth data such that the
H? norms are going to infinity at infinity.

Remark 1.17. In fact, N > 3 in Theorem 1.1} and Theorem 1.15 is the optimal restriction on N
in our proof.

The proof of Theorem 1.14 is not only an adaptation of methods in [16], there are many essential
differences between the proof of Theorem 1.14 and the proof of Theorem 1.9. In fact, H. Xu
considered the B | (T) norm on the variable y because the B | (T) norm is a conserved quantity for
the resonant system on T. Also, the property Il (Bj ,(T)) C B ;(T) is used in the decomposition
on the frequencies with the variable y in [16]. However, we cannot consider Bj ;(R) on the variable
y because the B%’l(R) norm on the variable y is not a conserved quantity for ‘the resonant system

on R. By Peller’s theorem in [12], we know that the Bil(R) seminorm is a conserved quantity for
the cubic Szegd equation on R. To have a conserved norm for the resonant system, we consider the
norm G = L2(R) N B%l (R) on the variable y, which is a conserved quantity for the resonant system.
This means we deal with a essentially different norm from the norm in [16]. The space G satisfies
II1(G) C G C L*®(R), and we use this property in the decomposition on the frequencies in the
variable y in our proof. Also, the Bj ;(T) norm can be estimated directly by the H*(T) norm with
5 > 1 because L?(T) C L(T), and this is the reason why H. Xu only needs to estimate the Sobolev
norm and the x weighted L2 , norm of the non-linearity. But we do not have L*(R) c L'(R), so
we cannot estimate G directly by H*(R) for any s > 0. In this situation, we should estimate the Z
norm of the non-linearity directly. To control the Z norm of the non-linearity, we need to use the x
weighted L2 H; norm, so we also need to estimate the z weighted L2 H. norm of the non-linearity.
One can see the proof of Lemma 2.2, Lemma 3.10 and Lemma 3.11 for the direct estimates on the
Z norm and on the x weighted L2H} norm. Meanwhile, since we do not have L*(R) C L'(R), we
cannot construct an intermediary norm to control the Z norm as H. Xu did in [16], and it may
be the reason why we could not get the asymptotic completeness as Theorem 1.10 for this time,
which is another part of modified scattering. In Section 3, we decompose the non-linearity N into
a combination of the resonance zero part N¢ and resonance non-zero part N, just as H. Xu did



n [16]. When H. Xu estimated the part ./\~ft, she used the L°° norm estimate to get directly the
boundedness because the resonance level changes discretely on T. But in our case, we cannot use
the same method because the resonance level changes continuously on R, so we should use the L?
norm estimate and we get the extra t2 in the estimate. Thanks to the dispersive estimate on the
x direction, we get t=2 decay in general which is sufficient for our estimate. One can see the proof
of Lemma 3.10 for details, which is quite different from the proof in [16]. Furthermore, we improve
the restriction on the regularity of Sobolev norm H, i,\fw which is NV > 3 and which is better than the
restriction on the regularity of Hi\z(N’ > 13) in [16]. Finally, as we mention in Remark 1.12 and
Remark 1.16, the cascade result we obtain shows that the half wave Schrédinger equation on the
plane is one of the few dispersive equations admitting global solutions with small and smooth data
such that the H® norm are going to infinity at infinity, but it is still unknown if there exists such a
global solution to the half wave Schrodinger equation on the cylinder satisfying this property.

1.3 Structure of the paper

In Section 2, we introduce the notation in this paper. In Section 3, we establish the decomposition
of the non-linearity A¢,

NF,G, H] = %R[F,G,H] + EYF, G, H),

where R is the resonant part and £! is the remainder. We give the decay estimate of £¢, which
is fundamental in the proof of Theorem 1.14. In Section 4, we study the solution to the resonant
system, which is equivalent to the non-chiral cubic Szegé equation (1.14). By the estimate of the
resonant part R, we give the estimate of the solution to the resonant system with respect to the
initial data, which is also fundamental in the proof of Theorem 1.14. In Section 5, we construct the
modified wave operators and prove Theorem 1.14. Later in this section, we prove the corresponding
cascade result, Theorem 1.15. In the Appendix, we introduce the transfer lemma which allows us
to transfer L2 estimates on operators into S’ estimates on operators. Furthermore, we introduce

zy
a lemma which allows us to transfer L2 estimates on operators into S estimates on operators.

2 Preliminaries

2.1 Notation
We define the Fourier trasform on R by

(€)= Fulg)(©) = % / e~ ().

Similarly, we also define the Fourier transform on R, by

hy == Fy(h)(n) = %/Re‘i"yh(y)dy.

Then we define the full Fourier transform on R, x R, by

(FOEn) = 3= [ Ttcmemdy =Dyt

10



We also introduce Littlewood-Paley projections. We define Littlewood-Paley projections on the full
frequencies by

(FPean) (61 = (5 ) o () (FUNE),

where k € Z, and ¢ € C(R) with ¢(x) = 1 when |z| < 1 and ¢(z) = 0 when |z| > 2. We also
define

o(x) = p(z) — ¢(22) (2.1)
and
ng' :PSQk—PSQk—l, Pzgk :1—PS2k (22)
Sometimes we only treat the frequency in x, so we define
FQent(en = (5 ) FONEN.

and we define Qo similarly. We also define Littlewood-Paley projections on the frequency in y by

(FyBoch) (1) = & (55 ) By (2.3)

2.2 Duhamel formula
We define

where U is a solution to (1.1) and A = 92 — | D, |. We observe that U solves (1.1) if and only if F
solves

i0,F(t) = e~itA (eitAF(t) e AR () ~e”AF(t)) . (2.4)
We denote the non-linearity in (2.4) by
Nt [F, G,H] = efit.A (eit.AF . efit.Aé . eit.AH) ,

where Nt is a trilinear operator.

Then we have the following Fourier transform expression
FN'[F,G, H](&n) = / etti=inmm e mm =) o (T [Fy s Gy oy Ha]) (€)dimeina, - (2.5)
R2

where

Tt[f, g, h] := U(~t) (u(t) fu(t)gu(t)h) LU = eitOr (2.6)
‘We observe that
Fu (Z'[f,9,R]) (§) = /RQ e!21% F(& — p)G(€ — p — K)R(E — K)drdp,

and Z? is also a trilinear operator.

We also have _ _ _ _
NYF,G, H] = 1Pl Tt e =Pyl o =Dul G e~ 1Pul f), (2.7)

11



Remark 2.1. We observe that all trilinear operators that we consider in this paper saitisfy (6.2),
so we can use Lemma 6.1 and Lemma 6.2 to estimate these trilinear operators.

2.3 Norms

The homogeneous Besov space B'(R) := Bll)l(R) is defined as the set of all f € &’ (R™) such that
||fHB} _(r) 18 finite, where

||fHB;1(R) = Z2k ||A2kaL1(]R) :

keZ

We notice that ||- ||B} _(r) I8 anorm on S’ (R™) /P (R™), where P (R™) denotes the set of polynomials
on R™. Then we define the following space

G = L2R)[ B, (R) (2.8)
with the norm
1A llg = Iz + 1F 11, )

We observe that G is a Banach space, and I1.(G) C G C L*. For functions F defined on R x R,
we will use mainly the following five norms:

I1F]|z = | F(& vl g, (2.9)

IFlls = |Fllgy, + [2F 22, (2.10)

IF|ls == Flly, + [2F | 222, (2.11)

IFlly = [Flls + | Fllz, (212)

1|5+ = IFlls + [2Fll 2 s + | (1 + [Dal) Flis + [[2F s, (2.13)
1Flly+ == Flls+ + [ Flliz + | 1+ [Dal) Fllz + [2F 2 + [|22F) 2, (2.14)

with N > 3.
We also define the following space-time norm

1Fllxr := sup {IFOlz + A+ D IFOly + @+ D> 0P D)y}

s (2.15)
[Fllxg = IFllxr + sup (1+[E)7°[F(&)]]y+,
0<t<T
with § < 1074
Now we introduce a lemma which will be very useful in the latter parts.
Lemma 2.2. For |t| > 1, we have
1
|NVE,. G H||y, S HHFHsHGllsHHIIS- (2.16)

12



For [t| > 1,

So we have

In particular,

1
Hth F,G, H] HLsz ~ |t\ HxFHLsz||G||L2H2HwGHL2H2||H||L2H2HxH||L2H2

It\

1
5 ‘HanLsz||F||L2H2uxFHW||G||L2H2HxGHz
Sh IFlsIGlsl Al
t
HN F.c.H,

1
S |t| ||F||L2H2||‘TF||L2H2HG”L2H2||:EG||L2H2HH||L2H2||‘TH||L2H2||F||S||GHSHH”§'

S i ||F||s||G||s||H||s
Proof. Let

F=F'.G=F?H=F3
Then we recall (2.7),

Nt[Fl,FQ,FB] — eit‘Dy‘It[e—it|Dy|F1,e—’it|Dy|F2 e_itlDy|F3].
In fact, we have

(FANE At 1

02 52 92— .92
_ Hefztam (eztamFl . efztamFQ . eztamF3> ‘

L2
2 . 2 — . 2
S eztazFl . efztaz F2. eztﬁl FS‘
L2
. . 2 - 2
< min HFJ 't ik ‘ 't pt H .
~ (k0 =1{1,2,3} Lo Lo

we use the dispersive estimate and we have

02 _1 -1 3 3
enawaLoo e VP A A A E

|Z" [F', F?, PP, < !

. 1 1 1 1
i S 7 g, I NS, N, I o

13
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2.18)

(2.19)

(2.20)

(2.21)



Then by Lemma 6.2, we have

HN't I:FlyFQ’FS:I

t1,—it|D 1 _—it|D 2 _—it|D 3
5“1[6 Dyl 1 e=itIDy| 2 o \y\F}‘

Lg’y
1 . .
ST B 1 I iy NP |y N
1
SEr L ] PP ||Fk||s||Ff>|S
and
W [F P2 Pl S | 2 12
In particular, by Lemma 6.2, we also have
||xj\ft [F’G’H]HLgHg
< Hxl't [e~itIDyl o=ty 3, efit|Dy|H]‘
L2H2
1
: |t| 2215 G |G g L B s

+ ﬂHxGHLiH?||FH22H2||xF||E2H2||HH22H2||xHHEzH2

|t| HxHIILZHz HFIILszHwFHpmIIGHLzmIIchIIpm

S Il | FllsIGlls 1E s,

which implies (2.17).

(2.22)

(2.23)

Then we estimate [|[N'[F, G, H]|| ,. We firstly estimate ||Fp—se N*[F, G, H]|| ;2. By (2.21) and
£ Ty

Remark 6.3, we have

HE%N‘&[F’ G Hl|| o

S |t| ||F||L2H2||xF||L2H2HGIIL2H2IIxGIILszHHIIL2H2IIxH||L2H2||F||5||GHSHH||5

SmllFllsllGllsllHlls.

(2.24)

Then we estimate the term || F, N'[F,G, H]||Lgo]-31. By (2.7), (2.21) and (6.28) in Remark 6.5,

14



we have

1
Smlx?

k<0

+y 27F

Ly k>0

iyn i Ui
/Re Yng t|”|¢(2—k)dn

iyn i n
/Re Y t\n\d)(ﬁ)dn

Ly (2.25)

1 1 1 1 1 1 1 1 1
VEU L 3 Mo 1z NG s NG s g Vs g N H N s I NG
< Lippd 3 } 3 } 3 Lot
S G2 3 191 g NG |G s 0 | |2 | FISNGLE S
Then by (2.24) and (2.25), we have
IWE.C. H]|
< Lipd ; ; ; ; ; St
~ m||F||LgH§||$F||L§H; HGHLgHg ||$G||L5H§ HHHLgHg||9CH||L§H5||F||s||GHsHH||S
1
S iy 1F sl GllslHlls,

which imples (2.18). Finally, by (2.18) and (2.23), we obtain (2.16). The proof is complete. O

3 Structure of the nonlinearity

In this section, we are to obtain the decomposition for the full non-linearity in (2.4), which can be
written as

NY[F,G, H] = gR[F, G, H] + E'[F, G, H), (3.1)
where R is the resonant part,
FRIEGHEn = [ By (@G O €)imans, (3:2)
w(n,m1,m2)=0

and
w(m,mu,m2) = [0l = [n—ml + |n2 —m| — |n2l.
We call £! the remainder term, which will be estimated in Proposition 3.2.

Remark 3.1. We have that w (n,m,n2) = 0 in the following cases (see the proof of Proposition
4.2 for details):

Ifn >0 and (n1,m2) € {n >n1,m2 > m1,m2 > 0} U {m =0} U{n =n2},
Ifn <0 and (n1,m2) € {n <nr,m2 <muyme <0FU{n =0} U {n =mne}.

Here for any n € R, the sets {(n1,m2) € R?|n1 = 0} and {(n1,7n2) € R?|n = n2} are of measure zero
in R2, they do not interfere in the integration in equation, so we can neglect them.

Then we introduce our main result in this section.

15



Proposition 3.2. We assume for T > 1, F,G,H : R — Y satisfy

1Elxr + 1Glxr + 1 H x, S 1. (3.3)
Then for t € [2,T] we write
ENF(t),G(t), H(t)] = EIF (1), G(1), H(t)] + EF (1), G(1), H(t)],
&[F(1),G(t), H(t)] = 0:E5[F(t), G(t), H(t)].

We note E;(t) := E}[F(t),G(t), H(t)] for j = 1,2,3, then we have the following estimates which
hold uniformly in T > 1,
T
| swal <1 -1
R ®

sup (142 &), S 1,
L<i<r

sup (1+[¢))3 [|E5(1)]ly S 1.

T
T<¢<T

T—3(5

Moreover, with the assumption
1F s + Gy + 1 llr <1, (3.4)
we also have the following estimate which holds uniformly in T > 1,

[ ' £;(t)dt

2

7209 <1, j=1,2

y

|

3.1 The high frequency estimates for Y

In this subsection, we are to obtain the decay estimate for the nonlinearity in the regime with at
least one high frequency. We adapt the energy estimate when two inputs have high frequencies.
On the other hand, we use the bilinear refinements of the Strichartz estimate on R. Firstly we
introduce the following lemma which will be used in the proof of Lemma 3.4.

Lemma 3.3 (3). Assume that \/10 > p > 1 and that u(t) = e"%==ug, v(t) = e?9=0y. Then we
have the bound

aum 1
||Q>‘UQUU||L36J(]R><R) S AT HUOHLJZE(R) HUOHLi(R) . (35)

We refer to [3] for the proof.

Then we prove the following lemma which gives a decay estimate on N [Q 4 F (1), QG (t), Qc H (t)]
in the regime max(A, B,C) > T with T > 1.

Lemma 3.4. The following estimates hold for T > 1,

> N'[QaF,QpG,QcH)|| ST %|F|s|GlsllH]ls, ¥t>
max(A,B,C)>T

no| M

; (3.6)

Z

16



T
> [ A@aresc.oem| STRIFlGIC . 6D

max(A,B,C)ZT% 2

s
Proof. Let t > . For (3.6), according to (2.18) and Bernstein’s inequality, we have

> N[F,G, H]

max(A,B,C)>T

Z
1 1 1 1 3 3 3
ST Y IQaFI 2 |Q5G L 2 lQCH N 7oy | F I SIGIE N H | &
max(A,B,C)zT%
— 1
< T ), (ABO)A|F|SIGsIIH]s
max(A,B,C)>T&
_ 25
< TH|F|sIG]s] H]s.

For another estimate, firstly we split the set {(A,B7C) :max(4, B,C) > T%} into two parts A
and A°. Here A := {(A,B,C) :med(A, B,C) < Té/lﬁ,maX(A,B,C) > Té}, with med(4, B, C)

denotes the second largest number among (4, B, C).
We start with the case (A, B,C) € A°, we are to prove

Y |V'QAF.QsG,QcH| g ST # | Flls |Glls | Hllg, V>
(A,B,C)eAe

no|

. (3.8)

Firstly, we give the estimate for

Ya.cyenc N [QaF, QpG, QcH]‘

L2 For ¢t > %, by (2.22),

we have =y
Y NQaF.Q5G,QcH]
(A,B,C)EAc 2
-1 1 b 1 1 1
< T > Iz, 105G 7 i 10QBGI i |QCHZ: s l2Qc HI E s
(A,B,C)eAe
ST Y (BOTFL, IGs 1 Hll

(A,B,C)EA®

< TS (med(4,B,.0) 7| [IFlL
(A,B,C)EA® |

_7
S TPl IGlslH]s.

GllslHls

The inequality above holds by replacing F' with G, H. According to Lemma 6.1, we have

Y. N'[QaF,QsG.QcH]| ST 5|F|s|Gls||H]s.

(A,B,C)EAc g

17



Then we estimate HZ(AB’C)EAC TN [QaF, QpG, QCH]HLsz. According to (2.17), we have

oY

> aN'[QaF,QpG,QcH]

(A,B,C)eAe

L2H?
1 1 1 1
S T Z ||$QAFHL3,H,§||QBGH53H§||$QBG||E§H§||QCH||23HZ||33QCH”2§H§
(A,B,C)€EA®
+ Y
(A,B,C)€EA®

1 1 1 1
+ T Y leQcH 12wz QaF | 22 11 QAF | 2 2 | Q5 G2 42 2@ Gl 2 g2

(A,B,C)EA®

N

_ _1
T > (med(4,B,C)77 | ||F|IslIGls|1H]| s
(A,B,C)€eA®

S T B|F|s||Glls| H|s.
So we have proved (3.8).

Then we consider the case (A, B,C) € A, we are to prove

/ N [QaF (1), QpG(t), QuH (t)] dt
C)eA s

_ L
ST 2 Flx |Gl x 1 H | xr-

A,B
(A,B

We consider a decomposition

L

m/a.21) = (J I, L= [T, G+ )T ] =, t0), # ST

jeJ

We also consider x € C°(R), x > 0 such that x(s) =0 if |s| > 2 and

Zx(sfk)zl

keZ

We can estimate the left hand side of (3.9) by C(Ey + Es), where

S5 (e

je€J (A,B,C)EA

B =

- j) ( QAP (1), QG (1), QeH ()]

CNQuF (1), QuG (t) . Qe H (1) )dt

18
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and

Ey =

PIEDY / ( %—J)Nt[Qm ). QuG (), QoH (t;)] dt

j€J (A,B,C)e

S

We start by estimating E, we have

I <Z/ ( - )Eld(t)dt, (3.11)

jeJ

with

Erit):=| Y.  (N'[QaF(1),QsG(t),QcH(t)] — N [QaF (t;), QG (t;), Qe H (t;)))

(A,B,C)eA

S

Wenote Q1 :=Q_, 1 and Q_ :=Q 1 then we have

>T6 <T%/16’

> N'QaF,QpG,QcH|=N"[Q+F,Q_G,Q_H|+N'[Q_F,Q,G,Q_H]

(A,B,C)eA

+Nt [Q—FaQ—GaQ-'rH} .
We rerrange the terms in F, ; two by two and we rewrite the first pair as follows,

NNQ+F(1),Q-G(1), Q-H(t)] = N' [Q+F (t;) ,Q-G (t;) , Q—H (t;)]
=N'[Q+ (F(t) = F (;)), Q-G(1), Q-H(t)] + N" [Q+ F (;) , Q- (G(t) = G (t;)) , Q- H(t)]
+NQ+F (t) . Q-G (t;) , Q- (H(t) — H (t;))].

Then by Lemma 2.2, we have
[NQ+ (F(t) = F (t;)), Q-G(), Q-H®)]|| g S A+ [t [F(#) — F ) IGOsIH@)]s.

Other terms can be estimated similarly, so we have

Ej(t) SA+ ) HIIF®) - F )5 IGOIsIH 0l
+IE s 1GE) = G @)lls 1H@)lls (3.12)
HIF )5 I1G (t)lls 17 (E) = H ()]l 5] -

Since [t —t;] < T10, we have

9
1)~ F )l < [ 10F@)]5a < 75 suplaF o).

Then by the definition of X1, we have

IF(t) = F (t)llg < T719| Fllx,,

19



and
IF(®)|ls < T°|| Flxy.-
Thus,
Bij ST 5 By |Gl | H | -

So we have

T
t i _ 1
ns [ X ( —y) By jodt < T 545 Py |Gl |1
T/2

9
jeJ TlO

Then we estimate Fo. We denote

T
By = H /. x (Tt —j) N [QaF (t)),QuC (t)), QcH ()] dt

we have

B<), > B

j€J (A,B,C)EA
Let
F=F*G=F'H=F°

then we are to prove

< (max(4, B,C)) " 1Fl g [ F) o 11F¥] s

T
[ x (G5 =) T [@ar .o 0. Qer )]

L2

To prove (3.13), we take K € L2 and F?, F®, F¢ independent on ¢, then we have

T
IK = <K7ﬁ X (Ttlgo _]) It [QAFaaQBFbaQCFC:I dt>

2 L2

T
t , _— .
= / / x( —— j) e/'02 (Q A F*)ei2 (Qp F?)e''%: (Qo F)e'P2 K dadt.
% R 10

T

(3.13)

Without loss of generality, we assume that K = QpK, D ~ max(A4, B,C) and A = max(A4, B,C).

By Cauchy-Schwarz inequality, we have

T

<

oito: (QAF®) et?2 (QBFb)‘

1% (QuF?) eI QLK |

2 2
L:L',t Lw-,t

20

T
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/ / X( 3 —J’) e'"% (QAF™) %2 (QpFP)e'" % (Qe F*) ¢ Qp K dudt
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Since A > 16B, D > 16C, by Lemma 3.3, we have

1% (Q 4 F) 61102 (QBFb>‘

SATRFY |,

Fl| s

2
z,t

"% (QuF*) QDK |

SDTVRF s K e -

L3
By duality, we deduce (3.13). Then by Remark 6.4, we have
A,B,C _
E35PC < (max(4, B,C)) Y| F|s|Glls|H]s.
Then we deduce

B<> S BAPO<#I Y (max(4,B,C) V| F|Is|ClslHls.

j€J (A,B,C)EA (A,B,C)eA

We recall that A = max(A, B, (), so we have

Y max(4,B,C) = 3 A (# {B B < T1/6/16})2 < /e,

(A,B,C)eA A>T1/6
By the definition (2.13), we have
IE )5 IG ) s 1H (t)lls < TP IFlxo 1G] | H | x

thus
By STV P x, 1G ) x| H | x1- (3.14)

Thus we complete the proof of (3.9). We have finished the proof of Lemma 3.4. O

Thus afterwards we can suppose that the = frequencies of F, G, H are < Ts. To go to the next
subsection, we introduce the following decomposition

N'[F,G, H] = N}[F,G, H] + N*'|F,G, H], (3.15)

where
FNL(E,n) = / ( Fo (T [Fy s oy Hy]) (€)diadis. (3.16)

7,M1,12)=0

3.2 The fast oscillations

In this subsection, we treat the contribution of Nt [F,G, H]. We present firstly two elementary
estimates here.

Lemma 3.5. Let 1% = % + % =+ % with 1 < p,q,r,s < 0o, then it holds

S [ |Fkm(y )] 15 = 2)ata =y = 2o = )| pdydz

SIFcwml oy 1 lzellgllr 1Pl e

~

/R ey ) F(€ ~ €~ 1~ W)R(E — R)dpdnde

L
(3.17)
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Proof. We have
1= / &% (1, ) F(€ — WF(E — 1 — WR(E — w)dpdinde
4 — / / 'Lzﬁ —iz(E—p f(é‘ _ u)ei(z+y)(§*ufﬁ)§(€ — - H)efiy(gfn)ﬁ(g . ﬁ)dud/ﬁdﬁdydz
Iy R3
= / ]-';Km(y, 2)f(x — 2)g(z —y — 2)h(z — y)dydz,
47T R2
then by Holder’s inequality, we have

1l < / |Frim(y, 2)| 1 £ — 25z -y — 2)h(z — y)| pdydz

(/ Fikm(y, )] ddz ) 171

- || m”Ll(RZ) Hf||L‘1||g|

LT

LT

To simplify the notation afterwards, we define the following shift operator,
T, f(z):= f(z—y). (3.18)

Remark 3.6. In fact, the inequality we use in the proof of Lemma 3.10 is the inequality (3.17)
with p = 2. In this case we have

g ’

~

m(p, K)F(€ = g€ — 1 — w)A(E — k)dpds

R2

2
L&

o~

[ e mln )€ = (e — = (€ = m)udd

3
s/|

L2 (3.19)

| If (@ = 2)g(x =y — 2)h(z — y)| 2 dydz

o Fan ,@mHLl =2y I /1lzallglzr
Remark 3.7. Let
MIRGH)E) = [ ()P = B(& — = A~ 0)dpdr. (3:20)
We observe that
M[F,GH)(E) = e [ m(u, m)e 2R (€ — p)et2GE — p— k)P H(E — v)dpdr.

R2
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Then by (2.19) and (3.19), we have

|‘Mt[f17f27f3]||L§

| [, s 0169 € = )R = T ]|

3
S [ Bk 1 Ty T, ) (3.21)
SIFamll oy im0y 2] e 7
S I T A Ra A T

Then we give an estimate to an auxiliary function which will be used in the proof of Lemma
3.10.

Lemma 3.8. ForT > 1,0 € CPR),p(z) = 1 when |z| < 1 when |z| <1 and ¢(x) = 0 when
|x| > 2. We define for T/2 <t <T,

m(p, k) = ¢ (t%un‘) ¢ (T;éu> @ (T;é ﬁ) :

St

Then || Fowi i gey
Proof. We have
1Fi kil o gy = 1T ()l
where
I(x1,m0) = / e 128 o (Suk)(p)p(k)duds, S ~ T
R2

Then we are to show

U (1, z2)| + @1 (21, 22)| + w2 (21, 22)| S 1, [@122] (21, 22)] S log(1 +T).

For the first inequality above, we estimate |z11 (z1, z2)| for example, and other two terms can be
estimated in the same way. We have

aa (o1, 9 |\ / Y 62 (S o (1) o () dpue

/Rz e 2 (S (Spr)e(p)p(k) + ©(Sur)e' (1)e(k)] dudk

<1+

/R et (Sh! (Spur) e () (k) dudrs)
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We obeserve that [Suk| < 2, then the second term turns out to be

<

~

|Skldpdr < 1.

[ e (S (Siun)olido() dud

/Di—{|sl“i,|#«|y|"¢|<2}

So we get the first inequality, and we use a similar method to prove the second one. We have
forval (21,22)] 5 [ | 10,00(0(S)pl)p()| duds
R

< /D 1Sk (Spr)p(p)e' (k)| 4 |SkSue” (Sur)e(p) (k)|

+ |Su! (Spw )’ () (k)| + |p(Sur)e (1)’ (k)| +1S¢" (Sur) () (k)| duds

T—13/12 2 2 M

< / / 4 / / [+ |Sk| + |Sul + |SSpu| + Slduds
0 0 T-13/12 J¢

Slog(1+4T).

Then we have
(I |za]) (L + |22]) [ (21, 22)| S log(1 +T).
We also have a polynomial in 7" bound

(1 + |:v1|2) (1 n |;v2|2) 1T (1, 22)| < TH/3.

Therefore by interpolation we obtain that for every 0 < € < 13/3, there exists k > 1/2 such that
such that

T £ 0+ T (L) (L jl)

Thus we have

[ < ¢60.

1 ~
n’anLl(Rz)
O
Lemma 3.9. Let w be a function such that w™(n) := Lly<o @w(n) is a Schwartz function. Then for

k <0, we have
0 ) —2itn _ q
| o=t
i 2r

— 00

t3. (3.22)

Proof. We have

0 ) —2itn _
iyn © n )
yn o d
H/ ¢ mn (Zk "

0 y—2t n
= H/ / e'"dr w (—) dn
oo Jy 2k
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2% (y—2t)
s| [ Ehe |
2ky I
Y
where @™ (n) = 1,<o @ (7).
Since w~ is a Schwartz function and @™ (0) = 0, we have F, "} o™ is a Schwartz function and
s o 5.@ (1T)dT = 0. So we have
e 0] S oy
= OIS

Without loss of generality, we assume here t > 1. To estimate the L1 norm of fzk Fy-2) .FJHT ~(r)dr,
we decompose the integral interval into five parts. We have

2k (y—2t) -1 2k (y—2t)
[ Ere | = E e |y
2ky i -0 2ky
1 2k (y—2t)
+/ / .7:,,_%7 “(r)dr | dy
—1 Qky

2t—1| p2%(y—2t)

—|—/ / f;_lww*(T)dT dy
1 2ky
2t+1 2k (y—2t)

+/ / f;HT “(r)dr | dy
2t—1 |J2ky
o 2k (y—2t)

+/ / ]-'n_iTw_(T)dT dy.
2t+1 |J2ky

For the first term above, we have

-1 2k (y—2t)
/ /2 .7:77_” T)dT

ky

dy </ / Folew™ ()] drdy
Qk(y 2t)

/ / dey

2’“(y 21) (

(D)o
—o \(—y)2 (2t —y)2

-1
S

<279tz

A

For the second term above, since F, % @™ is a Schwartz function and [ o Frl w (1)dr =0, we
deduce that [V F,\ ™ (7)dr is also a Schwartz function, thus || [*_ F, 4 o™ (7)d7||re S 1. So

we have
1 2k (y—2t) 1
/ / f;iwa(T)dT dy SJ/
—11J2 -1

ky

2k (y—2t) 2Fy
/ .7:7]7_1)7.737(7’)6{7'7 .7-'77_” “(r)dr|dy
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2* (y—21) 2*y
hS / .F;_l)Tw_(T)dT + .7:77__)7 w (T)dr
<1.
For the third term above, since
2k
B ‘F’n_—M' dT + /Qk 7]—)7' dT _/ n—>'r )dT = 07
we have
2—1| p2k(y—2t) 21 2ky 2" (y—2t)
oL mre i a= [ = [ E e [ E e | ay
Y —00 —00
2t—1 00 2k (y—2t)
:/ }'njf _(T)dT+/ ]-'n_ﬁT “(r)dr|dy
1 2ky —o0

2t—1 00 2k (y—2t)
STl [ e ) a
1 2ky —00
2—1 % 1 2(y-2t)
1 oky T2 —o0 (=7)2
2t—1 1 2t—1 1
<2t ( [ i 1dy)
T T 1 (2t—y)?

For the fourth term above, as we did to estimate the second term above, we have

2k (y—2t)
/2)C f,;_lﬁw* (T)dr

2t+1 2t+1 (y—2t) 2k Yy
/ dy < / / Fohw (r)dr — Foh @ (r)dr|dy
2t—1 2t—1 —o0 —00
2k (y—2t) 2ky
s\ Ere e ][R
> Lo - Lo
<1.

For the fifth term above, as we did to estimate the first term above, we have

00 2k (y—2t)
[l e | ay < / / Fl ()] drdy
2+1 2t+1 2k(y 2t)

2ky
/ / —dey
2t+1 J2k(y—2t) T2
1
st [ (o)
a1 \(y —2t)2  y?
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So we have

0 —2itn __
iy € 1 77)
iyn d
H/ ¢ in (zk g

— 00

O

The main result in this subsection is to estimate Nt with low frequencies in x, here we use quite
a different method other than in [16].

Lemma 3.10. For T > 1 ,assume that F,G, H : R — S satisfy (3.3) and

F=Q_aF G=Q_,,G H=Q_,H (3.23)

Then for t € [L,T] we can write
NUF(1),G(t), H(t)] = EIF (1), G(t), H(t)] + E[F (1), G(t), H(t)].

We set E(t) := EL[F(t),G(t), H(t)] and E(t) = EL[F(t), G(t), H(t)], it holds unifomrly in T > 1
that
THH205 gy Hsl(t)Hy ST sup &), S 1, (3.24)

where E3(t) = 0:E3(t).
Proof. Let % <t <T. From (3.23), we set

_ a __ a _ b _ b _ c __ c
F=F'=Q_.F G=F=Q_,F H=F=Q_.,F"
Let

FNt[Fe, F* F°] (&,n)

itw t a b c n a b (325)
— /( o e (Ol [Fn*nlﬂFn,m,my F”I*’IJ + (92 [Fn*nl’FU*m*m’Frl]cfnz]) dnidns,
w(n,M1M2

with

—

OL (1,115 €)= [ @ (1= (thw) ) o€ = P& — = T (€ — m)dde, (320
O (1%, 1%, 1] (€) = /}R et (Hhun) FA(E - )€ —p— )€~ w)dudn. (3.27)
Then for w(n,n1,12) # 0, we have

O [ 1 ] = 0 (L 05 10 0 7)) = <5 (@08 (1 £ 1]
_6”27105 [825]0&; fb7 fc] - e”:Tfloé [fa7 atfba fc] - e”:Tiloé [fa’ fba atfc} (328)

(2
itw

= at (e iw—loé [faafbafc]) + (eitw - 1)‘Ct [faafbafc:l s
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where
(@05) [57. £ £ = [ 0 (2o (1)) Fole — ) (€ — o = W) FF(E — ).
RZ
Then we define
ES[F, Fb F°] = 9,6} [F*, F*, F°],

where

eitw(nmnz) _ 1

FEL[F, F* F°] (&) := / Oy [Fy,  F) ., FS, ] dmdny.  (3.29)
w(n,m1m2)#0

iw(777771772) n—m1’ = N2—n1’

We also define

Féem = [ (ctetnmmiof [By . B )
w(n,m1m2)#0 (3.30)
+ (eitw(n,mnz - )‘Ct [Fg 771’F7I7)2 m’Fﬁz] )dnldn2'

1. Estimation of &;(t). We define the multiplier

m(p, k) = ¢ (t%uﬁ) © <Tju> @ (T;é fﬁ) :

From (3.23), this multiplier and ¢ (t%,un) are equivalent in (3.27).

)

From Lemma 3.8, we have HFW?%”D(W) < t1o. Then by Remark 3.7, we have

08 177,777

Sy im0

H 3 1 (3.31)
2 I s )12, -

Since w(n,n1,m2) # 0, from Lemma 4.1 in Section 4, we deduce that

1). Ifn>0,n—mn <0,m—m <0,m2 <0, then w(n,n,n2) = 2.

2). Ifn <0,n—m >0,m2 —m1 > 0,72 >0, then w(n,n,n2) = —2n.

3). Ifn>0,np—m <0,m2—n1 > 0,12 >0, then w(n,n1,n2) = 219 — 2.
4). If n <0,n —m > 0,m2 — 11 < 0,172 <0, then w(n,n1,7m2) = 21 — 21,
5. Ifn>0,m—m >0,m2—m <0,m2 >0, then w(n,n1,72) = 2m — 2n2.
6). fn <0,np—mn1 <0,m2 —m > 0,12 <0, then w(n,n1,n2) = 212 — 2n1.
7). Ifn>0,n—m >0,m2—m > 0,m2 <0, then w(n,n1,n2) = 2n2.
8). Ifn<0,n—m <0,m2 —m <0,n2 >0, then w(n, m,n2) = —2772

9). if n>0,n—m >0,m2 —m < 0,72 <0, then w(n,n1,n2) =

10). If n <0, —m < 0,m2 —m1 > 0,72 > 0, then w(n,n1,72) = —2n1

11). If > 0,7 —m < 0,m2 —m1 > 0,12 <0, then w(n, n1,7m2) = 20 — 201 + 2n,.
12). Ifn < 0,np—m > 0,m2 —m < 0,12 > 0, then w(n, n1,m2) = —2n + 21 — 21,.

(
(
(
(
(
(
(
(
(
(
(
(
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(13). Ifn>0,n—m <0,m2 —m < 0,m2 > 0, then w(n,n1,m2) = 21 — 2n2.
(14). fn < 0,m —n1 > 0,m2 —m1 > 0,12 < 0, then w(n, n1,n2) = 2n2 — 2.

In fact, the above cases include the case {(n1,m2) € R =0} U {(n1,72) € R?|n =1}, which
is the case with w(n,71,72) = 0 due to Lemma 4.1. But we can neglect them because they are of
measure zero in R? and they do not interfere in the integration.

Without loss of generality, we classify these 14 cases of w (n,m1,12) # 0 into the following three
cases.

Case 1: w(n,n1,1m2) = £27.

Case 2: w(n,m1,n2) = £2n; or % (2 — 2n2) or =+ (21 — 21 + 212).

Case 3: w(n,m,n2) = £ (29— 2m) or £2n9 or % (211 — 212).

Now we analyze each case individually.

Case 1. For w(n,n1,m2) = £2n. We only have to deal with the case w(n,n1,7m2) = —27, and the

other case can be treated in the same way. We firstly estimate ||E3(¢)||;. . By (3.31) and Lemma
z,y

6.2, we have

5Dz,
e—2it7] -1 . . , .

<)/ L

w(n,m1,m2)=—2n ] L

sM
e—21'tn -1 . )

5 / 705 [F"7771 ]ln_nlzo’ F;I)z*m ]lﬁz—m >0 Fﬁlz ]177220] dnldng

X ’ ke (3.32)

. .
0 s 2 3
" c sin“(tn)

: / Oé [anm Ly 20, F;;Q*m Lns—niz0, £y, 177220] dmdns (/ 2 dn)
“ LEL;)]O —00 Ui

|| o=
SO+t 72,08 [Py FLFe |

wL3
<(1+ [t))~" 3+ i e B |\ FY
SA+) A min P P,

_( F,, ifn>0, [ F, ifn<o,
where F,(F})(n) = { 0. if n < 0, and F,(F_)(n) = { 0, if n > 0.
So we have L
ey, € OHIDH i E FSIEs (9

Then by Lemma 6.1, we have

1,5 o
IEs@)llg S A+ )70 max [P [ FP|s]|F7|s (3.34)
{a,8,7}={ab,c}

and

a c 14, 6 o
[ Fose&s[F 7Fb,F]HLgoL3§(1+|t|) 2+ 100 IF s 1 E7 s |1E |- (3.35)

max
{a,8,7}={a,b,c}
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Then we estimate || E5(t)| ;2 g2 Similarly, by (3.32) and Lemma 6.2, we can deduce that
z 'ty

|z 53(t)||L,2,H,2

6727,tn -1 b o
Sl / i 02[ =1 L=y n2]d771d’l72
(m,m1,m2)=—2n N L2H?
—2itn __ 1
—1 € t a b c
S| Fen i 0, [Fn PN 771’F7]2] dndnz
w(n,m1,m2)=—2n n L2
e72ztn 1 o (336)
+ 1‘85]: / 02[ n— 771’F7l7}2 —m? 772] d771d772
(n,m1,m2)=—2n in 12
z,Y
1 —1 .t a b c
<14 t))z zF 05 [F+,F+,F+] e
1 2 =—1mt a b pe
+(L+[t)7 |[z0y Fg Oy [FEL FYL FY) L1
EE T .
S+ [t~z 4 w0 [|[FeY|g [ Fls]| Fls-
To estimate [|€3(t)]|,, since we have (3.35), we only need to estimate ||F,_¢E5[F?, Fb,FC]HLooBl.
& Ty

By (3.31) and (6.28) in Remark 6.5, we have
| Fomse L™ P FI(E0) e

< 148 k 0 iy e 2itn 1 n a b c
NEEA T PP eV ———0(g)dn|| [IE°lIs[IF” s Flls

k<0 “n L
0 ) —2itn _q
148 _ iyn © n a c
(1 [t) o Y 2 e ————a(op)dn||  IFlsIF s Fls.
7 2
k>0 - N Ly

. —k 0 . 72%77_1 .
In fact, the estimate of the term », ;2 Hf_ ely”°T¢(2%)dnHLb is very easy. We note that

¢~ (1) == Ly<od(n). We observe that [¥__ F; 407 (1)dr is a Schwartz function, then for k > 0, we

have
0 ) —2itn _ q
iyn & d
/ ¢ n ¢(2 ) " L
y—2t
etz
F(y—2t)
< / Fol o (n)dr
2ky qu
2ky 2k (y—2t)
s| [ EAemar- [ EAe

1
Ly
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Zky
—1 —
5 ]:n—M'(b (T)dT
— 00 L;
<27

So we have

0 ) —2itn _ q
iyn © n
[,

—0o0 m

So

We observe that ¢~ is a Schwartz function, then by Lemma 3.9, we have

| oo G

; 6721‘1&7}_1 n
[ ne ey,

<> gl

Ly k>0

t3 for k£ <0.

So we have
> 2
k<0

Combining (3.37) and (3.38), we deduce that

[ Famsell [F, F FC] &,y Wi s S (L+[e) 2700 | P2 g [|F°) g I1Fe]l -
So we get the estimate for ||E5(t)]| ,,

B ST c
1€l S A+ [t 2F 00 |[F g [[F| g [1F]s -

I
According to (3.34), (3.36) and (3.39), we have

B ST c
I€5()ly S (L+[¢)72F 0 | Folg |F?|| g 1Flls -

I

(3.37)

(3.38)

(3.39)

(3.40)

Case 2. For w (n,m1,172) = £2m; or £ (2n—2n9) or £ (2n — 211 + 212). We only have to deal with
the case w((n,n1,m2) = —2m1, and other cases can be treated in the same way. Firstly we estimate

I€3(t)]| ;= - By (3.19), we have
T,y

1€ 2,
72215771 -1 b
(&
S / i 02 [ n— m’Fnz—m’Fnz] dnydns
(n,mn2)=—2m mn 2
&m
—2itD
2 e v —1 (g 52
/ ’ 217 eztam Tz2 re . T (eztag T21 tzg F_ﬁ’_e”am j’z1 F_T_) dz1dzs
L2 iD, | o
y
L ef2itDy -1 52
_ 02 it
§/ ’FM,Hm(Z17ZQ)| 1F 2 ) (eltaz 21+Z2F_l~’_el szlFf_) dz1dzo
R2 z,y (3 y Lioy
—2itn __ 1
-1 € ——3 52
,S/ |./_'.#7K 21,22 | ||F ||LJ2r ; - (eltame_‘_zzFiel ITz1Fi>’ ) dz1dzs
R2 m L2 L&

n

146, c
S+ [t) 2o |F g2 [[Flls|Fels,
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and we also have

1€l 2

e m —1 a b c
S / ii(,)? [Fn m’Fnz—m’Fnz] dnydny
w(n,mmn2)=—2m mn 12
&m
, —2itDy _ 1,
/ ’ m(z1, )] RIS Fo e = (eltagTzlJrzz Fﬁe_”az’Tlei> dzydzs
L 1Dy L?
. _ZitDy_l ———— s
/ ’ m(z1, z) | e“dgTZQFE e . (eztazTZl+Z2Fieztd§TzlFi) dz1dzs
Sy D, L2,
it0? a e P —1 02 b itd? c
’ m(z1, 29 | e %=, F° - (e’ 2T, 4z F e szlFJr)‘ dz1dzo
oy w L2 L3Ly
<(1+t)) %/ |F bz, 2)| €O Ty P2 o H (e’ta T 4o Fleit rTZlF“) H , do1dz
S+ Itl)ﬁ*WIIFbIILg,yIIF”HsHFCHs-
The inequality above holds by replacing F? with F°. So we have
S .
I€s(®)llzz, S L+ [E)7=F D0 min - [[FY gz [|[F7lls|F s (3.41)
v {8 vy={ab,c} v
According to Lemma 6.1, we have
1,5 o
IEs@)lls S L+ Jt)~2F w0 max [|F*g [|F|sl|F7]|s (3.42)
{e,8:7}={a;b,c}
and
1y o
[Fose &3P B Y ey S (L )35 mmax P2 s [F7 s 7 ]ls. (343)
Then we estimate ||z E3(t)| 2 2. Similarly as we did in the estimate of (3.41), we have
[ E @)l L2 12
-1 e 2t —1 b Fe
S x}—&,n/ 2702 [ n— 771’F772 o ng] dnydny (3.44)
w(n,mn)=—2m n L2H?2

1, 5
SO+ [t 2 w0 | F s [|E®[|s ]| £ s

To estimate [|€3()||,, since we have (3.43), we only need to estimate ||F,_,¢E5[F, F, F*]

By (6.27), we have

1P e E5 L, F* F(E W) Lo

72’Lt7]1 -1
Ot[ a
2 iny

1
2

b
F’h - x

172
LiL2

m L—n1 <05 Ly, >0, F, Lny>0] diidns
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—2zt7]1 -1 b %
/ 02 [ n—mn1 77 171 <09 Fnzfm ]1772*?7120’ F?% 17]220] dnldn2
R? LiL?
9 72’Lt’l71 -1 . b %
+ 8y.7: o O [ Fe 77 771<07F7727171]]'772*771207F;z]]‘"‘zzo] d?’]ldng e X
yx
) 72215771 _ b %
xayf 02 [ n—mn1 L, 771§07F7]2—771 ]1-772—77120,F7?2]]-7]220] dnidns
R? LiL?
S+ |t|)*§+mIIF“HsllFbllslchlls-
The last inequality can be deduced as we did in the estimate of (3.41). So we have
14 i c
€3 ()l < (1 + [t 72 ¥ 50 [|F9|g [ F2]| g [1F°l s - (3.45)
According to (3.42), (3.44) and (3.45), we have
14 ipa c
1€3() 1y S (14 [t) 727500 [|F 5 || F°[| g 175 - (3.46)

Case 3. For w (n,m1,m2) = £ (2n —2n1) or £ 215 or £ (2n; — 2n2). We only have to deal with the
case w((n,n1,m2) = —2(n—mn1), and other cases can be treated in the same way. Firstly we estimate

1E3()|l.2 - By (3.19), we have
T,y

€03
—2it(n 771) -1
S / .—02 Fb C dfr]ld/rlz
- w(n,minz)=—2(n—n1) Z(’r] - 771) [ n=mn17 " N2—m? 772] v
m
—2itD, __ 1 . -
/ | Zl, Z9 ‘ elieztagTZQFi eztag 12 FgeztaiT21 FE d21d22
1D, 12 Lo
~2itD, _ q -
/ | Zl, 2’2 ‘ 67 zt62TZ2Fa eito:2 Tzl+22 Ffe”aiTzl Fe dzydz
Dy L2 L2L
My
—2itn __ 1 -
/ ‘ m(z1, 22 ‘ eH |F%)| 2 HeztagTzﬁzzFEeztagTzlFS dzydz
o L2 e L2Lg
S+ )73 580 7l 1F2s ] F<)ls,

x,y

and we also have

1€ 2,
—2it(n 771) -1
e
S / ——0 JEY L FS ] dnydns
(mmn2)=—2(n—mn1) 2(77_771) [ e 772] Lg
s
—2itDy, _ | _ 4
/ ‘ m(z1, 22 ’ S - e”aiTZZFi Heltaﬁ z1+z2FEeltaz’Tlef dz1dze
1D, Lo L2
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ef2itDy -1

/ | 21,z2| - ”BZTZQF" e“agTzl+22FEeitaiTlef dz1dzs
iD, L, .y
L =2 ooz, 3T,y 4y FL ST, FE | dad
=T, eo: ), o, Fle T, F° Z10z
m(z1, n . e 4| L2 e Lz 1 L 1022
—i45 a c
S+ )~ 550 | FY| g | F2ls]F°]|s-
The inequality above holds by replacing F” with F°. So we have
1,5 . o
1€s(®)llzz, S Q+)7F 0 min E L s (3.47)
According to Lemma 6.1, we have
1,0 o
1€l S (X +[t) 72" g IIF s/ 12 [IsI1F7 | (3.48)
and
a c i I -
[ FomeE3IF™ B2 BN gy S L )30 e E Nl IEP s E7 s (3.49)
Then we estimate ||z E3(t)| 2 2. Similarly as we did in the estimate of (3.47), we have
[ E Bl L2 2
e—2it(n-m) _ 1
S xf’l/ ———O0 S Fpyys Fyy] dimdi 3.50
&n w(mmn2)=—2(n—m) i(n—mn) 2[ n=m17 " nz—m 772] - ( )
ztty
1.5, ¢
S+ [t) 7= 10 || P 5| FP s | |l s-
To estimate ||E3(t)]|,, since we have (3.49), we only need to estimate || F,_.¢E4 [FvaH]HLgoBl- By
Y
(6.27), we have
||]:90%§gt[Faan’FC](&?J)”LE"B;
e~2itn=m) _ 1 , ) 3
S / ——— 05 [ Fy ]ln 711>0’Fm—m]lnz—mSO’Fnz]lnzSO] dnydns x
gz (N —m) L1L2
e—2it(n—m) b 3
/ 02 [ n— 17117]*771207}7‘77277]1 ]1772*7]1S07Fn2]l712S0] dnldn2
g2 (N —m) LiL2
2 —2125(7] m) -1 t a b c :
+ 8y]: O [F"I 7]1]177_77120’FT]2—771]1772_771§0’F172]1772§0] d’lhd’l]g X
gz i(n—m) LyLz
) 7221577 n) _ b %
Iayf 02 [ n—mn1 ]]‘77—711207F7]2—7]1 ]]-772—771507F7?2]]-7]2§0] dn1dne
R i(n—m) LiL2

142 a c
SO+ 1) 72500 | Pl FPlls | F€) s
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The last inequality can be deduced as we did in the estimate of (3.47). So we have
_148
1€s(0)ll2 S (L )73 g |2 1 F¥ls - (3:51)
According to (3.48), (3.50) and (3.51), we have
_148
1€y < (1 + [t) 72 F 500 | F| g [| 7] 5 1775 (3.52)

In general, after the analysis of Case 1, Case 2 and Case 3, according to (3.40), (3.46) and (3.52),
with the assumption (3.3) and % <t < T, we have

1€y S 17175 (3.53)

2. Estimation of & (t). We need to control the Y norm. & (t) is divided in two parts, one is
from O}, and another one £! is from the last four terms in (3.28). We recall (3.30) with

iWEt lifaafb,fc} = (atoé) [fa,fb,fc] - Oé [atfaafbafc] - Oé [faaatfb,fc]
— O [f* f*, 01

The term fw(mm’m);‘éo(em"("’m’7’2 — DL [FS,  FY L FS ] dnidna can be estimated similarly as

[€3(t)[ly- In fact, we can gain a better estimate here. For the first term, as 5 L <t<T, we get an

extra T—3/4 which comes from the ¢ derivative of the multiplier, while for the other three terms, by

the definition of X7 norm, we have |9, F|,, < T3 F|x,..

We then estimate |

1 b
W(77J71J72)¢0 oftelnn 7]2)(’)t [Fa F, Ucz] dn1d772-

n—n1’ = N2—n1’

Let % <t <T. For O, we still have

t a b rc < ﬁso «
||Ol [f 7f7f]HL§N(]-+|t|) {a.By)= {abc}”f ||

Qit02 8 H
L

| o 35

Here O} enjoys a similar estimate as O} because O + O} enjoys a bound better than (3.54).

We then estimate ||eit?: . We notice that for all £ < a <1,
2
Lge

152 _1 _1 _ _1
|,y SO ) S 07F ) @ gy SO my (359)
By taking v = I, for f supported on |z| > R, we have

(3.56)

4

Then we decompose f = f. + fo with f.(z) := ¢ ( ) f(x), we have

OF [fe, f*, f] = OL [fe + fe fo+ fo e + £
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If one of f2, fb, f¢ is supported on |z| > 2721, in this case we may assume fo = fb. By (3.56), we

have ) . .
1OF (£ 12 F s S (LA DTS (121 || f2] |l £

5
S (LA [t 1] 2

L L

eitaz fé) eita;‘: fc

. (3.57)

(x)5 £t

Lge

(z)3 fe

ST mmst s | £,

L2 Lz’

Now we only have to deal with the case that two of f2, f*, f¢ is supported on |z| < 2T21. We can
consider the case f* = f°, f¢ = f¢. By replacing e*"" by (2itp) =19, (e*""*), we rewrite O} as

O™ £ 87 € = [ (1= (#hy00) ) Tl = W) F(E — o = W)FF(E —

R2

= /Rz(%tu)‘lan (C (1 -9 (t%ufﬂ)) FHE = ) (€ = = k) FE(E — k) dpdr (3.58)
=- / (2itp) P, ((1 — ¢ () Fe - e - n—m Fele - n)) dpdr.
R2
In the case when the k derivative falls on 1 — ¢, which is
(20) 713 / ety (t%w’u) Fo(E — W) PP (E — = W) TP(€ — R)duds,
R2

since ¢’ admits similar properties as ¢, we have the similar estimate to the estimate we did for O%.
For other cases, we deal with the case when s derivative falls on f° for example, which is
denoted by O,
Ovsi=— [ (2it) e (1= o () ) Fo(6 — 100 FP(E — 1 - n)) Foe — w)dpus
R _ (3.59)
= - / (2t0) e (1= o (8 ur) ) Jo(€ = ) f2 (€ — = k) FE(E — w)dpuds
]RQ

We observe that [¢]|u| > |t|3]|x|™* = T72 on the support of the integration, so we still have an L2
estimate

— L4 0 a ito? itd? rc
101 oz S T4 |72 - 92 ()| - [|e %] (3.60)
By (3.55), if f supported on |z| < T27, we have
it0] H < ()T ||(2)F ‘ 3.61
iaf] <@ iTE|@is], (3.61)
By (3.55), (3.60) and (3.61), we have
1O10llyz S T | £ - || (afd) |- [l e
3 Lgo Lgo
_24 5 g T b ‘z ¢ (3.62)
STEE ) @B @B s -
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Combining (3.57) and (3.62), by replacement and Remark 6.4, we have

—1 it M1, t b
H]:ﬁ,n /( #0 ez s ’72)(’)1 [F;*m ’ F7I2*771 ? Fﬁz] dﬂldﬁ?
w(n,M1,M2

) s
< Z H]:g_lmozi |:e—it|Dy|FZ_a7e—it\Dy\FJb’e—it|Dy|ch} ‘S (3.63)
{i.g. b ={%,+,+}
S TR | PPl 1F N
and
—1 it SNy t b
‘Fnﬁy / e’ winn 772)(')1 [chlbfm’Fm*m ’ Fsz] d’l71d’l72
w(n,m1,m2)7#0 Ler (3.64)

S TEF g |F | I1Fels

b
Fn—m—nz’

eitw(mm,nz)oi [Fa

s Fg_m] dn1dns HZ, since we have (3.64),

. —1
Toestimate | P} [, 0

we only have to estimate

-1 i M1 b
‘7:77—>y / ettt m)oi [Fg—m ) Fn—m—nz’Fg—nz] dnydny
w(n,m1,m2)#0 Lz B)
Y

By (3.57), (3.62), Remark 6.4 and (6.27) in Remark 6.5, we have

S D N Rt
{i.4,k}={=x,+,£}

-1 itw(n,m1,m2) )t a b c

]:n—w/ € O [Fn—m’Fn—m—nz’Fn—nz] dnydng
w(n,n1,m2)#0 Lz B)
y
1
2
X

172

LiLr?

1
2

—1 t [ —it|Dy| pa —it|Dy| b .—it|Dy| e
Hx]:5—>x01 {e viF! e vIF} e vl Fg

Lir2

1
—1 92mnt | —it|Dy| pa —it|Dy| pb —it|Dy| e || ?

+ S [Pt 0208 [l B et B P FE] |7
yx

{i,g,k}={=x,£,+}

1
2
E—zx™y

o723, 020 [semtIPv Fe o= DU L, o= 1P |

172
LiL2

S T F g | P I Fellg

~

S TEE || P g 1FC s -

So we have

]:71/ eitw(n,nl,nz)ot e ,be B 7Fci dnlan
&m (1 712) %0 1[ n—mi> n—m-—n2>"n ?72] ; (3.65)
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Then according to (3.63) and (3.65), with the assumption (3.3) and Z <t < T, we have

ST 2N F s |F 5 I1F<Ns
y
< T_1_206.

itw(n,n1, t a b c
/( )#0 et n2)01 [Fn—van—m—nvan—nz] diydns
w(n,n1,m2

(3.66)
Thus, with the assumption (3.3) and % <t < T, we have

|a], s i (3.67)

In summary, by the estimation of & (¢) and Es(t), with the assumption (3.3), we have (3.53) and
(3.67), then we deduce (3.24). We have completed the proof of Lemma 3.10. O

3.3 The resonant level sets
We now consider the resonant part (3.16),
-FNS@W) = / Fa (It [FW*WNGU*M*?D?HU*W]) (§)dmdnz.
w(n,m1,m2)=0

We refer to Remark 3.1 for the description of the set w(n,71,72) = 0. This part yields the main
contribution in Proposition 3.2 and in particular is responsible for the slowest % decay. We show
that it gives rise to a contribution which grows slowly in S and that it can be well approximated
by the resonant system in the Z norm.

We also define a norm, which is very useful in the following lemma,
IFlz, = IFllz + 1+ [t) > Fls. (3.68)

We observe that F(t) remains uniformly bounded in Zt under the assumption of Proposition 3.2.

Lemma 3.11. Lett > 1, then we have

o S A+ > 1E s - [[F2 3, - 1E Y, » (3.69)
{a.B,7}={a;b,c}

ING [F2, 2 Fe] |

NG [ B P | o g S (U D 0P ]2 gz |17

17, 174112,

(

D IE s IF s IF1L, -

+ L+ D THE N s 1E 2, 17 s+

+ (LD THIE Z, IF s 1 F]ls,

here a, b, c can be replaced by each other. We also have
T -
|Neip G m - IRIPG )| S 1+ 1) FlsIGls I s, (3.71)
T -

Mol G ) = TRIEGLHI| S 1) s Gl H s (3.72)
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Proof. By Lemma 4.1 and Proposition 4.2 in Section 4, we have

e P I - R Iy S P
©y w(n,m,m2)=0 12
x,m
¢ b ¢ b
S|z [P PPy + 2 [0 P P
< min |FY. e o
™ {a.Bt={a.b,c} oY L3y
+min P, et E et
{a,8,7}={ab,c} oY Lgy
For t > 1, we have
) —ix?/(4t) _
eitd: f(z) — ¢ N ( 2”;) S 342 f]l L2, ¢ is a constant. (3.73)
We refer to [8, Lemma 7.3] for the proof of (3.73). Then
.12 _ Iy —
2 f(@)| S TR g + 1 e e (8.74)

Thus

A2 _ - -
eztamFiHLoc < 1/2||Fi(£7~)||Lg°L§°+|t‘ 3/4||xFi||L;oLi

SIHTRIEE Y)llegs, + 117 2 F | 121y
SITYV2IE Nz + 17 1F s,
where we use 113 (G) C G C L*°. Then we have

|G [Fe, F?, Fe] S+ min P [[FP] 5 17, - (3.75)

”Li,y {a.B}={ab.c}
By Lemma 6.1, we obtain (3.69).

Then we estimate Hx/\/’é [Fe,Fb Fe] We have

(.

NG [F* F* Fe gy S

a b
(1+n] )/ T’ [Fn s Er—m—na F— 772] dnydny
w(n,m1,m2)=0 L2,

SN [, F P + 2 [P 2 P

T [P P By I TP 2 P
T (R PP s 2 (P2 ) e

For the first two terms above, we estimate HIt [xF_ﬁ,F_l;,Fj] €) for example. Again by

(3.74), we have
2 (a2, P P o S 12 [0 = B P P

|z

Iz
L3y
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bz o - )

+ |2 [xF¢, Y, (1 - 02)Ff ] ||Lg)y

SleF 2 o F iHLg;;y HEE L2y

FllzF 2, H(l - 8§)eitaiFiHLoo eit@iFiHLm
ooy @y

eF s eitaiFiHLm H(1 — 8§)eita3Fj .

Sﬁlle“IILgHs [PRiFa

+ﬁ||F“IIS/ 17| 171z,

TP ], 1l

or the term P F?FC > 2y WE can use the same method to get the same estimate.
For th It [xFe, Fb F° 20 h hod h i
E )

For the last four terms, we estimate ||It [Fji, xFJZ;, Fj] (§)HL2 52 for example. We have
zly

17 [Fg, 2P FE] (Ol pa e SN[ = O F, FL FE] Q)]
2 [P - o2ert, FE )
+ |17 [P 2P (= ) FE] O]
SIF 2 2|’ (2 FD) | e, 179 F || s,
e Fe |l eo, 12F® || 22 212 1% F | 1,

. 2 -, 02
16 e [ F P e 2 | (1 — 02)€%2 FE | 13 e

z,y

1 a C
imllF s 1E® s+ 1 F<l

1

+
I

11z, IE° s ]l s

Other three terms can be estimated in the same way and we get the same estimate as the estimate
of HIt [F_‘ﬁ,ij’_, F_ﬂ (f)HL2 g2+ Thus we get (3.70), and we observe that a, b, c can be replaced by
ztty

each other so that the inequality still holds.

To prove (3.71) and (3.72), we decompose the functions as follows

| &

F =F, + F,, with F, compactly supported as F, = ¢ <

)

MNF, G, H] - Nt [F.,Ge,H.] and R[F,G,H]—RI[F.,G. H.].

I

t

We start by estimating the Z norm and the ) norm of
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In this case, we only have to estimate NV [F., G, H] and 1R [F,, G, H]. According to (2.16), (2.18),
(4.7) and (4.8), for the norm Z and the norm ), we have

1
NG [Fe, G H]|l, + 5 IR e, Gy Hlll g S N [Flesys G Helll , + [V [Fre, ), G-, H-]

1
L IRIE G H),
1 3
S A+ D) NPl fo e IFISIGHsIH |15
_r
S A+t FlslGllsHH s,
(3.76)
1 _
A% [Fes G H + 5 IR IF Gy S 1+ 1) IE s Gl -
_s
S A+ )72 s+[Glls+ [ H s+
Then we need to prove the inequalities below to complete our proof of this lemma,
T 1
[A% (7o Ges B = SRIF G B S A+ )T FlsGlsllE s, (378)
T 1
|G 1B G t1) = TR (Fe G B | S (L 18) 7 Pl Gl | H s (3.79)
With the assumption F' = F,.,G = G., H = H., we have
F (NGIF.G H] = ZRIF.G, H]) (&)
-/ (B (€ = 10Giman€ — = s — )i (350
w(mm,m2)=0 \ JR?

’7"' ~ ~ ~
By (OG- (O () ) e
By rewriting the integration part, we have

~

/R By (6 = 1)Glag oy (€ = = ) Hyy (€ — ) drdp
1 _ ) ) ) )
/ Fyy (21) Gy, (22) Hy, (23) / ot () s (€)= € disdpudary divadiy
3 ]R2

=33
87T]R

jE1—T2 T3—To

1 —i&(x1—z2+tx -
:W /]R3 Fyn (21) Gy, (22) Hy, (23) € o meates)e ™ T " vm

X {/ e’ [“Jr 13:/—27:2] [KJFM\}?:z]d,udm} dxidrodrs
R2

.x]—xTy TZ—

71 al —i€(z1—x2+23) ,— 1 IZ3-%2
:87‘-2t / Fn—m (1’1) G772—7]1 (xQ) H772 (1’3) € S(@1-eat 3)6 vat Va2t dridradrs,
R3

then

82t

/R B (€ = 1) Gy (€ = = W) Hoa (€ = R)drdpt = 2B (€)Casy () Hy (€)
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_;T1-Tp T3—T3

1 — ) ;
= 87T2|t| ‘/ F’Z—Ul (1}1) G”72—U1 (1‘2) H7I2—771 (.233) e—z&(z1—12+m3) (e vato Ve — 1) d.%‘ldxgd.rg
R3

(3)+ () (3
tz tz tz

S 1 Ean s Gl 1 Eol

L3 2o e
-3 T ] T3 _jT1—T3 T3 T3
S8 Ul NG s s o (5 ) (5) o (5) (75 1)
b ts t LS5 oy g

_9
ST ||F77*m||L§ ||Gnrm||Lg ||Hn2||L§ .

In fact, by using the previous method, we can obtain for any integer m,

&

1 . ~ =
m /]R? elt2w{F7]—771 (5 - M)an—m (5 — = K)H"IQ (§ - K)dffdﬂ - %Fn—m (@an—m (f)an (5)

~ ~ ~ ~ ‘

L] —Tg T3—To

1 _ . B
- 872t ‘/3 Fyny (21) Gy (22) Hypy iy (x3>§me—zg(x1—wz+$3) (e SRV - 1) dzydradrs
R‘

1 _ dm(e—if(acl—x2+x3)) oy ey mg—ap
= || F_ Gae H,,— (Zm%ﬁq)ddd
8m2|t| /Rg n—m (21) Gy —ny (22) Hyp—, (3) o e xr1dxodrs
SHY By (@21) H i(r—aaan AR A daydaod
NI | kZ:O /Rz T n2=m <x2> N2 =M (373)6 defk Tr1axodx3
_9
S 1Byl 1ol 1 Fle
(3.81)

Here F', G and H can be replaced by each other. By the definition of Z norm and S norm, for
(3.78) and (3.79), the terms

|G (e, G ) = TR (P Gy 1)

., ond HN&[FC,GC,HC]—%R[FC,GC,HC]

Z

are easy to estimate by using (3.81). In fact, when x derivative falls on ¢ (%)7 since ¢’ holds the
t4

similar properties as ¢, (3.81) still works, and we get the estimate (3.78) and the estimate (3.79).
The proof is complete. O

3.4 Proof of Proposition 3.2

Here we give the proof of Proposition 3.2.
Proof. We have

NIF.G H = Y N'QaF(1),QsG(1), QcH(1)]

max(A,B,C)>T
+ N [Qy FD.Q_py G0, Q_yy HO)|
NG Qg F(0),Q

<T%
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We rewrite the last term as
No [QSTéF(t)vQ
+ (NG [F@), G, H(b)] - TR (), G0, H))
- Y MIQaF(®1),QpG(t),QcH(1)].

max(A,B,C)>T&

1G(1),Q

<T%

VH(1)] = ZRIF(), G(), H(1)]

<TS

So we have the formula for the remainder
ENFGH = Y N'[QaF(1),QsG(t),QcH(1)]
max(A,B,C)>T#
N [Qy F0,Q_p G(0,Q_py HY)|
+ (NP (), G0, H®) = TRIF(), G0, H())
— > MIQaAF®).QpG(t),QcH(1)].
max(A,B,C)>T#

We observe that the first term contributes to £ by Lemma 3.4, and the second term which contains
&5 can be weitten by Lemma 3.10 as & + & with & contributing to £;. The third term contributes
to & by Lemma 3.11. For the last term, we observe that

NG [F(5), G (1), H(D)] = TLe (N [F4 (1), G (0), B (8)]) + T (M [F_ (1), G— (1), H_ (1))

so we can easily deduce that it enjoys the same estimate as in Lemma 3.4, which contributes to &£;.
The proof is complete. O

4 The resonant system
In this section, we study the following equation, which contains the resonant part of the nonlinearity,
10,G = R|G, G, G], (4.1)

where

~ =

FRIF, G, H)(€,n) = / B @G O O
w(n,ni,mM2)=

Firstly, we recall a useful result on the structure of the resonances.

Lemma 4.1 (15, Lemma 2.1). The set of (n1,72,73,74) € R* such that n —no + 13 — 14 = 0 and
Il = |m2| + ns| = [na| = 0, is

(1) Yj,m; = 0,

(2) Yj,m; <0,

(3) m = m2,m3 = N4,

(4) m = n4,m3 = n2.
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Then we introduce the following proposition, which allows us to transform (4.1) to the non-chiral
Szegd equation.

Proposition 4.2. Given Gy € L2HS,s > 1,||Goll > . = €, > 0. Denote the corresponding
z ity
solution to the resonant system (4.1) by G(t). Then G4 (t) saitisfy the following cubic Szegd equation

i0;G+ = R+ [G+,G+,G4], (4.2)

where R
FoRa (G, Ga, Gul (€ ) = T (G2 PG ) (&), (4.3)

with

£ G0 = Fen = { (IS FGom = A6 ={ oSO

Proof. By Lemma 4.1, we have that w(n,n1,72) = 0 in the following cases:

If n>0and (n1,72) € {n>n1,m>m +n2,m>myU{n=n—-—m}U{n=mn},
Ifnp<0and (n,m2) € {n<n,n<m+n,n<netU{n=n—m}U{n=n}

Since, for n € R, the sets {(n1,12) € R?|np =n—m} and {(n1,72) € R?|n = 12} are of measure zero
in R?, they do not interfere in the integration in equation (4.1), and so we can neglect them. We
are therefore left with the following two terms:

1. The case n > 0,n—n1 > 0,2 —n1 > 0,12 > 0O:

FouRIG. G GI(€m) = F, (s (1G+12C-) ) (o).
2.The case n <0, —m1 < 0,m2 —m1 < 0,m2 <O
FouRIG. G G)(&m) = F, (- (1G-12G-) ) ().

Thus we have the decoupling. O

4.1 Lax pairs for the cubic Szeg6 equation

We introduce the following cubic Szegé equation on the line
iOp(t,z) = I (Ju(t, z)|*v(t,2)), t,z e R. (4.4)

We recall the Lax pair structure and its conserved quantities for the cubic Szegé equation (4.4).
To define the Lax pairs, we introduce the Hankel H, operator and the Toeplitz operator T; with

ve H?(R),be Lo(R),
H,h := 10, (vh), Tyh := 1. (bh),h € L. (4.5)

We observe that H, is C-antilinear, and is a Hilbert-Schmidt operator. Now we are able to introduce
the Lax pair structure of the cubic Szegé equation (4.4).
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Theorem 4.3. Letv e C (]R, Hi(R)) for some s > % The cubic Szegd equation (4.4) has a Lazx
pair (H,, B,), if v solves (4.4), then

dH,
dt

= [By, H,], (4.6)

where B, = $H2 — iT),):.

An important property of this Lax pair structure is that the spectrum of the trace class operator
\/Hig , is conserved by the evolution, in particular, the trace norm of \/ITS is conserved by the flow.
A theorem by Peller [12] says that the trace norm of \/Hig is equivalent to the homogeneous Besov
norm B{ ; (R) of v, and we can deduce that the norm Bf ;(R) N L*(R) is conserved by the flow.

4.2 Estimation of solutions to the resonant system

Just as we did in Lemma 2.2, we can deduce a similar estimate for R.

Lemma 4.4.

|RIGY, G2, G|, S IGHIsIG?]Is[1G? s (4.7)
In particuler,
IRIG", G2 G|,
<G1% Gl% GQ% GQi GS% GB% Gl%GQ%GE’o% 4.8
S ”L?EHSHx HL%H%” HL?pHZ”x ”L§H§H HLnggnx ||L§H5|| ||sH HsH Hs (4.8)
SIGHIsIG? s I1G? s

Proof. In view of Proposition 4.2, we have

Fasse RIGY, G2, G = I (GL G2 G3 ) + T1_(GLG2 G ). (4.9)
In fact, we have
A1 A2 A3 < ~ij AEN 1AL - o
e, s, ;}m?m} 1G9 220G e G e
< G\l 2 |G¥ || L1 || G*
NPT L }II 2 [|GT L2 1G22 (4.10)
k k ¢ 03
S 1G] 2 IG IILzlle IIL2HG IILzIImG 172

Then by (4.9) and Lemma 6.2, we have

IR [GY,G% G| 4 S IGMIsIG?IIs IG5 (4.11)

Since we have (4.10), by (4.9), Remark 6.3 and Remark 6.5, we can deduce (4.8). Combining (4.8)
and (4.11), we have (4.7). O

We also introduce results as follows which concern the long time behavior and stability of the
equation (4.1).
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Lemma 4.5. For every G',G?%,G3, the following estimates hold true

IR 6t e e, 5 6, el el (a12)
R[G5 i 16V 6 (@13
[Rie" @)y s, max 190 164, 1€, (@10
[oR (61 6% G gy S, x| 2G ln2m3 |G 211G 2 -
o G gl G £ GY |
[R5 max Nl 6, e,
TSN T JUN < oy et JTc 0

Proof. (4.12) comes from the fact that G is an alegbra.

Since 14 (G) C G C L, we have

<

IR [leGzaGg]HLgy S

—2
A1
/ GGy mandman
w(n,m1,m2)=0 L2
s

sleaa], +eae

2
Le.y

1G 2 NCE e 1G N, + 1G22, G e I1GE ||L°°>

A

~ k= {123}(

3 lc?

G|, IIG*|| Lo
{jM} m 1G*llLgeg, IG | Le=g,

Izz,

G7 G*|| z1G*
{M} {123}” 2 NGEN2|G7]| 2.

By Lemma 6.1, we deduce that

IR [Gh G2 G max |G s/[|G*] 2| Gz

s S
ST gk 0y=1{1,2,3)

Similarly, we can deduce that

l=R [¢", &%, &7 2G| 2 112 | G* 1| 211G 2

LZHQN{ kerf1 {1,2,3}

e GFllZ G 2.
{j,k,e}:{1,2,3}H 22 m2(|l2G" | 2|G7]| 2

Combining the above inequalities, we obtain (4.16). O

Proposition 4.6. Let Gy € YT, |Golly+ = € with e small enough, and G evolves according to
(4.1). Then there holds that for t > 1,

|G(rInt)|[z = [|Goll £, (4.17)
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l2G(rnt)]|z S (14 [¢) [|2Goll 4 »
IG(wInt)lls: < (1+[t)* |Gollg
IG(wInt)ly S (1+ L)’ [Golly ,
IG(wInt)[ly+ < (14 [¢) |Golly+ »
with 61,64, 83,64 ~ |G| %-

Proof. For (4.17), we use Proposition 4.2 to transform (4.1) to the non chiral Szegd equation, and
then we use the integrability of the cubic Szegd equation, which indicates the conservation of the

G norm. Combine with the Lax Pairs, we have

I1G(& t)llg, = 1Go(©)llg,
which implies (4.17).

By (4.12), we deduce that
[+RI[G, G, Gl S [2G I 1GlI2 1Gll 2 -
We take G(t) = G(wInt), then G satisfies
i0,G = gn[é,é,é]

and _ - o
i0:(2G) = ?xR[G,G,G].

By (4.14) and (4.22), we have

2)Gls S *llR[G G.Gls 5 ||G||Z||G||S' " ||G0||2Z IG5
and
. 1 SR 1 1 .~
olaClz < H1eRIG, G, 8z £ 7IGIZIClz £ 1 GOl aCl
By Gronwall’s inequality, we get (4.18) and (4.19). Then by (4.16), we deduce that

Gy
1 o~~~
<HIRIG. 6.l
PP 1o~ o~
STIGIZIGHY + S IGl2l2Gl 2| Glls
1 1
;llGollzllGller =55 [Gollz [2Gollzl|Golls-
By inhomogeneous Gronwall’s ineqaulity, we obtain (4.20).
To estimate ||G(wInt)||y+, firstly we estimate |22G| 2 and ||(1 + |Dx|)éHZ We have

02*Cliz < *IIsz[G GGz 5 *||G0||Z||552G||Z + 1Goll 7 ll2GollZ.

tl 261
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and
- 1 - e~ 1 ~
o1+ 1D )Gz S ;H(l +[D:)RIG,G,Glllz < ;IIGollng(l +[D2])G|| z- (4.26)

Similary to (4.15), we have

- 1 JUR 1 ~ 1
OcllzGllrzmg S S IeRI[G, G, Clllezm S ;IIGollzzllelngHg + =575 | Golls' l2Goll 7 1Goll z-

(4.27)
Again by (4.15) and (4.16), we have

O l=Glly

1 o~ ~
1 12RIG. G, Gy
(4.28)

S 1GolZlGlly +

1
t1—251—52

1Gollz l[2Goll 2l Golly

1
t1—52

~+ | =

1
tl—(sl —33

Golls l2Goll% + 1Golls1#° G 2| Goll z

_|_

and -
Ol|(1 + |Dz|)Glly

1 -~ ~
<710+ D.)RIG, G, Gl

1 (4.29)

1 ~ ~
S7GolZI A+ DGy + =5 1Gollz 11+ [D2NG 2 [ Golly

+ 1Golls[[xGoll z[| Goll z-

tl*(slf(sjz

According to (4.25), (4.26), (4.27), (4.28), (4.29) and inhomogeneous Gronwall’s inequality, we get
(4.21). O
5 Proof of the main results

In this section, we prove our main results. We will start with constructing a modified wave operators
and then obtain the corresponding cascade result, which have been introduced in Section 1.

5.1 Modified wave operators

Theorem 5.1. There exists € > 0 such that if Go € Y satisfies
[Golly+ <e, (5.1)

and if G is the solution of (1.14) with initial data Gy, then there exists a unique solution U of (1.1)
such that e=*AU(t) € C([0,00) : V) and

||e*itAU(t) - G(wlnt)Hy —0 ast — oo.
Proof. Let

G(t) = G(rInt), K(t) = e "AU(t) — G(t),
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and define a mapping
B(K)(t) = i / [NIK + G K + G, K + G “RIG(0), Gl0),Gl0)] } do-
t
Then we define

A:={K e C'([l,00): V) : |[Kl|la < 00},
1l = sup {(1 ) lleK @)z mz + (L+ )P NE@)l]s + L+ )P I K@)z + (L +[t)'° HatK(t)Hy} :

We want to prove ® defines a contraction on the complete metric space {K € A : || Ko < &1} with
¢ and g1 small enough. We decompose

NIK+G K+G K+G] - %R[& G.G) = &G, G, G + LUK, G + Q'K,G),  (5.2)
where
£'G,G,G) == N'[G,G,G) - TRIG,G.G),
LK, G == N'[G,G, K]+ N'[K, G, G| + NG, K, G),
O'K,G] = N'[K, K,G] + NG, K, K] + N'[K, G, K| + NY[K, K, K.
For K € 2, we have
(NP NE B2+ T+ PN E O lls + A+ [E)° |2 K ()] 2z + L+ () 10K (B)]]y S e1- (5.3)

By Proposition 4.6, we take ¢ < §'/2 such that

IGWllys + 1+ 1)

2G| S e+,

N (5.4)
1G]z S e
To prove the contraction, we only need to prove the following inequalities,
oo ~ ~ ~
‘ / £°0G, G, Gldo|| < &3, (5.5)
t 2«
| el Glio| <K (56)
t A
‘ / Q°[K, Gldo|| < eer|| K], (5.7)
t 2A
ey ~ ~
/ (o7 [K0.G] - 07 [2.0] Y do| Secr i) — Koy (5.8)
t 2A
Proof of (5.5). By the definition of £, for ¢ > 1, we have
o e~ e~ 1~~~
‘ St[G,G,G]H - H/\/t[G,G,G] —- ~R[G.G. G
Y y (5.9)

< HNt[é,é,é]Hy + %Hn[é,é,émy
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By (2.16), we have
|vic.e.af sericr seee,
and by (4.7),
|riG.G.a sncis s e,

then

|
o ( / h S"[@,@,@]da)

For the other three terms of the 2 norm, by (5.4), we have ||é||X+ S e for any T > 1, so
T

Hftoo 5U[é,é,é}dJHSI7 ftoo 5‘7[6’76,@](10’ and Hftoo 5”[@,676](10"2 can be controlled by

the estimates in Proposition 3.2.

£1G. G, Q] H < O3,
y
Thus we have

tl—& < 53

~

Yy

2 12
L2H2

Proof of (5.6). We estimate the norm Hftoo Ne [K’é’é]dJHm for example, and other terms in

LK, G] can be estimated in the same way.
By (2.16) and (5.4), we control the time derivative in the 2l norm,

|V GGl S IGIEIE s 47K

For the other three terms in the 2l norm, we will do the decomposition as we did in the proof of
Proposition 3.2 on N'*[G, G, K]. By Lemma 3.4 and Lemma 3.10, we only need to show

IRIK, G, G]lz < (1+[t) = K]la, (5.10)

[AG1. G Gl = TR GLG| < (14 1) 72 i, (5.11)
IVGIG. G K]l g, < (L4 [t) 7 70| Ko (5.12)
HM[K’é’é]HLgHg <A+ )0 K e (5.13)

(5.10) comes from (4.12),
IRIK, G, Gz S IGIZIEz < (1+ [t]) || K]|ar
(5.11) comes from from (3.71),

~ ~ ’n' ~ ~ 1 ~ 1
[AG1K.G.C1 = TRIK.G.GI| < W+ 1t) T IGIRKls S (1 + )76 o
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(5.12) comes from (3.69),

Mk @, s @+ (IGIZ 1K Is + 1G1 2, 1K1l 1Gls )
S (L [t) 71206 | K.

~

(5.13) comes from (3.70),

i [ .0]

—1 ~ ~
pemz > (F ) oKl g2 72 Gl 2, 1Gl,

+ 1+ DK s IG5+ Gl 5,
+ @+ ) THIEZ GGl
S (L4 [t) 0K o

Proof of (5.7). The proof of (5.7) is similar to the proof of (5.6), but we notice that we use (2.16)
directly to estimate Hx}\fg [K, K, é] ’

)
2 72
L2H2

eni 6], < @i KD 1K 1Gls

[
S A+t e | Ko
Proof of (5.8). We have
Nt [K15K17G] _Nt [KQaK27G] :Nt [KIaKlaG] _Nt [K17K2aG] +Nt [K17K27G}
- N'[Ky, K>, G]
:Nt [Kl’Kl - KQ’G} +Nt [Kl - KQaKQaG] )

we take similar decompositions on the terms N [Ky, G, Ki] — Nt [K,, G, Ks|, N |G, K1, K] —
NG, Ky, K] and N [Ky, K1, K1] — Nt K2, Ko, K»]. Similar strategy we used to prove (5.7) can
be applied to obtain the estimate (5.8). The proof of is complete. O
5.2 Cascade result

Before we go to prove Theorem 1.15, we recall Proposition 1.5.

Proposition 5.2. Let u € Hi(R) be a rational solution to the cubic Szegd equation on the line
(1.4) such that H, has singular values A1, --- , Ay, with A1 being multiple and \; being simple for
every j > 2. Then

S T P [ 271
Y VLT

< 400,

where H,, is an Hankel operator, and we say that A > 0 is a singular value of H, if the corresponding
Schmidt subspace

Ep,(\) =Ker (H. — X°I)
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is not {0}.

Moreover, the set

J = {up € HL (R) : the solution to (1.4) with initial data ug satisfying

lim inf; o0 Hu(t‘leHl >0}

is a dense subset of Hy (R).

Let u(t,-) € HL(R) be a rational solution to the cubic Szegd equation on the line (1.4) such

that H, has singular values A, -+, Ay, with A\; being multiple and A; being simple for every j > 2
and let ug(y) := u(0,y). According to Proposition 5.2, we have
Oyu(t O ult
0 < timing 12 Olee o 10Ol
t—o0 |t‘ t—o00 |t‘

We take a cutoff function ¢ € C°(R) as follows: (£) = 1 when €] < 1, 0 < ¥(§) < 1 when
1< |¢] < 2 and (&) = 0 when [¢] > 2. Let Go(€,y) := ph(€)uo(y), where p > 0 is a constant to
be determined. We are to verify that Go(z,y) € Y.

We notice that the Fourier transform of a rational function in H1 (R) is a linear combination of

k —«
]]-772077 € 77’

where k is a nonnegative integer and « is a complex number of positive real part. So we can
easily verify that ug € HP(R), Vp > 0. Also, as up € H}(R) C L*°(R) is a rational function, the
corresponding Hankel operator H,, has finite rank, so /H2 has finite trace norm. By Peller’s
theorem in [12], we have the equivalence between the trace norm of \/HZ2 and ||UOHB%,1(R)’ S0
we have ug € G. Moreover, since ¢ € C°(R), we have (1 + [£])"¥(§) and 9F"(§) are all in
L?(R) N L*(R) for any n,m > 0. In summary, we verify that Go(x,y) € Y.

For any € > 0, by a good choice of p., we can make Gy saitisfy ||Go|ly+ < e, which verifies
the condition of Theorem 5.1. Then we observe that G(t,z,y) = ]—'g_lm (P00 (Eu(p2y (€)%, €, y))
satisfies the following equation,

ZatG = R[G, G, G], ($7y> cR x R,
{ G(0) = Go. (5.14)
Then we have
[E0l] (e IG €0 a)
t 'S Y 1
t—o0 | ‘ t—00 ‘t| (5.15)
lu(pZt, y) || a2
_ 30 . o WUPEL Y)IHY
= Vet Ty

and
o) (e IGEE 00 By )
t S Y 1
lim sup T JEH, < lim sup el y

N .
3 IR GER A
< p2 / lim sup . < 400.
l€l<2

100 p2p(§)*[t]?
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From (5.15), (5.16) and Theorem 5.1, we deduce the corresponding cascade result for the solutions
to (1.1), which is Theorem 1.15, and we rewrite it as follows.

Theorem 5.3. Given N > 3, then for any £ > 0, there exists Uy € Y with [Uolly+ <€, such that
the corresponding solution to (1.1) satisfies

WUz U@ L2 a2
0 < liminf ——*% z

IR, 5.17
Do (Lt loglt]) = sl (14 log [t]) (5-17)

Remark 5.4. As in Proposition 5.2, we expect that there exists some Banach space B such that
the set

J = {UO € B : the solution to (1.1) with initial data Uy satisfying litrginf

U t 2 1
UOlizny
1+ log [t]

is a dense subset of B. The difficulty comes from the gap between Y and Y in the modified wave
operator argument, which also exists in the result of H. Xu [16].

6 Appendix

We now turn to our basic lemma allowing to transform suitable L%,y bounds to bounds in terms
of the Li’y—based spaces S, and ST, YT. We define an LP-family é = {@A}A to be a family of
operators (indexed by the dyadic integers) of the form

QO =FOF©. Qo =3 (5)Fe. 422

for two smooth functions @, 5 € C°(R) with 5 = 0 in a neighborhood of 0.

We define the set of admissible transformations to be the family of operators {T4} where for
any dyadic number A,

Ta=XxaQa, [Mal<1

for some LP-family é
Let B be a Li’y—based space. If F' € B, then for any admissible transformation family 7" =
{T4 : A dyadic numbers }, >~ , T4 F converges in B. And this norm B is called admissible if

ZTAF
A

We observe that S and Z are admissible.

S F - (6.1)
B

Given a trilinear operator T and a set A of 4-tuples of dyadic integers, we define an admissible
realization of T at A to be an operator of the form which converges in L2,

TAF,G H = Y  TpI[T\F, TG, T¢ H] (6.2)
(A,B,C,D)eA
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for some admissible transformations T, 77, 7", T"'. Then we introduce the following transfer lemma,
which is also introduced in [16].

Lemma 6.1 (16, Lemma 5.2). Consider a trilinear operator T which satisfies
Z%[F,G,H|=%[ZF,G,H|+%[F,ZG,H) + X[F,G, ZH], (6.3)

for Z € {z,05,0,} and let A be a set of 4-tuples of dyadic integers. Assume that for all admissible
realizations of T at A,
|Ta [F*, F", F°]

S K

(PP 1E s E2 g 1E 15 (6.4)

min
{a,8,7}={a,b,c}

for some admissible norm B such that the Littlewood—Paley projectors P<ps (both in x and iny) are
uniformly bounded on B. Then, for all admissible realizations of ¥ at A, we have

Ia [P B Pl S mae g |2 17 (63
Moreover, for all admissible realizations of T at A, we have
|Fomea [ P Py S B o F s [P 1 s (6.6)

Proof. We recall that S” consists of two norms: the = weighed L2 , norm and the Hivy norm.

1. The x weighted L2 , norm. By T4 = [z,T4] + Taz and using (6.3), we have

2T [FOF Pl = Y aTpT [T4F, THF?, T4 F]
(A,B,C,D)eA
— Z [2,Tp] T [THF*, THF®, TY F°]
(A,B,C,D)eA
+ > TpT ([, TH F THF", T F°]
(A,B,C,D)eA
+ Y IpT[THF o, TH F* TY Fe
(A,B,C,D)eA
T Z TpT [THF*, THF, [z, T/ F°]
(A,B,C,D)eA

+ T [2F PP FC] + Ty [F*,aF", F] + Ty [F*, F*,2F°] .
We also have
[1'7 QA} = AileA'

We observe that if Q4 is an LP-family, @’y is also an LP-family, then [z, T4] is also anadmissible
transformation. Thus, we consider Ty [F o« FbF C] as the following summation,

Tp[F F F| + Tp [aF*, F* F°] + Ty [F*,aF" F°] + Ty [F*, F*, aF°], (6.7)
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then ||#Ty [F*, F?, F°] ||L2 follows from (6.4).
z,yY

2. The Hévy norm. We have

2
IFls, = 3 M |PuF|2,
M dyadic

with Py as the Littlewood—Paley projections on R x R. Then we decompose
PyTa [F* F* F°] = PyTa 0w [F* F*, F°] + PyTapign [F*, F°, F°],

with SA,low [Fa,Fb,Fc} = SA [PSMFG,PSMFZ),PSMFC].

Firstly we have

2 2 2 2
S MV (|PuTamign [F PP, K max Py [F 175, (6.8)
Mo sy {a.B,v}={a.bc} =y
yadic
since
2 2 2 2
Soar MY || Py Tp [Poors P PO FEY |, S K2 500 IMPY [[Poan FOlla ||F?]| 5 1405
a2 2 | peyj2 *
S KPPy [1F 5 154Nl
(6.9)
Let Z € {04, 0y}, we bound the contribution of T ;0. as follows,
MY | PuTatowll 2
SMNNZ2N PyTsow [P<m F*, P<y F, P<pr Fel||
(6.10)
=M NN > PuTaiow [Z°Pa, F*, Z° Py, F*, 27 Py, F¥
a+B+y<2N Mi,Mz,M3<M L2
z,y
Without loss of generality, we assume M; = max (M7, Ma, M3) < M, then we have
el ||PM‘IA,low||Li,y < Z M-NM2N Z H‘IA,low [PMIFG,PMQF?J,PMg,FC] HLg )
M <M M, M <M, :
AN (6.11)
1 a c
<k ¥ (5F) MR, 1Pl
My <M
By Schur test, the above sum is in ¢3,, then we have
a C 2 (67 2
Z MQNHPMTAJOIU [F 7FbaF jIHLE Y 5[(2 {aﬁ'?]}i){(abc} HF H?{i\{y HFBHB”F’YHZ (612)

M dyadic

Thus we bound the HJ, norm, which indicates the estimate (6.5).
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Moreover, since we have (6.4) and (6.5), we can deduce that

H}-ﬂc—%fl\ [Fava’FC] ||Lg°L§ S ||-/—";c—>§(£A [Fa’FvaC] HLngo

S HTA [Fa’Fvac} HL%L,}E

b 3 b L (6.13)
SR 1 P BN Sl S
< o 5 Y
SKmax E s [Pl 17
O

According to Lemma 6.1, if we can give an estimate such as (6.4) for a trilinear operator ¥ which
satisfies (6.2), then we can have the estimates such as (6.5) and (6.6) for this trilinear operator ¥.
The following lemma is to give one of the condition for the derivation of (6.4), and from this we
have even more precise estimates.

Lemma 6.2. Consider a trilinear operator ¥ which satisfies
Z%|F,G,H|=%[ZF,G,H|+ %[F, ZG, H) + ¥|F, G, ZH]|, (6.14)

for Z € {z,0;,0,} and let A be a set of 4-tuples of dyadic integers. Assume that for all admissible
realizations of T at A, we have

1 1 1 1
5 (% B F gy S min g [ e 1 ey 615)

then we have

1 1 i \
| [F2, FY, F°] ||L5,y S K{a , vng}ia - 1Pl HFBHigH; ||xFB||Zz,H; 1y NP
< K{a,ﬁa’?}l.i%a,b,c} ||Fa||Li,y HFBHS HFA/”Sv
(6.16)
and
) , 4 ) ) ) l
H.’L‘?’(@g)j ‘IA [Fa7Fb’FC] HL’;LE S K H.’IJZFQ| LgH% HFb| ngf Hbu|‘[2/§H5 ||FCHZEH§ ||$FC||23H3

. 1 1 1 1
+ K | gy 1F 1 e 15 F N Ea gra 1F N o e [ F €N e

1
2

2 f72
LZHZ

1
2

2 [72
LZHZ

||

. 1 1
K |2 F ] o g 10 2 gy |2 F " 2 2 [

S E|Fs|E|ls]IFes- o)
6.17
where ,j € {0,1},k € {1,2}.
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In particular, we have

||JUC§A [FaanvFC] HLiHQ 5 [(H‘r‘cfvaHL?H2 ||Fb||L2H2 || Fb||L2H2 ||FC||L2H2 ||'1:FC||L2H2
+K H:CFbHLgHg ”FGHLgHg HxFaHLng ||FCH?§H3 ||$FC||L§H§ (6.18)
1 1 1
+ K ||xFC||L§H§ ||Fa‘|igH§ ||xFa||ng§ HFbHZng HfCFbHL%HZ
S K|[F°||s[|F®|ls|[ 7€ s-
Moreover, we have
ITa [F2, B e g S KIF s s 1<l (6.19)
Proof. Since we have (6.14), we can deduce that
ol P P S0 im0 [F7 R 75 e 1
o B Jé; 1
S K{a,ﬁ,'?}lgia,b,c} HF ||L2 HF HL2L°° Hl‘F HL2L°° ||F’YHL2L<>o ||$F’Y||i
S K{a rﬁ”% ||Fa||Lgﬁy HFﬁHEgH; HxFﬁHng,; ||F7||EgH; ||93F7HE§H;
o 8
SKminF [F IF

Then by Lemma 6.1, we can deduce that
54 [P, 7, 7

X b} IF s [|1F2 ]| 1F7 s - (6.20)

S’”{ﬂ}{

To prove (6.17), we prove the estimate on H:U TA [8§F‘1, Fb, FC]
be deduced in the same way. By (6.14) and (6.15), we have

|| ., for example, other cases can
LLL2

H‘T{ZA [8§Fava»Fc] HL}JLg

1 1 1 1
SE ey bl 1F N e ps [#F° N e s 19022 g 12 F (125
2 3 2 1 1 1
PN 2 P 2 P 1 PR (T [P
2 1 2 1 b 1 b 1
+ K2 F N o s 105N (205F 7 (F° (2 s e Bl 2 s

1 1 1 1
SK[eF) 2 HFszgHS Hbuungg 1F) 22 gy N 22 2

b 1 1 1 1
+ K HxF HL%H% ||Fa||ng§ IIxF“HigHg HFcHngg ”ch”ing

||bu %

1 1
K g I g 12F e

3

||L3Hg
SKIIF|s|E s Fe]ls.

So we have proved (6.17), and (6.17) implies (6.18). (6.18) and (6.20) also imply (6.19). The proof

is complete. O
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Remark 6.3. By (6.16) and (6.17), we have more precise estimate on H]—'zﬂg‘IA [F“, Fb, FC] HLOOL2 ,
&y

which s
H}—ﬂi—%‘zf\ [Fa’Fvac] HLE"L%
S H]:-T—%‘ZA [Fa’FvaC] HL;ngo
S HKA [FavavFC] HLgL;
, N , 1 (6.21)
N EEN N
< a % a % b % b % c i c % a % b % c %
D T N ) o 3 O o A 0 o o ) o H P H P
SKIF s F®llsllFe|ls-
Remark 6.4. Let ki, ko € [0,1]. If we change the assumptions (6.15) to
IS [P Yy S K min s @0 P @ P (622)
we can still deduce that
Ia [ P S K minE I (6.2
|2(87) Ta [F*, F*, F] HLW S KIF sl F*|sl1Fels, (6.24)
|1Ta [F B2 ]|l g S KIFIsIF s Fe)s (6.25)
and
| FomeTa [P, FP, F°] HL?B S K|F|sIIF | sl1Fe s, (6.26)

where i,j € {0,1},k € {1,2}.

Remark 6.5. Let ¢ : R — R be a bounded function. In this paper, we usually give the estimate on
some trilinear operator ¢(D,)T with the norm Z. For the part of ’|F1A£w(Dy)K3A [Fe, Fb Fe) H

we have the following estmate,

o 1
L£ By’

1 Fas e (D) T [ F? || ey

<sz

k<0

+y 27k

k>0

<22k

k<0

+y ok

k>0

emstons G) o, e (.

/ zynw )¢ (2%) d77H H]:a:—%ag‘zl\ [Faan’Fc] HLgoLl
L Y

1
Ly

/ (1) (2%) dnHLl H‘IA [Fa7Fb7Fc]

[t (55) o] Noga e,
L o
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<§:2k

k<0

+y 27k

k>0

Lot (e ] a7 P P loma [ P P

[emtme () an] flgza (728 |y i [0 2

where the second term after the first inequality above is deduced by Bernstein’s inequality. And we
rewrite the above estimate as

H}—x—>£¢(Dy)‘IA [Faan7FC:|

<§:2k

k<0

+y 27k

k>0

HLgQB;

i U a e1||2 a c1||2
R R N EN TN S [ NGV [

(6.27)
JLemmno () a1 [ F P, im0 P P

Then by (6.17) in Lemma 6.2, we have

[ [P, P P17, s oo [P, P P |

biT 1 1 1 1 1
3 L A ) T T S 9 o A ) T T DT
and

|025n [P, P2 P2y 1 o3 [P F2 P,

byt bi i i A 3
<K”FGHLEHSHxFa”LgHg||F 22 prz 2 F IIE;.;H;IIFCIIigHz||$FC\|,§2H2||F“H§HF 511E°5
So we have
|‘-7:a:~>§‘IA I:Faanch]

<K Z2’“

k<0

H co g1
LE By

[ emotore () dn

+) 2

k>0

) [ emtmo (35) an ;

bt bk 1 1 Lo gk 1
(Fa N 0T o oo ) 3 N ) P Tl

i (S| [ (2o + 5

k<0

e (gr)an| | 1elsie s

(6.28)
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