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On Valuation Fans and the Real Holomorphy Ring
Dedicated to Professor Francisco Miraglia

Danielle Gondard-Cozette

Abstract. In this survey we recall basic facts in Real Algebra, and study valuation fans,
a refined notion of fans. We explain how valuation fans are involved in the theory of
residually real-closed henselian fields. Then we deal with other mathematical notions,
such as R− places and the real holomorphy ring which are also linked to valuation fans.
Finally we consider abstract spaces of orderings and Marshall’s problem, recall some
results, and present the complete real spectrum of a ring.

1. Background in Real Algebra.

1.1. Preorderings, orderings.

Definition 1.1. A preordering T of K is a subset T ⊆ K, satisfying:

T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, − 1 /∈ T
and T ∗ = T\{0} is a subgroup of K∗ = K\{0}.

Definition 1.2. A preordering T is called a quadratic preordering if K2 ⊆ T. If
K2n ⊆ T , T is said to be of level n. Preorderings with no level do exist.

Zorn’s lemma shows the existence of maximal quadratic preorderings; these are
just the usual orderings, and are characterized by:

Definition 1.3. A subset P of K is an ordering if:

P + P ⊆ P, P · P ⊆ P, P ∪ −P = K, − 1 /∈ P.

From these properties one can deduce that 0, 1 ∈ P, P ∩ −P = {0} and
∑
K2

⊆ P. Here, and throughout the paper,
∑
K2n denotes the set of all finite sums of

2n-th powers.
We can also call P a positive cone: to any such ordering P one can associate

a binary relation ≤P . This is a total order relation compatible with the field
structure, defined as follows:

b− a ∈ P ⇔ a ≤P b.

Then P is the set of elements positive for the order relation ≤P .
The set of orderings of a field K will be denoted by χ(K); it is also denoted in

the literature by SperK (so as to coincide with the usual notation for rings).
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The field R admits only one ordering, and its set of positive elements is R2.
The field Q( 2

√
2) :=

{
a+ b 2

√
2 | a, b ∈ Q

}
admits two orderings, one making 2

√
2

positive and the other making 2
√

2 negative.
R((X)), the power series field, admits also two orderings making X infinitesimal

positive or negative.
R(X) admits infinitely many orderings. For any a ∈ R one can define orderings

Pa,+ and Pa,− making X − a infinitesimal positive or negative respectively. R(X)
admits also the orderings P+ and P− making 1

X infinitesimal positive or negative
respectively.

1.2. Real Valuations.

Definition 1.4. A Krull valuation v on a field K is a surjective map

v : K∗ � Γ

where Γ is a totally ordered abelian group (called the value group), such that
(1) v(xy) = v(x) + v(y) for any x, y in K∗;
(2) v(x+ y) ≥ min {v(x), v(y)} , for any x, y in K∗, with x+ y in K∗.

The valuation ring of v is

Av := {x ∈ K | x = 0 or v(x) ≥ 0}

and its maximal ideal is

Iv := {x ∈ K | x = 0 or v(x) > 0} .

kv := Av/Iv is called the residue field of the valuation.
Uv := Av \ Iv denotes the group of units.

Definition 1.5. A valuation v on a field K is said to be real if and only if the
residue field kv is real (meaning −1 /∈

∑
k2v).

A field admits real valuations if and only if it is real. Of course a real field
admits real valuations, at least the trivial one.

The converse implication follows from the Baer-Krull theorem which ensures
that if kv admits an ordering, then K admits also at least one ordering.

Given an ordering P in a field K, the convex hull of Q in K is:

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P} .

A(P ) is a valuation ring in K with unique maximal ideal:

I(P ) :=
{
x ∈ K | ∀r ∈ Q+∗ r ± x ∈ P

}
.

where Q+∗ = {r ∈ Q |r > 0} .
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A(P ) is clearly a subring of K; it is a valuation ring because b /∈ A(P ) implies
b−1 ∈ A(P ): let b /∈ A(P ), assume b > 0, since b /∈ A(P ) we have in particular
1 < b, therefore 0 < b−1 < 1 which implies that b−1 ∈ A(P ) because A(P ) is
convex in K with respect to P.

We will see below that the valuation associated to A(P ) is compatible with the
ordering P and pushes down on the residue field an (archimedean) ordering, hence
this valuation is real.

1.3. Compatibility of an ordering with a valuation.

Definition 1.6. An ordering P is said to be compatible with a valuation v if and
only if 1 + Iv ⊂ P.

Then P , induced by P on the residue field kv, is an ordering of kv. Clearly
P is closed under addition and multiplication and P ∪ −P = kv. If −1 was in
P we would have −1 = a for some a ∈ P ∩ A(P ). Then 1 + a ∈ I(P ), hence
−a ∈ 1 + I(P ) ⊂ P, so we would get a = 0 which is impossible.

The trivial valuation, sending every non-zero element of K to 0, is compatible
with any ordering of K.

Note that the valuation v associated to an ordering P of K with valuation ring

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P}

is compatible with P. In fact I(P ) := {x ∈ K | ∀r ∈ Q+∗ r ± x ∈ P} being the
maximal ideal of A(P ) we have 1 + I(P ) ⊂ P . Hence the valuation is compatible
with P. Then P induced by P on the residue field kv is an archimedean ordering;
we already know that P is an ordering, this ordering P is archimedean: for any
x ∈ A(P ) there exists some r ∈ Z such that −r <P x <P r, hence in the residue
field we have −r <P x <P r, and therefore P is an archimedean ordering of kv.

Theorem 1.7. Let P be an ordering of K, and v be a valuation on K; the following
are equivalent:

(1) 0 <P a ≤P b⇒ v(a) ≥ v(b) in Γ (the value group of v).
(2) The valuation ring Av is convex in K with respect to P .
(3) The maximal ideal Iv of Av is convex in K with respect to P .
(4) v is compatible with P (i.e. 1 + Iv ⊂ P ).

Proof. (1)⇒ (2) Av convex in K means that if x <P y <P z, with x, z ∈ Av
then y ∈ Av, or equivalently 0 <P a <P b with b ∈ Av implies a ∈ Av.

From (1) we deduce that v(a) ≥ v(b) ≥ 0 in Γ hence a ∈ Av.
(2) ⇒ (3) Assume 0 <P a <P b with b ∈ Iv then 0 <P b−1 <P a−1. Since

b−1 /∈ Av using (2) we deduce a−1 /∈ Av, hence a ∈ Iv, Iv being the ideal of non
invertible elements of Av.

(3) ⇒ (4) Let m ∈ Iv, if 1 + m /∈ P then 1 + m ∈ −P, so 1 + m <P 0 hence
0 <P 1 <P −m. Using the convexity of Iv in K for P, since −m ∈ Iv too, this
yields 1 ∈ Iv which is impossible.
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(4) ⇒ (1) Assume 0 <P a ≤P b and v(a) < v(b) in Γ ; then we deduce
0 < v(b) − v(a) = v( ba ), hence b

a ∈ Iv, and also − b
a ∈ Iv and a 6= b. From (4) we

get 1 + (− b
a ) ∈ P , so a−b

a >P 0, hence a >P b which is impossible.

Theorem 1.8. Let F be the family of all valuation rings of K compatible with a
given ordering P , then:

(1) the valuation rings in F form a chain under inclusion;
(2) the smallest element of F is A(P ).

Proof. (1) Suppose A,B ∈ F and A " B, let a ∈ A\B and a > 0. We prove
that B ⊂ A. Consider 0 < b ∈ B, by the convexity of B in K we cannot have
0 < a ≤ b, so we must have 0 < b ≤ a. From the convexity of A in K, we deduce
b ∈ A.

(2) Let A ∈ F , A is convex in K and contains Z, hence A contains A(P ) the
convex hull of Q in K.

Note that any subring ofK containing a valuation ring must itself be a valuation
ring, hence F consists of all subrings of K containing A(P ). Remark also that
A ⊂ A′ implies I ′ ⊂ I.

Theorem 1.9. (Baer-Krull) Let A be a real valuation ring of K, and let v be the
associated valuation. Let P be an ordering in the residue field kv. Denote χv,P the

set of all orderings Pi in K inducing the given P in kv. Then there is a bijection
between χv,P and Hom(Γ,Z/2) where Γ denotes the value group of v.

For the proof we refer the reader to [5].

2. Fans (level 1 case).

In this section we mainly follow the notations and proofs of [48].

2.1. Quadratic preorderings. The compatibility of a quadratic preordering
with a valuation can be of two types. Given T a quadratic preordering in a real
field K, v a valuation on K is compatible with T if it is compatible with some
ordering P containing T .

v is called fully compatible with T if it is compatible with every ordering P
containing T . In this case T induces on the residue field kv a quadratic preordering
T . This pushdown preordering T is defined to be the image of T ∩ Av under the
natural map from the valuation ring Av to the residue field kv.

Below we give alternative characterizations.

Definition 2.1. Given T a quadratic preordering in a real field K, and v a valu-
ation on K with unique maximal ideal Iv in the associated valuation ring Av:

(1) v is fully compatible with T if and only if 1 + Iv ⊂ T .
(2) v is compatible with T if and only if (1 + Iv) ∩ −T = ∅.
(3) v is compatible with T if and only if T is a preordering in the residue field

kv.
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We set χ/T := {P ordering | P ⊃ T}.
A way of building fully compatible preorderings is to use the ”wedge product”

introduced in 1978 by Becker in [6], and by Becker and Brocker in [10].

Definition 2.2. Let K be a real field, let A be a valuation ring in K, and π : A −→
kv be the projection map. Let T be a preordering of K and let S be a preordering
of kv such that S ⊃ T . The wedge product is defined by T ∧ S := T · π−1(S\{0}).

We refer the reader to Lam’s book ([48], p.21) to verify that T ∧ S is a pre-
ordering in K, fully compatible with v, and such that residually T ∧ S = S.

Again refering to [48] (3.3 p.22), remark that the wedge product T ∧S can also
be defined for S a preordering of kv and T = T ∗ ∪ {0} where T ∗is a subgroup of
K∗. Then T ∧ S is a preordering in K, and if K2 ⊆ T then T ∧ S is a quadratic
preordering.

There is also an alternative definition for the wedge product:
T ∧ S = ∩

{
orderings P | P ⊃ T and P ∈ χ/S

}
2.2. Fans of level 1. In the context of preorderings fans were first presented by
Becker and Köpping in [15].

Definition 2.3. Let K be a real field and let T be a quadratic preordering in K.
T is a fan if and only if for any S ⊃ T, such that −1 /∈ S and such that S∗ = S\{0}
is a subgroup of K∗ satisfying [K∗ : S∗] = 2, S is an ordering in K.

Note that if T is a fan any preordering containing T is again a fan. There is
an alternative useful characterization of a fan given in [48] (p.40), with proof of
equivalence:

Proposition 2.4. A preordering T is a fan if and only if for any a ∈ K∗\−T we
have T + aT ⊂ T ∪ aT. Such an element a is said to be T -rigid.

First examples of fans are the trivial fans : these are orderings P and intersec-
tion of two orderings P1 ∩ P2.

Another example is the pullback Ŝ of a trivial fan S in kv . Namely Ŝ =
K2 ∧ S = K2 · π−1(S\ {0}) is a fan in K. In fact Bröcker’s trivialization theorem
given later in 2.6 says that all fans arise in this way.

Fans are well behaved for compatibility with real valuations.

Theorem 2.5. Let K be a real field, v a valuation on K, and T a preordering in
K . Then the followings hold:

(a) If v is compatible with T , T is a fan implies that T is a fan in kv;
(b) If v is fully compatible with T , T is a fan if and only if T is a fan in kv.

Proof.
(a) We use proposition 2.4 characterizing a fan. Let b ∈ A\I such that b /∈ −T

we shall show that b is T -rigid . T being a fan let t1 + t2b ∈ T + bT ⊂ T ∪ bT hence
there exist t3 or t4 such that t1 + t2b = t3 or t1 + t2b = t4b. Going down to kv we
get t1 + t2b = t3 or t1 + t2b = t4b hence t1 + t2b ∈ T ∪ bT , and T is a fan.
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(b) We use the definition of a fan. Assume v is fully compatible with T and
T is a fan we have to prove that T is a fan. Let W ⊃ T be such that −1 /∈ W,
W ∗ = W\{0} is a subgroup of K∗ and [K∗ : W ∗] = 2, we have to prove that
W is an ordering. We first show that W is an ordering. If −1 = w for some
w ∈ W ∩ A, then −1 = w +m for some m ∈ I, so −w = 1 +m ∈ 1 + I ⊂ T ⊂ W
hence −1 ∈ W which is impossible. Since T is a fan and W ∗ a subgroup of
k∗v such that

[
k∗v : W ∗

]
= 2, W is an ordering. Form the wedge product W ∧

W = W · π−1(W\{0}) = W · (1 + I) ⊂ W · T ⊂ W , since from [48] (p.22)
W · π−1(W\{0}) = W · (1 + I) ); then W ∧W ⊂ W holds, hence W = W ∧W is
an ordering.

2.3. Trivialization of fans. A remarkable result is Bröcker’s theorem on trivi-
alization of fans ([20]).

Theorem 2.6. Let K be a real field and T ⊂ K be a fan. Then there exists a
valuation v, fully compatible with T, such that the pushdown T in the residue field
kv is a trivial fan.

The theorem follows from propositions 2.7 and 2.8 below. We use the proof
given by Lam ([48], p. 94).

Proposition 2.7. Let T be a non-trivial fan in the field K. Then there exists a
non-trivial valuation v on K, fully compatible with T.

The proof of proposition 2.7 requires three lemmas.

Lemma 1. Let G be an ordered group (written additively), and H be a subgroup
of G. If H does not contain a non-trivial convex subgroup of G, then for any
positive element h ∈ H there exists g ∈ G\H such that 0 < g < h.

Proof of lemma 1. Let C := {g ∈ G | ∃n ∈ N − nh ≤ g ≤ nh}. C is the
convex hull of the subgroup of G generated by h, hence a convex subgroup. Assume
there does not exist an element g as in the statement, then for any g ∈ G, 0 ≤ g ≤ h
implies g ∈ H. By easy induction on n it follows that for any n ∈ N, −nh ≤ g ≤ nh
implies g ∈ H. Hence {0} 6= C ⊆ H, contradicting the assumption that H does
not contain a non-trivial convex subgroup of G.

Lemma 2. Let T be a fan in the field K. Let v1 be a valuation on K with
value group Γ1; if v1(T ∗) does not contain a non-trivial convex subgroup of Γ1,
then v1 is fully compatible with T.

Proof of lemma 2. We claim that the condition: ”for every m in the unique
maximal ideal M1, and for every t ∈ U1 ∩ T , a unit belonging to T, t + m ∈ T
implies that 1 +M1 ⊂ T” entails that v1 is fully compatible with T.

We distinguish two cases:
Case 1. Assume v1(m) /∈ v1(T ∗).
In this case (T ·m) ∩ U1 = ∅; so in particular m /∈ −T, since v1(m) > 0. Since

T is a fan, t + m ∈ T + T · m = T ∪ T · m. We have to show that t + m ∈ T.
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Clearly t + m ∈ U1 because v1(t + m) = 0 since v1(t) = 0 and v1(m) > 0. Since
(T ·m) ∩ U1 = ∅ we get t+m /∈ T ·m hence t+m ∈ T.

Case 2. Assume v1(m) ∈ v1(T ∗).

Apply lemma 1 to H := v1(T ∗). Since v1(m) is a positive element of H there
exists x such that v1(x) /∈ H and 0 < v1(x) < v1(m). Now let t + m = t′ + m′

where t′ := t + x and m′ = m − x. From x ∈ M1 we get t′ ∈ U1, and since
v1(m′) /∈ v1(T ∗), case 1 gives t′ ∈ T. Finally from v1(x) < v1(m) we get v1(m′) =
v1(m−x) = min {v1(m), v1(x)} = v1(x) /∈ v1(T ∗). Thus using again case 1, we get
t′ +m′ ∈ T, and hence t+m ∈ T.

Lemma 3. Let T ⊂ K be a non trivial fan and P ∈ χ/T . Let vP : K∗ −→ Γ
be the canonical valuation associated with P ; then vP (T ∗) 6= Γ. In particular vP
is not the trivial valuation so every ordering in χ/T is non archimedean.

For the proof of this last lemma we refer to Lam [48], corollary 12-11 of lemma
12-10 p. 95.

Proof of proposition 2.7. Given a non trivial fan T ⊂ K, fix v0 : K∗ � Γ0

such that v0(T ∗) 6= Γ0 (for instance, take P ∈ χ/T and let v0 be the valuation
vP associated with A(P )). Now consider the convex subgroups of Γ0 contained in
v0(T ∗); they form a chain under inclusion. The union of them ∆ is the largest
convex subgroup contained in v0(T ∗). By quotienting we can coarsen the valuation
v0 into a valuation v1 : K∗ � Γ1 := Γ0/∆. Then v1(T ∗) cannot contain a non-
trivial convex subgroup of Γ1. Hence, by lemma 2, v1 is fully compatible with T.
Since [Γ1 : v1(T ∗)] = [Γ0 : v0(T ∗)] > 1, v1 is a non trivial valuation.

Proposition 2.8. For any preordering T in a field K, the followings are equiva-
lent:

(1) T is a fan in K.

(2) There exists a valuation v1 on K, fully compatible with T , such that, with

respect to v1, T pushes down to a trivial fan, hence
[
K
∗

: T
∗] ≤ 4.

Proof of proposition 2.8.

(2)⇒(1) Trivially if v1 exists, is fully compatible with T, and pushes down to
a trivial fan T , then T is a fan.

(1)⇒ (2) From the previous proposition we know that there exists a valuation
v fully compatible with T, hence T is a fan in the residue field kv.

If
[
k∗v : T

∗] ≥ 8, then T would be a non-trivial fan, and applying lemma 3 to

T in kv we would get a non-trivial valuation on kv fully compatible with T . But
from proposition 12-3 in [48], kv has no non-trivial valuation fully compatible with
T . Then just take v1 = v.

For the geometric point of view on fans we refer to [2] and [1].
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3. Valuation fans and examples.

From now on preorderings are no more supposed to be quadratic.
Let us recall the definition of a general preordering. A preordering T in a field

K is a subset T ⊆ K, satifying:
T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, −1 /∈ T, T ∗ = T\{0} is a subgroup of K∗.

3.1. Valuation fans (of any level).

Definition 3.1. (Jacob, [41]). Let K be a field; a valuation fan in K is a pre-
ordering T such that there exists v a real valuation on K, v fully compatible with
T (meaning 1 + Iv ⊂ T ), and T induces an archimedean ordering on the residue
field kv.

More precisely, a preordering T in K is a valuation fan if and only if A(T ) =
{x ∈ K | ∃r ∈ Q r ± x ∈ T} is a valuation ring with associated valuation v fully
compatible with T, and T in kv is an (archimedean) ordering.

There is an alternative characterization for valuation fans given in [42], which
is sometimes useful in model theory:

Proposition 3.2. A preordering T in a field K is a valuation fan if and only if
for any x /∈ ±T we have either 1± x ∈ T or 1± x−1 ∈ T.

Usual orderings P are valuation fans (of level 1, i.e.
∑
K2 ⊂ P ).

It is I think important for real algebraic geometry to understand minimal
valuation fans of level 1. They are defined as valuation fans not properly con-
taining any valuation fan which is a quadratic preordering. Of course such a
minimal valuation fan T0 pushes down an archimedean ordering in the residue
field of K for the valuation associated to the valuation ring given by: A(T0) =
{x ∈ K | ∃r ∈ Q r ± x ∈ T0} .

3.2. Orderings of higher level. Further examples of valuation fans are pro-
vided by Becker’s orderings of higher level.

Definition 3.3. (Becker, [6]). Let K be a commutative real field, P ⊂ K is an
ordering of level n if:

∑
K2n ⊂ P, P +P ⊂ P, P.P ⊂ P,−1 /∈ P, P ∗ is a subgroup

of K∗ and K∗/P ∗is cyclic.
When K∗/P ∗ ' Z/2nZ, then the ordering is said to be of exact level n.

A very interesting paper on sums of d-th powers in rings with some relation to
orderings of higher level is [43].

The orderings of level 1 are the usual total orderings.
If K = R((X)), there exist two usual orderings:

P+ := K2 ∪XK2, P− := K2 ∪ −XK2

And for every integer n ≥ 1 there exist two orderings of exact level n:

Pn,+ := K2n ∪XnK2n, Pn,− := K2n ∪ −XnK2n.
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These higher level orderings have important links with sums of powers; we refer
the reader to [9] and just mention the following important theorems from [6] :

Theorem 3.4. (Becker, [6]) Let K be a real field, then:∑
K2n = ∩{Pi | Pi ordering of level dividing n} .

Theorem 3.5. (Becker, [6]). Let K be a real field, and let p be a prime. The
followings are equivalent:

(1)
∑
K2 6=

∑
K2p.

(2) K admits an ordering of exact level p.

3.3. Another approach with signatures. Usual orderings can also be studied
in terms of signatures. A signature is a group morphism, σ : K∗ −→ {±1}, with
additivily closed kernel; then P = kerσ ∪ {0} is an ordering of K.

This notion of a signature has a higher level analog:

Definition 3.6. (Becker, [8]). A signature of level n on a field K is a morphism
of abelian groups:

σ : K∗ → µ2n

such that the kernel is additively closed, where µ2n denotes the group of 2n-th
roots of 1.

Clearly if σ is a signature of level n, then P = kerσ ∪ {0} is an ordering of
higher level with exact level dividing n.

But there exists also a much more general notion of signature involving valua-
tion fans:

Definition 3.7. ( Schwartz, [55]). A generalized signature in a field K is a mor-
phism of abelian groups, σ : K∗ → G, such that the kernel is a valuation fan.

4. Algebraic closure of a field equipped with a valuation fan.

Several notions of a closure, under algebraic extensions, of a field equipped
with either higher level orderings or higher level signatures, either valuation fans
or generalized signatures, have been introduced and studied in the literature.

All these notions of closure can be unified in one theory, the theory of Henselian
Residually Real-Closed fields (HRRC fields).

In this section we present, without any proof, the main features of this theory,
from an algebraic point of view.

Definition 4.1. (Becker, Berr, G. , [11]). A field K is henselian residually real-
closed (HRRC) if and only if it admits an henselian valuation v with real-closed
residue field kv.
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Recall that a valuation v on a field K, with valuation ring Av, is henselian if
it satisfies Hensel’s lemma : ”For any monic polynomial f ∈ Av[X], if f has a
simple root β ∈ kv, then f has a root b ∈ Av such that b = β ”. The henselian
residually real-closed fields have been variously named in the literature: they are
called real henselian fields in Brown [16], [17], fields real-closed with respect to a
signature in Schwartz [55] and almost real-closed fields in Delon-Farre [27].

4.1. Examples of HRRC fields. The basic examples of henselian residually
real-closed fields arise in a classical way as follows (see [33]): given R a real-
closed field, and Γ a totally ordered abelian group, let R((Γ)) = {

∑
γ
aγt

γ | γ ∈

Γ, aγ ∈ R} be the set of generalized power series with support well ordered, where
support

∑
γ
aγt

γ = {γ ∈ Γ | aγ 6= 0}. In K = R((Γ)) one can define:

- Product by: tγtδ = tγ+δ;
- Addition by:

∑
γ
aγt

γ +
∑
δ

bδt
δ =

∑
α

(aα + bα)tα;

- Order by:
∑
γ
aγt

γ >K 0⇔ am >R 0, where m = min(support
∑
γ
aγt

γ);

- Valuation by: v : R((Γ))→ Γ and v(
∑
γ
aγt

γ) = m = min(support
∑
γ
aγt

γ).

It is well-known that R((Γ)) is a field, admitting v as a henselian valuation
with real-closed residue field R and value group Γ; hence R((Γ)) is an HRRC field.

4.2. Subtheories of the theory of HRRC fields. Let v be a real valuation
on a field K, kv its residue field, Γv its value group, and let S be a set of primes.
Relations between various subtheories of the theory of HRRC fields are described
by the following diagram where arrows indicate subtheories.

Henselian Residually Real-Closed Fields (HRRC)
v henselian valuation , kv real-closed field

closed for generalized signature, or for valuation fan
↓

HRRC fields of type S (p /∈ S ⇒ Γv p-divisible)

↙ ↘
S−generalized real-closed fields (S finite) Rolle fields
if p /∈ S then Γv is p-divisible Γv odd divisible
if p ∈ S and Γv is not p-divisible then HRRC field of type {2}
Γv/pΓv ' Z/pZ ; closed for
higher level ordering or chain signature

↓ ↘ ↙ ↓
Real-closed fields Chain-closed fields
∅-generalized real-closed {2}-generalized real-closed
Γv divisible Γv/2Γv ' Z/2Z
closed for a usual order closed for an ordering of level 2k
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In the diagram above, most of the theories correspond to some notion of closure,
under algebraic extensions, of a field equipped with some object. With an ordering
(real-closed field), with an ordering of exact level a power of 2 (chain-closed field),
with an ordering of exact level a power of p where p is prime ({p}-real-closed
fields), with an ordering of exact level n (S-generalized real-closed fields of exact
type S (p ∈ S ⇔ Γv not p-divisible, and for all p ∈ S, p | n ), or with a valuation
fan (henselian residually real-closed field).

4.3. On the question of the uniqueness of closure. For a field equipped
with a usual ordering it is well known that the real closure is unique up to K-
isomorphism.

Even for chain-closed fields this is not true anymore. In order to recover the
uniqueness of the closure, up to K-isomorphism, one needs to consider a closure
for a whole chain of orderings with levels powers of 2 in the sense of Harman:

Definition 4.2. (Harman, [40]). A 2-primary chain of orderings in a field K is:

(Pn)n∈N = (P0,P1, ..., Pn, ...)

P0 being a usual ordering and Pn an ordering of level 2n−1, such that

Pn∪ − Pn= (P 0∩Pn−1) ∪ −(P 0∩Pn−1).

Theorem 4.3. A field K equipped with a 2-primary chain of orderings admits a
closure under algebraic extensions unique up to K -isomorphism. The closure is
called a chain-closed field and it is equal to the intersection of two real-closures of
K for P0 and P1.

For generalized real-closed fields, in order to recover the uniqueness up to K-
isomorphism, Niels Schwartz has introduced the notion of chain signature.

Definition 4.4. (Schwartz, [54]). A chain signature on a field K is a homomor-
phism:

ϕ : K∗ → {1,−1} × Ẑ

such that kerϕ is a valuation fan, where Ẑ =
∏

Ẑp and Ẑp denotes the additive
group of p-adic integers.

One can recover orderings of higher level by taking:
Pn(ϕ) = ϕ−1(1× nẐ) ∪ {0} .

Theorem 4.5. A field K equipped with a chain signature ϕ admits a closure under
algebraic extensions unique up to K -isomorphism. This closure is a HHRC field.

In the more general situation of a field equipped with a valuation fan we can
also ensure the uniqueness of the closure by considering a field equipped, not only
with a single valuation fan, but with a whole chain of valuation fans.

From Brown’s work we can derive the following:
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Theorem 4.6. Let R and R′ be two HRRC fields, algebraic extensions of a field
K, then the followings are equivalent:

(1) R and R′ are K-isomophic.
(2) R2n ∩K = R′2n ∩K for all n ∈ N .

In fact these Tn = R2n ∩K are valuation fans, which form a chain of valuation
fans (Tn)n∈N as defined below; this chain is said to be induced on K by R.

Definition 4.7. (Becker, Berr, G. [11]). A chain of valuation fans in a field K is
defined as (Tn)n∈N such that:

(1) K2n ⊂ Tn;
(2) Tn.m ⊂ Tn;
(3) (Tn)m ⊂ Tn.m;
(4) T ∗n/T

∗
n.m ⊂ T ∗1 /T ∗n.m is the subgroup of elements of exponent m.

With this notion we have been able in [11] to obtain the following theorem:

Theorem 4.8. Any field K, equipped with a chain of valuation fans (Tn)n∈N,
admits a closure under algebraic extensions R, unique up to K-isomorphism. Then
R is a HRRC field, and R induces on K a chain of valuation fans (Tn)n∈N (i.e.
Tn = R2n ∩K for all n).

4.4. Properties of HRRC fields. Henselian residually real-closed fields have a
lot of nice properties ; we list, again without any proof, some of them below. Main
reference is [11].

Let K be an HRRC field then:

(1) K is a real field;

(2) Every algebraic extension of K is a radical extension;

(3) K a HRRC field of type S has no real extension of degree p ∈ P\S.
Note that whenever 2 ∈ S, one can replace (3) by (3’) ”K has no extension of

degree p ∈ P\S ”;

(4) ∀n ∈ N , K is n-pythagorean : K2n +K2n = K2n;

(5) K is hereditarily pythagorean, i.e., every algebraic extension is again a
pythagorean field;

(6) ∀n ∈ N , K2n is a fan (refer to definion 2.3, or to characteriztion 2.4 for
such preorderings);

(7) ∀n ∈ N , K2n is a valuation fan, i.e. it is a preordering such that:
∀x /∈ ±K2n either 1± x ∈ K2n or 1± x−1 ∈ K2n;

(8) All real valuations on K are henselian;
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(9) The set of real valuation rings in K is totally ordered by inclusion;

(10) The smallest real valuation ring in K is:

A(K2) = A(K2n) = H(K)

where A(T ) = {x ∈ K | ∃n ∈ N n± x ∈ T}, T being a valuation fan, and where
H (K ) is the real holomorphy ring (i.e. the intersection of all real valuation rings);

(11) K admits a unique R-place which can be defined using the valuation ring
A(K2) and the associated valuation;

(12) Jacob’s ring J( ∩
n∈N

K2n) is the biggest valuation ring with real-closed

residue field. This ring is defined as follows. If T is a valuation fan, the ring J(T )
is equal to J1(T ) ∪ J2(T ) where:

J1(T ) = {x ∈ K | x /∈ ±T and 1 + x ∈ T}
and

J2(T ) = {x ∈ K | x ∈ ±T and xJ1(T ) ⊂ J1(T )}).

4.5. On the model theory of HRRC fields. These fields have been studied
from a model theoretic point of view; the previous theories are all elementary
theories, with nice first order axiomatizations (see [11], [24], [25], [28], [34] and
[36]).

A Rolle field is an ordered field where Rolle theorem holds for polynomials.
These fields have been introduced by Brown, Craven and Pelling [21]. Below is
an axiomatization for the theory of Rolle fields; these axioms are first order in the
language of fields, hence the theory is elementary.

Theorem 4.9. (G. [34]) :
(1) axioms for commutative fields ;
(2) ”K formally real ” :
for each n > 1

∀x1...∀xn e(−1 = x21 + ...+ x2n)

(3) ”K does not have any algebraic extension of odd degree” :
for each p > 0

∀x0...∀x2p+1∃y
(x2p+1 = 0 ∨ x0 + x1y + ...+ x2p+1y

2p+1 = 0)

(4) ”K2 is a fan ” :

∀x∀y∀z∃t(x = −t2 ∨ y2 + xz2 = t2 ∨ y2 + xz2 = xt2)

(5)”K is pythagorean at level 2 ” :

∀x∀y∃z(x4 + y4 = z4)
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Remark that the three first sets of axioms are the same as in the theory of
real-closed fields; to get a real-closed field axiomatization, just replace (4) and (5)
by

∀x∃y(x = y2 ∨ x = −y2)

In [G1] it is also shown that :

Theorem 4.10. For any Rolle field K having a finite number of orders 2n, there
exists n+ 1 orders Pi, such that K is the intersection of n+ 1 real closures Ri of
K ordered by Pi.

The theory of HRRC fields is also elementary and the next theorem gives a
first order axiomatization.

Theorem 4.11. (Becker, Berr, G. [11]) : The class of HRRC fields admits the
following axiomatization :

(1) R is a real commutative field ;
(2) R is a hereditarily pythagorean field ;
(3) for all n ∈ N, R2n is a valuation fan.

Corollary 4.12. The class of HRRC fields is an elementary class.

Remark 4.13. The class of HRRC fields of type S is also an elementary class,
just add to the axiomatization in theorem 4.11 :

(4) for all p ∈ P\S , K2 = K2p.

Corollary 4.11 follows from B. Jacob ([41]), who first proved that the class of
hereditarily pythagorean fields is elementary.

An alternative proof from [11] for ”the class of hereditarily-pythagorean fields
is elementary” is given below. It uses the characterization by Becker ([6], thm. 4,
p. 94) of hereditarily pythagorean fields :∑

K(X)2 = K(X)2 +K(X)2

which is equivalent to : ∑
K[X]2 ⊂ K(X)2 +K(X)2

By Cassel’s theorem this is also equivalent to :∑
K[X]2 = K[X]2 +K[X]2 (∗)

Remark that if f, g, h ∈ K[X] satisfy f2 = g2 + h2, the degrees of g and h are less
or equal to the degree of f because K is formally real.

Hence (∗) is expressible by an infinite sequence of first order sentences in the
language of fields.
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The significance of Jacob’s ring for the model theory of these fields appears in
[42], and also later with the transfer theorem obtained by Delon and Farre [27] and
given below.

We first recall that in the following theorem, ≡ denotes elementary equivalence
and ≺ elementary inclusion. The second symbol ≺ means that every closed first
order formula with parameters in the smaller model holds in one model if and only
if it holds in the other.

Theorem 4.14. (Delon, Farré, [27]) : Let K and L be HRRC fields, then :
(i) K ≡ L ⇔ ΓJ(K) ≡ ΓJ(L) ;
(ii) if K ⊂ L then K ≺ L ⇔ ΓJ(L) extends ΓJ(K), and ΓJ(K) ≺ ΓJ(L) , where

the Γ′s are the value groups of the Jacob rings of K and L.

In [27] the authors established a bijection between theories of HHRC fields and
certain theories of ordered abelian groups. This bijection preserves completeness
and sometimes decidability. Finally they proved that the only model-complete
theory among these is the theory of real-closed fields.

They also characterized definable real valuation rings in such fields and have
shown that these valuation rings were in bijection with the definable convex sub-
groups of the value group of the Becker ring.

In case there is only one real (henselian) valuation ring with real-closed residue
field, i.e. the Becker ring equals the Jacob ring, then the model theory works well,
and we are able to get real algebraic results such as a Nullstellensatz or Hilbert’s
17th problem at level n; we refer the reader to [12], [13], [26].

5. R-places, and the real holomorphy ring.

5.1. R-place associated to an ordering. For a complete presentation of these
notions one can refer to [48], or in a more geometrical setting to [57], [58] and [59].

Let K be a real field and P be an ordering on K. Let v denote the valuation
associated to the valuation ring A(P ). From previous results we know that (kv,P )
can be uniquely embedded in (R,R2) since P is archimedean. Denote this embed-
ding by i and let π be the canonical mapping from K into kv ∪ {∞} (where if
a /∈ A(P ), then π(a) =∞).

Definition 5.1. The R-place associated to P is λP : K → R ∪ {∞} defined by
the following commutative diagram:

K
λP−→ R ∪ {∞}

π ↘ ↗ i

kv ∪ {∞}

Explicitly λP (a) = ∞ when a /∈ A(P ), and λP (a) = inf{r ∈ Q | a ≤P r} =
sup{r ∈ Q | r ≤P a} if a ∈ A(P ). In fact it is known that any R-place arises in
this way from some ordering P (see [48], 9.1).
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5.2. The space of R-places. The space of R-places of a field K is the set
M(K) = {λP | P ∈ χ(K)}, where χ(K) denotes the space of orderings of K.
M(K) is equipped with the coarsest topology making continuous the evaluation
mappings defined for every a ∈ K by:

ea : M(K) −→ R ∪ {∞}

λP 7→ λP (a)

Recall that the usual topology on χ(K) is the Harrison topology generated by
the open-closed Harrison sets:

H(a) = {P ∈ χ(K) | a ∈ P}.

With this topology χ(K) is a compact totally disconnected space. Craven has
shown in [23] that every compact totally disconnected space is homeomorphic to
the space of orderings χ(K) of some field K.

Now consider the mapping Λ defined by:

Λ : χ(K) −→M(K)

P 7→ λP

With the previous topologies on χ(K) and M(K) the mapping Λ is a continuous,
surjective and closed mapping.

M(K) equipped with the above topology is a compact Hausdorff space. Remark
that this topology on M(K) is also the quotient topology inherited from the above
topology on χ(K).

5.3. The Real Holomorphy Ring. We now provide some facts on the real
holomorphy ring which has heavy links with orderings and R-places.

Definition 5.2. The real holomorphy ring, denoted H(K), is the intersection of
all real valuation rings of K.

From the results in part 1 we obtain H(K) = ∩
P∈χ(K)

A(P ).

We also have:

H(K) = A(
∑

K2) = {a ∈ K | ∃n ∈ N, n ≥ 1, n± a ∈
∑

K2}.

H(K) is a Prüfer ring with quotient field K (see [48], p.85). Recall that a
Prüfer ring is a ring R ⊂ K such that, for any prime ideal p in R, the localization
Rp is a valuation ring in K .

In the sequel we denote the real spectrum of the real holomorphy ring of K by:

Sper(H(K)) = {α = (p,α), p ∈ Spec(H(K)), α ordering of quot(H(K)/p)}.

Relations between χ(K), M(K) and H(K) are given in [14] by the next theo-
rem.
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Theorem 5.3. (Becker, G. [14]) The following diagram is commutative:

χ(K)
sper i−→ MinSperH(K)

↓ Λ ↓ sp
M(K)

res→ Hom(H(K),R)
j→MaxSperH(K)

where the horizontal mappings are homeomorphisms, and the vertical ones con-
tinuous surjective mappings (see definitions below).

Hence χ(K) the space of orderings of K is homeomorphic to MinSperH(K),
and the space M(K) of R-places on K is homeomorphic to MaxSperH(K).

The mappings in the above diagram are defined as follows:

Λ : χ(K) −→M(K) is given by P 7→ λP .

sper i : χ(K) −→MinSperH(K) is given by P 7→ P ∩H(K).

sp : MinSperH(K) −→MaxSperH(K) is given by α 7−→ αmax ,

where αmax is the unique maximal specialization of α.

res : M(K) −→ Hom(H(K),R) is given by λ 7→ λ|H(K).

j : Hom(H(K),R) −→MaxSperH(K) is given by ϕ 7→ αϕ,

where αϕ = ϕ−1( R2) or, using the notation for the real spectrum,

αϕ = (kerϕ, α) with α = R2 ∩ quot(ϕ(H(K)).

All the spaces in the diagram are compact and the topologies of M(K) and
MaxSperH(K) are the quotient topologies inherited through Λ and sp.

Remark 5.4. χ(K) may be seen as a space of maximal valuation fans of level 1,
and M(K) might be associated to the space of minimal valuation fans of level 1
using the preorderings Tλ = ∩

{
Pi | Pi ∈ Λ−1(λ)

}
, where Λ−1(λ) = {Pi | λPi = λ}.

6. On the Abstract Side.

The space of orderings of a field, studied in relation with quadratic forms and
real valuations, have been the origin of the theory of abstract spaces of orderings
(1979-80) and of Marshall’s problem:

”Is every abstract space of orderings the space of orderings of some field ?”
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6.1. Abstract spaces of orderings (level 1 case). Abstract space of orderings
have been introduced using signatures by Marshall in [50]:

Definition 6.1. An abstract space of orderings is (X,G), where G is a group of
exponent 2 (hence abelian), -1 a distinguished element of G, and X a subset of
Hom(G, {1,−1}) such that:

(1) X is a closed subset of Hom(G, {1,−1});
(2) ∀σ ∈ X σ(−1) = −1;

(3) ∩
σ∈X

kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});

(4) For any f and g quadratic forms over G:

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In the above definition DX(f) denotes the set {a ∈ G represented by f}, i.e.
there exists g such that f ≡X 〈a〉 ⊕ g where f ≡X h if and only if f and h have
same dimension, and have for any σ ∈ X same signature.

On the side of fans, seen as sets of signatures on a field, a four elements fan of
level 1 is characterized by: σ0σ1σ2σ3 = 1 and it corresponds to the fan seen as a

preordering: T =
3
∩
i=0

kerσi ∪ {0}.
In the abstract situation, abstract fans have been defined by Marshall.

Definition 6.2. An abstract fan is an abstract space of orderings (X,G) such that
X = {σ ∈ Hom(G, {1,−1}) | σ(−1) = −1}.

It is also characterized by: if σ0, σ1, σ2 ∈ X then the product σ0σ1σ2 ∈ X.

What was expected to correspond to the space of R-places of the field case in
the context of abstract spaces of orderings is called a P -structure and has been
defined as follows by Marshall in [51].

Definition 6.3. A P -structure is an equivalence relation on a space of orderings
(X,G) such that the canonical mapping Λ : X → M , where M is the set of
equivalence classes, satisfies:

(1) Each fiber is a fan;

(2) If σ0σ1σ2σ3 = 1 then {σ0, σ1, σ2, σ3} has a non empty intersection with at
most two fibers.

Marshall has proved in [51] that every abstract space of orderings has a P -
structure, generally not unique. But unlike the case of the space of R-places in
a field, this P -structure M , equipped with the quotient topology, is not always
Hausdorff. Hence we have to improve this notion to fit with the space of R-places
in the field case.
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6.2. Abstract spaces of signatures (higher level). In the higher level case,
one can also define abstract spaces of signatures (similar to 3.3 in the field case).

Definition 6.4. An abstract space of signatures of level 2n is (X,G), G abelian
group of exponent 2n, X ⊂ Hom(G,µ2n) such that:

(0) ∀σ ∈ X, ∀k ∈ N with k odd, σk ∈ X;
(1) X is a closed subset of Hom(G,µ2n) ;
(2) ∀σ ∈ X σ(−1) = −1 (−1 distinguished element of µ2n);
(3) ∩

σ∈X
kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});

(4) For any f and g forms over G

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In fields, the space of R-places is known as soon as one knows the usual orderings
and the orderings of level 2. Using this idea in the abstract situation we have been
able to obtain in [38] a theorem which can be seen as the first case of a P -structure
which looks like an abstract space of R-places.

Theorem 6.5. Let (X,G) be a subspace of a space of signatures (X ′, G′) with
2-power exponent.

For σ0, σ1 ∈ X, define σ0 ∼ σ1 if σ0σ1 = τ2 ∈ X ′2.
Then the followings are equivalent:
(1) If σ0σ1σ2σ3 = 1, then either σ0 is in relation by ∼ with exactly one of the

σ1, σ2, σ3, or σ0 is in relation by ∼ with everyone of the σ1, σ2, σ3.
(2) ∼ defines a P -structure on X.

Moreover in this case the induced P -structure defined on X by ∼ has a Haus-
dorff topology.

The key idea for proving the theorem is that, in the field case studied by Harman
in [40], for any P2, ordering of level 2, holds for some orderings P0, P1:

a2 ∈ P2 ⇐⇒ a ∈ P2 ∪ −P2 = (P0 ∩ P1) ∪ (−(P0 ∩ P1)).
Hence on the side of abstract signatures we get τ(a2) = τ(a)2 = σ0(a)σ1(a).

7. Some open problems and the complete real spectrum

7.1. The space of valuation fans. Study in the field case the space of level 1
valuation fans VF(K), and its relation with SperH(K). The motivation comes
from the fact that χ(K), isomorphic to MinSperH(K), consists of valuation fans
Pi, and that to a R-place λ in M(K), which is isomorphic to MaxSperH(K),
can be associated a valuation fan of level 1: Tλ = ∩

{
Pi | Pi ∈ Λ−1(λ)

}
where

Λ−1(λ) = {Pi | λPi = λ}.
Then we could define a notion of abstract space of valuation fans of level 1, or

of minimal valuation fans of level 1. Then use abstract space of valuation fans of
level 1 to solve Marshall’s problem of realizability of abstract spaces of orderings,
or state Marshall’s problem in other terms.
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7.2. The space of R-places. Construct a finer theory for abstract spaces of
orderings taking into account the R-places. For example, Q(2

1
2 ) and R((X)) have

isomorphic spaces of orderings, but the first one has two R-places and no ordering
of level 2, and the second one has only one R-place but has a 2-primary chain of
higher level orderings. A preliminary step is to characterize the topological spaces
which are realizable as spaces of R-places. Partial results in that direction have
been recently obtained in [30], [45], [46] and [49].

It will be useful to study for a field K the space of connected components of the
space of R-places of K, π0(M(K)). This might be some kind of space of orderings.
Another question in this area is: in which cases are the connected components of
M(K) homeomorphic?

7.3. The complete real spectrum. With Murray Marshall, in [39], we consid-
ered rings instead of fields.

Let A be any commutative ring with 1. We define a big object SpercA which
we call the complete real spectrum of A. There are various connections between
this and the valuation spectra considered by R. Huber and M. Knebush in Con-
temporary Math. 155 (1994). Roughly speaking, the complete real spectrum is
related to the valuation spectrum in the same way that the real spectrum is related
to the prime spectrum. We define a topology on SpercA and prove that SpercA,
with this topology, is a spectral space.

In [51, Sect. 8.6] another sort of attempt is made to overcome shortcomings
of the real spectrum of A by introducing the space of real places of A, which we
denote here by MA. By definition, MA consists of pairs (p, λ) where p is a real
prime of A and λ is a place from the residue field k(p) into the field of real numbers.
This takes care of the real places in a satisfactory way but does not keep track of
all real valuations on the k(p) and all the orderings on the corresponding residue
fields of k(p). Still, the MA construction in [51] is closely related to the complete
real spectrum construction described below.

Definition 7.1. (Marshall, G. [39]) The elements of SpercA are triples (p, v, P )
where p is a real prime of A, v is a real valuation (more precisely, an equivalence
class of real valuations) on the residue field k(p), and P is an ordering on the
residue field Bv/Mv of v. Here, Bv ⊆ k(p) denotes the valuation ring of v and Mv

its maximal ideal.

It is possible to give another definition of the complete real spectrum.

Definition 7.2. The elements of SpercA are pairs (p, Q) where p is a real prime
of A and Q is an element of SperHk(p).

There are natural maps

(p, v, P ) 7→ p, (p, v, P ) 7→ (p, v)
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from SpercA into SpecA (the prime spectrum of A) and from SpercA into SpvA
(the valuation spectrum of A), and a natural map

(p, P ) 7→ (p, 0, P )

(where 0 denotes the trivial valuation on k(p)) from SperA into SpercA.

There is also the specialization map

(p, Q) 7→ (p, Q′)

from SpercA onto the space of real places M = MA defined in [51]. Here, Q′

denotes the unique maximal specialization of Q in SperHk(p); also see [14]. The
composite map SperA→MA is just the P-structure map Λ considered in [51].

SpercA is given a topology and turned to be a spectral space. Subbasic open

sets in SpercA are defined using pairs of elements of A. For (a, b) ∈ A × A, we
define:

U(a, b) = {(p, v, P ) ∈ SpercA : v(a) = v(b) 6=∞ and
a+ p

b+ p
+Mv > 0 at P}

Here, v(a) is standard shorthand notation for v(a+ p).

Remark 7.3. It is interesting to note that the complete real spectrum of a formally
real field K is naturally identified with the real spectrum of its real holomorphy
ring HK involved in the diagram 5.3.
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