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Abstract

Estimating the duration of natural immunity induced by SARS-CoV2 infection is crucial in
health policy strategies. A patient infected by the SARS-CoV2 quickly produces three antibody
isotypes IgM, IgG, and IgA that reveal an infection. In this paper, we use a Bayesian two-
component mixture of random coefficient model to capture the longitudinal/temporal evolution
of antibody levels, as well as viral neutralization on the dataset reported by Seow et al. in [1].
We observe that the more severe the symptoms, the more intense antibodies and immunity
responses. And their decline is decelerated with the severity. Moreover, it appears that viral
neutralization is best predicted by the level of IgM or IgA antibody, rather than by IgG level.
Furthermore, our model is particularly suitable to estimate the Probability of being Out of
Detection. Thus, we observe that although antibodies persist for up to 5 months in the plasma,
the probability of becoming undetectable exceeds 50% after 3 months.

KEYWORDS
COVID-19, antibody antigen, viral neutralization, Bayesian mixture model, posterior
predictive distribution.

1. Introduction

The on-going Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic
stresses the need for quantitative methods for evaluating the duration of antibody persistence,
particularly for assessing the likelihood of reinfection. General vaccination policies might benefit
from such a method as infection waves succeed to each other.
A patient infected by the COVID-19 quickly produces three antibody isotypes, IgM, IgG, and
IgA as expressions of prompt, long-lasting, and mucosal immunity, respectively [2, 3]. Numerous
studies show a correlation between a high antibody production and the severity of symptoms [4–
13]. Several techniques were developed for an easy antibody testing, such as kits for testing with
finger-prick capillary blood (lateral flow assays LFAs). If a sufficiently high level of antibody
is present, the test indicates that the result is positive; the patient is then declared seroposi-
tive, seronegative otherwise. But antibody response can be measured with more precision using
enzyme-linked immunosorbent assay, such as ELISA protocol [6], and allows quantitative mon-
itoring of antibody rates.
The presence of antibodies reveals an infection, even if the patient is symptomless. Therefore,
using serological tests appears useful to estimate the prevalence of COVID-19 in a population.
However, knowing the duration of antibody detectability is crucial to better estimate the preva-
lence of the disease. Indeed, antibodies gradually disappear until they become undetectable.
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In [11] Herrington studies the duration of antibody detectability to SARS-CoV-2 using longi-
tudinal data, provided by rapid serological assays, where the response is either seropositive or
seronegative. The percentage of observed-seropositive patients provides sequential estimates of
covid-prevalence. Here, we use sequential serum samples collected by ELISA protocol reported
by Seow et al. in [1]. We model the evolution of antibody rate, in order to estimate at each
time the probability that this antibody becomes undetectable. Such a Probability of being Out
of Detection is denoted as POD in the sequel. POD evolution will provide a modeling of the
evolution of the covid prevalence in the medium term.
In this paper, we propose a Bayesian modeling of the longitudinal profile of antibody levels.
This model can accommodate with possibly low samples sizes, it captures subject-specific de-
viations, and it allows computing the POD at a given future time. More specifically, we use a
Bayesian two-component mixture of random coefficients models and get POD from the posterior
predictive distribution. All results are obtained using the R-software brms.
Firstly, we establish a link between the latent process of belonging to one of the terms of the
mixture, with the severity score. Secondly, we study the expected behavior of future observa-
tions, and specifically the expected maximum amplitude, ranked with respect to the severity
score. From antibodies expected evolution, we quantify the antibody level that should be mea-
sured to ensure that the patient is still immune. Next, we compute POD at a long run time, to
study the duration of antibody persistence.

2. Materials and Methods

2.1. Data description

In [1] Seow et al. provide a longitudinal study of antibody levels for 65 patients infected with
COVID-19, confirmed with a SARS-CoV-2 by RT-PCR assays on nasal and pharyngeal swab
specimen. An increasing severity score was assigned to every patient :

• Group 0 : Asymptomatic patient, or no requirement for supplemental oxygen;
• Group 1/2/3 : Requirement for supplemental oxygen, with fraction of inspired oxygen (FIO2)

≤ 0.8 for at least 12 hours;
• Group 4 : Requirement for intubation and mechanical ventilation or supplemental oxygen,
with fraction of inspired oxygen (FIO2) > 0.8 and peripheral oxygen saturations < 90% for
at least 12 hours;

• Group 5 : Requirement for ECMO.

Due to low sample sizes in the initial Groups 1, 2 and 3, we gathered these patients in a single
group denoted as Group 1/2/3 hereafter. The authors measured the IgG, IgM and IgA response
against S glycoprotein, RBD and N protein by enzyme-linked immunosorbent assay (ELISA)
over multiple time points. Optical density (OD) was measured at 1:50 dilution, and a sample
was considered as low when OD < 0.2 and high when OD > 0.4. The authors also measured
SARS-CoV-2 neutralization potency, called peak infective dose or ID50, using a pseudotyped
HIV incorporating the S glycoprotein of SARS-CoV-2, with 50 as level detection. ID50 may be
interpreted as a primary assessment of SARS-CoV-2 immunity response [14]. In the sequel, we
perform our statistical modeling on the log-transformed data. Figure 2 displays longitudinal
titers evolution for patients, and shows that whole IgG S, IgM S, IgA S and Id50 PV titers
have similar evolution, with a plateau feature.

2.2. Bayesian modeling principles

In this section, we provide an overview of the essential tools for Bayesian estimation of the
(posterior) Probability Of non Detectability (POD). For pedagogical purposes, we first obtain
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the POD for the standard linear regression with conjugate prior specification and then for the
random coefficient model with vague prior. The latter case involves the use of Markov Chain
Monte Carlo methods (MCMC) which principles are briefly described hereafter. Finally, we
describe how to evaluate the POD for a two-component mixture of random coefficient models,
which offers the best fit to our complex data. All analyses have been performed using the brms
R-package [15].

2.2.1. Bayesian analysis in a nutshell

We adopt a fully Bayesian approach for our data analysis. Three main reasons motivated this
choice. First, we have a restricted number of observations over the time for each subject, while
comparatively many parameters will be needed to properly model the phenomenon and its
variability. Second, we aim at performing prediction and getting uncertainty quantification.
Third, the Bayesian framework is particularly well-adapted for mixture and for multilevel
modeling.

In a (parametric) Bayesian framework, we specify a (parametric) probabilistic model on our
data. We call it likelihood and write hereafter p(y|θ) where θ is the vector of unknown param-
eters. The model parameters are treated as random variables, they are given prior probability
distributions π(θ) := π(θ |θ0) defined on the parameter space denoted hereafter as Θ. θ0 are
called hyperparameters and are often assumed to be known. Bayesian inference consists in
updating our knowledge about the (distribution of the) parameters using the Bayes theorem:

π(θ|y) = p(y|θ)π(θ)
p(y)

∝ p(y|θ)π(θ).

π(θ|y) is the so-called posterior distribution of θ. ∝ stands for ’proportional up to a multiplica-
tive constant’ which does not depend on θ. The posterior distribution ’pools’ all information
about the parameters from the data and from the prior. In some specific situations this posterior
distribution can be made explicit, but most of the time it requires Markov Chain Monte Carlo
(MCMC) type algorithms to be exploited ([16]). Basically, those algorithms output (dependent)

random draws from the posterior distribution, we denote them as
{
θ(m), 1 ≤ m ≤ M

}
. Con-

sidering the Monte Carlo principle for dependent data, ergodic theorem applies, ensuring the
convergence of empirical averages to the expectation E(g(θ)) for any well-behaved function of
the parameters g(·):

1

M

M∑
m=1

g(θ(m)) → E(g(θ)). (1)

Typical examples are g1(x) = x, g2(x) = x2, g3(x) = 1l{x≤a}, where notation 1l refers to the
indicator function and a can be chosen such that P (X ≤ a) = 1−α, α ∈]0, 1[. Posterior estima-
tion of quantile allows us to evaluate two-sided Bayesian credible intervals at level (1−α)100%,

i.e., an interval [a, b] such that
∫ b
a π(θ|y)dθ = 1− α and

∫ a
−∞ π(θ|y)dθ =

∫ +∞
b π(θ|y)dθ = α/2.

The Bayesian framework is particularly convenient for prediction and uncertainty quantifica-
tion. A key quantity for model checking and prediction is the posterior predictive distribution.
Consider a future observation ỹ arising from the same distribution as y|θ, assume that y and
ỹ are conditionally independent given θ, denoted as ỹ ⊥ y|θ, then the posterior distribution is
given by:
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p(ỹ|y) =
∫
Θ
p(ỹ|θ)π(θ|y)dθ, (2)

where Θ is the parameter space.

In practice, we can use the random draws from posterior distribution to get the distribution of
ỹ|y. More specifically, for each Monte Carlo iteration 1 ≤ m ≤ M :

• generate θ(m) from the posterior distribution : θ(m) ∼ π(θ|y),
• generate ỹ(m) from the posterior distribution : ỹ(m) ∼ p

(
y|θ(m)

)
.

In the sequel, we assess model accuracy from graphical posterior predictive checks, as suggested
in [17, 18]. It consists in checking the quality of the fit of the model by superposition of the
data alongside the predictions from the fitted model. Furthermore, we consider two information
criteria for model selection: the widely applicable information criterion (WAIC), introduced by
Watanabe in [19] and the approximate leave-one-out cross-validation based on the posterior
likelihood (looAIC) [19, 20].
In Section 2.2.4, our data models require the introduction of latent variables. The observations
are then viewed as a marginal outcome from a more complex experiment involving unobserved,
latent variables. They are modeled using a complete data likelihood that is denoted as pc(y, z|θ),
where z ∈ Z is a latent variable. Bayesian inference consists in obtaining the joint complete
posterior and integrating out the latent variable to infer on the parameters.

π(θ|y) =

∫
Z
π(z,θ|y)dz =

∫
Z

pc(z, y|θ)π(θ)
p(y)

dz

≈
∫
Z
p(y|θ, z)p(z|θ)π(θ)dz.

Under the assumption that the joint complete likelihood of the future observation is the same
as the joint distribution of y, z|θ, we can derive the posterior predictive distribution in order
to perform prediction, model assessment and ultimately to compute POD. As described in the
next sections, the POD is obtained by exploiting the posterior predictive distribution in linear
regression models. For the sake of clarity of our presentation, we describe it first in the simplest
instance of standard linear regression with conjugate prior.

2.2.2. Simple regression model (LM)

The serum samples were collected on infected individuals, sequentially, at times t1, · · · tr, pro-
viding a structural dependence between antibody level successively measured on a given patient.
As shown in [1], and illustrated in Figure 2, antibody titers first increase, then reach a plateau
before decreasing slightly. A quadratic function of time appears suitable for longitudinal anti-
body evolution. Thus, at a given time tj , j = 1, · · · , r (number of days post onset symptoms),
the antibody level is modeled with the following Bayesian linear model:

ytj |b, σ2
ε

i.i.d︷︸︸︷∼ N
(
µtj , σ

2
ϵ

)
,

µtj = b0 + b1 tj + b2 t
2
j ,

(3)
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where the parameter b = (b0, b1, b2)
′ represents the global evolution of antibody titer (called

fixed effect). The likelihood is given by p(y|θ) =
∏T

j=1 p(ytj |θ), where θ = (b, σ2
ε)

′. If one

considers the following prior specification, (b, σ2
ε) ∼ NIG(m,V, γ, β), then it is easy to show

that the joint posterior distribution is (b, σ2
ε)|y ∼ NIG(m∗, V ∗, γ∗, β∗), where the parameters

(m∗, V ∗, γ∗, β∗) are a combination of prior, observations and design matrix information that we
do not need to give explicit form here.
The posterior predictive distribution of a future observation at time t, ỹt, is directly ob-
tained from Equation (2). In this precise example, it is a Generalized Student distribution
tp(m

∗, V ∗, γ∗, β∗) (see [21]).
More generally, we are interested in two quantities:

• E(t) := IE(ỹt | y), standing for the global behavior of a future observation;
• POD(t, v) := IP (ỹt ≤ v | y), representing the posterior POD, under threshold v, at time
t, that can be denoted siwe mply POD(t) when threshold v is known and fixed.

Both E(t) and POD(t, v) will be estimated as the average over Monte-Carlo iterations, possibly
specified with a credible interval.

E(t) := IE(ỹt | y) =

∫ +∞

−∞
ỹt p(ỹt|y)dỹt

=

∫
Θ

∫ +∞

−∞
ỹt p(ỹt|θ)dỹtπ(θ|y)dθ; (4)

POD(t, v) := IP (ỹt ≤ v | y) =

∫ v

−∞
p(ỹt|y)dỹt

=

∫
Θ

∫ v

−∞
p(ỹt|θ)dỹtπ(θ|y)dθ. (5)

The last integrals in Equations (4) and (5) are of the form of Equation (1) with

gE(t)(θ) =

∫ +∞

−∞
ỹt p(ỹt|θ)dỹt and

gPOD(t,v)(θ) =

∫ v

−∞
p(ỹt|θ)dỹt.

Therefore E(t) and POD(t, v) can be approximated from posterior draws as follows

E(t) ≈ 1

M

M∑
m=1

IE
(
ỹt |θ(m)

)
; (6)

POD(t, v) ≈ 1

M

M∑
m=1

IP
(
ỹt ≤ v |θ(m)

)
, (7)

where θ(m) = (b(m), σ
2,(m)
ε )′ is generated from the joint posterior distribution π(θ|y). Further-
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more, Equations (3), (6) and (7) provide

E(t) ≈ 1

M

M∑
m=1

µ
(m)
t ; (8)

POD(t, v) ≈ 1

M

M∑
m=1

Φ

(
v − µ

(m)
t

σ
(m)
ε

)
, (9)

where Φ is the standard Normal cumulative distribution function, and parameters (µ
(m)
t , σ

2,(m)
ε )

are expressed in Equation (3.

2.2.3. Random coefficient model (BLM)

Our previous modeling approach does not consider the potentially important patient-specific
deviations in titers trajectories. We adopt the random coefficient model by introducing for each
patient 1 ≤ i ≤ n the random coefficients β

i
= {(β0,i, β1,i, β2,i)}. Hence, the titer at time

ti,j (j = 1, · · · , ri) for subject i (i = 1, · · · , n) is modeled as follows:


yi,ti,j |b, βi

, σ2
ϵ

i.i.d︷︸︸︷∼ N
(
µti,j + νi,ti,j , σ

2
ϵ

)
,

µti,j = b0 + b1 ti,j + b2 t
2
i,j ,

νi,ti,j = βi,0 + βi,1 ti,j + βi,2 t
2
i,j ,

(10)

with β
i
|Σβ ∼ N3(0,Σβ). We assume that random effects are independent, so that Σβ is a

diagonal matrix with diagonal denoted by (τ0, τ1, τ2).

The likelihood p(y|θ) =
∏n

i=1

∏ri
j=1 p(yi,ti,j |θ), where θ =

(
b,
{
β
i

}n

i=1
, σ2

ε

)′
. We set the prior

distributions on the unknown parameters to be as follows:

t(b0, b1, b2) ∼ N3(m,V ),

σ−2
E ∼ Half-Cauchy(0, 50),

Σ−1
β ∼ Wishart3(W, ν),

where ν > 0 and V,W are definite-positive (3× 3)-matrix.
We are still interested in both the expectation of a future observation for the subject i and its
POD, denoted respectively by Ei(t) and PODi(t, v), and defined as in Equations (4) and (5), but
where ỹt is replaced by ỹi,t. In the present case, the posterior is no longer analytically tractable,
then we obtain these subject-specific quantities from the posterior draws, implementing this
Bayesian model in the brms R-package. Following the same principle as in Equations (6) and

(7), where ỹt is replaced again by ỹi,t, and where θ(m) = (b(m), β(m)
i

, σ
2 (m)
ε )′, we obtain an
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expression for Ei(t) and PODi(t, v) that are similar to Equations (8) and (9). Consequently,

Ei(t) ≈ 1

M

M∑
m=1

(
µ
(m)
t + ν

(m)
i,t

)
;

PODi(t, v) ≈ 1

M

M∑
m=1

Φ

v −
(
µ
(m)
t + ν

(m)
i,t

)
σ
(m)
ε

 ,

where parameters (µ
(m)
t , ν

(m)
i,t , σ

2,(m)
ε ) are expressed in Equations (10).

2.2.4. Two-component mixture of random coefficient models (BMLM)

Mixture of linear regressions were introduced to deal with non-linearity ([22–24]), and have been
proved useful in many applications, such as in [25–27]. Our observations now consist of pairs{
(yi,ti,j , zi,ti,j ); 1 ≤ i ≤ n; 1 ≤ j ≤ ri

}
, where the zi,ti,j ’s are binary latent variables. They specify

from which random coefficient model, labelled {A,B}, the observations ti,j , 1 ≤ j ≤ ri, from
patient i arise:

zi,ti,j =

 1, if yi,ti,j |b(A), β(A)
i

, σ
2,(A)
ε ∼ N

(
µ
(A)
ti,j + ν

(A)
i,ti,j

, σ
2,(A)
ε

)
0, if yi,ti,j |b(B), β(B)

i
, σ

2,(B)
ε ∼ N

(
µ
(B)
ti,j + ν

(B)
i,ti,j

, σ
2,(B)
ε

)
.

The conditional distribution of the observations and latent variables can be described as follows:

{
yi,ti,j |θ, λ(A) ∼ λ(A) N

(
µ
(A)
ti,j + ν

(A)
i,ti,j

, σ
2,(A)
ε

)
+ (1− λ(A)) N

(
µ
(B)
ti,j + ν

(B)
i,ti,j

, σ
2,(B)
ε

)
,

zi,ti,j |λ(A) ∼ Be(λ(A)), with zi,ti,j = zi,ti,j′ , ∀ 1 ≤ j, j′ ≤ ri.

where λ(A) ∈]0, 1[ and coefficients µ
(A)
ti,j , µ

(B)
ti,j , ν

(A)
ti,j and ν

(B)
ti,j are defined with the same expression

as in Equation (10). and θ = (θ(A),θ(B))′, with, θ(K) =
(
b(K),

{
β(K)
i

}n

i=1
, σ

2(K)
ε

)′
, for K ∈

{A,B}. For notations simplicity, let us define λ = (λ(A), λ(B)), where λ(B) = 1 − λ(A). In
addition, we introduce Zi,ti,j with values in {A,B} such that zi,ti,j = 1l{Zi,ti,j

=A}. The complete

data likelihood is

pc(y, z|θ, λ(A)) =

n∏
i=1

ri∏
j=1

∏
K∈{A,B}

(
λ(K) p(yi,ti,j |θ(K))

)1l{Zi,ti,j
=K} .

For the sake of brevity, we do not write down the prior specification that is setted up similarly
as in Section 2.2.3. Just remark that the standard prior to be put on the parameter λ(A) is a
beta distribution. The posterior distribution in this case is not tractable and MCMC strategies
are developed to obtain posterior draws from which we will obtain the predictive posterior
distribution. From Equation (2),
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p(ỹi,t|y) =

∫
Θ
p(ỹ|θ)π(θ|y)dθ

=

∫
Θ

 ∑
K∈{A,B}

p(Z̃i,t = K)p(ỹi,t|θ(K))π(θ(K)|y)

 dθ,

The posterior predictive distribution in the BMLM is obtained as follows. For each 1 ≤ m ≤ M :

• z̃
(m)
i,t ∼ p(z̃i,t|λ(A,m−1), y),

• θ(m) ∼ π(θ|z̃(m)
i,t , y),

• ỹ
(m)
i,t ∼ p(ỹi,t|z̃(m)

i,t ,θ(m)).

The posterior probability for an observation to be labelled A or B, is estimated by Monte-
Carlo:

IP(Zi,ti,j = A) ≈ 1

M

M∑
m=1

λ
(A,m)
i,ti,j

,

where, λ
(A,m)
i,ti,j

denotes the posterior probability that the observation yi,ti,j originates from com-

ponent A, when using parameters θ(A,m), obtained in the mth-posterior draw :

λ
(A,m)
i,ti,j

=
λ(A,m) p(yi,ti,j |θ(A,m))∑

K∈{A,B} λ
(K,m) p(yi,ti,j |θ(K,m))

. (11)

Note that to ensure parameters identifiability, we impose that ∀m, b
(A,m)
1 < b

(B,m)
1 . Then we

obtain

λ(A) ≈ 1

M
∑n

i=1 ri

M∑
m=1

n∑
i=1

ri∑
j=1

λ
(A,m)
i,ti,j

.

As previously, we approximate the expectation of a future observation for the subject i, and its
POD by

Ei(t) ≈ 1

M

M∑
m=1

∑
K∈{A,B}

λ(K,m) ×
(
µ
(K,m)
t + ν

(K,m)
i,t

)
; (12)

PODi(t, v) ≈ 1

M

M∑
m=1

∑
K∈{A,B}

λ(K,m)Φ

v −
(
µ
(K,m)
t + ν

(K,m)
i,t

)
σ
(K,m)
ε

 . (13)

where parameters (µ
(K,m)
t , ν

(K,m)
i,t , σ

2 (K,m)
ε ), for K ∈ {A,B}, are expressed in Equations (10).
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Finally, let us introduce

E
(m)
i (t) :=

∑
K∈{A,B} λ

(K,m)
(
µ
(K,m)
t + ν

(K,m)
i,t

)
; (14)

POD
(m)
i (t, v) :=

∑
K∈{A,B} λ

(K,m)Φ

(
v−(µ(K,m)

t +ν
(K,m)
i,t )

σ
(K,m)
ε

)
. (15)

3. Results

3.1. Mixture is suitable

Using brms R-package, introduced by B¨urkner in [15], we studied the logarithm of IgG, IgM,
IgA and ID50 titers either with a (BLM) or with a (BMLM) model, as defined respectively
in Subsections 2.2.3 and 2.2.4. We consider a quadratic time-regression both for fixed and for
random effects, nesting random effects within patients. Moreover, we take population-level priors
as Gaussians, whereas standard deviation parameters are taken following a half Student-t prior
with 3 degrees of freedom and a large scale parameter, equal to 10, which ensures non-negativity
and a non-informative prior.

We assess model accuracy from posterior predictive checks, as suggested by Gelman et al.
in [17]. It consists in drawing simulated values from the posterior predictive distribution (see
Equation (2)) and in comparing them to the real data. A good model should exhibit small
discrepancies between real and simulated data. In the Figure 4, we superimpose the real data
distribution and 10 draws from the posterior predictive distribution, denoted respectively as y
and yrep. The first column displays the posterior predictive checks for the random coefficient
models (BLM). It reveals that it cannot capture neither the heavy-tailed left-skewed distribu-
tion of antibody titers nor the bimodal distribution of ID50 titer. On the contrary, Bayesian
Mixture of Linear Model (BMLM) provides better abilities to fit the data, as shown on the
second column of the Figure 4. Moreover, this feature is corroborated by model selection criteria
of the Table 1 which largely favor the (BMLM) over the (BLM). Consequently, involving a
mixture of regressions is more accurate for all the antibody and ID50 titers.

Note that even if we allow correlations between the parameters of the coefficients of the model
(BMLM), when running model estimation, coefficients are not significantly correlated. So we
can assume that they are uncorrelated.
We have demonstrated the need for a two-component mixture model. Nevertheless, the nature
of the latent process remains to elucidate. Some exogenous variables may induce differences in

either antibody or immune response. We have extracted the membership probabilities λ
(A,m)
i,ti,j

associated to every observation, as introduced in Equation (11). We confronted membership
probabilities and the only exogenous variable at our disposal, i.e. the severity score of the
patient to whom the observation is associated. For each replicate, we estimated the probability
that a severity score SSk was associated with group A by averaging the realizations of the latent
values by severity score. In other words, we consider

λ
(A,m)
SSk

=
1

rSSk

∑
i∈SSk

ri∑
j=1

λ
(A,m)
i,ti,j

,

where rSSk
=
∑
i∈SSk

ri designates the total number of observations associated with patients whose

severity score is SSk. Figure 3 displays these membership probabilities by severity score for
each antibody. We can see that each severity group has homogeneous membership probabilities,
and that they even manage to discriminate patients according to their severity score. Thus,
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for IgM and IgA antibodies, and a little less distinctly for IgG, each severity group has well
differentiated probabilities. This is also true for Id50, when comparing symptomatic patients.
Thus, the latent variable is very strongly related to the severity score, but there remains another
underlying process that explains the evolution Id50 levels for asymptomatic patients. We deduce
that patient’s classification is directly related with severity score for antibody level, whereas
heterogeneity in immune response results from a more complex process.

3.2. Individual long-term evolution

3.2.1. Behavior comparison between severity scores

As the best model, (BMLM) is used to infer posterior predictive distribution for the logarithm
of antibodies and Id50 titers. In this subsection, we study the expectation of a future observation,
denoted by Ei(t). By taking t from one day up to 180 after infection, and by computing the
exponential, we infer the global long-term evolution for a future observation. Figure ?? displays
the exponential estimations Ei(t) := eEi(t), averaged by disease severity group. Figure ??
shows that, in agreement with [1, 4], similar kinetics of antibody responses are observed, with
an initial peak, followed by a declining phase, but with various amplitudes. Specifically, we
compare the Maximum Amplitude (MA) for exponential evolutions Ei, between severity score
groups. Let us recall, from Equation (12), that Ei(t) is defined as the average of the M = 7000

draws E
(m)
i (t),m = 1, · · · ,M . Furthermore, Equation (14) expresses E

(m)
i (t) according to the

estimated parameters value θ(m) :

E
(m)
i (t) = a

(A,m)
i,0 + a

(A,m)
i,1 t + a

(A,m)
i,2 t2 ,

where, for k = 0, 1, 2,

a
(m)
i,k =

∑
K∈{A,B}

λ(K,m) (b
(K,m)
k + β

(K,m)
i,k ) .

Then the maximum amplitude is reached at time −
a
(m)
i,1

2 a
(m)
i,2

, and is equal to

MA
(m)
i := e

a
(m)
i,0 −(

a
(m)
i,1 )

2

4 a
(m)
i,2 .

We then define the maximum amplitude associated to every patient i as

MAi :=
1

M

M∑
m=1

MA
(m)
i .

To compare maximum amplitudes between severity-score groups, we use posterior chains to
estimate the probabilities that the MA of an SSk-patient to be lower than the MA of an SSl-

patient, when k < l. For a given iteration m, and any time t, we denote by Π
MA(m)
k vs l (t) the

proportion of times an SSk patient has a lower MA than an SSl patient, over all SSk- versus
SSl-patient pairs. In other words,

Π
MA(m)
k vs l =

1

nk × nl

∑
i∈SSk, h∈SSl

1lMA
(m)
i <MA

(m)
h

.
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The probability of an SSk patient having a lower MA than an SSl patient is then calculated by
averaging over the M draws, and denoted by ΠMA

k vs l. In the same way, a 80%-credibility interval, is
computed from quantile samples. Table 2 displays MA comparison probabilities between severity
scores. By displaying values higher than 0.5, Table 2 confirms, as observed in particular cases
in [4–13], that the lower the severity score, the lower the MA. Thus, asymptomatic patients
globally have a lower response (all ΠMA

0 vs k > 0.5, for k=1/2/3, 4 and 5). But we observe in
addition that this process remains true for all the other comparisons, except when comparing
most severely affected patients (SS4 against SS5) for IgM and ID50 titers. In conclusion, we
obtain that the more severely the patient is affected, the more important the amplitude for both
IgG and IgA antibodies. It remains true for IgM and ID50 titers, except that severely affected
patient (severity score ”4” versus ”5”), show an atypic behavior for these titers. Then, it should
be noted that the more severely affected a patient is, the higher the peak protection, except for
very severely affected patients who lose this immune advantage compared to severely affected
patients. In terms of immunity, it seems advantageous to be highly affected, but not too much.

3.2.2. Immunity predicted from antibody titers

Rapid antigenic tests can reveal whether an individual has ever been in contact with the virus,
by indicating the presence or absence of specific antibodies, such as IgG and/or IgM. But does
antibody presence mean immunity ? More precisely, what is the minimum antibody level that
should be measured to ensure that the patient is still immune ? In other words, what is the
relevance of a diagnosis that concludes that a patient is immune as soon as his antibody level
exceeds a certain threshold ? To investigate this question, we explore a large set of thresholds,
and evaluate diagnosis on the individual long-term estimates previously generated. For each type
of antibody IgX (with X=G, M or A), 500 thresholds (denoted as vX,1, · · · vX,500) are set that
scan the range of estimated values from 0 to 180 days for that antibody IgX, for all individuals
combined. The question is whether this threshold vX,j for antibody IgX is appropriate to ensure
immunity. In other words, does IgX > vX,j really imply Id50 > 50 ?

The relevance of a diagnostic test is evaluated by its sensitivity and specificity. In our case,
test sensitivity is the probability that the test will be positive if the person is truly immune.
It is the number of true positives (estimates with IgX antibody above the given threshold vX,j

in immunized persons at the same time, i.e. with Id50 > 50) divided by the total number of
estimates under immunity. Whereas, specificity is the probability that the test will be negative
for a person who is not immune. It is the proportion of true negatives (estimates with IgX
antibody below the given threshold vX,j in not-immunized persons at the same time, i.e. with
Id50 below 50) among all non-immune estimates. Note that an optimal diagnosis has both a
sensitivity and a specificity equal to 1, whereas a random guess means that sensitivity and
specificity are equal to 0.5.

In Figure 5, we construct a ROC curve for antibodies IgG, IgM and IgA, by plotting sensitivity
versus 1-specificity computed at thresholds vX,j with j = 1, · · · , 500. The optimal diagnosis is
located in the upper left corner. The closer the points on the ROC curve to the ideal coordinate,
the more accurate the test is. As expected, Figure 5 shows that antibody diagnosis is not
optimal, but its relevance highly depends on the threshold taken as seropositivity-limit. With
the current limit fixed at 0.4, IgM turns out to be the least efficient, followed by IgG, and IgA
being the most reliable (resp. distances from usual diagnosis to the theoretical optimal diagnosis
d■,IgG = 0.51, d■,IgM = 0.52 and d■,IgA = 0.42). Unfortunately, IgA titer is rarely sought in the
usual blood tests. But, choosing the convenient limit for seropositivity, given as vIgM = 0.921
makes IgM titer as efficient as IgA (resp. distances from antibody-titers optimal diagnosis to
the theoretical optimal diagnosis d•,IgG = 0.49, d•,IgM = 0.40 and d•,IgA = 0.40). We thus find
the same results as in [28] which indicate that immunity is associated with IgM.
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3.3. POD at a long run time

The duration of antibody persistence is an important issue [7], especially in assessing the likeli-
hood of reinfection. Some authors [7, 11, 29, 30] attempt to answer this question by observing
patients sequentially and either averaging or calculating the proportion of seropositive patients
at each sampling time. In this paper, we propose a more subtle approach based on a proper
modeling of the levels of antigen.
We use the M = 7000 posterior draws to compute the probability of a given patient to be
seronegative at any time t, that we called Probability to be Out of Detection, and denoted by
POD. Given the mth realization of a posterior chain, we use Equation (15) to calculate, for

each patient i, for each time t, the probability POD
(m)
i (t), that the considered titer has a value

lower than its associated detection-threshold. Next, as in Equation (13), we compute PODi(t)
the mean of these probabilities, averaged on the M draws, for a given patient i, at a given time
t.

To illustrate the effect of severity score on POD evolution, we average the POD values by

severity score. In other words, at any time t, for any draw m, we denote by POD
(m)
SSk

(t) the
mean of the POD of the nk patients with severity score SSk :

POD
(m)
SSk

(t) =
1

nk

∑
i∈SSk

POD
(m)
i (t) . (16)

Next, we can average POD
(m)
SSk

(t) on the M draws, which is equal to the mean of individual
PODs, within a given severity score. In other words,

PODSSk
(t) =

1

M

M∑
m=1

POD
(m)
SSk

(t) (17)

=
1

nk

∑
i∈SSk

PODi(t) . (18)

As described in Equation (18), PODSSk
evolution represents the average behavior of the POD

within each severity-score group. Figure 6 displays PODSSk
(t) over a period of up to six months.

It shows that the lower the severity score, the higher the POD. This is due to the fact that
a low safety score is associated with a low level of antibodies, thus more easily undetectable.
Moreover, for IgG, IgM and IgA antibodies, asymptomatic individuals are distinguished from
the others by a curve far above those associated with the other severity scores. Note that this
effect is more marked and more durable for IgA. On the other hand, for ID50 titer, we observe
that it is the weakly affected patients (with a severity level equal to ”0” or ”1/2/3”) who stand
out, at least during 3 monthes.

Table 3 provides POD values averaged by severity score at specific times. The main values
are PODSSk

(t), as defined in Equation (17), and specified with a 80%-credibility interval. In
details, the 10%-quantile, such as the 90%-quantile are calculated from the M posterior draws

of POD
(m)
SSk

(t), defined in Equation (16). Table 3 confirms that a lower severity score is globally
associated with a higher POD. In table 3, credibility intervals overlap for IgG and IgM titers.
It is therefore not possible to assess whether the difference is significant. But it appears clearly
that for IgA, POD is significantly higher for asymptomatic patients with respect to the others,
up to at least two months, whereas for ID50, slightly affected patients (with severity score ”0”
or ”1/2/3”) have a higher POD during only one month. Globally, the difference between the
groups tends to decrease over time.

Moreover, we also provide global behaviors, by averaging overall the patients, whatever its
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severity score. Let us denote by n the total patients number, and introduce, for any draw m,

POD(m)(t) =
1

n

n∑
i=1

POD
(m)
i (t) .

We further denote by POD(t) the value averaged over the M draws. Note that POD(t) is
also equal to the average of PODSSk

(t) values weighted by nk, the number of patients in
each severity-score group. We additionally compute 10%- and 90%-quantiles from POD(m)(t).
In Table 3, lines referred to as ”GLOBAL” in Table 3 display POD(t) values, specified with
their associated 80%-credibility score. We observe that after 6 months, the antibodies become
undetectable for most patients (around 74% for IgG, 82% for IgM and 80% for IgA), but that
immunity is still present for nearly half of them (47%). Consequently, the IgM-response is less
durable than the IgG-response, as observed by Herrington in [11].

To determine whether POD difference between severity-score groups is significant, in an
accurate way, we use posterior chains to estimate the probabilities that the POD of an SSk-
patient to be higher than the POD of an SSl-patient, when k < l. For a given draw m, and

any time t, we denote by Π
POD(m)
k vs l (t) the proportion of times an SSk patient has a higher POD

than an SSl patient, over all SSk- versus SSl-patient pairs. In other words,

Π
POD(m)
k vs l (t) =

∑
i∈SSk, h∈SSl

1lPOD
(m)
i (t)>POD

(m)
h (t)

nk × nl
.

The probability of an SSk patient having a higher POD than an SSl patient is then calculated
by averaging over the M draws, and denoted by ΠPOD

k vs l(t). In the same way, a 80%-credibility
interval, is computed from quantile samples.

Supplementary Table S1 displays POD comparison probabilities between severity scores at
specific moments, accounting for their long-term evolution. By displaying values higher than
0.5, it confirms that the lower the severity score, the higher the POD, in almost all cases. Here,
Figure 7 displays the mean values ΠPOD

k vs l(t), standing for the estimation of POD comparisons.
It is striking to see that IgG- and IgA-detectability globally remains higher for patients with
severity score SSl than for less severely affected patients (with severity score SSk, where k < l) at
least 6 months, whatever the comparison pairs SSk versus SSl. This effect is also observable for
immunity detection, in terms of ID50-detection, for at least 5 months, except when comparing
together most poorly (resp. most severely) affected patients, that is SS0 versus SS1/2/3 (resp.
SS4 versus SS5). Finally, IgM-detectability globally remains lower for asymptomatic patients
than for others, during at least 6 months. As a conclusion, a previous infection by Covid-19
disease leaves traces in terms of antibodies, all the more easily detectable if the individual has
been more severely affected, and this effect lasts at least 6 months. With regard to immunity,
a previous infection by Covid-19 disease also generates a more pronounced immune response
for more severely affected patients, during about 5 months; after this period, immune response
becomes similar regardless of the severity with which the patient was affected.

4. Discussion

In this analysis, we retain a rather sophisticated two-component mixture of random coefficient
models. The information criteria we considered as well as the graphical assessments of posterior
predictive checks move in this direction. Being in a Bayesian framework, then offers us several
advantages. In particular, we could estimate the POD by direct exploitation of the posterior
draws. Moreover, as a full probabilistic model, it could cope with possibly small sample sizes.
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We recall that the expectation of the posterior distribution stands for the estimated global
behavior of each titer. By averaging estimates by severity score, we obtain a similar pattern in all
titers evolution : a peak followed by a decay well below the detection limit. But we observe that
the intensity and the persistence of antibodies expression, such as immunity response, are related
to the severity of the symptoms. Asymptomatic patients show moderate and transient antibody
expression while patients with a higher severity score show more intense and persistent antibody
levels. Actually, disease severity correlates with risk factors such as age or gender [7, 31–33].
Consequently, antibody levels also correlate with such social factors.

In our study, more than half of the patients have an undetectable level as early as 2 or
3 months after infection. The relatively rapid decline in the presence of antibodies to a level
too low to be detectable, and the high proportion of asymptomatic patients who do not get
tested, suggests that the prevalence of SARS-CoV-2 is underestimated, as is its virulence [11].
Moreover note that in Herrington’s study [11], the author exploits data from serological tests
to quantify the persistence of IgG- and IgM-antibody presence after Covid-19 infection. Each
individual performs multiple sequential serological tests (with in-home testing of finger-prick
capillary blood), until six months after the first positive test. The author provides a Table
with the percentage of seronegative patients at specific times, which seems similar to the line
”GLOBAL” in our Table 3. But the results obtained are not directly comparable. Indeed, on
the one hand, the author uses direct observations rather than a model. On the other hand,
his data are binary (sero-positive versus sero-negative), thus less precise than our quantitative
data. And finally, be careful not to transpose the results directly because the reference time
is the date of the first positive test in Herrington’s paper, whereas we consider the time since
symptoms onset, which has a negligible impact for IgG-antibodies, but it may induce a shift
in the time scale for IgM-antibodies, for which our initial time probably corresponds to the
observations collected at one month in [11]. Nevertheless, Herrington obtains a percentage of
seronegative patients beyond 6 months which is compatible with our results in the table (IgG:
71% in our range [0.58 ; 0.87], IgM: 93% corresponds to the high limit of our credibility interval
[0.71 ; 0.92]). The advantage of our approach is to use a model to estimate the persistence of the
antibody response, rather than direct observation. It is therefore not necessary to take samples
from subjects for six months. About three months of observation is sufficient to predict long-
term behavior. Our Bayesian mixture linear regression model could not apply to such binary
data, but We could adapt our methodology, by using a Bayesian mixture for logistic regression.

In addition, there is also the question of the persistence of the immunity of a patient already
affected by this disease. How fast does it decrease and is it related to the measured antibody
level ? Thus we studied the relationship between antibody levels and patient immunity. It turns
out that IgA and IgM antibodies are naturally more predictive of the patient’s immunity than
the IgG antibody, which is the most analyzed. On the other hand, to infer immunity from one
of these antibody levels, a suitable threshold must be considered, which may be quite far from
the usual thresholds, which are for example used in rapid serological tests.

5. Conclusion

Our study allows describing the evolution of the detectability of COVID-19, in particular ac-
cording to the severity with which the patient was affected. We observe that a more severely
affected patient keeps more marked traces in terms of presence of antibodies. Similarly, the
immunity in terms of ID50 is globally less present in a patient with a low level of disease.

The POD study confirms the relatively rapid decrease of antibodies, which leads to a re-
estimation of the prevalence of covid upwards, but its virulence downwards. However, it is
important to note that the immunity unfortunately has the same decreasing trend while it
stabilizes for a significant proportion of patients. This implies that immunity relies not only on
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the presence of antibodies, but also on other processes such as T-cells, which could maintain
immunity in the longer term.

Our methodology can be adapted to other types of data. For example, using data from Phase 3
clinical trials of a vaccine, it could be possible to determine the duration of the immune response
produced by the candidate vaccine, possibly as a function of patient characteristics such as age
or comorbidities. Binary data such as Herrington’s are easier to obtain with in-home testing of
finger-prick capillary blood, but less accurate than measuring the antibody value. Nevertheless,
we have shown that they are not without interest. On the one hand, they can be used directly
by adapting our methodology with a logistic regression. On the other hand, seropositivity to a
specific antibody would allow inducing the persistence of an immunity, provided that adequate
thresholds for seropositivity are chosen, these thresholds having been calibrated by a preliminary
study.
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Tables

WAIC looAIC
Titer (BLM) (BMLM) (BLM) (BMLM)
IgG 845.9 512 858.8 539
IgM 659.5 377.5 683 413.2
IgA 874.3 632.8 894.1 645.2
Id50 1021.8 938.8 1040.4 958

Table 1. Models comparison criteria for the four titers.

Severity

score IgG IgM IgA ID50

”0 vs 1/2/3” 0.57 [0.43; 0.70] 0.65 [0.53; 0.76] 0.67 [0.55; 0.78] 0.57 [0.47; 0.67]

”0 vs 4” 0.62 [0.47; 0.75] 0.72 [0.62; 0.82] 0.73 [0.63; 0.82] 0.84 [0.78; 0.90]

”0 vs 5” 0.67 [0.46; 0.86] 0.65 [0.49; 0.79] 0.77 [0.64; 0.89] 0.87 [0.77; 0.95]

”1/2/3 vs 4” 0.53 [0.42; 0.64] 0.57 [0.45; 0.68] 0.56 [0.45; 0.67] 0.78 [0.70; 0.84]

”1/2/3 vs 5” 0.59 [0.42; 0.75] 0.49 [0.33; 0.64] 0.59 [0.44; 0.74] 0.76 [0.65; 0.86]

”4 vs 5” 0.57 [0.39; 0.74] 0.41 [0.26; 0.56] 0.54 [0.40; 0.67] 0.39 [0.29; 0.49]

Table 2. Comparison probabilities of maximum amplitude between severity scores. The probability of an SSk patient

having a lower amplitude than an SSl patient was calculated by averaging over the M draws and over all SSk vs SSl

patient pairs, the number of times an SSk patient has a lower maximum value than an SSl patient, where k < l. The
main value stands for the mean, specified with a credibility interval at level 80%. When the interval does not contain 0.5,

then titers value is significantly lower for patients with severity score SSk than those with SSl. More precisely, an SSk

patient is considered to have a significantly lower amplitude than an SSl patient if the 10%-quantile, over the M draws, of
the proportion of times an SSk patient has a lower amplitude value than an SSl patient, among all pairs of SSk vs SSl

patients, exceeds 0.5. Red bold values stand for significant probabilities.
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Severity

Titer score 30 days 60 days 90 days 180 days

IgG ”0” 0.19 [0.13; 0.24] 0.15 [0.09; 0.22] 0.32 [0.17; 0.46] 0.78 [0.60; 0.94]

”1/2/3” 0.20 [0.14; 0.25] 0.16 [0.08; 0.25] 0.23 [0.09; 0.40] 0.72 [0.56; 0.88]

”4” 0.16 [0.10; 0.22] 0.13 [0.06; 0.20] 0.19 [0.07; 0.32] 0.75 [0.58; 0.89]

”5” 0.15 [0.08; 0.22] 0.13 [0.04; 0.22] 0.19 [0.05; 0.32] 0.64 [0.40; 0.86]

”GLOBAL” 0.17 [0.13; 0.22] 0.14 [0.08; 0.21] 0.23 [0.11; 0.36] 0.74 [0.58; 0.87]

IgM ”0” 0.16 [0.12; 0.21] 0.25 [0.18; 0.33] 0.51 [0.38; 0.63] 0.79 [0.65; 0.93]

”1/2/3” 0.12 [0.08; 0.17] 0.16 [0.10; 0.24] 0.37 [0.24; 0.49] 0.77 [0.61; 0.92]

”4” 0.10 [0.07; 0.15] 0.14 [0.09; 0.20] 0.40 [0.28; 0.51] 0.87 [0.76; 0.96]

”5” 0.11 [0.06; 0.16] 0.16 [0.08; 0.25] 0.39 [0.24; 0.54] 0.79 [0.61; 0.98]

”GLOBAL” 0.12 [0.09; 0.16] 0.18 [0.13; 0.23] 0.42 [0.31; 0.52] 0.82 [0.71; 0.92]

IgA ”0” 0.39 [0.33; 0.45] 0.58 [0.50; 0.66] 0.70 [0.57; 0.83] 0.81 [0.61; 0.97]

”1/2/3” 0.27 [0.21; 0.33] 0.32 [0.23; 0.41] 0.52 [0.36; 0.69] 0.78 [0.59; 0.95]

”4” 0.23 [0.17; 0.28] 0.26 [0.20; 0.33] 0.52 [0.39; 0.66] 0.80 [0.62; 0.94]

”5” 0.21 [0.15; 0.27] 0.22 [0.12; 0.32] 0.49 [0.30; 0.67] 0.80 [0.59; 0.99]

”GLOBAL” 0.27 [0.22; 0.32] 0.34 [0.28; 0.41] 0.56 [0.43; 0.69] 0.80 [0.62; 0.93]

ID50 ”0” 0.15 [0.10; 0.20] 0.21 [0.14; 0.29] 0.47 [0.35; 0.59] 0.52 [0.40; 0.68]

”1/2/3” 0.18 [0.13; 0.23] 0.23 [0.14; 0.33] 0.46 [0.33; 0.59] 0.53 [0.41; 0.69]

”4” 0.05 [0.03; 0.08] 0.11 [0.06; 0.16] 0.38 [0.28; 0.48] 0.54 [0.42; 0.69]

”5” 0.01 [0.00; 0.04] 0.09 [0.02; 0.18] 0.39 [0.26; 0.50] 0.53 [0.40; 0.70]

”GLOBAL” 0.10 [0.08; 0.13] 0.17 [0.11; 0.23] 0.43 [0.32; 0.53] 0.53 [0.42; 0.67]

Table 3. POD by severity score at specific moments, accounting for its long-term evolution. Results are given by titer
at 30, 60, 90 and 180 days. The main value stands for PODSSk

(t), specified with a sample interval at level 80%. In other

words, at each time t, the mean and quantiles at 10% and 90% are calculated from the M draws POD
(m)
SSk

(t). Moreover,

lines ”GLOBAL” give POD(t) values, specified with their associated 80%-credibility interval, computed as quantile samples

of POD(m).
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Figures and figure captions

Figure captions

Figure 1. Evolution of log-transformed titer values over time post onset symptoms. Every
curve represents one individual. The horizontal darkred line, represents the associated threshold
for sero-positivity. Top-Left: IgG S ; Top-Right: IgM S ; Bottom-Left: IgA S ; Bottom-Right:
Id50 PV titer.

Figure 2. Posterior predictive checks for IgG, IgM, IgA and ID50 titers. 10 simulations are
drawn from the posterior predictive distribution, induced either by the (BLM), left-hand side,
or by the (MBLM), right-hand side. Using a Gaussian kernel, replicated simulations density
(yrep in light red) are compared with the observed density (y in black).

Figure 3. Membership probabilities by severity scrore assignment. Top-Left: IgG S titer
Top-Right: IgM S titer Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.

Figure 4. Predicted evolution of titers, averaged by severity score assignment. Top-Left: IgG S
titer Top-Right: IgM S titer Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.

Figure 5. ROC curves for IgG (dotted line), IgM (solid line) and IgA (dashed line) titers.
Circles show the optimal seropositivity limit for every titer, in contrast with squares that show
the usual one.

Figure 6. Evolution of the probability of being out of detection for sero-positivity, averaged
by severity scrore assignment. Top-Left: IgG S titer Top-Right: IgM S titer Bottom-Left: IgA S
titer Bottom-Right: Id50 PV titer.

Figure 7. Evolution of comparison probabilities between severity scores. The probability of an
SSk patient having a higher POD than an SSl patient was calculated by averaging over the M
draws and over all the SSk vs SSl patient pairs, the proportion of times an SSk patient has
a higher POD than an SSl patient, where k < l. Top-Left: IgG S titer Top-Right: IgM S titer
Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.
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Figures

Figure 1. Evolution of log-transformed titer values over time post onset symptoms. Every curve represents one individual.

The horizontal darkred line, represents the associated threshold for sero-positivity. Top-Left: IgG S ; Top-Right: IgM S ;
Bottom-Left: IgA S ; Bottom-Right: Id50 PV titer.
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(BLM) (MBLM)

Figure 2. Evolution of log-transformed titer values over time post onset symptoms. Every curve represents one individual.

The horizontal darkred line, represents the associated threshold for sero-positivity. Top-Left: IgG S ; Top-Right: IgM S ;
Bottom-Left: IgA S ; Bottom-Right: Id50 PV titer.
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Figure 3. Membership probabilities by severity scrore assignment. Top-Left: IgG S titer Top-Right: IgM S titer Bottom-

Left: IgA S titer Bottom-Right: Id50 PV titer.
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Figure 4. Posterior predictive checks for IgG, IgM, IgA and ID50 titers. 10 simulations are drawn from the posterior

predictive distribution, induced either by the (BLM), left-hand side, or by the (MBLM), right-hand side. Using a Gaussian
kernel, replicated simulations density (yrep in light red) are compared with the observed density (y in black).
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Figure 5.

Figure 5. ROC curves for IgG (dotted line), IgM (solid line) and IgA (dashed line) titers. Circles show the optimal

seropositivity limit for every titer, in contrast with squares that show the usual one.
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Figure 6. Evolution of the probability of being out of detection for sero-positivity, averaged by severity scrore assignment.

Top-Left: IgG S titer Top-Right: IgM S titer Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.

27



Figure 7. Evolution of comparison probabilities between severity scores. The probability of an SSk patient having a

higher POD than an SSl patient was calculated by averaging over the M draws and over all the SSk vs SSl patient
pairs, the proportion of times an SSk patient has a higher POD than an SSl patient, where k < l. Top-Left: IgG S titer

Top-Right: IgM S titer Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.
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S1. Additional analysis for POD

S1.1. POD comparison between severity scores at specific moments

In the main manuscript, to determine whether POD difference between severity-score groups is
significant, in an accurate way, we use posterior chains to estimate the probabilities that the
POD of an SSk-patient to be higher than the POD of an SSl-patient, when k < l. In other
words, at each time t, for any replicate, the probability of an SSk patient having a higher POD
than an SSl patient was calculated as the proportion of times an SSk patient has a higher POD
than an SSl patient, over all SSk vs SSl patient pairs, where k < l. Precisely, we compute
the mean such as the 10%- and the 90%-sample quantiles, over the M = 7000 replicates, of

Π
POD (m)
k vs l (t). Table S1 displays POD comparison probabilities between severity scores at specific

moments, accounting for their long-term evolution. By displaying values higher than 0.5, Table
S1 confirms that the lower the severity score, the higher the POD, in almost all cases. The result
is considered as significant as soon as the associated 10%-quantile is also larger than 0.5.

S1.2. Evolution of POD comparison between severity scores

Furthermore, still in manuscript, Figure 7 displays the evolution of the averaged POD compar-
isons. In Figure S1 we display the evolution of the 10%-quantile associated to the comparison
probabilities between severity scores. A severity-score pairs comparison is significant as soon as
the associated curve is above the horizontal line y = 0.5. We see that for antibody titers, POD
is significantly higher for asymptomatic patients with respect to the others up to at least 100
days for IgA, whereas for IgG (resp. IgM), asymptomatic only differ from most severely affected
patients (with severerity score ”4” or ”5”), up to at least 75 days for IgM (resp. around 100 days
for IgG). Finally, for ID50, most pairs of severity scores are significantly different since for at

least 90% of replications, we have Π
POD (m)
k vs l (t) > 0.5, until 60 days for SSk =”1/2/3” (slighlty



affected patients) versus SSl =”4” or ”5”, and even until 100 days for asymptomatic patients
versus severely affected patients (SSl =”4” or ”5”). As a conclusion a previous infection by
Covid-19 disease leaves traces in terms of antibodies, significantly more easily detectable if the
individual has been more severely affected, and this effect lasts around 100 days. With regard to
immunity, a previous infection by Covid-19 disease also generates a more pronounced immune
response for more severely affected patients, during about 100 days.
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Table

Severity

Titer score 30 days 60 days 90 days 180 days

IgG ”0 vs 1/2/3” 0.49 [0.37; 0.61] 0.51 [0.38; 0.65] 0.61 [0.47; 0.75] 0.55 [0.44; 0.67]

”0 vs 4” 0.54 [0.42; 0.66] 0.55 [0.43; 0.68] 0.66 [0.53; 0.78] 0.54 [0.43; 0.65]

”0 vs 5” 0.56 [0.40; 0.74] 0.55 [0.37; 0.74] 0.66 [0.48; 0.82] 0.62 [0.43; 0.80]

”1/2/3 vs 4” 0.55 [0.44; 0.66] 0.54 [0.43; 0.66] 0.55 [0.43; 0.67] 0.48 [0.39; 0.58]

”1/2/3 vs 5” 0.57 [0.40; 0.73] 0.54 [0.36; 0.71] 0.55 [0.36; 0.72] 0.57 [0.40; 0.73]

”4 vs 5” 0.52 [0.35; 0.69] 0.5 [0.33; 0.67] 0.5 [0.33; 0.67] 0.59 [0.41; 0.75]

IgM ”0 vs 1/2/3” 0.61 [0.49; 0.73] 0.65 [0.53; 0.78] 0.64 [0.53; 0.75] 0.53 [0.40; 0.66]

”0 vs 4” 0.67 [0.56; 0.77] 0.68 [0.58; 0.78] 0.62 [0.52; 0.72] 0.44 [0.32; 0.56]

”0 vs 5” 0.66 [0.51; 0.81] 0.66 [0.49; 0.81] 0.62 [0.47; 0.76] 0.51 [0.37; 0.66]

”1/2/3 vs 4” 0.56 [0.45; 0.67] 0.53 [0.41; 0.66] 0.48 [0.36; 0.60] 0.41 [0.29; 0.52]

”1/2/3 vs 5” 0.56 [0.39; 0.71] 0.51 [0.33; 0.69] 0.48 [0.32; 0.64] 0.48 [0.34; 0.63]

”4 vs 5” 0.49 [0.34; 0.65] 0.47 [0.31; 0.63] 0.50 [0.35; 0.65] 0.58 [0.43; 0.71]

IgA ”0 vs 1/2/3” 0.65 [0.54; 0.76] 0.74 [0.65; 0.82] 0.67 [0.54; 0.78] 0.54 [0.40; 0.69]

”0 vs 4” 0.74 [0.63; 0.83] 0.78 [0.71; 0.86] 0.67 [0.56; 0.76] 0.52 [0.38; 0.66]

”0 vs 5” 0.77 [0.65; 0.89] 0.82 [0.71; 0.91] 0.69 [0.54; 0.84] 0.53 [0.35; 0.70]

”1/2/3 vs 4” 0.61 [0.50; 0.71] 0.55 [0.44; 0.65] 0.50 [0.39; 0.61] 0.48 [0.37; 0.59]

”1/2/3 vs 5” 0.66 [0.50; 0.81] 0.59 [0.43; 0.75] 0.53 [0.36; 0.69] 0.48 [0.32; 0.65]

”4 vs 5” 0.56 [0.40; 0.71] 0.54 [0.39; 0.69] 0.53 [0.39; 0.66] 0.50 [0.36; 0.65]

ID50 ”0 vs 1/2/3” 0.51 [0.42; 0.60] 0.50 [0.38; 0.62] 0.52 [0.38; 0.65] 0.49 [0.39; 0.59]

”0 vs 4” 0.76 [0.67; 0.84] 0.71 [0.61; 0.81] 0.66 [0.52; 0.80] 0.48 [0.34; 0.61]

”0 vs 5” 0.81 [0.70; 0.92] 0.73 [0.56; 0.88] 0.64 [0.45; 0.82] 0.48 [0.33; 0.63]

”1/2/3 vs 4” 0.7 [0.62; 0.78] 0.69 [0.6; 0.78] 0.64 [0.51; 0.76] 0.49 [0.37; 0.60]

”1/2/3 vs 5” 0.74 [0.63; 0.85] 0.70 [0.55; 0.83] 0.62 [0.45; 0.78] 0.49 [0.35; 0.63]

”4 vs 5” 0.52 [0.39; 0.66] 0.49 [0.35; 0.64] 0.46 [0.31; 0.62] 0.51 [0.39; 0.62]

Table S1. Comparison probabilities between severity scores at specific moments. The probability of an SSk patient having

a higher POD than an SSl patient was calculated by averaging over the 7 000 replicates and over all SSk vs SSl patient

pairs, the proportion of times an SSk patient has a higher POD than an SSl patient, where k < l. Results are given by
titer, displaying all lines ”SSk vs SSl”, at times 30, 60, 90 and 180 days. The main value stands for the ΠPOD

k vs l(t), specified

with a credibility interval at level 80%. When the interval does not contain 0.5, then POD value is significantly higher for
patients with severity score SSk than those with SSl. More precisely, an SSk patient is considered to have a significantly

higher POD than an SSl patient if the 10%-quantile over 7 000 replicates of the proportion of times an SSk patient has

a lower POD value than an SSl patient, among all pairs of SSk vs SSl patients, exceeds 0.5. Red bold values stand for
significant probabilities.
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Figure

Figure S1. Evolution of the 10%-quantile associated to the comparison probabilities between severity scores. An SSk

patient is considered to have a significantly higher POD than an SSl patient if the 10%-quantile over 7 000 replicates of the

proportion of times an SSk patient has a lower POD value than an SSl patient, among all pairs of SSk vs SSl patients,

exceeds 0.5. Top-Left: IgG S titer Top-Right: IgM S titer Bottom-Left: IgA S titer Bottom-Right: Id50 PV titer.
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