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ABSTRACT
We consider the problem of answering connectivity queries on a real
algebraic curve. The curve is given as the real trace of an algebraic
curve, assumed to be in generic position, and being defined by
some rational parametrizations. The query points are given by a
zero-dimensional parametrization.

We design an algorithm which counts the number of connected
components of the real curve under study, and decides which query
point lie in which connected component, in time log-linear in N 6,
where N is the maximum of the degrees and coefficient bit-sizes of
the polynomials given as input. This matches the currently best-
known bound for computing the topology of real plane curves.

The main novelty of this algorithm is the avoidance of the com-
putation of the complete topology of the curve.

1 INTRODUCTION
This work addresses the problem of designing an algorithm for an-
swering connectivity queries on real algebraic curves in Rn , defined
as real traces of algebraic curves ofCn .

Motivation and problem statement. Consider a real fieldQ1, its
real closure R and its algebraic closure C . For n ≥ 1, let X =
(x1, . . . ,xn ) be a sequence of indeterminates, and denoteQ[X ] and
C[X ] the rings of multivariate polynomials in the xi ’s, with coef-
ficients in resp. Q and C . We define an algebraic set C ⊂ Cn as
the set of common zeros V (f1, . . . , fp ) of a sequence of polynomi-
als (f1, . . . , fp ) ⊂ C[X ]. I (C ) ⊂ C[X ] is the radical of the ideal〈
f1 . . . , fp

〉
generated by the fj ’s, that is the ideal of definition of

C . The function ring C[C ] of polynomial functions defined on C is
C[X ]/I (C ). If I (C ) ⊂ Q[X ], we also denote Q[C ] by Q[X ]/I (C ).
Finally, C is an algebraic curve if I (C ) is equidimensional of dimen-
sion 1, and plane if contained in some plane ofCn .

In this document, C is an algebraic curve such that I (C ) ⊂
Q[X ]. Given a generating system f of I (C ), Jac(f ) is the Jacobian
matrix of f , sing(C ) the set of singular points of C (i.e. the points
where Jac(f ) has rank less than n − 2; it is a finite subset of C ) and
reg(C ) = C − sing(C ). For all x ∈ reg(C ), Tx C is the right-kernel
of Jac(f ): it is the tangent line of C at x . For 1 ≤ i ≤ n we let
πi : Cn → Ci be the canonical projection on the first i variables.
If C2 ⊂ C2 is the Zariski closure of π2(C ), the set of apparent
singularities of C2 is app(C2) = sing(C2) − π2(sing(C )). These are
the singularities introduced by π2. A singular point of C2 is called
1Note that in Sections 2 and 3,Q can be any arbitrary field of characteristic 0.
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a node if it is an ordinary double point (see [31, §3.1]). We refer to
[48] for definitions and propositions about algebraic sets.

For any φ ∈ C[C ], we denote byW◦(φ,C ) the set of critical
points of φ on C , that is the set of points x ∈ reg(C ) such that
dxφ : Tx C → C is not surjective. Then we note

K(φ,C ) =W◦(φ,C ) ∪ sing(C )

the set of singular points of φ on C .
To satisfy some genericity assumptions, we will need to perform

some linear changes of variables. Given A ∈ GLn (C), for f ∈ C[X ],
f A will denote the polynomial f (AX ). For V ⊂ Cn , we denote
by VA the image of V by the map ΦA : x 7→ A−1x . Thus, for
f = (f1, . . . , fp ) ⊂ C[X ] we have V (f A) = ΦA(V (f )) = V (f )

A.
A semi-algebraic (s.a.) set S ⊂ Rn is the set of solutions of a finite

system of polynomial equations and inequalities with coefficients
in R. We say that S is s.a. connected if for anyy,y′ ∈ S ,y andy′ can
be connected by a s.a. path in S , that is an injective continuous s.a.
function γ : [0, 1] → S such that γ (0) = y and γ (1) = y′. A s.a. set
S can be decomposed into finitely many s.a. connected components
which are s.a. connected s.a. sets that are both closed and open in
S . We refer to [4] and [8] for definitions and propositions about s.a.
sets and functions. In this work, the s.a. sets in consideration will
mainly be real traces of algebraic sets ofCn (defined by polynomials
with coefficients in R). In particular, we will note e.g. CR and C2,R ,
respectively the real traces of C , C2. Then, e.g. K(π1,C ) ∩ Rn and
K(π1,C2) ∩ R

2 will be denoted by K(π1,CR ) and K(π1,C2,R ).
In this paper, we address the problem of designing an algorithm

for answering connectivity queries on real algebraic curves
in Rn , defined as real traces of algebraic curves of Cn . More pre-
cisely, given representations of an algebraic curve C and a finite set
P of points of C , we want to compute a partition of P, grouping
the points lying in the same s.a. connected component of CR .

It is a problem of importance in symbolic computation, and more
specifically, in effective real algebraic geometry. Indeed, using the
notion of roadmaps, introduced by Canny in [12, 13], one can reduce
connectivity queries in real algebraic sets of arbitrary dimension
to the such queries on real algebraic curves. Moreover, algorithms
computing such roadmaps, on input a real algebraic set, has been
continuously improved in a series of recent works [3, 5, 6, 46],
making now tractable challenging problems in applications such
as robotics [12, 14–16].

We say that f ∈ Z[x1, . . . ,xn ] has magnitude (δ ,τ ), if the total
degree of f is bounded by δ and all coefficients have absolute values
at most 2τ . This extends to a sequence of polynomials by bound-
ing all entries in the same way. Complexity results are expressed
with (δ ,τ ) bounding the magnitude of the polynomials defining C .
Moreover, we ignore logarithmic factors using the soft-Oh notation
Õ(д) for denoting the class д log(д)O (1).

https://orcid.org/XXX
https://orcid.org/0000-0002-7493-3001
https://orcid.org/0000-0002-3630-6242


Conference’17, July 2017, Washington, DC, USA N. Islam, A. Poteaux, R. Prébet

Prior works. One can reduce our problem to a piecewise linear
approximation sharing the same topology as the curve under study.

Computing the topology of plane algebraic curves in R2 is ex-
tensively studied: by subdivision algorithm [11, 43], variants of
Cylindrical Algebraic Decomposition methods [7, 17, 21, 22, 25–
27, 29, 35, 41, 42, 44, 47], or also a hybrid approach such as [1].
In particular, [22, 42] obtain the best-known complexity bound in
Õ(δ5(δ + τ )), by computing quantitative bounds on (bivariate) real
root isolation of the considered polynomials.

The problem in R3 has been less studied. This is done through
various approaches such as computing the topology of the projec-
tion on various planes [2, 18, 33] or lifting the plane projection by
algebraic considerations [23, 24, 31]. Yet, few of these papers give a
complexity bound for the computation of such topology [18, 24],
and [39] obtains the best-known complexity in Õ(δ19(δ + τ )).

Main result. Under genericity assumptions, we reduce the study
of a curve C in Rn to the one of the its image C3,R by the projec-
tion π3, as their real traces generically share the same connectivity
properties. Moreover, by refining the approach developed in [38]
(based on [31]), we show that one does not need to compute the topol-
ogy of C3,R in order to answer connectivity queries. More precisely,
under genericity assumptions, that we made explicit below, we first
compute the topology of C2,R i.e. an isotopic graph. Next, the con-
nectivity of C3,R i.e. a homeomorphic graph, is deduced from the
topology of C2,R , adapting results from [31]. A geometric outcome
is that the topological analysis needed to be done at some special
points of C2,R , which are called nodes, can be much simplified
when one only needs to answer connectivity queries. This has a
significant impact on the complexity.

Before providing our complexity result, let us introduce how our
geometric objects are encoded. For a univariate function φ, φ ′ is its
derivative. For a bivariate functionψ in the variables x1 and x2, we
let ∂x1ψ , ∂x2ψ , ∂2x1ψ , ∂

2
x2ψ and ∂2x1x2ψ be respectively the simple

and double derivative with respect to the index variable(s).
To encode finite sets of points with algebraic coordinates over a

fieldQ , we use zero-dimensional parametrizations P = (Ω, λ) such
that
• Ω = (ω, ρ1, . . . , ρn ) ⊂ Q[u] where u is a new variable, ω is
a monic square-free polynomial, and deg(ρi ) < deg(ω);
• λ is a linear form λ1x1 + · · · + λnxn in Q[x1, . . . ,xn ] such
that λ1ρ1 + · · · + λnρn = u∂uω mod ω.

We define the degree of such a parametrization P as the degree of
the polynomial ω, and we say that it encodes the finite set:

Z(P) =
{
(ρ1/∂uω, . . . , ρn/∂uω) (ϑ ) ∈ C

n | ω(ϑ ) = 0
}
.

Similarly, we encode algebraic curves with one-dimensional
parametrizations overQ , i.e. R = (Ω, (λ, µ)) with:
• Ω = (ω, ρ1, . . . , ρn ) ⊂ Q[u,v] with u and v new variables,
ω square-free and monic in u and v , and deg(ρi ) < deg(ω);
• λ = λ1x1+ · · ·+λnxn , µ = µ1x1+ · · ·+µnxn are linear forms

such that
{
λ1ρ1 + · · · + λnρn = u∂vω mod ω
µ1ρ1 + · · · + µnρn = v∂vω mod ω

Such a data-structure encodes the algebraic curve Z(R), defined as
the Zariski closure of the following locally closed set ofCn :{
(ρ1/∂vω, . . . , ρn/∂vω) (ϑ ,η) ∈ C

n ��ω(ϑ ,η) = 0, ∂vω(ϑ ,η) , 0
}
.

We define the degree of such a parametrization R as the degree
of ω, which coincides with the degree of Z(R). Note that such a
parametrization R of degree δ involves O(nδ2) coefficients.

We now give our aforementioned genericity properties, which
can be seen as a generalization of the ones in [31]: let C ⊂ Cn be
an algebraic curve and P ⊂ reg(C ) finite. (C ,P) satisfies (H) if:
(H1) for 1 ≤ i ≤ n,Q[C ] is integral overQ[Ci ], where

Ci = πi (C ) is an algebraic curve;
(H2) for all x ∈ reg(C ), π2(Tx C ) is a tangent line to C2 at π2(x);
(H3) the restriction of π3 to C is injective;
(H4) if y ∈ app(C2) then
(H4
′ ) π−12 (y) ∩ C has cardinality 2;

(H4
′′) y is a node of C2;

(H5) K(π1,C2) ∪ π2(P) is finite and π1 is injective on it;
(H6) π

−1
2 (π2(x)) ∩ C = {x}, for all x ∈ K(π1,C ) ∪ P;

(H7) there is a one-dimensional parametrizationR = (Ω, (x1,x2))
encoding C , with Ω = (ω,x1,x2, ρ3, . . . , ρn ) ⊂ Q[x1,x2].

We omit P when the context is clear. Also, (H) is satisfied up to a
generic linear change of coordinates over C (see Section 2).

Theorem 1.1. Let R ⊂ Z[x1,x2] be a one-dimensional parametri-
zation encoding an algebraic curve C ⊂ Cn satisfying (H) and P ⊂

Z[x1] a zero-dimensional parametrization encoding a finite subset of
C . Let (δ ,τ ) and (µ,κ) the magnitudes of R and P , respectively.

There exists an algorithm which, on input R and P , computes a
partition of the points of Z(P) ∩Rn lying in the same s.a. connected
component of C ∩Rn , using

Õ(δ6 + µ6 + δ5τ + µ5κ)

bit operations.

This is to be compared with the best complexity Õ(δ19(δ + τ ))
known to analyze the topology of space curve. Note that the depen-
dency on n in the complexity bound is “hidden” within the potential
degrees of the parametrizations and the corresponding algebraic
sets. Indeed, according to Bézout’s bound, an algebraic set, defined
by polynomials, of degree at most D, can have degree at most Dn .

Structure of the paper. After some preliminary results we prove
that up to a generic change coordinate, assumption (H) holds. Then,
under these assumptions, we describe two steps of our algorithm
that is identifying the finitely many points of the curve where there
is connectivity ambiguity and resolving these ambiguities. Finally,
we describe the main algorithm together with complexity bounds.

2 CURVES IN GENERIC POSITION
We now prove that (H) holds for an algebraic curve in generic
position C that is, there is an open dense subset A of GLn (C) such
that for any A ∈ A the sheared curve CA satisfies (H).

2.1 Generic projections of affine curves
The results below are well known in the case of smooth projective
curves (see e.g. [36, IV. Thm 3.10] or [45, §7B.] for C = C), and
have been generalized subsequently in e.g. [37, 40]. A version for
complex singular affine space curves is proved in [32, Prop 5.2]
under regularity assumptions. We present here a generalization of
[32, Prop 5.2] for any singular (affine) algebraic curve, following the
proof and using more general objects and results from the literature.
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Let n ≥ 3, C ⊂ Cn an affine algebraic curve and P ⊂ C a
finite subset. Denote Pn the projective space Pn (C), of dimen-
sion n over C , and write [x0 : · · · : xn ] its elements. Let H∞ =
{[x0 : · · · : xn ] ∈ Pn | x0 = 0} be the hyperplane at infinity with
respect to the affine open chart given by Pn − H∞ (see e.g. [36,
I.2]) We finally let C be the projective closure of C in Pn .

We denote by G(1,n) = G(2,n + 1) the Grassmanian of lines in
Pn , and, for x , y in Pn , by L(x ,y) ∈ G(1,n) the line containing
x and y. For distinct points x ,y of C , the line s = L(x ,y) will be
called the secant line of C determined by x andy. When s intersects
C in a third point, distinct from x and y, we call it a trisecant line
of C . If there are distinct x ′,y′ ∈ s ∩ reg(C ) such that Tx ′C and
Ty′C are coplanar, then it will be called a secant line with coplanar
tangents of C . Then, we define Sec(C ), Tri(C ) and CoTg(C ) as the
sets of points in Pn that lie on respectively a secant, trisecant and
secant with coplanar tangents of C . Finally, we denote by Tg(C )
the set of points in Pn that lie on the tangent line Tx C for some
x ∈ reg(C ).

Lemma 2.1. The sets Sec(C ) and Tg(C ) are algebraic sets of dimen-
sion ≤ 3 and ≤ 2, respectively. If, in addition, C is not a plane curve,
then Tri(C ) and CoTg(C ) are algebraic sets of dimension ≤ 2. Finally,
none of these sets containsH∞.

Proof. Let C 1, . . . ,Cm the irreducible components of C , i, j ∈
{1, . . . ,m}, possibly equal, and Σi, j ⊂ G(1,n) the Zariski closure
of the image of C i × C j − {(y,y) | y ∈ C i ∩ C j } through the
map (y,z) 7→ L(y,z). As the image of a Cartesian product of two
irreducible curves, Σi, j is an irreducible algebraic set. Such a secant
being uniquely determined by fixing two points in C i and C j , Σi, j
has dimension ≤ 2 by [48, Thm 1.25]. Then, if Σ =

⋃
i, j Σi, j is

the secant variety of C , it has dimension ≤ 2 and contains the
secant lines in G(1,n). As elements of G(1,n) are algebraic sets of
dimension 1, Sec(C ) has Zariski closure of dimension ≤ 3.

Consider now, the subset Γi ⊂ Pn×C i , consisting of points (u,y)
such that y ∈ reg(C ) and u ∈ TyC , and consider the projections
φi : Γi → Pn andψi : Γi → C i . For all y in the Zariski open subset
reg(C ) ∩ C i of Ci ,ψ−1i (y) is exactly TyC , which has dimension 1.
Hence, by [48, Thm 1.25], φi (Γi ) has Zariski closure of dimension
≤ 2. Since Tg(C ) = ∪iφi (Γi ), we are done.

Assume now, that C is not a plane curve then, by [40, Thm 2],
the set of trisecant lines of C is a subset of G(1,n) whose Zariski
closure has dimension ≤ 1. Then, as seen above, Tri(C ) has Zariski
closure of dimension ≤ 2. Now, letMi, j be the subset of Σi, j consist-
ing of secant lines intersecting C at points whose tangents are all
contained in the same plane. We are going to prove that the Zariski
closure of Mi, j has dimension ≤ 1. Together with the dimension
bound on Tri(C ), this will bound the dimension of CoTg(C ). Sup-
pose first that C i and C j are not coplanar components. Then, there
is y ∈ C i − sing(C ) such that l = TyC and C j are not coplanar. If
pl : Pn → Pn−2 denotes the projection of center l , then pl (C j ) is
not a point. As C j is irreducible, and by [48, Thm 1.25], the Zariski
closure R of pl (C j ) is an irreducible algebraic subset of Pn−2 of
dimension 1. Hence, by [48, Thm 1.25] again, there is a finite set

K1 ⊂ Pn−2 such that for all w ∈ R\K1, p−1l (w) ∩ C j is finite. Be-
sides, by Sard’s Theorem [48, Thm 2.27], there exists a finite set
K2 ⊂ Pn−2 such that R\K2 does not contain any critical value of
the restriction of pl to C j . Then, forw in R\[K1∪K2∪pl (sing(C ))],

p
−1
l (w) ∩ C j = {z1, . . . ,zk }

with k ≥ 1, and for all 1 ≤ i ≤ k , zi ∈ reg(C ) and pl (TziC ) has
dimension 1. Hence, y and zi have no coplanar tangents for all
1 ≤ i ≤ k . In particular, the secant line L(y,z1) contains two
points having no coplanar tangents so that L(y,z1) ∈ Σi, j −Mi, j
and Mi, j ⊊ Σi, j . In conclusion, the Zariski closure of Mi, j is a
proper algebraic subset, and since Σi, j is irreducible, this closure
has dimension ≤ 1. If C i and C j are coplanar, Σi, j is the Zariski
closure of Mi, j and one of the following holds. If i = j and C i is
a line, then Σi, j is reduced to the line associated to C i and has
dimension 0. Else, there exists a unique plane Si, j containing C i

and C j , so that any line of Σi, j must be contained in Si, j . In both
cases, Σi, j , thus the closure ofMi, j , have dimension ≤ 1. Then, the
Zariski closure of the unionM of allMi, j for i, j ∈ {1, . . . ,m}, is an
algebraic subset of G(1,n) of dimension ≤ 1 as requested.

Remark now that a secant with coplanar tangents is either a
trisecant, or a secant intersecting C in exactly two regular points
with coplanar tangents. Hence, the set of secants with coplanar
tangents of C is contained in the union ofM and the set of trisecant
lines of C . By the previous discussion, it has dimension ≤ 1, so that
the Zariski closure of CoTg(C ) has dimension ≤ 2.

Since C −H∞ can be identified with C , the former is a Zariski
open subset of C , so that C ∩ H∞ is finite. In particular, H∞

contains finitely many secant or tangent lines ofC and then, cannot
be contained in Sec(C ) or Tg(C ). Since Tri(C ) and CoTg(C ) are
contained in Sec(C ), they cannot containH∞ as well. □

In the following, for 0 ≤ r ≤ n − 1, we denote by G(r ,n − 1) =
G(r + 1,n) the set of r -dimensional projective linear subspaces of
H∞. Recall that using Plücker embedding (see e.g. [48, Example
1.24]), G(r ,n − 1) can be embedded in P(

n
r+1)−1 as an irreducible

algebraic set of dimension (r + 1)(n − r ). The next lemma is then a
direct consequence of [48, Thm 1.25].

Lemma 2.2. LetX ⊂ H∞ be an algebraic set of dimensionm ≤ n−1.
Then, for any i ≥ m there exists a non-empty Zariski open subset Ei
of G(n − 1− i,n − 1) such that for every E ∈ Ei , the set E ∩X is finite
and, if i > m, it is empty.

Recall that P is a finite set of control points in C − sing(C ).

Proposition 2.3. If C is not a plane curve, then for all 1 ≤ i ≤ n−1,
there exists a non-empty Zariski open subset Ei of G(n − 1 − i,n − 1)
such that for all E ∈ Ei , the following holds. Let pE : C → Pi be the
projection with center E, then pE is a finite regular map and

(i) for all x ∈ P, pE (Tx C ) is a projective line of Pi .

If, in addition, i ≥ 2 then,

(ii) item (i) holds for any x ∈ regC ;
(iii) for any x ∈ C , there exists at most one point x ′ ∈ C , distinct

from x , such that pE (x) = pE (x ′);
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(iv) there exists finitely many such couples (x ,x ′), all satisfying
x ,x ′ ∈ reg(C ) − P and pE (Tx C ) , pE (Tx ′C );

(v) if i ≥ 3, there is no such couple.

Proof. Fix 1 ≤ i ≤ n − 1 and suppose that C is not plane. As a
proper Zariski closed set ofC ,X1 := H∞∩C is finite. By Lemma 2.2,
as i > 0, there is a non-empty Zariski open subset E1 of G(n − 1 −
i,n − 1) such that for all E ∈ E1, E ∩ X1 is empty. Moreover, any
(n−i)-dimensional space containing E cannot contain an irreducible
component of C (it would be a line, intersecting E at some point of
E ∩ C = E ∩ X1, which is empty). Thus, the projection with center
E ∈ E1 induces a finite map on C , regular by definition.

According to Lemma 2.1, the set of points lying on a tangent or
a trisecant line of C is an algebraic set of dimension ≤ 2. SinceH∞
contains finitely many such tangents or trisecants,

X2 = (Tg(C ) ∪ Tri(C )) ∩ H∞

has dimension at most 1. By Lemma 2.2, as i ≥ 1, there exists a
non-empty Zariski open subsetE2 ofG(n−1−i,n−1) such that any
E ∈ E2 intersects finitely many points of Tg(C ) ∪ Tri(C ). Besides,
there are finitely many tangents intersecting the finite set P, so
that by Lemma 2.2, up to intersecting E2 with a non-empty Zariski
open subset of G(n− 1− i,n− 1), one can assume that none of these
tangents intersect P. This proves (i).

Assume now i ≥ 2. By Lemma 2.2, no E ∈ E2 intersects points
in Tg(C ) ∪ Tri(C ). In particular, any (n − i)-dimensional space
containing E cannot contain a tangent nor a trisecant, and, as seen
above, this means that no tangent, or three distinct points, are
mapped to one point. This proves respectively (ii) and (iii).

Then, by Lemma 2.1, the set X3 = Sec(C ) ∩ H∞ of points in
H∞, lying on a secant line of C , is algebraic of dimension ≤ 2.
By Lemma 2.2 (i ≥ 2), there is a non-empty Zariski open subset
E3 of G(n − 1 − i,n − 1) such that any E ∈ E3 contains finitely
many points lying on a secant line of C i.e., as before, there are
finitely many couples of points which are mapped to the same
point in Pi . Besides, the set of secants intersecting sing(C ) ∪ P
is a proper algebraic subset of the secant variety of C . Hence, by
Lemma 2.2, up to intersecting E3 with a non-empty Zariski open
subset ofG(n−1−i,n−1), one can assume that none of these secants
intersect sing(C ) ∪ P. Finally, by Lemma 2.2, as CoTg(C ) ∩ H∞
has dimension ≤ 1. As seen above, up to intersecting E3 with a
non-empty Zariski open subset ofG(n−1−i,n−1), one can assume
that these secants intersect C at points with no coplanar tangents,
which cannot be mapped to the same line. All in all, for any E ∈ E3,
(iv) holds.

By Lemma 2.2, if moreover i ≥ 3, no E ∈ E3 intersects points in
Sec(C ) that is, no two distinct points are mapped to the same image.
This proves (v). Taking Ei = E1 ∩ E2 ∩ E3 ends the proof. □

We can now state the affine counterpart of Proposition 2.3.

Corollary 2.4. There exists a non-empty Zariski open set A of
GLn (C) such that for all A ∈ A and 1 ≤ i ≤ n, the following holds:
the restriction of πi to CA is a finite morphism, and

(i) for all x ∈ PA, πi (Tx CA) is a line ofCi .

If, in addition, i ≥ 2 then,

(ii) item (i) holds for any x ∈ reg(CA);
(iii) the restriction of πi to CA is not injective at x if, and only if,

i = 2 and π2(x) ∈ app(CA
2 );

(iv) app(CA
2 ) contains only nodes, with exactly two preimages

through π2, none of them being in PA;

Proof. If C is a plane curve, it is straightforward. Suppose from
now on n ≥ 3 and C not plane. If i = n, there is nothing to prove,
so let 1 ≤ i ≤ n − 1. Let C be the projective closure of C , which is
not a plane either. Let Ei be the non-empty Zariski open subset of
G(n − 1 − i,n − 1) given by Proposition 2.3. According to Plücker
embedding, there exists a surjective regular map from the set of i
linearly independent vectors a1, . . . ,ai ofCn to the set of (n−1−i)-
dimensional (projective) linear subspaces ofH∞, defined by x0 = 0
and aj,1x1 + · · · + aj,nxn = 0 for 1 ≤ j ≤ i . Hence, there exists a
non-empty Zariski open set Ai of GLn (C) of matrices A such that
the first i rows of A−1 are mapped to some E ∈ Ei , through the
above map. Moreover, for anyA ∈ Ai the following holds. Consider,

Ã =

[
1 0
0 A

]
,

and for 1 ≤ j ≤ n, let aj = (aj,1, . . . ,aj,n ) be the rows of A. If
L0 = x0 and for 1 ≤ j ≤ i , Lj = aj,1x1 + · · · + aj,nxn , then the
equations L0, . . . ,Li define a projective linear subspace E ofH∞,
such that E ∈ Ei and, by definition (see e.g. [48, Example 1.27]),

pE : C
Ã
→ Pi

x 7→ [x0 : · · · : xi ]
.

Therefore, the restriction of pE to the affine chart Pn −H∞ can be
identified with the restriction of πi to CA. According to Proposi-
tion 2.3, the restriction of πi to CA is a finite morphism satisfying
item (i). Assume now that i ≥ 2 then, assertion (ii) is a direct
consequence of item (ii) of Proposition 2.3.

Besides, let x ∈ CA such that there is x ′ ∈ CA satisfying x ′ ,
x and πi (x) = πi (x ′). Then, by Proposition 2.3, (iii) to (v), x ′
is unique, both x ,x ′ < sing(CA) ∪ PA, and necessarily i = 2.
Moreover, Tx CA and Tx ′CA map to distinct lines ofC2, crossing
at π2(x): it is a node. Hence, x ∈ app(CA

2 ) and π2(x) is a node,
with exactly two preimages, none of them being in PA. Conversely
from Proposition 2.3, (ii), all points of app(CA

2 ) have at least two
preimages in CA. This proves (iii) and (iv). Taking A =

⋂n−1
i=1 Ai

concludes. □

2.2 Recovering (H)
Proposition 2.5. Let C ⊂ Cn be an algebraic curve and a finite
subset P ⊂ reg(C ). There exists a non-empty Zariski open set A ⊂
GLn (C) such that, for any A ∈ A, (CA,PA) satisfies (H).

Proof. Let A1 ⊂ GLn (C) be the non-empty Zariski open subset
defined in Corollary 2.4 and let A ∈ A1. For all 1 ≤ i ≤ n, the
restriction of πi to CA is a finite morphism, so that CA

i = πi (C
A)

is an algebraic curve. Since C is integral over Q , the extension
Q[CA

i ]↪→Q[CA] is integral as well: (H1) is satisfied. Applying
Corollary 2.4, for i = 3 and i = 2 shows that the curve CA satisfies
respectively (H3) on the one hand and (H2) and (H4) on the other.

Let A = (ai, j )1≤i, j≤n and t be new indeterminates, the former
ones standing for the entries of a square matrix of sizen×n. SinceA1
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is non-empty and Zariski open, there exists a non-zero polynomial
F ∈ C[A], such that A ∈ A1 if F (A) , 0. Besides, according to [9,
§4.2] (or [35, §3.2]), there exists a non-zero polynomial G ∈ C[A, t]
such that, if F (A) , 0 and G(A,b) , 0 then, for

B =

[1 b 0
0 1 0
0 0 In−2

]
,

the curveC BA
2 is a plane curve in generic position in the sense of [9,

§4.2] and [31, Def 3.3]. In particular, π1 maps no tangent line of any
singular point of C2 to a point and its restriction of π1 to the finite
setW◦(π1,C BA

2 ) is injective. Let P2 = π2(P). As P2 ∪ sing(C2) is
finite, we can assume that π1 is injective on PBA2 ∪ sing(C BA

2 ) as
well. But, for any x ∈ W◦(π1,C BA

2 ), π1(x) is a point, so that x is
neither in sing(C BA

2 ) nor P
BA
2 , by genericity of C BA

2 and item (i)
of Corollary 2.4 respectively. Then, let b ∈ C such thatG(A,b) is not
zero and let B be as above. The subset A2 ⊂ GLn (C) of elements of
the form BA′ where F (A′)G(A′,b) , 0 is a non-empty Zariski open
subset. Moreover, for any A ∈ A2, CA satisfies (H5).

Take A ∈ A1 ∩ A2 and let x ∈ K(π1,CA) ∪ PA and y = π2(x).
Suppose there is x ′ ∈ CA such that x ′ , x and π2(x ′) = y. By (iii),
x ∈ W◦(π1,CA) andy is a node in app(CA

2 ), with vertical tangent
line π2(Tx CA): this is impossible by above (A ∈ A2, so that CA

2 is
in generic position). Therefore, CA satisfies (H6).

We proceed similarly for (H7). Let A ∈ A1. By (H1), CA is in
Noether position (for π1). Let D = (d3, . . . , dn ) be new variables. By
[28, Cor 3.4 & 3.5], there isH ∈ C[A, D] non-zero such that, if F (A) ,
0 and H (A,d) , 0, then the following holds: if µd = x2 + d3x3 +
· · · + dnxn is a linear form, then there is R = (ω, ρ1, . . . , ρn ) ⊂
Q[x1,v] such that (R,x1, µd ) is a one-dimensional parametrization
encoding CA. Let d ∈ Cn−1 such that H (A,d) is not zero and

C =

[1 0 0
0 1 d
0 0 In−2

]
.

The subset A3 ⊂ GLn (C) of elements, of the formCA′, where F (A′)
and H (A′,c) are both not zero, is a non-empty Zariski open subset
where CA satisfies (H7).

Finally, for A ∈ A := A1 ∩ A2 ∩ A3, CA satisfies (H). □

3 DETECT APPARENT SINGULARITIES
We generalize the criterion of [31] used to identify apparent sin-
gularities in plane projection of space curve. We keep notations
given in Section 1, and assume for the rest of the document
that (C ,P) satisfies (H). We start by an adapted version of [31,
Lemma 4.1] (the equivalence relation modulo I (C ) is denoted ≡).

Lemma 3.1. Let (α , β) be a node of C2. There are exactly two power-
series y1,y2 ∈ C[[x1 − α]] such that for i = 1, 2, if zi =

ρ3(x1,yi )
∂x2ω(x1,yi )

then:
(1) ω(x1,yi ) ≡ 0 and yi (α) = β but y′1(α) , y

′
2(α);

(2) h(x1,yi , zi ) ≡ 0 for any h ∈ I (C ) ∩Q[x1,x2,x3]
and zi ∈ C[[x1 − α]].

Proof. According to (H5) and (H7), C2 is in generic position in
the sense of [35, Def 3.1]. As (α , β) is a node of C2 = V (ω), then β
is a double root of ω(α ,x2) by [35, Prop 2.1 & Thm 3.1]. From the

Puiseux theorem (see e.g. [30, Cor 13.16]), there are exactly two
Puiseux series y1,y2 of C2 at (α , β). And for i = 1, 2, from [31, §3.2],
yi ∈ C[[x1 − α]], hence, ω(x1,yi ) ≡ 0 and yi (α) = β . Besides, as
(α , β) is a node, we have y′1(α) , y

′
2(α). This concludes the proof

of assertion (1).
Let h ∈ I (C ) ∩ Q[x1,x2,x3]. By Euclidean division, there are

u, r ∈ Q[x1,x2] andm ≥ 0 such that

(∂x2ω)
m · h = u(∂x2ω · x3 − ρ3) + r .

Since I (C ) ∩Q[x1,x2] = ⟨ω⟩, ω divides r inQ[x1,x2], so that,

(∂x2ω(x1,yi ))
m · h(x1,yi , zi ) ≡ 0,

for i = 1, 2. As ∂x2ω(x1,yi ) cannot be identically zero - K(π1,C2)
is finite by (H5), h(x1,yi , zi ) ≡ 0.

Finally, by (H1),Q[C3] is integral overQ[C2], so that there is

h0 ∈ I (C3) = I (C ) ∩Q[x1,x2,x3]

monic in x3. From above, for i = 1, 2, h0(x1,yi , zi ) ≡ 0 and zi is
integral over C[[x1 − α]]. As C is an algebraically closed field of
characteristic 0,C[[x1−α]] is integrally closed [30, Cor 13.15]. Thus,
as a fraction, zi ∈ C[[x1 − α]]. □

Proposition 3.2. The following assertions are equivalent:
(1) y ∈ app(C2);
(2) y is a node of C2 and

(∂2x2ω · ∂x1ρ3 − ∂
2
x1x2ω · ∂x2ρ3)(y) , 0. (1)

Proof. Assume that y = (α , β) is a node. We first prove that
if (1) holds then, there are two distinct points of C that project
on y. By Lemma 3.1, there exist y1,y2 ∈ C[[x1 − α]] such that
y′1(α) , y′2(α) and yi (α) = β and ω(x1,yi ) ≡ 0, for i = 1, 2. For
i = 1, 2 let zi =

ρ3(x1,yi )
∂x2ω(x1,yi )

. By Lemma 3.1,

∂x2ω(x1,yi ) · zi ≡ ρ3(x1,yi ).

Since zi ∈ C[[x1 − α]], by derivation and evaluation in x1 = α ,(
∂2x1x2ω(y) + y

′
i (α)∂

2
x2ω(y)

)
zi (α) = ∂x1ρ3(y) + y

′
i (α)∂x2ρ3(y). (2)

By Lemma 3.1, ω(x1,yi ) ≡ 0. Differentiating twice and evaluating
in α , we get

∂2x1ω(y) + 2y
′
i (α)∂

2
x1x2ω(y) + y

′
i (α)

2∂2x2ω(y) = 0.

Since y′1(α) , y
′
2(α) by Lemma 3.1, they are simple roots of

∂2x1ω(y) + 2U ∂
2
x1x2ω(y) +U

2∂2x2ω(y) ∈ C[U ].

Therefore,
∂2x1x2ω(y) + y

′
i (α)∂

2
x2ω(y) , 0. (3)

Now let H : C → C such that for all t ∈ C

H (t) =
∂x1ρ3(y) + t · ∂x2ρ3(y)

∂2x1x2ω(y) + t · ∂
2
x2ω(y)

.

Using (2) and according to (3), H (y′i (α)) = zi (α) for i = 1, 2. But
H is either bijective or constant, whether (1) respectively holds or
not. As y′1(α) , y

′
2(α), (1) holds if, and only if, z1(α) , z2(α). By

Lemma 3.1, (2), z1 = (α , β, z1(α)) and z2 = (α , β, z2(α)) are points
of C3 projecting on y. From (H3), there are x ,x ′ in C that project
on resp. z1 and z2. They are distinct if, and only if, (1) holds.

We can now prove the equivalence statement. We just proved
that, if y is a node and (1) holds then, y is the projection of two
distinct points, that cannot be singular by (H5). Conversely, eithery
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is not a node, and we conclude by (H4) or, by the above discussion, it
is the projection of a point ofC , with two distinct tangent lines (that
project on the ones of y). Hence, y is the projection of a singular
point and then, not in app(C2), by definition. □

4 CONNECTIVITY RECOVERY
We now investigate the connectivity relation between CR and C2,R .
The following lemma is partly adapted from [31, Lemma 6.2].

Lemma 4.1. Let x = (x1 . . . ,xn ) ∈ K(π1,C ), then x ∈ Rn if and
only if x1 ∈ R, and K(π1,C2) − app(C2) = π2

(
K(π1,C )

)
.

Proof. The second point is a direct consequence of (H2), as the
non-singular critical points of C project to the ones of C2.

Let x ∈ K(π1,C ), and assume x1 ∈ R. By [35, Prop 3.1], as C
is in generic position, computing sub-resultant sequences gives a
rise to σ2 ∈ Q[x1] such that x2 = σ2(x1) ∈ R. By (H6), the line
V (x1 −x1,x2 −x2) intersects C at exactly one point. Hence, by [20,
Thm 3.2], computing a Gröbner basis of the ideal

I (C ) + ⟨x1 − x1,x2 − x2⟩ ⊂ R[X ]

with respect to the lexicographic order x1 ≺ · · · ≺ xn gives a
rise to n − 2 polynomials σ3, . . . ,σn such that σi ∈ R[x1, . . . ,xi−1]
and σi (x1, . . . ,xi−1) = xi , for 3 ≤ i ≤ n. Hence, the triangular
system formed by the σi ’s raises polynomials τ2, . . . ,τn ∈ R[x1]
such that xi = τi (x1) for i ≥ 2, thus x ∈ Rn . The converse is
straightforward. □

The following lemma shows that, except at apparent singularities,
the real traces of C and C2 share the same connectivity properties.

Lemma 4.2. The restriction of π2 to CR − π
−1
2 (app(C2)) is a s.a.

homeomorphism of inverse φ2, defined on C2,R − app(C2) such that

for all y < K(π1,C2), φ2(y) =
(
y,

ρ3(y)

∂x2ω(y)
, . . . ,

ρn (y)

∂x2ω(y)

)
.

Proof. Consider y ∈ C2,R − app(C2). As C2 = V (ω), either
∂x2ω(y) is non-zero or y ∈ K(π1,C2,R ) − app(C2). In the latter
case, according to Lemma 4.1

π−12 (y) ∩ C ⊂ K(π1,CR ).

By (H6) there is a unique x ∈ K(π1,CR ) − π
−1
2 (app(C2)) such that

π2(x) = y. Let φ2 : C2,R − app(C2) → Rn be defined as:
▷ if y ∈ K(π1,C2) − app(C2), then φ2(y) is the unique x sat-

isfying π2(x) = y;
▷ else φ2(y) =

(
y, (ρ3/∂x2ω)(y), . . . , (ρn/∂x2ω)(y)

)
.

Since its graph is a s.a. set by construction,φ2 is a s.a. map according
to [4, §2.5.2]. Moreover, if y ∈ C2,R − app(C2), then φ2(y) is the
unique element of CR − π

−1
2 (app(C2)) such that π2(φ2(y)) = y.

Since ∂x2ω(y) does not vanish on this set, φ2 is continuous on
C2,R − K(π1,C2). We prove that it is continuous everywhere. Let
y ∈ K(π1,C2,R ) − app(C2) and suppose there is a s.a. path γ :
[0, 1] → C2,R , such that γ (0) = y and γ (t) ∈ C2,R − K(π1,C2), for
all t > 0. Consider the s.a. path τ : t ∈ (0, 1] 7→ φ2(γ (t)) ∈ CR .
Since π2 is a proper map by (H1), τ is bounded. Thus, by [4, Prop
3.21], τ can be continuously extended in t = 0 and by continuity,
τ (0) ∈ CR and π2(τ (0)) = π2(φ2(y)) = y. Hence, by uniqueness
τ (0) = φ2(y) and, by [4, Prop 3.6 & 3.20], φ2 is continuous in y.

Since K(π1,C2) is finite, no such path γ exists if, and only if, both
y and x are isolated points so that φ2 is trivially continuous at y.

In conclusion, φ2 is a s.a. map, continuous on C2,R − app(C2), of
inverse the restriction of π2 to CR − π

−1
2 (app(C2)) by Lemma 4.1.

Hence, this latter restriction is a s.a. homeomorphism, as stated. □

It remains to investigate how the connectivity of the real traces of
C and C2 are related close to apparent singularities. Recall that an
(ambient) isotopy of Rn is a continuous mapH : Rn × [0, 1] → Rn

such that y 7→ H(y, 0) is the identity map and y 7→ H(y, t) is a
homeomorphism for t ∈ [0, 1]. Then two subsets Y and Z of Rn
are isotopy equivalent if there is an isotopy H of Rn such that
H(Y , 1) = Z .

Recall also that a graph G is the data of a set V of vertices,
together with a set E of edges {v,v ′}, where v,v ′ ∈ V . For any
y,y′ ∈ R2, we will denote by [y,y′], the closed line segment {(1 −
t)y + ty′, t ∈ [0, 1]}. Then, ifV ⊂ R2, we call the piecewise linear
curve, denoted CG , associated to G the union of [v,v ′] for all
{v,v ′} ∈ E. In the following, we note P2 = π2(P).

Definition 4.3. Let G2 = (V2, E2) be a graph, withV2 ⊂ R2. Then
we say that G2 is a real topology graph of (C2,P2) if

(1) C2,R is isotopy equivalent to CG2 ;
(2) the points of K(π1,C2,R ) ∪ P2,R are embedded inV2;
(3) no two points of K(π1,C2,R ) have adjacent vertices in G .

For the rest of this section, let G2 be a real topology graph of
(C2,P2),H the induced isotopy and, for t ∈ [0, 1],Ht : y ∈ R2 →
H(y, t), so thatH1(CG2 ) = C2,R .

Consider s.a. paths γ1, . . . ,γ4 in R2, all starting from a unique
point p ∈ R2, and not intersecting each other elsewhere (see Fig-
ure 1), so that the γi ’s can be pairwise associated with respect to
their unique opposite branch at p: given an orientation of R2 and a
sufficiently small circle centered at p, we arrange the γ ′i s around p
with respect to their unique intersection with this circle [8, Thm
9.3.6]; we then pairwise associate them to the one after next in the
above arrangement (it does not depend on the chosen orientation).
Up to reindexing, say that (γ1,γ3) and (γ2,γ4) are the unique couples
of opposite branches at p.

The next lemma follows directly from classical results in knots
and braids theory, see [10, Prop 1.9-10] for the key arguments.

Lemma 4.4. Let the γi ’s as above, and any isotopy H̃ of R2. The
curves (H̃1(γ1), H̃1(γ3)) and (H̃1(γ2), H̃1(γ4)) do not intersect each
other, except at H̃1(p). They are the unique couples of opposite branches
at this point.

This property allows us to deduce relations between edges of
G2, from relations between the associated branches of C2,R .

Lemma 4.5. Let y = (α , β) ∈ app(C2,R ). There are exactly five
distinct vertices v0, . . . ,v4 ∈ V2 such that H1(v0) = y and for
1 ≤ i ≤ 4:

(1) {v0,vi } ∈ E2 andH1(vi ) < app(C2);
(2) if ei = [v0,vi ], the e ′is do not cross each other except atv0;
(3) there exists unique s.a. paths τ1, . . . ,τ4 such that for

τi : [0, 1] → CR ,

{
π2(τi ([0, 1])) = H1(ei )
π2(τi (0)) = y



Algorithm for ConnectivityQueries on Real Algebraic Curves Conference’17, July 2017, Washington, DC, USA

Figure 1: The left figure illustrates the context of Lemma 4.4 with
two possible ordering of the branches; the braid structure appears
clearly. On the right, an illustration shows how NodeResolution
(Definition 4.6) modifying G2 at vertices of Vapp; dotted and solid
lines representing respective edges of G2 and G .

(4) assume that (e1, e3) and (e2, e4) are the two unique couples
of opposite edges of G2 at v0. Then, there exist x1 , x2 in
π−12 (y) ∩ CR , such that x1 = τ1(0) = τ3(0) and x2 = τ2(0) =
τ4(0).

Proof. Letv0 = H−11 (y). As y is a node, there are exactly four
distinct vertices v1, . . . ,v4 ∈ V2 such that {v0,vi } ∈ E2, for 1 ≤
i ≤ 4. Indeed, for 1 ≤ i ≤ 4, let

ei : t ∈ [0, 1] 7→ v0 + t(vi −v0) ∈ R
2

and γi = H1 ◦ ei . Then the γi ’s are the four branches of C2,R
incident in y. Remark that, by the third item of Definition 4.3, none
of theH1(vi )’s lie in K(π1,C2,R ), sinceH1(v0) = y does. Besides,
by the second item, the γi ’s do not intersect K(π1,C2), except in y.

In particular, the γ ′i s do not contain points of app(C2) and inter-
sect each other only at y. Hence, by Lemma 4.4, throughH1, the
ei ’s intersect each other only atv0.

Besides, let i ∈ {1, . . . , 4}, and for 0 < t ≤ 1, let τi (t) = φ2(γi (t)),
where φ2 is defined in Lemma 4.2. It is a well-defined s.a. path by
the above discussion. Moreover, by Lemma 4.2, τi (t) ∈ CR and
π2(τ (t)) = γ (t) = H1(ei (t)), for all 0 < t ≤ 1. Since π2 is a proper
map by (H1), [4, Prop 3.21] implies that τi can be continuously
extended in t = 0. Moreover, by continuity, π2(τi (0)) = y.

Finally, y being a node, there exist points θ1 , θ2 in R2 and
1 ≤ i1, i2, i3, i4 ≤ 4 such that,

θ1 = γ
′
i1 (0) = γ

′
i3 (0) and θ2 = γ

′
i2 (0) = γ

′
i4 (0).

This means that the branches (γi1 ,γi3 ) and (γi2 ,γi4 ) are the two cou-
ples of opposite branches of C2 at y. Then, by Lemma 4.4, (ei1 , ei3 )
and (ei2 , ei4 ) are the two couples of opposite edges of G2 at y. For
the sake of clarity assume, without loss of generality that ik = k
for all 1 ≤ k ≤ 4. By continuity, there exist ϑ1 , ϑ2 in Rn such that

ϑ1 = τ
′
1(0) = τ

′
3(0) and ϑ2 = τ

′
2(0) = τ

′
4(0),

and τi (0) ∈ π−12 (y) ∩ CR for 1 ≤ i ≤ 4. But as y ∈ app(C2),
π−12 (y) ∩ C contains two distinct non-singular points, of distinct
tangent lines, by (H2) and (H4). Since the τ ′i (0)’s are tangent lines
of C , necessarily, τ1(0) and τ3(0) are equal to one of these points,
while τ2(0) and τ4(0) are equal to the other one (if multiple branches
converge at a point or the tangent lines differ, it becomes singular).

□

IfVapp = H−11 (app(C2)) ⊂ V2 is the subset of apparent nodes,
then Lemma 4.5 provides a procedure to compute a new graph G ,
from which we can deduce connectivity queries on C .

Definition 4.6. Let NodeResolution be the procedure that takes
as input G2 andVapp as above and outputs the graph G = (V, E)
as follows (we keep notations of Lemma 4.5).

1. For allv ∈ Vapp, compute the adjacent verticesv1, . . . ,v4 of
v , indexed such that (e1, e3) and (e2, e4) are opposite edges.

2. Removev fromV2 and replace the four edges ({v,vk })1≤k≤4
by the two edges ({vj ,vj+2})k=1,2, as depicted in Figure 1.

We say that v,v ′ ∈ V are connected in a graph G = (V, E) if
there exists an ordered sequence (v0, . . . ,vN+1) of vertices inV
such thatv0 = v ,vN+1 = v

′ and {vi ,vi+1} ∈ E, for all 0 ≤ i ≤ N .

Proposition 4.7. Let G = (V, E) be the graph output by NodeRes-
olution, on input G2 andVapp. Then,

(1) π2(PR ) ⊂ H1(V);
(2) y,y′ ∈ PR are s.a. connected inCR if, and only if,H−11 (π2(y))

andH−11 (π2(y
′)) are connected in G .

Proof. (H5) and (H6) implyπ2(P)∩H1(Vapp) = ∅. ThenP2,R =
π2(PR ) as π2 is injective on P, and, by definition, P2,R ⊂ V .

We now deal with the second statement. Let x ,x ′ ∈ PR and

v = H−11 (π2(x)) and v ′ = H−11 (π2(x
′))

inV . Assume first that v and v ′ are connected in G . Then there
exist v1, . . . ,vN ∈ V such that, if v0 = v and vN+1 = v ′,
then {vi ,vi+1} ∈ E and H1(vi ) < app(C2) for 0 ≤ i ≤ N + 1.
Fix i ∈ {0, . . . ,N }. By Lemma 4.2, xi = φ2(H1(vi )) and xi+1 =
φ2(H1(vi+1)) are well-defined in CR

If {vi ,vi+1} ∈ E2 then, H1([vi ,vi+1]) ∩ app(C2) = ∅, and,
by Lemma 4.2, xi and xi+1 are s.a. connected in CR through φ2.
Otherwise, {vi ,vi+1} < E2, and, by construction of G , there exists
w ∈ Vapp such that {vi ,w} and {w,vi+1} are in E2. However,
since {vi ,vi+1} ∈ E, then, according to the construction of G ,

ei = [w,vi ] and ei+1 = [w,vi+1]

are opposite edges of G2 at w . Hence, by items (2) and (3) of
Lemma 4.5, there exists a s.a. path τ : [−1, 1] → CR connect-
ing xi to xi+1. All in all, by transitivity, x0 = x and xN+1 = x ′ are
s.a. connected in CR , and we are done.

Conversely, suppose that x and x ′ are s.a. connected in CR and
let τ : [0, 1] → CR be a s.a. path such that τ (0) = x and τ (1) = x ′.
Let γ = π2 ◦ τ , and

{t1, . . . , tN } = γ
−1 (H1(V2)

)
⊂ (0, 1)

such that t1 < . . . < tN . Let t0 = 0, tN+1 = 1 and for 0 ≤ i ≤ N + 1,
vi = H

−1
1 (γ (ti )) ∈ V2. By assumption, {vi ,vi+1} ∈ E2 for all

i ∈ {0, . . . ,N }. Let us prove by induction that for 0 ≤ i ≤ N + 1,
either vi ∈ Vapp or vi is connected to v0 in G . If i = 0, there is
nothing to prove, so let 1 ≤ i ≤ N and suppose that the statement
holds for all 0 ≤ j<i .

Assume vi+1 < Vapp. Then, either vi < Vapp, and, by induc-
tion hypothesis, vi+1 and v0 are connected, through vi , in G . Ei-
thervi ∈ Vapp and, by Lemma 4.5, there are exactly four distinct
w1,w2,w3,w4 ∈ V −Vapp such that {vi ,wj } ∈ E2, for 1 ≤ j ≤ 4.
Assume, without loss of generality, thatvi+1 = w1. Then, there is
j1 ∈ {2, 3, 4} such thatvi−1 = wj1 . Using the notation of Lemma 4.5,
assume, without loss of generality, that e3 = [vi ,w3] is the oppo-
site branch of e1 = [vi ,w1] in G2 at vi . Then, by items (2) and
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(3) of Lemma 4.5, we have j0 = 3, since τ ([ti−1, ti ]) is connected
to τ ([ti , ti+1]). By construction of G , w1 = vi+1 is connected to
w3 = vi−1 in G , so that, by induction, vi+1 is connected to v0,
through vi−1. Hence, v = vN+1 and v ′ = v0 are connected in G ,
proving the converse. □

Proposition 4.7 also implies that G and CR share the same num-
ber of s.a. connected components. Therefore, by computing G , one
can determine this number and answer connectivity queries on PR .

5 ALGORITHM
We now provide an algorithm for solving connectivity queries over
real algebraic curves, whose different steps correspond sequentially,
except for one, to the different sections of this document.

Given a sequence of polynomials defining an algebraic curve, the
first step is to perform a linear change of variable, generic enough
to ensure assumption (H), and to compute a one-dimensional pa-
rametrization encoding it. Answering connectivity queries on the
sheared curve is equivalent to do so on the original curve. By [34,
Thm 6.18] (or [46, Prop 6.3]), computing such a parametrization
has complexity cubic in the degree of the curve, thus bounded by
our overall complexity. Besides, according to [46, § J], changing
variables in zero and one-dimensional parametrizations has similar
complexity. Hence, for the sake of clarity, we omit these two steps.

Following the state of the art of curve topology computation,
we consider polynomials with integer coefficients, so thatQ = Q,
R = R and C = C. Moreover, we denote by ⪯1 the preorder on
points of Rn w.r.t. the first coordinate, when they are distinct.

5.1 Subroutines
We assume that R = (ω, ρ3, . . . , ρn ) has coefficients in Z and
magnitude (δ ,τ ), and consider a zero-dimensional parametriza-
tion P = (λ,ϑ2, . . . ,ϑn ), with coefficients in Z and magnitude
(µ,κ) encoding P. Note that R2 = (ω, ρ2) and P2 = (λ,ϑ2) are
parametrizations encoding respectively C2 and P2. We denote fur-
ther R = Resx2 (ω, ∂x2ω). Since, by (H7), ω is monic in x2, its roots
are exactly the abscissas ofK(π1,C2). From (H5), points of app(C2)
can be identified by their abscissa, which, following Proposition 3.2,
can be reduced to gcd computations.

Proposition 5.1. There exists an algorithm ApparentSingularities
taking as input R, as above, and computing a square-free polynomial
qapp ∈ Z[x1], of magnitude (δ2, Õ(δ2 + δτ )) such that

app(C2) = {(α , β) ∈ K(π1,C2) | qapp(α) = 0},

using Õ(δ6 + δ5τ ) bit operations.

Proof. Let (α , β) ∈ K(π1,C2). According to [31, Thm 3.2.(ii)],
since C satisfies (H), (α , β) is a node if, and only if, α is a double
root of R, i.e. if, and only if, α is a root of

q = gcd(R∗,R′)/gcd(R∗,R′,R′′),

where R∗ is the square-free part of R. Moreover, let (sr1, sr1,0) be
the first subresultant sequence of (ω, ∂x2ω). By [35, Thm 3.1], if
q(α) = 0 then, sr1(α) , 0, and

sr1(α) · β = − sr1,0(α).

Let A(x1,x2) be the polynomial on the left-hand side of (1) in
Proposition 3.2, and u be a new indeterminate. Let Ã(x1,x2,u) be

the homogenization of A in x2, and B = Ã(x1,− sr1,0, sr1). Then,
from Proposition 3.2, the square-free polynomial

qapp = q/gcd(q,B)

vanishes at α if, and only if, (α , β) ∈ app(C2), as required.
We now deal with the quantitative bounds. By [44, Lemma 14],

R, R∗, sr1 and sr1,0 have magnitude (δ2, Õ(δ2 + δτ )) and can be
computed using Õ(δ6 + δ5τ ) bit operations. Hence, by [49, Cor
11.14] and [44, Lemma 12], computing gcd(R∗,R′), gcd(R∗,R′,R′′)
and then q can be done using Õ(δ4 + δ3τ ) bit operations. Moreover,
by [44, Lemma 11], q has magnitude (δ2, Õ(δ2 + δτ )).

Besides, Ã has magnitude (O(δ ), Õ(τ )), so that B has magnitude(
Õ(δ3), Õ(δ3 + δ2τ )

)
.

Hence, by [49, Cor 11.14] computing, gcd(q,B) requires Õ(δ6+δ5τ )
bit operations. From this, computingqapp costs Õ(δ4+δ3τ ) bit opera-
tions, by [22, Prop 2.15]. Finally,qapp hasmagnitude (δ2, Õ(δ2+δτ )),
by [44, Lemma 11]. □

Suppose now that the polynomial qapp, from Proposition 5.1, has
been computed. We can compute a real topology graph of (C2,P2),
while identifying the vertices corresponding to app(C2) and P2.

Proposition 5.2. There exists an algorithm Topo2D taking as input
R,P2 and qapp as above and computing G = (V, E), a real topology
graph of (C2,P2), of size at most O(δ3 + δµ), using

Õ(δ6 + δ5τ + µ6 + µ5κ)

bit operations. It also outputs ordered sequences Vapp and VP , of
elements ofV , that are in one-to-one correspondence with resp. the
points of app(C2,R) and P2,R, ordered with respect to ⪯1.

Proof. According to [42, Thm 14], and more recently [22, Thm
1.1], there is an algorithm that computes a planar graph G , whose
associated piecewise linear curve CG , is isotopy equivalent to C2,R,
using Õ(δ6 + δ5τ ) bit operations. Under slight modifications, these
algorithms can compute the claimed output of Topo2D, within the
same complexity bounds. For clarity, we only consider the algorithm
of [22], that we roughly describe.

Let α1 < · · · < αN be the abscissas of the points of K(π1,C2,R).
They are distinct by (H5). [22, Prop 2.24] first computes disjoint
isolating intervals for each αi . Then, [22, Prop 3.13] isolates the
ordinates of the points above each αi . This process gives rise to
isolating boxes, which stand for vertices in the final graph. The
algorithm eventually connects these boxes to separating vertices
above regular values in the intervals (α j ,α j+1). The latter is done
by counting the number of incoming left and right branches in each
box. For points of K(π1,C2,R), it is tackled by [22, §4.2-4], while
for others it is straightforward (exactly one branch from each side).

The above process computes a graph G = (V, E), such that CG

is isotopy equivalent to C2,R. Remark thatV contains a subsetVK
of vertices associated to the unique point of K(π1,C2,R) above the
αi ’s, all separated by vertices associated to regular points. Moreover,
by Proposition 5.1,Vapp is exactly the subset ofVK , associated to
the αi ’s where qapp vanishes. Then, according to [22, Prop 2.24]
and Proposition 5.1, one can compute disjoint isolating intervals of
the roots of R and qapp and identify all common roots, using

Õ(δ6 + δ5τ )
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bit operations. This gives Vapp.
Hence, it remains to show that introducing vertices for control

points P2,R (together with those above and below) can be done
in the claimed bound. First, recall that D = (λ,ϑ2) encodes P2.
According to [22, Prop 2.24] again, we can compute disjoint isolating
intervals for all distinct (by (H5)) real roots of λ and R, using at
most

Õ(δ6 + δ5τ + µ6 + µ5κ)

bit operations. Next, let д(x1,x2) = λ′ · x2 − ϑ2. It is a bivariate
polynomial with magnitude (µ,κ). Then, according to [22, Prop
3.14], for each root β of λ, we can compute isolating intervals
for all roots x2 of (ω · д)(β ,x2), and identify the unique common
roots, within the same complexity bound. This gives VP . Moreover,
since P ∩ K(π1,C2,R) = ∅, as seen above, the connection step for
the introduced vertices is straightforward, and does not affect the
complexity bound.

Finally, since we consider at most δ2 + µ fibers, each of them
containing at most δ points then, taking in account the regular
separating fibers, we get at mostO(δ3 +δµ) vertices and edges. □

5.2 The algorithm
Let IndConnectComp be an algorithm taking as input a graph
G = (V, E), and an ordered sequence V = (v1, . . . ,vN ) of vertices
of G . It outputs a partition I1, . . . , Is of {1, . . . ,N }, grouping the
indices of thevi ’s lying in the same connected components of G .
By [19, §22.2], this has a bit complexity linear in the size of G .

Algorithm 1 ConnectCurve

Input: R = (ω, ρ3, . . . , ρn ) ⊂ Z[x1,x2] encoding an algebraic
curve C ⊂ Cn and P = (λ,ϑ2, . . . ,ϑn ) ⊂ Z[x1] encoding
points p1 ⪯1 · · · ⪯1 pµ of CR, such that (C ,P) satisfies (H).

Output: a partition of {1, . . . , µ} grouping the indices of the pi ’s
lying in the same s.a. connected component of CR.

1: P2 ← (λ,ϑ2);
2: qapp ← ApparentSingularities(R)
3:

[
G2, Vapp, VP

]
← Topo2D

(
R, P2, qapp

)
;

4: G ← NodeResolution(G2, Vapp);
5: return IndConnectComp(VP , G );

Correction, and complexity estimate, of Algorithm 1, follow
directly from Propositions 5.1, 5.2 and 4.7. This proves Theorem 1.1.

As mentioned before, the number of connected components
of the graph G computed equals the number of s.a. connected
components of CR. As an extension, for curves given as unions,
Algorithm 1 can be applied to each curve, where query points
are extended to include pairwise common intersection points. The
resulting subsets are then merged based on their shared points.
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