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The gut mucin-microbiota
interactions: a missing key to
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Endurance athletes offer unique physiology and metabolism compared to
sedentary individuals. Athletes training at high intensities for prolonged periods
are at risk for gastrointestinal disturbances. An important factor in endurance
performance is the integrity and function of the gut barrier, which primarily
depends on heavily O-glycosylated mucins. Emerging evidence shows a
complex bidirectional dialogue between glycans on mucins and gut
microorganisms. This review emphasizes the importance of the crosstalk
between the gut microbiome and host mucus mucins and some of the
mechanisms underlying this symbiosis. The contribution of mucin glycans to
the composition and functionality of the gut microbiome is discussed, as well as
the persuasive impact of the gut microbiome on mucin composition, thickness,
and immune and metabolic functions. Lastly, we propose natural and synthetic
glycans supplements to improve intestinal mucus production and barrier function,
offering new opportunities to enhance endurance athletes’ performance and gut
health.

KEYWORDS

athletes, endurance, glycome, dietary glycans, microbiota, mucins, performance

Introduction

Endurance exercise involves prolonged cardiovascular efforts—such as running, cross-
country skiing, cycling, aerobic exercise, or swimming (Joyner and Coyle, 2008; Clark and
Mach, 2016; Mach and Fuster-Botella, 2017). Endurance exercise performance primarily
depends on physiological adaptations to sustain the metabolic and thermoregulatory
demands of such activity (Shave et al., 2017), including coordinated muscle contractions,
fatty acid oxidation, increased use of glycogen stores, mitochondrial biogenesis, increased
reactive oxygen species (ROS) production, electrolyte rebalance (De Oliveira et al., 2014),
and intestinal mucosa adaptation (Koehler et al., 2021).

An estimated 30%–50% of endurance athletes suffer from acute gastrointestinal
complaints, including diarrhea, vomiting, nausea, and ischemia (de Oliveira and Burini,
2014), which can cause temporary gut microbial imbalances, intestinal barrier damage, and
increased gut permeability and inflammation (Koehler et al., 2021). Intestinal ischemic
damage is caused as blood flows away from the gastrointestinal tract during intense exercise.
Although blood flow is restored to the gut after exercise, long-lasting conditions might
prevail (Waterman and Kapur, 2012). The risk of these digestive troubles is amplified when
athletes push beyond their expected physical limits or when other immune and metabolic
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stressors are present, including altitude, elevated environmental
temperature, fluid restriction, extreme trainability, exposure to
novel pathogens during travel, lack of sleep, severe mental stress,
malnutrition, or weight loss (Nieman, 2003; Neufer et al., 2015;
Koehler et al., 2021).

Undoubtedly, intestinal health and homeostasis entail complex
multifactorial processes whose mechanisms are still not fully
understood. New evidence has shown that the gut microbiota,
defined as the complex community of microorganisms that reside
in the gut (Fischbach, 2018), impacts the gastrointestinal tract’s
health (Fan and Pedersen, 2021). The human gut microbiota
contains over 100 trillion microorganisms and up to 10 million
non-redundant genes (Forster et al., 2016), with an enormous
metabolic capacity. It spans over 2,000 bacterial species
(Donaldson et al., 2015; Jousset et al., 2017) and various archaea,
eukaryotic taxa, and viruses, with a density of ~40–300 billion
microorganisms in the colon (Vandeputte et al., 2016). Their
functions include digestion and nutrient uptake, immune system
regulation, metabolism, energy harvest, protection against
pathogens, synthesis of vitamin and bioactive compounds, and
brain function regulation (Rideout et al., 2014).

Each person has a relatively distinct but stable gut microbial
community during adulthood (Lozupone et al., 2012). Diet
and cultural factors are the main determinants of the gut
ecosystem’s diversity and stability (Lozupone et al., 2012). But,
antibiotics, anthelmintic use, stress, smoking, age, type of birth,
pathophysiological conditions, and genetics can also drive microbial
composition and function (Diener et al., 2022). Likewise, compelling

evidence shows that exercise alters the function and structure of the gut
ecosystem (Scheiman et al., 2019; Mohr et al., 2020; Barton et al., 2021;
Morita et al., 2023). Endurance exercise has been studied as a significant
long-term modifier of the intestinal microbiome composition and
function in animal and human studies (Clarke et al., 2014; Barton
et al., 2018; 2021; Scheiman et al., 2019; Plancade et al., 2019; Mach
et al., 2021; Mach et al., 2022). Gut microbiota analyses have reported
that human athletes had different microbiome compositions (defined
by elevated abundances of Veillonellaceae, Bacteroides, Prevotella,
Methanobrevibacter, or Akkermansia (Clarke et al., 2014; Petersen
et al., 2017) with a high number of genes involved in carbohydrate and
amino acid metabolism and short-chain fatty acids (SCFA) production
(Barton et al., 2018).

The growing interest in the gut microbiome in athletic
performance has started to delineate potential ergogenic
effects of the gut microbiome directly and indirectly through
cytokines and metabolites that trigger the immune function and
the gut-brain and gut-muscle axes (Estaki et al., 2016; Barton et
al., 2018; Petersen et al., 2017; Durk et al., 2019; Scheiman et al.,
2019; Ticinesi et al., 2019; Dohnalová et al., 2022). Figure 1
recent cause-and-effect studies in athletes’ microbiomes
revealed that Veillonella atypica (Scheiman et al., 2019;
Lundberg et al., 2021) or Bacteroides uniformis alone (Morita
et al., 2023) are required to enhance athletic outputs. Scheiman
et al. (2019) pointed to the lactate metabolism of Veillonella
atypica as a potential basis for any ergogenic effect observed
(Grosicki et al., 2019; Scheiman et al., 2019). Additionally,
Dohnalová et al. (2022) proved, in a murine model, the

FIGURE 1
Gutmicrobiota’s impact on athlete’smetabolism and physiology. The gutmicrobiota in athletes is critical for its positive contributions to host energy
metabolism and physiology during exercise, such as hydration, heat production, cardiovascular fitness, gut-lung axis regulation, redox reactions, immune
responses, mucus foraging and intestinal mucosa protection, and homeostasis. The gut microbiota and its metabolites also regulate skeletal muscle
function and neurotransmitter production related to fatigue, sensation, and motivation. This figure has been created with BioRender.com.
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influence of microbial production of endocannabinoid
metabolites on motivation and mental states during exercise,
potentially leading to improved performance.

Emerging evidence suggests that the gut microbial ecosystem
also affects athletic performance by influencing the overall gut
barrier function, including mucus layer composition and
thickness, intestinal epithelial tight junction protein structure,
antimicrobial peptide secretion, and goblet cells abundance
(Pedersen, 2011; Leuchtmann et al., 2022). In the past, the
intestinal mucus was mainly considered a simple lubricant for
facilitating the progression of the food bolus and the stools in the
gut (Paone and Cani, 2020). Today, it is known that the gut
mucus layer is a crucial component of the intestinal barrier and
plays a key role in maintaining gut health and homeostasis
(Bansil and Turner, 2018; Nason et al., 2021). This mucus
mainly comprises mucins, a family of high-molecular-weight
glycoproteins with numerous O-linked glycans (also called
carbohydrates, saccharides, or sugars) that confer unique
physical and functional properties. Glycans from mucins are
synthesized and secreted by goblet cells of the small intestine
and colon or the surface mucous cells of the stomach (Cone,
2009). They are involved in several critical gastrointestinal
functions. For example, the glycans on mucins provide a
physical barrier that traps and clears particles and also serves
as a chemical barrier that neutralizes toxins, allergens, pollutants,
and pathogens, limiting the growth and colonization of
pathogens and their adhesion and invasion of the intestinal
epithelium (Schnaar, 2015; Goto et al., 2016; Bergstrom et al.,
2017; Reily et al., 2019; Qin and Mahal, 2021; Brazil and Parkos,
2022). Mucin glycans also act as ligands for pathogen binding and
receptors on immune cells. Thus, in addition to their role as a
physical and chemical barrier, glycans on intestinal mucins have
also been shown to have immune-modulating properties and may
regulate inflammation in the gut (Schnaar, 2015; Reily et al.,
2019; Qin and Mahal, 2021; Brazil and Parkos, 2022).

Notably, mucin glycans establish a symbiotic relationship with
the microbiota (Glowacki and Martens, 2021; La Rosa et al., 2022).
Mucins serve as an environmental niche and a food source for gut
microorganisms (Koropatkin et al., 2012; Belzer, 2022). While most
gut bacteria use dietary fibers and starches as a nutrient source,
genera such as Bacteroides, Bifidobacterium, Ruminococcus, and
Akkermansia encode thousands of carbohydrate-active enzymes
(CAZymes) and associated transport systems to depolymerize
and ferment glycans on mucins into CO2, H2, and SCFAs
(Crouch et al., 2020; Taleb et al., 2022). As a result, these
metabolites can have, in turn, local effects in the gut, including
modifications of production and quality of mucins, regulation of
tight junction proteins and immune system, or be absorbed into the
bloodstream and affect systemic functions (Koropatkin et al., 2012).
There is a clear need for further investigation to understand the
functioning of the mucus barrier and gut health, especially during
endurance exercise. Indeed, a lack of mucus production or a change
in the properties and composition of mucus glycans can result in dry
or thick mucus, which leads to unshielded and dehydrated intestinal
epithelial surfaces that are prone to infection, wounding,
permeability, and risk of endotoxemia (Werlang et al., 2019).

Despite an increasing appreciation of the importance of gut mucin
composition and structure for gut health (van Putten and Strijbis, 2017;

Taleb et al., 2022), their possible role in improving athletic performance
has yet to be assessed. In addition to affecting the gut ecosystem, physical
activity may also directly and indirectly impact mucin production in the
gut. The relationship between physical activity, the gut microbiota, and
mucins, coupled with the considerable malleability of the microbiota
relative to host genomes, opens the possibility of influencing gut health
and athletic performance via dietary microbiota manipulation
(Scheiman et al., 2019; Lundberg et al., 2021). Altogether, it seems
likely that there is a substantial amount of untapped potential concerning
the gut microbiome-mucin interactions in athletes and how external
factors, such as the consumption of natural or synthetic glycans, may
influence this symbiosis.

Therefore, this review aims to give insights into the potential
avenues for exercise physiology and gut mucosal health, building on
the surge of recent primary research to debate different aspects of the
complex bidirectional interaction between gut mucin glycans and
microorganisms. Firstly, we will focus on gut mucin composition,
function, synthesis, and their synergy with gut bacterial
communities, followed by some characteristics of the mucus layer
that are of great interest in physiological and pathophysiological
contexts for endurance athletes. Secondly, we will propose plausible
dietary glycan supplementation that could modify the microbiome-
glycans on mucins interconnection and improve, prevent, or
maintain healthy gut mucus in athletes.

Materials and methods

Eligibility criteria and literature search
strategy

A systematic and comprehensive search of electronic databases,
including Medline database (https://pubmed.ncbi.nlm.nih.gov/),
Scopus, ClinicalTrials.gov, Science Direct, Springer Link, Google
Scholar, and EMBASEwas done from January 2023 to October 2023.
The search process was completed using the keywords: “glycans”,
“glycome”, “mucin intestinal tract”, “microbiota”, and “athletes”.
The search was not restricted to the type of study (e.g., case-control,
prospective cohort studies, randomized control trial, before-and-
after study, cross-over randomized control trial), type of sport,
sample size, age, gender, ethnicity, geographic localization, or
species. However, editorials, systematic and literature reviews,
and letters to the editors were excluded. Experiments including
individuals with or at risk of health problems and disabilities (type
2 diabetes, overweight, obesity, mental health disorders) were
excluded. The studies that focused on specific medical conditions,
treatments, or demographics were not included in our analysis.
However, we did not exclude studies on colitis and inflammatory
bowel diseases since exercise-induced gastrointestinal distress has
some similarities with these conditions, such as increased intestinal
permeability. We only considered peer-reviewed and original
research studies published from 2000 forward and in English only.

Data extraction

Complete copies of citations coded as potentially relevant were
obtained, and those meeting the inclusion criteria were read in detail
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and data extracted. The authors pulled information about the
species, study aims, population, sample size, dietary records,
experimental design and duration of follow-up, individual
characteristics, changes in the microbiota composition, mucin
characterization, and association or not with gastrointestinal
damage. The primary outcome was the microbiota profile and
mucin composition or structure changes. If eligibility could be
determined, the entire article was retrieved. The extracted data
included the year the paper was published, the species, the
sample size, protocol, and outcomes. All papers were exported to
the reference database Mendeley.

Data synthesis

A search conducted in January 2023 resulted in the following list
of crucial term combinations (gut microbiota, mucins, gut
permeability = 107; mucin glycome and gut microbiota = 14;
mucin, exercise, and gut microbiota = 2; mucin, dietary glycans,
and gut microbiota = 134. After the removal of duplicates, 81 article
titles and abstracts were screened. During the full-text screening,
14 were excluded for not meeting the inclusion criteria or because
one or more of the criteria for exclusion were met. Finally, 67 articles
met all criteria for inclusion in the current review. Among them,
24 were related to the gut microbiota, mucins, and gut permeability,
13 were associated with glycome and microbiota, 2 with mucin,
exercise, and gut microbiota, and 28 with mucin, dietary glycans,
and gut microbiota.

Data collection periods spanned from 2000 to 2023, providing
data from human and animal models like mice and horses.

Results and discussion

The gut mucin glycans composition and
their primary functional roles in the gut

The organization of the mucus along the gastrointestinal tract
has only been well characterized over the last decade (Pelaseyed
et al., 2014). We now know two types of mucus organization in the
gastrointestinal tract (Pelaseyed et al., 2014). The glandular stomach
and colon have a two-layered system with inner and outer mucus
layers, whereas the small intestine has only one layer (Pelaseyed
et al., 2014). The mucus organization in the large intestine matches
the fact that the human colon harbors more than a kilogram of
bacteria. In the large intestine, the outer mucus layer is less dense
and voluminous, not attached (also called loose mucus), and
provides a natural habitat and carbon and nitrogen source for
the commensal bacteria adapted to low oxygen levels (Bell et al.,
2019; Bergstrom et al., 2020). Thus, the outer mucus is a central
ecological niche for the microbiota, acting as the primary interface
between gut cells and commensal microorganisms (Donaldson et al.,
2015).

Conversely, the stratified inner mucus layer is dense and devoid
of the microbiota (Johansson et al., 2015) and functions as a
protective barrier, minimizing microbial translocation and
preventing excessive immune activation (Schroeder et al., 2018).
Intestinal mucus also provides dynamic removal of bacteria and

limits their access to the epithelium because both mucus layers turn
over in hours (Hansson, 2020). Peristalsis in the intestine also helps
(Hansson, 2020). Coupled with mucus renewal, the intestinal
epithelium surface, including goblet cells, is continuously
renewed from the stem cells at the crypt base to ensure epithelial
homeostasis and regeneration and has an average cell turnover of
3–7 days (Barker, 2014).

The mucus is mostly water (usually >98%) andmucins, followed
by salts, lipids, non-mucin proteins, and immunological factors,
varying concentrations depending on gut condition and location.
Mucins are a large, complex family of heavily O-glycosylated
proteins (Bansil and Turner, 2018; Nason et al., 2021). There are
two classes of mucins: those that remain tethered to cell membranes
and mucins that are secreted, usually by the goblet cells of the small
intestine and colon or the surface mucous cells of the stomach
(Cone, 2009). The gastrointestinal tract’s main secreted and
anchored mucin is mucin 2 (MUC2) (Carvalho et al., 2012). The
membrane-anchored MUC2 forms the glycocalyx (Hansson, 2020).
The canonical role of MUC2 is to lubricate, hydrate, and protect
epithelial surfaces against the outside environment (Goto et al.,
2016). Additionally, because gut cell surfaces are a significant site of
MUC2 expression, their roles include mediating cell-cell and
pathogen-cell interactions. Thus, MUC2 is broadly involved in
immune recognition and trapping, immune cell activation or
suppression (Schnaar, 2015; Reily et al., 2019; Qin and Mahal,
2021; Brazil and Parkos, 2022), antimicrobial functions
(Bergstrom and Xia, 2022) and interaction with microbes (Paone
and Cani, 2020).

Most of the functions of MUC2 are governed by the
glycosylation patterns of the O-linked glycans. O-glycans
typically make up more than 80% of the mass of mucins
(Hansson, 2020). Generally, mucins have a central protein core
rich in Ser, Pro, or Thr-repetitive and non-repetitive sequences
(Ridley and Thornton, 2018; Hansson, 2019) decorated with
many O-glycan chains. These O-glycans are primarily built
from five monosaccharide components: galactose,
N-acetylglucosamine (GlcNAc), N-acetylgalactosamine
(GalNAc), fucose, and sialic acid (Ridley and Thornton, 2018;
Hansson, 2019), which are attached to the protein backbone
through an oxygen atom. Together, they form a dense
carbohydrate layer that covers the protein core (Bergstrom and
Xia, 2013). Mucin O-linked glycans exert canonical functions
upon glycosylation (Qin and Mahal, 2021). Glycosylation
expression and composition profile in mucins differ among the
different gastrointestinal tract regions and individuals (genetic
factors partly determine them (Belzer, 2022)). Notably, the
process of O-glycosylation leads to remarkable O-linked glycan
heterogeneity and diversity, with more than 200 distinct forms
identified in mucins (Varki, 2007). Each possible glycan form has
a potentially unique regulatory capability (Jin et al., 2017). The
ensemble of glycan forms found in mucins and their
arrangements, particularly within glycoproteins, comprise the
glycome (Kunej, 2019). The emerging field of glycomics, which
evaluates the structures and function of glycoproteins in a
biological system (Kunej, 2019), has started to delineate the
emerging and promising role of the mucinome, which is the
ensemble of glycoproteins whose mucin domains make them
functional (Malaker et al., 2022).
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There is now a growing appreciation of the need to study the
mucin glycans role in gut health. As such,MUC2-deficient mice lack
a standard intestinal mucus layer and are more susceptible to
intestinal inflammation and infection (Van der Sluis et al., 2006).
In agreement, MUC2−/− mice displayed increased epithelial barrier
permeability because of mucus defects and intestinal epithelial tight
junction impairment and developed spontaneous colitis (Lu et al.,
2011). In another example, mice deficient in intestinal mucin O-
glycans, T-synthase-knockout mice and Cosmc-knockouts,
presented loss of the gut outer and inner intestinal mucus layers
and increased bacterial–epithelial contact in the distal colon, as well
as intestinal permeability (Fu et al., 2011; Kudelka et al., 2016).

Gastrointestinal symptoms in endurance
athletes: gut mucus damage matters

Over the past decades, the increased popularity of endurance
events has raised concerns regarding prolonged and intense
exercise’s impact on gastrointestinal health, leading to worse
performance (Svendsen et al., 2016) and recovery (Gordon et al.,
2017). Around 30%–50% of endurance athletes (Jeukendrup et al.,
2000; De Oliveira et al., 2014) and 96% of ultramarathon runners
experience acute gastrointestinal distress during or after exercise
(Hoffman and Fogard, 2011; Urwin et al., 2021). Although most
symptoms are mild and do not cause long-term health effects,
epigastric pain, heartburn, nausea, vomiting, abdominal pain,
bloody diarrhea episodes, and dehydration are typical responses
in endurance athletes (Koehler et al., 2021). Yet, increasing evidence
shows that these symptoms may indicate more chronic intestinal
damage (De Oliveira et al., 2014), which could impact subsequent
recovery.

Until now, the negative symptoms linked to strenuous
exercise were believed to be primarily due to gut blood
hypoperfusion (Jeukendrup et al., 2000). Vigorous endurance
training (≥60 min and ≥70% of maximum work capacity)
increases sympathetic nervous system activity. It redistributes
blood flow from the splanchnic organs to the working skeletal
muscles and peripheral circulation (Mach and Fuster-Botella,
2017). This results in gut hypoxia and hypoperfusion, reduced
intestinal motility and absorption capacity, damage of the
specialized antimicrobial protein-secreting cells (Paneth cells),
the mucus-producing cells (such as goblet cells), and increased
loosening of tight junction protein structure (Ribeiro et al.,
2021). Once the exercise is finished, the blood flow
reperfusion in the gut may also contribute to longer-lasting
conditions such as gastritis or ulcers (Waterman and Kapur,
2012). Lastly, mechanical damage to the epithelia caused by
general movement, specifically running, is another mechanism
linked to gastrointestinal distress (Smith et al., 2021). All these
events are not mutually exclusive. The acute deterioration and
inflammation of the gastrointestinal mucosal barrier enable the
release of immunogenic substances, the translocation of bacteria
and bacterial lipopolysaccharides (LPS), and the subsequent
toll-like receptor-4 (TLR4) and CD14 activity. Altogether,
prompt the release of pro-inflammatory cytokines such as
TNFα and IL-1α, leading to chronic low-grade inflammation
(Mohr et al., 2020) and intestinal permeability (Stuempfle and

Hoffman, 2015; Ruiz-Iglesias et al., 2020; Koehler et al., 2021).
The immune response, however, depends on the
microorganisms from which LPS originates and the LPS
structure (Mohr et al., 2022). Moreover, endurance exercise
induces oxidative stress within intestinal epithelial cells via
mitochondrial ROS production (Pagesy et al., 2022), as well
as changes in the oxygen concentration and osmolarity of the gut
lumen (Jeukendrup et al., 2000) (Figure 2). Lastly, emotional
stress experienced by many endurance athletes can activate the
sympathetic nervous system and hypothalamic-pituitary-
adrenal axis and further contribute to gut dysregulation (Silva
et al., 2014; Clark and Mach, 2016; Koehler et al., 2021).

Beyond gut disturbances, a common problem affecting elite
athletes is the increased incidence of upper respiratory tract
infections (O’Brien et al., 2022). The immunosuppressive effect
of exercise at high intensity, the chronic systemic inflammation,
partly caused by increased gut permeability, and the excessive
strain on the respiratory system (relative to its capacity) leads to
exercise-induced hypoxemia (Durand and Raberin, 2021) and
increased risk of infections (Nieman, 2003; O’Brien et al., 2022).
Therefore, gastrointestinal damage may be associated with
respiratory comorbidities in top-level endurance athletes due
to exertion in extreme conditions and the bidirectional inter-
organ communication of the gut-lung axis (Budden et al., 2017;
Dang and Marsland, 2019; Mach et al., 2021a). Future
investigation should elucidate how the gut-lung axis affects
athletic performance and health and how to mitigate exercise-
induced gut permeability.

The gut mucin glycome-microbiota
interactions: Two-way traffic

A symbiosis exists between gut mucins glycans (secreted and
tethered to cells) and the microbiome.

On the one hand, intestinal mucus is highly efficient at handling
a high number of microorganisms (>2,000 different bacterial
species), and for this, glycans on mucins are of crucial
importance (Hansson, 2020). Mucus-associated microorganisms
are found in the outer mucus layer of the colon, where they
swim, settle, and communicate with each other (Werlang et al.,
2019). These adapted mucosal taxa encode CAZymes to digest most
of the repertoire of dietary glycans that arrive in the large intestine
(Kaoutari et al., 2013). Dietary glycans come in many forms, from
long polysaccharide chains that humans cannot digest (e.g.,
cellulose, pectins, resistant starch) to oligosaccharide chains
attached to proteins and lipids, and mono and disaccharides,
such as glucose, lactose, or sialic acids (Koropatkin et al., 2012).
Fruits, vegetables, and cereals provide carbohydrates readily digested
by human intestinal enzymes and complex dietary glycans, which
are resistant to digestion and absorption in the small intestine
(Kaoutari et al., 2013). Dietary fibers are one of the most heavily
studied groups of dietary glycans. Fiber is a broad term
encompassing polysaccharides, oligosaccharides, and resistant
starches, namely, inulin, dextrin, pectin, cellulose, resistant starch,
arabinoxylans, and chitin (Krautkramer et al., 2020). These complex
dietary carbohydrates (in soluble and insoluble forms) evade
breakdown by a limited repertoire of host enzymes in the small
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intestine and pass to the distal gut, which serves as a substrate for
many microorganisms (Krautkramer et al., 2020).

Gram-negative Bacteroidetes, Gram-positive Firmicutes,
Actinobacteria, and Verrucomicrobia bacterial species encode
thousands of CAZymes and associated transport systems that
uptake, depolymerize, and ferment dietary glycans into CO2, H2,
and SCFA (Kaoutari et al., 2013; Tailford et al., 2015; Belzer et al.,
2017; Plovier et al., 2017; Sicard et al., 2017; Crouch et al., 2020;
Taleb et al., 2022).

Interestingly, some taxa can forage host mucin glycans, which
provide an additional or alternative energy source for the distal
microbes and favors their replication and colonization (Bergstrom
and Xia, 2013; Kaoutari et al., 2013; Ndeh and Gilbert, 2018). This
ability to adaptively feed on host mucin glycans provides access to a
more stable nutrient reservoir, compared with dietary fiber intake
composition and abundance, which vary daily and from person to
person (Kaoutari et al., 2013). Genes involved in the cleavage of
mucin glycans in the gut are found in many bacteria, e.g., in 86% of
the 397 genomes of gut microbes analyzed, including taxa from
Lachnospiraceae, Enterobacteriaceae, Bacteroides, Eubacterium
rectale, Faecalibacterium prausnitzii, Eubacterium cylindroides,
Clostridium histolyticum, Clostridium lituseburense, and

Akkermansia muciniphila (Ravcheev and Thiele, 2017). Once
bacterial glycosidases have started to act on the mucin glycans,
the host-specific glycan epitopes will disappear. The bacteria will
continue fermenting glycans, and finally, the protein backbone will
be exposed and degraded, contributing to complete mucus
degradation. Only small amounts of mucin appear in the feces,
showing that the commensal bacteria efficiently utilize host mucins
(Hansson, 2020). It is also possible that many uncharacterized
bacteria, archaea, or other microorganisms can grow on host
glycan via cross-feeding activities dependent on other glycan
utilizers. In any case, microbial forage of the outer mucus gel
layer is considered a normal part of mucin turnover and
regeneration (Coker et al., 2021). At the species level, A.
muciniphila is the best-known taxa for its ability to degrade and
utilize mucins, and it is thereby considered a mucin-degrading
specialist, playing a significant role in maintaining gut health.
This bacterial species encodes the enzymatic processing
machinery required for mucin metabolism, including proteases,
sulphatases, and glycosyl hydrolases (Trastoy et al., 2020).

On the other hand, the gut microbiota and their metabolites
regulate the synthesis of large gel-forming mucins, including
encapsulation, glycosylation, changes in fucosylation and

FIGURE 2
Gastrointestinal symptoms in endurance athletes: mucosal glycome damage matters. Left panel: The mutualistic relationship between the gut
mucin glycome, gut microbiota, and derived metabolites under eubiosis. On the one hand, the gut microbiota and their metabolism induce the synthesis
of large gel-forming mucins, including encapsulation, glycosylation, changes in fucosylation and sialidation patterns, and thickness. On the other hand,
the mucin layer serves as an environmental niche and a food source for the microbiota. The high diversity of gut mucins impacts the gut microbiota
composition, diversity, and stability but also influences the immune andmitochondrial function. Right panel: Themutualistic relationship between the gut
mucin glycome and the microbiota under a disrupted gut ecosystem and environment. Vigorous endurance training increases sympathetic nervous
system activity and redistributes blood flow from the splanchnic organs to the working skeletal muscles and peripheral circulation. This results in gut
hypoxia and hypoperfusion, reduced intestinal motility and absorption capacity, damage of the specialized antimicrobial protein-secreting cells (Paneth
cells), the mucus-producing goblet cells, and increased loosening of tight junction protein structure and MUC2 destruction. The deterioration of the
gastrointestinal mucosal barrier enables the translocation of bacteria and lipopolysaccharides (LPS) outside the gastrointestinal tract, triggering immune
and inflammatory responses, often resulting in increased intestinal permeability and, eventually, endotoxemia. Moreover, it induces oxidative stress via
mitochondrial ROS production. Changes in the intestinal barrier integrity involve changes in the abundance, expression, and glycosylation of mucins, and
thus immune dysregulation, dysbiosis, and risk of disease onset. This figure has been created with BioRender.com.
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sialidation patterns, and thickness (Figure 2). Hence, the microbiota
composition and function are important to maintain homeostasis of
the gut ecological microenvironment. As shown in gnotobiotic mice,
the intestinal epithelium undergoes abnormal development without
gut microbiota, leading to defects in mucin secretion and barrier
function (Birchenough et al., 2015). Using germ-free mice,
Johansson et al., 2015) also confirmed that the gut microbiota is
fundamental for forming a proper mucus layer in mice. First, the
number of filled goblet cells in conventional mice was higher than
germ-free ones. Second, the inner mucus layer in the colon was
thicker and, therefore, impenetrable to bacteria compared to germ-
free mice. Supporting these insights, human patients with gut
dysbiosis (defined as low microbial diversity and an unstable
composition over time) presented reduced mRNA expression of
secreted and tethered mucins (MUC2, MUC12, MUC13, MUC15,
MUC20, MUC21) and immune dysregulation (Lo Conte et al.,
2023). Beyond mucin production and abundance, other studies
have shown how the gut microbiota regulates not only the
production and secretion of MUC2 but also their O-glycosylation
(Goto et al., 2016; Arike et al., 2017; Bergstrom et al., 2020). As such,
Hanson and Hollingsworth (2016) showed that gut microbes in
conventionally raised mice express more complex, extended mucin
O-glycome structures throughout the intestine due to increased
levels of many glycosyltransferases. In vitro and in vivo
experiments in dysbiotic diarrheal pigs have shown aberrant
mucin O-glycosylation patterns, intestinal inflammatory response,
and defects in the abundance of the tight junction proteins ZO-1,
occludin, and claudin1, all of which are essential for proper intestinal
epithelial barrier function (Xia et al., 2022).

While inner mucus and membrane-linked mucins are
impenetrable under eubiosis and keep microorganisms at a
distance, the microbial metabolites can easily penetrate and
influence the formation and composition of membrane-linked
mucins. Most SCFAs produced from bacterial mucin
fermentation diffuse back through the inner mucus layer and are
absorbed in the local epithelial cells (Hansson, 2020). For instance,
butyrate produced by intestinal microbiota is oxidized in the
colonocytes to generate CO2, which can be converted into
HCO3

−, an ideal physiological solution for precipitation calcium
and raising the pH at the epithelial surface. This, in turn, promotes
the stratification of the mucus layer (Fang et al., 2021). Additionally,
butyrate upregulates the transcription of genes related to both
secreted and membrane-linked mucins. For example, mice
receiving rectal enemas of butyrate (100 mM) for seven
consecutive days resulted in enhanced synthesis of secreted
(MUC2) and tethered mucins (MUC1, MUC3, MUC4) in the gut
(Gaudier et al., 2009). Using in vitro models, bioactive SCFA
administration (primarily butyrate) promoted MUC2 and
MUC5AC gene expression and increased epithelial cell integrity
after damage using human intestinal HT29-MTX-E12 cells
(Giromini et al., 2022). Both butyrate and propionate
epigenetically regulated MUC2 gene expression in the human
goblet cell-like LS174T cells (Burger-van Paassen et al., 2009).
Conversely, dysbiosis and the accompanying loss of microbiota-
derived metabolites in humans led to a reduced abundance of mucin
O-glycans and SCFAs (Larsson et al., 2011), confirming the link
between microbial-generated metabolites and mucus gut health
(Pabst and Slack, 2020).

Besides SCFAs, bacteria and microbial products such as LPS,
flagellin, and lipoteichoic acid, among others, can also modify mucin
composition and structure. Accordingly, an in vitro study in human
mucin-secreting goblet cell line HT29-MTX revealed that bacterial
LPS increased mucin MUC5AC, MUC5B, and cytokine mRNA
expression (Smirnova et al., 2003). These keen observations have
profound implications for athletes. As previously described,
prolonged and excessive exercise stimuli (especially at around
70%–80% of the maximum oxygen consumption) produce
splanchnic hypoperfusion and subsequent ischemia that can
damage the gut epithelium (Paneth cells, goblet cells, and the
tight junction proteins), impacting the intestinal mucosa’s
integrity and increasing its permeability to external agents such
as LPS and bacteria (Stuempfle and Hoffman, 2015; Ruiz-Iglesias
et al., 2020; Koehler et al., 2021). By binding to extracellular TLR4 on
many cell types, LPS elicits strong inflammatory and immune
responses that may harm the athlete’s gastrointestinal tract
(Mohr et al., 2020). Additionally, dehydration and hyperthermia
(~40°), two exercise-related factors that disturb the tight junctions
and increase intestinal permeability in athletes (Walter et al., 2021),
can enhance the pro-inflammatory immune responses. Changes in
gut permeability, characterized by increased plasma lactulose:
rhamnose concentration ratio, occurred in adult men performing
exercise under hot conditions compared to equivalent passive
hyperthermia (Walter et al., 2021).

In this regard, the gut microbiota, the microbial metabolites,
mucins, epithelium cells, and tight junctions are likely
interdependent during exercise, so the loss of one diminishes the
other (Capaldo et al., 2017). Taking advantage of human intestinal
enteroids, Pearce et al. (2020) demonstrated that the infusion of
microbial-derived SCFA affected the overall gut barrier function,
including increased expression of mucin genes, goblet cell markers,
common mucus constituents, and antimicrobial peptides (Pearce
et al., 2020). Butyrate administration in Caco-2 cell monolayers
restored occludin and F-actin delocalization and enhanced tight
junction protein expression (Peng et al., 2009). Similar responses
were seen in pigs that received gastric infusions of SCFAs (Diao
et al., 2019). SCFAs directly affect the transcription of tight junction
proteins like occludin and claudin-1 (Diao et al., 2019). Taken
together, the increased permeability and compromised barrier
function in athletes are most likely due to a combination of
ischemia and reperfusion injury of epithelial cells and tight
junctions, defects in mucin composition, and modifications of the
residing microbiota ecosystem and their metabolites (Keirns et al.,
2020; Kudelka et al., 2020).

Despite these findings, mucosal health is multifaceted. Factors
such as pH, ionic conditions, water content, gut motility, food
consistency, stool passages, mitochondrial metabolic deregulation
in the intestinal cells, and stress hormones also regulate host mucus
layer glycan expression and structure, increasing the diversification
of mucin patterns (Hiippala et al., 2018). For instance,
mitochondrial damage and metabolic deficiency in gut epithelial
cells have been linked to intestinal permeability in MUC2 knockout
mice (Borisova et al., 2020). Chemically induced mitochondrial
uncoupling in untreated C57Bl/6 mice induced the intestinal
barrier disruption in vivo and caused loss of F-actin and claudin-
3 disassembly similar to that found in MUC2−/− mice. Using an
oxidative Caco-2 model, cell mitochondrial ATP depletion itself
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caused immediate effects on the barrier integrity via F-actin
disassembly and disintegration of the tight junction protein
complexes (Janssen Duijghuijsen et al., 2017). Thus,
mitochondria from epithelium cells play an essential role in
maintaining an intestinal barrier with high integrity. Other work
has suggested that repeated bouts of stress decrease MUC2 synthesis
and the number of goblet cells via notch signaling suppression in rats
(Pfeiffer et al., 2001). Silva and colleagues revealed that stress
strongly affects the O-glycosylation of mucins, resulting in the
flattening and loss of cohesive properties of the mucus layer
(Silva et al., 2014). However, not all studies have shown universal
effects. Jakobsson et al. (2015) reported that a thinner mucus layer is
still functional, showing the power of gut mucins to protect against
aggressive communities in these extreme conditions (Bergstrom and
Xia, 2022).

Overall, the gut mucin-microbiota interplay represents an
exciting area of research with the potential to improve our
understanding of gut health and intestinal permeability in
normal physiological conditions, such as endurance exercise, and
in many disease-related situations. Further research is needed to
fully elucidate the mechanisms underlying the interactions between
the gut mucin glycans and the gut microbiota and to develop
strategies for modulating the gut mucinome-microbiota relation
for therapeutic purposes.

The gut mucin glycome-microbiota
relationship depends on dietary glycans

The two-way traffic between gut mucin glycans and microbiota
is more complex than previously thought. The interaction between
host mucin glycans and microbiota also depends on the dietary
glycans (Koropatkin et al., 2012; David et al., 2014). Different dietary
glycans can serve as specific substrates for other microbial taxa,
influencing their growth and abundance in the gut.

The interactions between dietary and host glycans and the
microbiome have essential gut health and disease prevention
implications. For example, a diet high in refined carbohydrates
and low in fiber decreases the gut microbiota diversity and
modifies bacterial genomic regulation. Thus, the intestinal
microbial ecosystem equilibrium shifts toward an ecosystem with
higher mucin-degrading abilities, increasing the likelihood of
colonic outer mucus layer degradation and intestinal
inflammation (Egan et al., 2014). Several studies have shown that
Western diets and simple and easily digestible sugars, such as
glucose, are often associated with adverse effects on intestinal
health and microbiome (Pelaseyed et al., 2014; Coker et al.,
2021). A study by Desai et al. (2016) illustrated how dietary fiber
deficiencies could promote specific gut bacterial populations and
their enzymes and cellular metabolism to shift towards host mucin
glycans as an energy source, leading to erosion of the colonic mucus
layer. For example, Bacteroides thetaiotaomicron can degrade host
mucus glycans when polysaccharides are absent from the diet
(Sonnenburg et al., 2005). In line with these findings, lack of
dietary fiber induced defects of the inner colonic mucus layer,
which included a strongly reduced growth rate and higher mucus
layer penetrability after changing from a chow diet to Western-style
diets in mice (Bishara et al., 2013). In support of this notion,

Schroeder et al. (2018) observed significantly decreased diversity
and reduced abundance of Bacteroidetes and Actinobacteria without
fiber for up to 40 days. Precisely, a long-term low-fiber, high-sugar
diet triggered an ecological community forced to forage on host
mucin glycans, leading to thinning of the mucus layer (Schroeder
et al., 2018). This altered mucus increased the risk factor for
infection and low-grade inflammation (Bishara et al., 2013; Coker
et al., 2021). Conversely, Bifidobacterium longum supplementation
in mice fed with diets deficient in fiber restored mucus growth
(Schroeder et al., 2018). Seemingly, A. muciniphila supplementation
has been shown to restore gut mucus layer thickness, modulate
immune system response and gut barrier function, among others
(Shin et al., 2014; Wu et al., 2017; Zhai et al., 2019). Although A.
muciniphila is a mucus degrader, its oral supplementation increases
the number and differentiation of Paneth cells and goblet cells in the
small intestine. Subsequently, it accelerates intestinal epithelial
regeneration (Kim et al., 2021). Confirming these findings,
exposing human enteroids to cecal contents obtained from mice
treated with A. muciniphila stimulated the MUC2 protein and
MUC2 mRNA expression, along with mucus thickness, compared
to the control (Kim et al., 2021).

More recently, it has been shown that the outer-membrane pili
proteins of A. muciniphila alone are sufficient to improve intestinal
barrier function (Ottman et al., 2017) by increasing the number of
goblet cells and reinforcing the intestinal barrier (Plovier et al.,
2017). These data demonstrate that, on the one hand, the lack of
dietary fiber leads to changes in the gut microbiome-mucin
interlinkage, promoting gut mucosal barrier dysfunction. On the
other hand, the plasticity of the human gut microbiota in response to
dietary changes paves the way to use different preparations of A.
muciniphila and B. longum as therapeutic options to target gut
athletes’ health and associated exercise-triggered gastrointestinal
disorders.

The gut microbiome-glycome dialogue in
endurance athletes

The mechanisms underlying the relationship between the gut
microbiota, mucin glycans, and athletic performance have yet to be
understood. Still, the ergogenic effects of the gut microbiota involve
factors such as nutrient metabolism, energy balance, immune
function, and intestinal health. We believe that a functioning and
healthy gut mucus barrier is essential to observe the critical
contribution of the gut microbiota to athlete physiology and
performance. Thus, the gut mucin glycans-microbiome interplay
might be the gateway for researchers aiming to influence gut health
in athletes.

In the setting of gut microorganisms and host-gut mucins crosstalk
during exercise, preliminary quality associative studies have reported a
symbiotic and coevolved relationship between the microbiome-encoded
enzymatic machinery capable of digesting host mucins and the exercise
performance. For example, a recent study by Morita et al. (2023) shows
that B. uniformis, a dominant component of the gut microbiota with an
expanded glycolytic capability to utilize dietary and endogenous glycans,
correlated with improved endurance exercise performance in mice and
humans. Similar results were reported using Arabian horses, an
outstanding sport model given its well-adapted athletic physiological
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abilities and the capacity to compete at distances of up to 160 km in a
single day, an effort comparable to a human marathon or ultra-
marathon runners (Capomaccio et al., 2013). Using this horse
endurance model, our team revealed that horses who had a higher
cardiovascular capacity harbored a higher intestinal abundance of
Verrumicrobia, including the A. muciniphila and Actinobacteria taxa,
and enrichment in CAZymes able to cleave mucin glycans (Mach et al.,
2022). Associated with this glycan enzymatic machinery, we also
observed an enrichment of KEGG orthologous groups (KOs) related
to glycan biosynthesis and metabolism (K09953, K18770, K12309,
K12551, K01137, K03276, K12985, K14459) in horses with the
highest cardiovascular capacity. These nuances illustrate the
possibility that the makeup of the gut microbiome and its ability to
impact host mucin synthesis may determine gut health during exercise.
In line with this, Barton et al. (2018) found activation of microbiome
pathways involved in glycan biosynthesis in professional rugby athletes
compared with more sedentary subjects. The mucin-degrading
commensal A. muciniphila, which regulates intestinal inflammation
and barrier function, was more abundant in athletes’ gut than in
sedentary subjects (Clarke et al., 2014; Petersen et al., 2017).
Similarly, compared with nonathletes, athletes harbor higher

abundances of Bifidobacterium (O’Donovan et al., 2020), another
known mucin degrader (Milani et al., 2015), and an enhancer of
mucus layer growth (Bishara et al., 2013). Despite that, the causal
relationship between gut microbiota and exercise remains unknown
due to the differences in diet and environment when comparing athletes
with non-athletes. Taken all together, Barton et al. (2018) speculated that
the athlete’s gut microbiome and their metabolites possess a functional
capacity primed formucosa repair (Figure 3) beyond other physiological
strands, e.g., enhance mucus production and increase mucin synthesis,
modulation of the immune response modulation, gut-brain axis,
hydration, and redox balance.

Administration of synthetic or natural
complex glycans in endurance athletes to
improve gut mucin glycome-microbiota
interplay

To achieve optimal performance, athletes must fuel, train, and
utilize their entire superorganisms (holobiont) (Hughes and
Holscher, 2021). Up to now, many endurance athletes are

FIGURE 3
The gut glycome-microbiota interaction in the gut of athletes. In healthy athletes, mucins (mainly MUC2) clear, contain, feed, prevent the proteolytic
activity of bacteria and digestive enzymes, and continuously replenish the gut microbiome. The mucinome might modulate the gut microbiome
composition and function (e.g., SCFA and secondary bile acids production), and it may be the gateway for researchers aiming to influence gut health.
Moreover, itsO-glycosylation and the might control the nutrient and stress sensing during exercise and the mitochondrial function, illustrating how
regulating the glycome-microbiota interplay can be a decisive factor in improving exercise performance. Reciprocally, the athlete’s gut microbiome
possesses a functional capacity primed formucosa repair and amore remarkable ability to harness energy frommucins. This figure has been created with
BioRender.com.
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encouraged to consume high amounts of simple carbohydrates,
moderate amounts of protein, and low amounts of fiber to avoid
potential digestive issues such as gas and distension that high-fiber
diets can sometimes cause (Clark and Mach, 2016).

Since dietary fiber deficiencies can alter the careful balance
between the host mucosal layer’s health and function and the gut
microbiome, special attention is needed for the nutritional programs
of endurance athletes. Thus, we highlight the need to include
complex glycans in athletes’ diets to maintain and improve the
gut mucin glycome-microbiota interactions (Figure 4; Table 1). This
will complement the benefits of many probiotics and postbiotics
tested to improve intestinal barrier integrity potentially, exercise
adaptation, and athlete performance (extensively reviewed
elsewhere (Jäger et al., 2019; Hughes and Holscher, 2021; Sales
and Reimer, 2023)).

Current examples of dietary glycans already show their potential
to resolve mucus-layer defects associated with disorders such as type
2 diabetes, obesity (O’Keefe et al., 2015; Zhao et al., 2018; Baxter
et al., 2019), and gastrointestinal pathologies (e.g., Crohn’s disease,
ulcerative colitis, and colorectal cancer (Bischoff et al., 2014)) (see
Table 1). Glycans with documented health benefits currently
marketed as prebiotics include fructooligosaccharides (FOS),
galactooligosaccharides (GOS), xylooligosaccharides (XOS),
pullulan, lactulose, and inulin (see the review by O’Brien et al.
(2022); Hughes and Holscher (2021)). Broadly, 5–10 g/day of FOS
and GOS are needed to spur changes in fecal bacteria, SCFA
concentrations (West et al., 2012), and gut health (Roberts et al.,
2016). Other studies show that inulin, a water-soluble dietary fiber

obtained from chicory, and the long-chain arabinoxylans, an
important non-starch polysaccharide in cereal grains, increase
colonic mucus thickness as well as gut microbial SCFAs
production (van den Abbeele et al., 2011; Schroeder et al., 2018).
Both inulin and long-chain arabinoxylans shift the microbial
production of acetate towards more health-promoting propionate
and butyrate-producers (Roseburia intestinalis, E. rectale,
Anaerostipes caccae) and bifidobacteria (B. longum) (van den
Abbeele et al., 2011) while increasing the levels of A. muciniphila.
Notably, fecal transplantation from mice fed a high microbiome-
accessible carbohydrate diet and administered a single portion of
inulin increased the fecal SCFA content and improved treadmill
running time (Okamoto et al., 2019). On top of this, long-chain
arabinoxylans shifted mucin degradation to distal regions, where
mucin-degraders may produce beneficial metabolites (e.g., butyrate
by A. muciniphila) so that prebiotics could improve gut health along
the length of the intestine. This is of great interest since most
digestive troubles in athletes originate in the distal colon. In line
with these results, accumulating studies suggest that dietary
polyphenols may stimulate the bloom of A. muciniphila in vivo
(Henning et al., 2017) and induce the production of polyphenol-
beneficial metabolites, further contributing to intestinal health
(Rodríguez-Daza et al., 2021). However, it is essential to note
that building a stable microbial community after administering
prebiotics such as inulin or polyphenols could take several days
to a week (van den Abbeele et al., 2011).

Apart from prebiotic glycans expressed by microorganisms
or derived from plant materials, processed mucins isolated from

FIGURE 4
Targeting the gut glycome-microbiota interaction throughout supplementation of glycans. The administration of glycans, such as inulin, long-chain
arabinoxylans, and exogenous mucin-like glycans, is an effective strategy to improve or maintain athletes’ intestinal barrier health and function. These
nutritional strategies increase the mucus thickness and the SCFA-producing bacteria, both essential for gut homeostasis and health.

Frontiers in Physiology frontiersin.org10

Clark and Mach 10.3389/fphys.2023.1284423

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1284423


TABLE 1 Some examples of nutritional strategies that regulate gut mucosal and immune health.

Glycan Experimental model Results References

Dietary fiber Gnotobiotic mouse model colonized with
14 human gut microbiota species

Bacterial glycan metabolism switched from
fiber degradation to mucus layer glycan
foraging when rats were fed a fiber-free diet.
The gut microbiota used host-secreted mucus
glycoproteins as a nutrient source, leading to
the erosion of the colonic mucus barrier and
increased susceptibility to Citrobacter
rodentium infection

Desai et al. (2016)

Dietary fiber Mice fed a fiber-depleted, Western-style diet
for 10–40 days

Mice had significantly decreased microbial
diversity, reduced abundance of Bacteroidetes
and Actinobacteria, and reduced colonic
mucus thickness

Schroeder et al. (2018)

Dietary fiber Gnotobiotic and human-microbiota colonized
mice fed with a diet free of microbiota
accessible carbohydrates (MACs)

The MACs diet resulted in thinner mucus in
the distal colon, increased proximity of
microbes to the epithelium, and increased
expression of the inflammatory marker REG3β.
Increased Helicobacter pylori invasion was also
observed in mouse stomach gland cells

Earle et al. (2015)

Dietary fiber Humanized gnotobiotic Fut2− and Fut2+ mice
were colonized with the Bacteroides
thetaiotaomicron and were fed a glucose-rich
plant polysaccharide-deficient diet for 4 weeks

The B. thetaiotaomicron fucose catabolic
pathway gene expression was dependent upon
the host diet and polysaccharide content in
Fut2−mice. The changes in B.
thetaiotaomicron gene expression were only
evident in mice fed a plant polysaccharide-
deficient diet because B. thetaiotaomicron
relies on host mucus consumption

Kashyap et al. (2013)

Inulin C57BL/6 male mice were fed a high-fat chow
diet or a high-fat chow diet supplemented with
either inulin or cellulose for 4 weeks

Inulin protected mice against high-fat diet-
induced metabolic syndrome by increasing
mucosal IL-22 production, which improved
enterocyte proliferation and anti-microbial
gene expression compared to mice fed just the
high-fat diet who experienced bacterial
infiltration in the mucus layer. Inulin induced a
fortification of the mucosa, with increased
barrier functions

Zou et al. (2018)

Inulin and pectin Wistar rats were fed a normal diet or
supplemented with either inulin or pectin for
30 days

Inulin and pectin both stimulated
MUC2 production at similar levels compared
to controls

Xie et al. (2020)

Inulin and long-chain arabinoxylans Axenic rats were inoculated with a human
fecal microbiota for 6 weeks and were then fed
inulin and/or long-chain arabinoxylans

Inulin and long-chain arabinoxylans
stimulated the growth of butyrate-producing
bacterial groups (Roseburia intestinalis,
Eubacterium rectale, Anaerostipes caccae) and
bifidobacteria (B. longum), which resulted in a
shift in mucin degradation to distal regions
where mucin-degraders may produce beneficial
metabolites (e.g., propionate by Akkermansia
muciniphila)

van den Abbeele et al.
(2011)

Inulin-type fructans 5-week old male germ-free Wistar rats were
inoculated with human fecal flora and were
fed either a standard diet or a standard diet
supplemented with an oligofructose and
inulin mixture for 28 days

Inulin-type fructan consumption led to
changes in the colonic mucosa, increased
mucus production, and shifts in the
components of mucin components in goblet
cells and the epithelial mucus layer. The
increased mucus layer prevented Salmonella
Typhimurium from translocating into the
Peyer’s patches

Kleessen and Blaut
(2005)

Mannan oligosacchardies (MOS) 5 x FAD transgenic Alzheimer’s disease mice
were fed the prebiotic MOS for 8 weeks
(0.12%, w/v in the drinking water)

MOS prevented intestinal barrier damage,
increased the relative abundance of
Lactobacillus, and increased butyrate
production

Liu et al. (2021)

Sulfate polysaccharides from algae 6-week-old C57BL/6 mice were randomized
into 3 test groups: natural control group (NC),
1% and 2.5% dextran sulfate sodium -fed
model group (MD), and 100 mg/kgGloiopeltis

SAO algae increased the proportions of
complex long-chain mucin O-glycans in the
epithelial layer with two terminal N-
acetylneuraminic acid residues while

Pan et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Some examples of nutritional strategies that regulate gut mucosal and immune health.

Glycan Experimental model Results References

furcata/day treated group (SAO) for 7 days,
followed by 7 days of regular drinking water

improving the growth of probiotic bacteria,
including Roseburia spp. and Muribaculaceae

O-glycan-like human milk oligosaccharides
(HMOs)

6-week-old GF mice were bi-colonized with
two HMO-utilizing taxa common to the infant
gut: Bacteroides and B. infantis. Mice were fed
a microbiota-accessible carbohydrates
deficient diet supplemented with HMOs (1%
in water for 1 week

Supplementing with O-glycan-like HMOs or
mucin-type O-glycans purified from
commercially derived porcine gastric mucin
aided in recovering lost microbiota post-
antibiotic treatment and increased the relative
abundance of A. muciniphila, suggesting that
mucus is a key component of the symbiosis
between host and microbiota

Pruss et al. (2021)

Human milk oligosaccharides (HMOs) HMO-concentrate from donor breast milk
was orally administered to 32 healthy adults
for 7 days followed by 21 days of monitoring.
Fecal samples were collected for 16S rRNA
gene sequencing, shotgun metagenomics, and
metabolomics analyses

Consuming the HMO-concentrate caused a
dose-dependent increase in Bifidobacterium, a
known HMO consumer, as well as a significant
increase in the SCFAs butyrate and acetate
suggesting HMOs exert prebiotic functions in
the gut. Once HMO consumption stopped,
Bacteroides increased through day 28, which
was associated with elevated TGFβ and IL-10

Jacobs et al. (2023)

Human milk oligosaccharides (HMOs) Irritable bowel syndrome patients (n = 61)
were randomized to consume either placebo,
5 g, or 10 g doses of a 4:1 mix of 2′-O-
fucosyllactose (2′FL) and lacto-N-neotetraose
(LNnT) for daily 4 weeks

Participants who received 10 g of 2′FL and
LNnT experienced an increased in
Bifidobacterium adolescentis and
Bifidobacterium longum as well as changes in
fecal and plasma metabolites which were
associated with Bifidobacterium
spp. Faecalibacterium relative abundance was
also increased compared to the placebo group

Iribarren et al. (2021)

Human milk oligosaccharides (HMOs) Glycomic and genomic fecal analysis was
performed to study the fecal microbiome and
HMO content of two healthy breastfeeding
infants

After the first 2 weeks of life, the fecal HMO
content decreased which was associated with
an increase in HMO-consuming
Bacteroidaceae and Bifidobacteriaceae bacteria.
HMO structure analysis revealed that one
function of HMOs is to selectively enrich
saccharolytic bacteria and that bacterial HMO
consumption is highly structure-specific

De Leoz et al. (2015)

Fructo-oligosaccharides (FOS) Ten patients with active ileocolonic Crohn’s
disease consumed 15 g of FOS for 3 weeks

There was a significant decrease in disease
score (Harvey Bradshaw index from 9.8 to 6.9).
Fecal bifidobacteria concentrations increased
significantly. Mucosal IL-10 positive dendritic
cells as well as TLR2 and TLR4 expression
increased

Lindsay (2006)

Fructo-oligosaccharides (FOS) High-fat diet-induced C57BL/6 J mice were
supplemented with 10% FOS in their water for
6 weeks

FOS increased the expression of numerous
genes involved in mucus production,
glycosylation and secretion, the expression of
both secreted and transmembrane mucins, and
the differentiation and number of goblet cells.
The relative and absolute abundance of bacteria
positively associated with the mucus layer such
as Akkermansia, were increased

Paone et al. (2022)

Fructo-oligosaccharides (FOS) and
galactooligosaccharides (GOS)

Mice were fed a high-fat diet and gavaged with
FOS and GOS for 16 weeks

FOS/GOS supplementation improved
microbiota dysbiosis (measured as enhanced
Firmicutes: Bacteriodetes ratio and reduced
biodiversity), tight junction protein claudin1,
claudin15, ZO-1, and JAM-A expression was
downregulated, and reversed inflammatory
cytokines (including TNFα, IL6, and IL17)

Zhang et al. (2021)

Mushroom polysaccharides (Poria cocos) C57BL/6J ob/ob mice were fed Poria cocos by
gavage (1.0 g·kg−1, 0.5 g·kg−1) daily for
4 weeks

Poria cocos improved the gut mucosal integrity
and activated the intestinal PPAR-γ pathway.
Increased abundances of butyrate-producing
bacteria, mainly Lachnospiracea and
Clostridium were also observed

Sun et al. (2019)

Mushroom polysaccharides (Auricularia
auricular-judae (Bull.)

BALB/C DSS-induced colitis mice were fed
either 20 or 40 mg/kg of the mushroom
polysaccharide Aap or control feed for 21 days

Glycan consumption improved colon damage
and mucosal inflammation and prevented
intestinal barrier damage by reducing the

Zhao et al. (2020)

(Continued on following page)
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pigs and cows have also become a field of interest in modulating
gut microbiota (Werlang et al., 2019). Pruss et al. (2021) have
recently shown that supplementing O-glycan-like human milk
oligosaccharides (HMOs) or mucin-type O-glycans purified
from commercially derived porcine gastric mucin modified
the functionality of dysbiotic microbiota. After glycan
supplementation, these dysbiotic communities were shifted
back to a eubiotic (healthy-associated) state (Pruss et al.,
2021). They also demonstrated that mice receiving oral
porcine mucin glycans suppressed Clostridium difficile
abundance after antibiotic treatment, delayed the onset of
diet-induced obesity, and increased the relative quantity of A.
muciniphila. Likewise, rats fed the O-glycan GlcNAc produced
higher levels of the anti-inflammatory n-butyrate and IgA-
producing cells in colonic lamina propria than Wistar rats fed
porcine stomach proteins (Hino et al., 2020). The increased
secretory IgA might prevent toxic and pathogenic gut invasion
(Raskova Kafkova et al., 2021), a critical phenomenon in
endurance athletes.

Ultimately, evidence demonstrating the ergogenic effects of
dietary glycans needs to be improved, and more research is
required to substantiate the impact of prebiotics on athletic
performance using different human populations.

Conclusion

An increasing number of clinical problems outside and
inside the gut have emerged as one of the most critical
factors affecting endurance athletes. The gastrointestinal tract
is covered by large, highly glycosylated gel-forming mucins,
which are canonical for gut lubrication, hydration, protection,
and immune response. Recent evidence shows a complex
bidirectional interaction between the gut mucins and the gut
microbiota, yet research has just scratched the surface in the
context of exercise. Several studies have shown that the mucin
glycans composition can impact the microbiome’s composition
and function. Reciprocally, the microbiome can also affect the
composition and function of the gut mucin glycans. Since mucus
mucins are essential for maintaining gut homeostasis and health
in athletes, the ergogenic effect of this intertwined connection
needs to be explored. Moreover, consuming natural or synthetic
complex dietary glycans, an uncommon practice in elite athletes,
coupled with probiotics such as A. muciniphila and
Bifidobacterium, might change the gut ecosystem, benefiting

mucosal health and preserving the integrity and function of
the mucus layer. Overall, the mucin glycans-microbiome
interconnection represents an exciting area of research with
the potential to improve our understanding of athlete gut
health and disease and to develop strategies for modulating
the glycans-microbiome interplay for therapeutic and
preventive purposes in athletes.
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TABLE 1 (Continued) Some examples of nutritional strategies that regulate gut mucosal and immune health.

Glycan Experimental model Results References

D-lactic acid and diamine oxidase levels in
plasma

Insoluble yeast β-glucan High-fat diet-fed rats were supplemented with
insoluble yeast β-glucan for 24 weeks

Rats showed less intestinal inflammation and
oxidative stress. High-fat diet-induced
dysbiosis, lower levels of SCFAs and high levels
of LPS were restored. Intestinal barrier function
improved by upregulating tight junction
proteins and MUC2

Mo et al. (2022)
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