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MAXIMIZING ONE LAPLACE EIGENVALUE ON N-DIMENSIONAL MANIFOLDS

same volume lying in a conformal class of a Riemannian manifold of dimension n ≥ 3.

Let M be a smooth compact manifold of dimension n. Given a Riemannian metric g on M , we denote the sequence of eigenvalues associated to the Laplace operator ∆ g = -div g ∇

0 = λ 0 ≤ λ 1 (g) ≤ λ 2 (g) ≤ • • • ≤ λ k (g) ≤ • • • → +∞ as k → +∞.
The eigenvalue λ 0 is associated to constant functions and if M is connected, the other ones are positive, depending on g. We will focus on the following natural scale invariant functional λk (g) = λ k (g)V g (M )

2 n , where V g (M ) is the volume of g on M . We let [g] = {e 2u g; u ∈ C ∞ (M )} be a given conformal class of metrics. In the current paper, we aim at studying the following variational problem Λ k (M, [g]) = sup g∈ [g] λ k (g)V g (M )

2 n = sup g∈[g]
λk (g).

Studying the maximization of λk is more relevant than the minimization because the wellknown examples of Cheeger dumbells prove inf [g] λk = 0. Moreover, while it is standard in geometric analysis to restrict a functional with respect to metrics to a conformal class (e.g the Yamabe problem, problems for Q-curvature etc), there are deep reasons to do it in the context of spectral geometry: On one side, Λ k (M, [g]) < +∞ was proved by Yang-Yau [START_REF] Yang | Eigenvalues of the Laplacian of compact Riemannian surfaces and minimal submanifolds[END_REF] for k = 1 and n = 2 and then by Li-Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] and El Soufi and Ilias, [START_REF] Soufi | Le volume conforme et ses applications d'apres Li et Yau, Sém. Théorie Spectrale et Géométrie[END_REF], [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] for k = 1 and n ≥ 2 thanks to the conformal volume and was generalized by Korevaar [Kor93] to any k, n (see also [START_REF] Hassannezhad | Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem[END_REF]). On the other side, the supremum of the scale invariant functional λk (g) over all the metrics g on M is always +∞ in dimension n ≥ 3 [START_REF] Colbois | Riemannian metrics with large λ1[END_REF]. In dimension 2, the bound on Λ k (M, [g]) is nothing but a tool to obtain an upper bound for λk (g) for any metric g depending only on k and the topology of M (see Yang-Yau [START_REF] Yang | Eigenvalues of the Laplacian of compact Riemannian surfaces and minimal submanifolds[END_REF] for k = 1 and Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] for k ≥ 1). It is then natural to compute Λ k (M, [g]), depending on k and the conformal class. As a fundamental result, it was proved by Hersch [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF] in dimension 2 and El-Soufi Ilias [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] for n ≥ 3 that

Λ 1 (S n , [h]) = λ1 (S n , h) = nω 2 n n
where h is the round metric on the n-sphere S n and ω n is its volume, and that the round metric is the unique maximizer. Many other computations of Λ k (M, [g]) with existence (or not) of maximizers are given e.g in [START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF], [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF], [START_REF] Nadirashvili | Isoperimetric inequality for the second eigenvalue of a sphere[END_REF], [START_REF] Petrides | Maximization of the second conformal eigenvalue of spheres[END_REF], [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF], [START_REF] Petrides | On a rigidity result for the first conformal eigenvalue of the Laplacian[END_REF], [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF], [START_REF] Karpukhin | Min-max harmonic maps and a new characterization of conformal eigenvalues[END_REF], [START_REF] Karpukhin | Index of minimal spheres and isoperimetric eigenvalue inequalities[END_REF], [START_REF] Kim | Maximization of the second Laplacian eigenvalue on the sphere[END_REF], and references therein. Furthermore, as observed by Nadirashvili [START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF] and El Soufi-Ilias [START_REF] Soufi | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF][ESI03] [START_REF] Soufi | Laplacian eigenvalue functionals and metric deformations on compact manifolds[END_REF], critical metrics for λk correspond to harmonic maps into spheres. For instance and more precisely, in dimension 2, the conformal factors e 2u of the critical metrics g = e 2u g for λk are nothing but densities of energy associated to the equation of harmonic maps into spheres with respect to g. This observation was crucial to expect regularity of critical metrics constructed by a suitable variational method, by the use of regularity theorems for weakly-harmonic maps.

Finally, studying the variational problem Λ k (M, [g]) is a first step to look for critical metrics of λk (g) over all the metrics. As observed by Nadirashvili [START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF] and El Soufi-Ilias [START_REF] Soufi | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF], critical metrics with respect to variations in the space of 2-symmetric tensors arise as induced metrics of minimal immersions of M into spheres, and conversely, any induced metric of a minimal immersion into a sphere can be seen as the critical metric of one of the functionals λk . For instance, existence of minimal immersions into sphere by first eigenfunctions is given in [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF] and [START_REF] Matthiesen | Handle attachement and the normalized first eigenvalue[END_REF] by maximization of λ 1 over all the metrics on any surface of dimension 2. While maximization over all the metrics is not possible in dimension n ≥ 3 [START_REF] Colbois | Riemannian metrics with large λ1[END_REF], one approach by min-max was given by Friedlander and Nadirashvili [START_REF] Friedlander | A differential invariant related to the first eigenvalue of the Laplacian[END_REF]. Their invariant was essentially computed in dimension 2 in [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF] [KM21] and is often not realized. Notice that, the variational techniques developped in the current paper and in [START_REF] Petrides | A variational method for functionals depending on eigenvalues[END_REF] are substantial to initiate construction of minimal immersions into spheres by a min-max method on eigenvalues λk .

In the past decades, many works have been done in dimension 2 to compute Λ k (M, [g]) and to give methods to prove existence and regularity of maximal metrics, after the seminal work by Nadirashivli on the torus [START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF] and Fraser-Schoen for Steklov eigenvalues on surfaces of genus zero [START_REF] Fraser | Sharp eigenvalue bounds and minimal surfaces in the ball[END_REF]. In the current paper, we are interested in the generalization to n ≥ 3 of the study for any k and M with n = 2 given in [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF] [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF] and [START_REF] Petrides | A variational method for functionals depending on eigenvalues[END_REF]. They are based on a construction of maximizing sequence of metrics e 2uε g and associated maps Φ ε : M → R pε which are "almost" harmonic in the following sense: ∆ g Φ ε = λ k (e 2uε g)e 2uε Φ ε and there is δ ε → 0 such that

|Φ ε | 2 ≥ 1 -δ ε and ˆM |Φ ε | 2 e 2uε = ˆM e 2uε = 1.
These maps are harmonic into a sphere if and only if |Φ ε | 2 = 1. In [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF] and [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF], this sequence is built by maximization of a regularized functional depending on a parameter ε, and in [START_REF] Petrides | A variational method for functionals depending on eigenvalues[END_REF] we simplify the selection of this maximizing sequence thanks to a new concept of Palais-Smale sequences for the functional λk in the level sets λk ≥ Λ k (M, [g])-ε. The goal is then to pass to the limit as ε → 0 on (Φ ε ) using the elliptic estimates on this super-critical system of equations (in the sense that e 2uε only belongs to L 1 and Φ ε is not uniformly bounded). If it is possible, we have that e 2uε dv g → ν for the weak-⋆ topology of measures and Φ ε → Φ, λ k (e 2uε g) → λ so that ∆ g Φ = λνΦ and |Φ| 2 = 1 in a weak sence. Computing 0 = ∆ |Φ| 2 gives that ν = |∇Φ| 2 λ dv g so that the limit equation is the equation of weak harmonic maps, known to be smooth and stongly harmonic, so that the limiting measure is smooth. However, establishing existence and regularity of metrics achieving Λ k (M, [g]) in dimension n ≥ 3 involves other difficulties. The first one is that contrary to dimension n = 2, if n ≥ 3 the Dirichlet energy and the Laplacian are not conformally invariant: for a metric g = e 2u g, we have

λ k (g) = min E∈G k+1 (C ∞ (M )) max ϕ∈E\{0}
´M |∇ϕ| 2 g e (n-2)u dv g ´M ϕ 2 e nu dv g so that the possible degenerescence of maximizing sequence of conformal factors e 2uε not only appear at the right-hand side of the elliptic equation for eigenfunctions, as in dimension 2 (already leading to a super-critical elliptic equations because we only have a L 1 control of e nuε ) -div g e (n-2)uε ∇ϕ ε = λ k (e 2uε g)e nuε ϕ ε , but also at the left-hand side, allowing to loose the elliptic properties of the operator -div g e (n-2)uε ∇. as ε → 0. The second one is that in dimension 2 there are bounds on the multiplicity of the eigenvalue λ k (g) depending only on k and the topology M , while it is not the case in dimension n ≥ 3 (see [START_REF] De Verdière | Sur la multiplicité de la première valeur propre non nulle du laplacien[END_REF]), even with restriction in a conformal class. This boundedness was often used to initiate compactness arguments on the sequence of maximizing metric associated to an "almost critical" system of equations approaching the system of equations of a harmonic map into a sphere. Indeed, the number of equations in the system is automatically uniformly bounded for n = 2. This is a priori not true in higher dimensions.

In the following result, we overcome these problems by establishing a natural generalization of the maximization results for Λ k (M, [g]) in dimension 2 to higher dimensions: Theorem 0.1. Let (M, [g]) be a compact connected manifold of dimension n ≥ 3 endowed with a conformal class and k ≥ 1. If

Λ k (M, [g]) > Λ k ( M , [ g]) for any ( M , [ g]) = (M, [g]) ⊔ (S n , [h]) ⊔ • • • ⊔ (S n , [h]) or ( M , [ g]) = (S n , [h]) ⊔ • • • ⊔ (S n , [h])
where h is the round metric on S n , then for some α > 0, there is a non-negative factor

f ∈ C 0,α (M ) ∩ C ∞ (M \ Z) where Z = {z ∈ M ; f (z) = 0} such that λ k (f g) ˆM f n 2 dv g 2 n = Λ k (M, [g]) Moreover, f = |∇Φ| 2 g λ k (f g)
, where Φ : M → S p is some n-harmonic map into a sphere, whose coordinate functions are eigenfunctions with respect to λ k (f g).

Notice that as in dimension n = 2 (see [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF] and [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF]), the strict inequality assumptions we make are natural to ensure the compactness of the sequence of critical metrics, and more generally some compactness for maximizing sequences of metrics. These strict inequality assumptions are simple ways to prevent from bubbling that may happen (for more information on the bubble tree convergence in this context, see e.g [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF], [START_REF] Karpukhin | Min-max harmonic maps and a new characterization of conformal eigenvalues[END_REF], [START_REF] Karpukhin | Conformally maximal metrics for Laplace eigenvalues on surfaces[END_REF] for n = 2 or the more general Theorem 0.4 and discussions around).

Notice also that as in dimension n = 2, the conformal factor f appears as the density of energy of a n-harmonic map into a sphere

-div g |∇Φ| n-2 g ∇Φ = |∇Φ| n g Φ.
Apparition of n-harmonic maps into a sphere in this context was already observed in [START_REF] Karpukhin | Laplace and Steklov extremal metrics via n-harmonic maps[END_REF] (see also [PT22]). In fact, f is the limit of a maximizing sequence of conformal factors and we conclude the proof of the theorem by noticing that f =

|∇Φ| 2 g λ k (f g)
, where Φ is a weak locally minimizing n-harmonic map into a sphere. The regularity theory for these maps in the litterature implies Φ ∈ C 1,α for some α ∈ (0, 1), and not more. The lack of higher regularity is well known because the weight |∇Φ| n-2 g inside the divergence term of the equations may vanish, so that we have a degenerate elliptic system. Therefore f ∈ C 0,α is the optimal regularity. It is a very common conclusion when we look for conformal metrics as solutions of a variational problem (see e.g in [START_REF] Ammann | The second Yamabe invariant[END_REF] or [START_REF] Gursky | Variational properties of the second eigenvalue of the conformal Laplacian[END_REF] the concept of generalized metrics). Notice also that even in dimension 2, while the zero set Z of f has to be discrete, it may be non-empty. Therefore, even if the conformal factor f is smooth for n = 2, the associated metric may have conical singularities. Of course, f ∈ C ∞ (M \ Z) in the domain where the equation of Φ is elliptic and the metric g = f g is regular. Since in M \ Z, |∇Φ| 2 g = λ k (g) and thanks to conformal invariance of the n-harmonic equation, the n-harmonic map into a sphere with respect to g becomes a 2-harmonic map into a sphere with respect to g = f g ∆ gΦ = |∇Φ| 2 g Φ as was primarily observed by [START_REF] Soufi | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF] for smooth critical metrics. In fact, it is a p-harmonic map with respect to g for any p, and p = n is the adapted integer that gives a conformally invariant equation. It is a reason why we have to deal with n-harmonic maps.

Notice also that it is not clear that generalized metrics f.g have a discrete spectrum and that any eigenvalue has a finite dimensional associated space of eigenfunctions. In the current paper, we actually prove that it holds true as a consequence of Theorem 0.2. For the factor f given by Theorem (0.1), the embedding W 1,2 (f.g) → L 2 (f.g) is compact and the eigenfunctions with respect to ∆ f.g are C 1,α functions. This compactness property on the weight f generalizes to higher dimensions the concept of "admissible measures" developped in dimension 2 e.g in [START_REF] Karpukhin | Min-max harmonic maps and a new characterization of conformal eigenvalues[END_REF]. Thanks to this result, we a posteriori deduce that the multiplicity of the k-th eigenvalue associated to f.g is finite and that the target sphere S p in Theorem 0.1 is a finite dimensional sphere. The proof of Theorem 0.2 is based on a new understanding of C 1 n-harmonic maps: they can be seen as local limits of (τ, n)-harmonic maps, defined as minimizers of the regularized functional

Ψ → ˆ |∇Ψ| 2 + τ n 2 .
Then, we can generalize to systems some recent improvements of regularity of the p-Laplace equation (see [Sar22]) by computing Caccioppoli (or reverse Hölder) type inequalities independant of τ on the equation satisfied by the gradient of (τ, n)-harmonic maps. We can deduce that the W 1,2 norm of some power of f is controled and we deduce local embeddings W 1,2 (f.g) → L 2κ 0 (f.g) for some κ 0 > 1 that imply compact embeddings in L p (f.g) for p < 2κ 0 . From this new technique, we also deduce a higher regularity result for n-harmonic maps into spheres.

Coming back to our original problem, we know that the strict inequality involved in the assumptions of Theorem 0.1 always holds true for k = 1 if (M, [g]) is not equivalent to a sphere (see [START_REF] Petrides | On a rigidity result for the first conformal eigenvalue of the Laplacian[END_REF]). Since by [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF], the theorem holds on the conformal class of the round sphere, we then have the existence result for the first eigenvalue: Theorem 0.3. Let (M, [g]) be a compact connected manifold of dimension n ≥ 3 endowed with a conformal class, then for some α > 0, there is a non-negative factor

f ∈ C 0,α (M ) ∩ C ∞ (M \ Z) where Z = {z ∈ M ; f (z) = 0} such that λ 1 (f g) ˆM f n 2 dv g 2 n = Λ 1 (M, [g]) Moreover, f = |∇Φ| 2 g λ 1 (f g)
, where Φ : M → S p is some n-harmonic map into a sphere, whose coordinate functions are eigenfunctions with respect to λ 1 (f g). This is the generalization for n ≥ 3 of the main theorem in [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF]. In fact, for k > 1 we always have existence of maximal configurations but they may be a disjoint union of at most k connected surfaces ( M ,

[g]) = (M, [g]) ⊔ (S n , [h]) ⊔ • • • ⊔ (S n , [h]) or ( M , [ g]) = (S n , [h]) ⊔ • • • ⊔ (S n , [h]
) endowed with metrics maximizing lower eigenvalues in their conformal class. This is a consequence of the bubble tree convergence proved in the current paper. For instance bubbling happens for Λ 2 (S n , [h]), which is never realized on S n [Kim22], but realized by a disjoint union of two round spheres of same volume. We add the strict inequality assumption in Theorem 0.1 to be sure to obtain a new maximizer on M . Moreover, as a contrapositive, if there is not any maximizer for Λ k (M, [g]), we deduce from Theorem 0.1 and a result by Colbois, El Soufi [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF] that the inequality of the assumption of Theorem 0.1 is an equality. For instance, proving that Λ k (S n , [h]) is not realized in the conformal class of a round sphere gives a natural way to prove the following conjecture

Λ k (S n , [h]) = nk 2 n ω 2 n n
that is known to be true for k = 1 ([Her70] and [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF]), k = 2 ([Nad02] [Pet14] and [START_REF] Kim | Maximization of the second Laplacian eigenvalue on the sphere[END_REF]) and n = 2 ( [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF]). This strategy was used in dimension 2 in [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF] and [START_REF] Karpukhin | Index of minimal spheres and isoperimetric eigenvalue inequalities[END_REF].

As we will explain in section 1.1, we prove theorem (0.1) by noticing that the maximization of Λ k (M, g) is in fact the same as the maximization of a more general functional

λk (g, α, β) = λ k (g, α, β) ´M βdv g ´M α n n-2 dv g n-2 n .
among non negative functions α, β, where

λ k (g, α, β) = inf E⊂Gk+1(C ∞ (M )) sup φ∈E\{0} ´M |∇φ| 2 g αdv g ´M φ 2 βdv g .
Indeed, we have:

Theorem 0.4. Let (M, [g]) be a compact connected manifold of dimension n ≥ 3 endowed with a conformal class and k ≥ 1. Then

Λ k (M, [g]) = sup α≥0,β≥0
λk (g, α, β)

More precisely, the maximizers ( M ,

[g]) = (M, [g]) ⊔ (S n , [h]) ⊔ • • • ⊔ (S n , [h]) or ( M , [ g]) = (S n , [h]) ⊔ • • • ⊔ (S n , [h]) of λk (g, α, α n n-2
) for α non negative functions are the same as the maximizers of λk (g, α, β) for (α, β) a couple of non negative functions.

Very recently, Karpukhin and Stern [START_REF] Karpukhin | Existence of harmonic maps and eigenvalue optimization in higher dimensions[END_REF] proposed another variational problem

ν k (M, g) = sup β≥0 λ k (g, 1, β) ˆM βdv g
which was more convenient to generalize their techniques in dimension 2 [START_REF] Karpukhin | Min-max harmonic maps and a new characterization of conformal eigenvalues[END_REF] to dimension n ≥ 3 [START_REF] Karpukhin | Existence of harmonic maps and eigenvalue optimization in higher dimensions[END_REF]. One reason is that the eigenvalue equations and harmonic map equations associated to critical potentials β never become degenerate elliptic system of equations. Notice that the techniques we use in the current paper are adaptable to prove existence and regularity results on ν k (M, g) for any k. As an immediate consequence of Theorem 0.4, we have that

ν k (M, g) ≤ Λ k (M, [g])V g (M ) n-2 n
with equality if and only if g is a maximizer of Λ k (M, [g]). For instance, by Theorem (0.3), there is a maximizer for k = 1. This inequality was only proved for specific conformal classes in [START_REF] Karpukhin | Existence of harmonic maps and eigenvalue optimization in higher dimensions[END_REF].

Notice that the techniques and results given in the current paper are generalizable to many other eigenvalue problems: combinations of Laplace eigenvalues, or Steklov eigenvalues... This will be written in forecoming papers.

The paper is organized as follows: in section 1 we first explain the variational approach to prove Theorem 0.4. In particular, we define and select a Palais-Smale sequence for this variational problem. In section 2, we prove the bubble tree convergence of Palais-Smale sequences, leading to Theorem 0.4 and Theorem 0.1. In particular, we prove at the end of section 2 the compactness embedding of Theorem 0.2. In Section 3, we prove all the necessary regularity results on n-harmonic maps into (possibly infinite dimensional) spheres, generalizing the classical ε-regularity results (e.g in [START_REF] Uhlenbeck | Regularity for a class of non-linear elliptic systems[END_REF][Str94][HL87][MY96]), strong convergence results for sequences of harmonic maps [START_REF] Courilleau | A compactness result for p-harmonic maps[END_REF], point removability [Uhl77][HL87][MY96]... In particular, inspired by [START_REF] Uhlenbeck | Regularity for a class of non-linear elliptic systems[END_REF], we prove a priori regularity estimates which are independant of the dimension of the target manifold. By the way, we prove a new result concerning harmonic maps: any C 1 n-harmonic map is a locally minimizing harmonic map and is locally a strong limit of minimizing (τ, n)-harmonic maps. This leads to the proof of higher regularity results for C 1 harmonic maps we use for the proof of Theorem 0.2.

The variational approach

1.1. Splitting the conformal factor into two densities. Let (M, g) be a Riemannian manifold of dimension n. We consider α and β two non-negative functions, as weights for the following eigenvalue problem: β) is nothing but the k-th Laplace eigenvalue associated to the metric β 2 n g. Thanks to this remark, a natural functional invariant by dilatation to consider is

λ k (α, β) = inf E⊂Gk+1(C ∞ (M )) sup φ∈E\{0} ´M |∇φ| 2 g αdv g ´M φ 2 βdv g Notice that if β = α n n-2 is a positive function, λ k (α,
λk (α, β) = λ k (f, h) ´M βdv g ´M α n n-2 dv g n-2 n .
If the functions α and β are smooth positive, by compact embeddings of the natural weighted L 2 and W 1,2 spaces involved in this problem there is existence of eigenfunctions. Let (α, β) be such that ´M βdv g = 1 and ´M α n 2 dv g = 1. The subdifferential of -λk at (α, β) (see [PT22] for definition and computations of the subdifferential) satisfies (1.1)

-∂ -λk (α, β) ⊂ co |∇φ| 2 g -λk α 2 n-2 , λk 1 -φ 2 ; φ ∈ E k (α, β), ˆM φ 2 βdv g = 1
where λk = λk (α, β). Notice that as a convention, we compute the subdifferential of λk because the subdifferential is well adapted for minimization of functionals. If (α, β) is critical, we have by definition that 0 ∈ ∂ λk (α, β). Then, there are eigenfunctions

Φ = (φ 1 , • • • , φ p ) such that |∇φ| 2 g -λk (α, β)α 2 n-2 = 0 and |Φ| 2 = 1
Using the system of equations on Φ (eigenvalue equations)

-div g (α∇Φ) = λk (α, β)βΦ we obtain by computing 0 = -div g (α∇ |Φ| 2 ) that

α |∇Φ| 2 = λk (α, β)β so that β = α n n-2 .
Then, if a maximizer of λk (α, β) exists, it is a maximizer for the Laplace eigenvalue λk in a conformal class Remark 1.1. Notice that the computation of the subdifferential is valid as soon as we assume that the embedding of the weighted Sobolev spaces involved in the eigenvalue functional

W 1,2 (α, β) → L 2 (β) is compact (see [PT22]
), leading to the existence of eigenfunctions. The maximizers we obtain at the very end of the proof of Theorem 0.1 are not necessarily smooth and positive everywhere but satisfy this compactness embedding.

A deformation Lemma. We denote by

X = {(α, β) ∈ C 0 (M ) × C 0 (M ), α > 0, β > 0} Let (α, β) ∈ X with ´M βdv g = 1 and ´M α n 2 dv g = 1.
We have that the formula (1.1) holds true on the subdifferential ∂ λk (α, β) and we set

∂ λk (α, β) = max τ ∈ X min ψ∈∂ λk (α,β) τ, ψ a pseudo-norm of the subdifferential ∂ λk (α, β), where X = {( α, β) ∈ C 0 (M ) ; α ≥ 0, β ≥ 0 and ˆM αdv g + ˆM βdv g = 1}
Notice that ∂ λk (α, β) ≥ 0 has to be seen as the largest right derivative of λk among all the variations v t = t( α, β) for α, β ∈ X. We let

X r = {(α, β) ∈ X; ∂ λk (α, β) > 0}
be the set of the regular points of f . The set of critical points is defined as

X c = {(α, β) ∈ X; ∂ λk (α, β) = 0}.
Notice that we are looking for critical points in the set X c (in the current paper: maximizers)

Proposition 1.1. If there is ε 0 > 0 and δ > 0 such that ∀(α, β) ∈ X; ∀ε ∈ (0, ε 0 ), λk (α, β) -c ≤ ε ⇒ ∂ λk (α, β) ≥ δ , Then ∀ε ∈ (0, ε 0 ), there is a continuous map η : X → X such that • η(α, β) = (α, β) for any f ∈ { λk ≥ c + ε 0 } ∪ { λk ≤ c -ε 0 } • η({ λk ≥ c -ε}) ⊂ { λk ≥ c + ε}
During the proof, we use the notations E = λk and x = (α, β) ∈ X, τ = ( α, β) ∈ X. We first build an adapted pseudo-vector field for our problem.

Claim 1.1. Let ε > 0. There is a locally Lipschitz vector field v : X r → X such that for all x ∈ X • v(x) 1 < 2 • ∀ψ ∈ ∂E(x), v(x), ψ > |∂E(x)| 2 • v(x) ≥ 0
Proof. We first fix x 0 ∈ X and we build an adapted image v 0 (x 0 ) satisfying the conclusion of the Claim. Let τ 0 ∈ X be such that

|∂E(x 0 )| ≤ min ψ∈∂E(x 0 ) τ 0 , ψ + |∂E(x 0 )| 4 . We choose v 0 (x 0 ) = τ 0 so that • v 0 (f 0 ) 1 ≤ 1 < 2 • ∀ψ ∈ ∂E(x 0 ), v 0 (x 0 ), ψ ≥ 3 4 |∂E(x 0 )| > |∂E(x 0 )| 2 • v 0 (x 0 )
≥ 0 Now, we aim at defining v by some transformation of v 0 in order to obtain a locally Lipschitz vector field v : X r → X.

Let

x 0 ∈ X r . Let Ω x 0 be an open neighborhood of x 0 in X r such that for all x ∈ Ω x 0 ∀ψ ∈ ∂E(x), ψ, v 0 (x 0 ) > |∂E(x)| 2 We notice that X r = x 0 ∈Xr Ω x 0 .
Since X r is paracompact, one has a family of open sets (ω i ) i∈I such that

• X r = i∈I ω i • ∀i ∈ I, ∃x i ∈ X r , ω i ⊂ Ω x i • for all u ∈ X r there is an open set Ω such that u ∈ Ω and Ω ∩ ω i = ∅ except for a finite number of indices i. We set ψ i (u) = d (u, X r \ ω i ) and η i (u) = ψ i j∈I ψ j and the vectorfield v(x) = i∈I η i (x)v 0 (x i )
satisfies the conclusion of the Claim. ♦

Proof. (of proposition 1.1) We define a vector-field Φ : X → X as for x ∈ X,

Φ(x) = d(x, A) d(x, A) + d(x, B) v(x)
where v : X r → X is given by Claim 1.1 and we define the sets

A = {E ≤ c -ε 0 } ∪ {E ≥ c + ε 0 } and B = {c -ε ≤ E ≤ c + ε} . Let η be a solution of (1.2) d dt η t (f ) = Φ (η t (f )) η 0 (f ) = f .
Such a solution η exists since Φ is locally Lipschitz. Moreover, η is well defined on R + since Φ is bounded. Let t ≥ 0, and x ∈ X. We have thanks to the subdifferential that

d dt E(η t (x)) ≥ min{ Φ(η t (x)), ψ ; ψ ∈ ∂E (η t (x))} ≥ d(η t (x), A) d(η t (x), A) + d(η t (x), B) |∂E(η t (x))| 2 ≥ 0 (1.3)
for any t ≥ 0. It is clear that for any t ≥ 0, η t (x) = x for x ∈ A and that

η t ({E ≥ c + ε}) ⊂ {E ≥ c + ε} .
It remains to prove that for t 0 > 0 small enough we also have that

η t 0 (B) ⊂ {E ≥ c + ε} . Let t ⋆ be the smallest time such that η t⋆ (f ) = c + ε. Then, for 0 ≤ t ≤ t ⋆ , we have η t (x) ∈ B ⇒ d dt E(η t (x)) ≥ δ 2 since by assumption, c -ε ≤ E(η t (x)) ≤ c implies that |∂E(η t (x))| ≥ δ and that d(η t (x), B) = 0. We deduce by integration that E(η t⋆ (x)) -E(x) ≥ δ 2 t ⋆ so that t ⋆ ≤ 4ε δ . Then, letting t 0 = 2ε δ we obtain η t 0 (B) ⊂ {E ≥ c + ε}. Therefore, η t 0 ({E ≥ c -ε}) ⊂ η t 0 ({E ≥ c + ε})
and we obtain the proposition. ♦ 1.3. Existence of Palais-Smale sequences for the maximization problem. If we take c = sup X λk < +∞, proposition 1.1 implies that for any sequence ε → 0 and δ ε → 0 we have a sequence of (α

ε , β ε ) ∈ X such that λk (α ε , β ε ) > c -ε and ∂ λk (α ε , β ε ) < δ ε
Now, up to classical convolutions, pairs of smooth positive functions are dense in X, so that we have a sequence of pairs smooth positive functions (α ε , e nuε ) such that λk (α ε , e nuε ) > cε and ∂ λk (α ε , e nuε ) < δ ε the first condition gives that the pair (α ε , e nuε ) is a maximizing sequence. The second condition can be rewritten as

∀( α, β) ∈ X, ∃Ψ ∈ -∂ -λk (α ε , e nuε ); ( α, β), Ψ ≤ δ ε .
We denote

Q ε = λ 2-n 2 ε α ε where λ ε = λk (α ε , e nuε ). ∀( α, β) ∈ X, -∂ -λk (λ 2-n 2 ε Q ε , e nuε ), ( α, β), (ψ 1 -δ ε , ψ 2 -δ ε ) ≤ 0 meaning that -∂ -λk (λ 2-n 2 ε Q ε , e nuε ) -{(δ ε , δ ε )} ∩ {(a, b) ∈ C 0 (M ); a ≤ 0, b ≤ 0} = ∅.
Indeed, if not, we use the classical Hahn-Banach theorem to separate these two spaces (the first one is compact, the second one is closed in C 0 × C 0 ) by a linear form (µ 1 , µ 2 ) (where µ 1 and µ 2 are Radon measures, belonging to the dual space of continuous functions) satisfying

∀(ψ 1 , ψ 2 ) ∈ -∂ -λk (λ 2-n 2 ε Q ε , e nuε ), ˆM (ψ 1 dµ 1 + ψ 2 dµ 2 ) > 0 and ∀(a, b) ∈ C 0 (M ); a ≤ 0, b ≤ 0, ˆM (adµ 1 + bdµ 2 ) ≤ 0
The second condition implies that µ 1 and µ 2 are non negative Radon measures. Up to a renormalization, we assume that ´M dµ 1 + ´M dµ 2 = 1 and we obtain a contradiction. Therefore we obtain the following Palais Smale condition: there is a map

Φ ε = (φ ε 1 , • • • , φ ε pε ) such that -div g λ 2-n 2 ε Q ε ∇Φ ε = λ ε e nuε Φ ε
and

ˆM e nuε dA g = ˆM |Φ ε | 2 e nuε dA g = λ -n 2 ε ˆM Q ε |∇Φ ε | 2 g dA g = λ -n 2 ε ˆM Q n n-2 ε = 1 satisfying |∇Φ ε | 2 ≤ Q 2 n-2 ε + δ ε and |Φ ε | 2 ≥ 1 -δε λε where δ ε → 0 as ε → 0.

Convergence of Palais Smale sequences for one Laplace eigenvalue in dimension n ≥ 3

In the current section, we aim at proving Theorem 0.4, as a consequence of the following Proposition 2.1. Let e nuε , λ ε , Φ ε : M → R pε be a smooth sequence of maps satisfying the Palais-Smale assumption (P S) as ε → 0, that is

• -div g λ 2-n 2 ε Q ε ∇Φ ε = λ ε e nuε Φ ε and the eigenvalue index of λ ε is uniformly bounded • ´M e nuε dv g = ´M |Φ ε | 2 e nuε dv g = λ -n 2 ε ´M Q ε |∇Φ ε | 2 g dv g = λ -n 2 ε ´M Q n n-2 ε dv g = 1 • |∇Φ ε | 2 g ≤ Q 2 n-2 ε + δ ε uniformly where δ ε → 0 as ε → 0. • |Φ ε | 2 ≥ 1 -δ ε uniformly, where δ ε → 0 as ε → 0.
Then, up to a subsequence and rearrangement of coordinates of Φ ε , p ε → p, λ ε → λ and

Φ ε bubble tree converges in W 1,n to Φ 0 : M → S p , Φ j : S n → S p for j = 1, • • • , l (l ≥ 0)
with an energy identity:

λ n 2 = ˆM |∇Φ 0 | n g dv g + l j=1 ˆSn |∇Φ j | n h dv h
Moreover, Φ j are C 0,α n-harmonic maps for j = 0, • • • , l and their i-th coordinates are eigenfunctions associated to λ on the surface M ∪ 1≤i≤l S n endowed with the generalized metrics |∇Φ 0 | 2 λ g on M and |∇φ| 2 λ h on S n . All along the proof, every local computation is made in the exponential chart centered at points p ∈ M , defined on balls whose radius is controlled by the injectivity radius with respect to g: inj g (M ). Without loss of generality, we can assume that inj g (M ) ≥ 2 and make arguments on the unit ball B n endowed with the metric exp ⋆ p g still denoted g. We do not change the notations of the metrics and functions in the charts. Moreover, when there is not any embiguity, we do not precise the measures of integration associated to g, dv g inside the integrals in order to lighten the computations.

2.1.

A first bubble tree structure. For a Radon measure, µ on M (or R n ), we denote μ the continuous part of µ, defined as the measure μ which does not have any atom and such that µμ is a (maybe infinite) linear combination of Dirac masses.

Claim 2.1. Let Q ε , e nuε be sequences of smooth positive weights such that ´M e nuε dv g =

´M Q n n-2 ε dv g = 1 and lim inf ε→0 λ k (Q ε , e nuε ) > 0
Then up to a subsequence on ε → 0, there are an integer t ≥ 0 and if t > 0 sequences of points q i ε for i = 1, • • • , t and scales α t ε ≤ • • • ≤ α 1 ε → 0 as ε → 0 such that we have the weak-⋆ convergence in M , of e nuε to a non negative Radon measure µ 0 in M , we have the weak-⋆ convergence in (any compact set of ) R n , of e nuε(α i ε z+q i ε ) to a non negative and non zero Radon measure µ i on R n for any i. Moreover, their associated continuous parts preserve the mass before the limit:

lim ε→0 ˆM e nuε dv g = ˆM dμ 0 + t i=1 ˆRn dμ i = 1 and ∀i ≥ 1, ˆRn dμ i > 0 and we have that 1 ≤ 1 μ0 =0 + t ≤ k. Finally if we set F i = {j > i; dg (q ε i ,q ε j ) α ε i is bounded}, we have for j > i, j ∈ F i ⇒ α ε j α ε i → 0 and j / ∈ F i ⇒ d g (q ε i , q ε j ) α ε i → +∞
In other words, the last condition reads as

α ε i α ε j + α ε j α ε i + d g (q ε i , q ε j ) α ε i + α ε j → +∞
which is the standard condition for a bubble tree. The aim of the rest of section 2 is devoted to prove that the continuous measures μi for i ∈ {0, • • • , t} are absolutely continuous with respect to dv g if i = 0 and to the Euclidean metric if i ≥ 1, with densities equal to densities of energy of n-harmonic maps. We choose to skip the proof of Claim 2.1 because it is a simple adaptation of standard arguments of dimension 2 to higher dimensions we can find in [START_REF] Kokarev | Variational aspects of Laplace eigenvalues on Riemannian surfaces[END_REF], [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF], [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF], [START_REF] Karpukhin | Min-max harmonic maps and a new characterization of conformal eigenvalues[END_REF], [START_REF] Karpukhin | Conformally maximal metrics for Laplace eigenvalues on surfaces[END_REF]. The selection of scales of concentration is based on Hersch's trick because it uses the conformal group of the sphere to balance continuous measures on a sphere. Then the selection stops because of the min-max characterization of λ k : If there are more than k + 1 scales of concentration, we can build k + 1 independant test functions with arbitrarily small rayleigh quotient, contradicting the first assumption of Claim 2.1.

2.2. Some convergence of ω ε to 1 and first replacement of Φ ε . We set

ω ε = |Φ ε |.
We first prove that in some sense, ω ε converges to 1 and that Φ ε has a similar H 1 behaviour as Φε ωε Claim 2.2. We have that

(2.1) ˆM Q ε |∇ω ε | 2 g ω ε dv g = O(δ ε ) (2.2) ˆM Q ε ∇ Φ ε - Φ ε ω ε 2 g dv g = O (δ ε )
and for all q ≤ n, and for any sequence of functions f ε in L n n-q (M, g),

(2.3) ˆM Q q n-2 ε f ε dv g = ˆM |∇Φ ε | q g f ε dv g + f ε L n n-q O δ 2 n ε as ε → 0. Proof. We integrate -div g λ 2-n 2 ε Q ε Φ ε = λ ε e nuε Φ ε against Φ ε and Φε ωε . We obtain ˆM |Φ ε | 2 e nuε = λ -n 2 ε ˆM Q ε |∇Φ ε | 2 and ˆM |Φ ε | 2 ω ε e nuε = -λ -n 2 ε ˆM Φ ε ω ε div g (Q ε ∇Φ ε ) =λ -n 2 ε ˆM Q ε |∇Φ ε | 2 ω ε - |∇ω ε | 2 ω ε =λ -n 2 ε ˆM ω ε Q ε ∇ Φ ε ω ε 2 Therefore ˆM Q ε |∇ω ε | 2 ω ε dv g = ˆM Q ε |∇Φ ε | 2 ω ε -ω ε ∇ Φ ε ω ε 2 dv g = ˆM Q ε |∇Φ ε | 2 ω ε -λ n 2 ε e nuε |Φ ε | 2 ω ε dv g = ˆM Q ε |∇Φ ε | 2 ω ε -Q ε |∇Φ ε | 2 -λ n 2 ε ˆM e nuε |Φ ε | 2 ω ε -|Φ ε | 2 = ˆM Q ε |∇Φ ε | 2 ω ε (1 -ω ε ) + λ n 2 ε ˆM e nuε (1 -ω ε )
noticing the crucial equality ´M e nuε ω 2 ε = ´M e nuε = 1. We know that

ω ε -1 ≥ √ 1 -δ ε -1 so that ˆM Q ε |∇ω ε | 2 ω ε dv g ≤ ˆM Q ε |∇Φ ε | 2 1 - √ 1 -δ ε √ 1 -δ ε + λ n 2 ε 1 -1 -δ ε = O (δ ε )
and we obtain (2.1). Let's prove (2.2). We have that

∇ Φ ε - Φ ε ω ε = 1 - 1 ω ε ∇Φ ε + ∇ω ε ω 2 ε Φ ε
and then

∇ Φ ε - Φ ε ω ε 2 = |∇Φ ε | 2 1 - 1 ω ε 2 + |∇ω ε | 2 ω 2 ε + 2 |∇ω ε | 2 ω ε 1 - 1 ω ε so that ˆM Q ε ∇ Φ ε - Φ ε ω ε 2 ≤ ˆM Q ε |∇Φ ε | 2 g 1 - 1 ω ε 2 + O (δ ε ) as ε → 0 and ˆM Q ε |∇Φ ε | 2 1 - 1 ω ε 2 = -ˆΣ div Q ε ∇Φ ε 1 - 1 ω ε 2 Φ ε =λ n 2 ε ˆM 1 - 1 ω ε 2 |Φ ε | 2 e nuε + 2 ˆM Q ε ∇ 1 ω ε ω ε ∇ω ε 1 - 1 ω ε =λ n 2 ε ˆM e nuε ω 2 ε + 1 ω ε -2 -2 ˆM Q ε |∇ω ε | 2 ω 2 ε (ω ε -1) =λ n 2 ε ˆM e 2uε 1 -ω ε ω ε dv g + O δ 2 ε = O (δ ε )
as ε → 0, where we crucially used again ´Σ e 2uε ω 2 ε = ´Σ e 2uε = 1. We then obtain (2.2). Now, let's prove (2.3). We define A ε by

A 2 ε = Q 2 n-2 ε + δ ε -|∇Φ ε | 2
A ε is a non-negative function and we know that

ˆM |∇Φ ε | 2 g Q ε dv g = ˆM Q n n-2 ε dv g = 1. Therefore multiplying A 2 ε by Q n n-2 ε
and integrating, we obtain

ˆM A 2 ε Q ε dv g = O (δ ε ) as ε → 0.
Now, we also obtain that

ˆM A 2 ε |∇Φ ε | 2 + A 2 ε n-2 2 = ˆM A 2 ε Q 2 n-2 ε + δ ε n-2 2 ≤ c n ˆM A 2 ε Q ε + δ n-2 2 ε ˆM A 2 ε
for a constant c n depending only on the dimension so that by a minoration of the left-hand term we obtain

ˆM A 2 ε |∇Φ ε | 2 g + ˆM A n ε = O δ ε + δ n-2 2 ε ˆM A 2 ε
and in particular, we deduce

ˆM A n ε = O (δ ε )
Now, writing

Q q n-2 ε -|∇Φ ε | q 2 = Q q n-2 ε -Q 2 n-2 ε + δ ε q 2 + A 2 ε + |∇Φ ε | 2 q 2 -|∇Φ ε | q 2 we obtain that ˆM Q q n-2 ε -|∇Φ ε | q 2 f ε = f ε L n n-q O (δ ε ) + O δ 2 n ε
which completes the proof of the claim. ♦

From the previous claim and assumptions on the Palais-Smale sequence, we already deduce a global W 1,q convergence of Φε ωε for any q < n.

Claim 2.3. Up to a subsequence, there is a map Φ 0 : M → S N such that

|Φ 0 | 2 := +∞ i=1 φ i 0 2 = a.e 1 and ˆM |∇Φ 0 | n g dv g ≤ ε→0 lim sup ˆM ∇ Φ ε ω ε n g dv g where ∇ Φε ωε 2 g := +∞ i=1 ∇ φ i ε ωε 2 g
and such that for any 1 ≤ p < +∞, 1 ≤ q < n,

ˆM Φ ε ω ε -Φ 0 p + ∇ Φ ε ω ε -Φ 0 q g dv g → 0 as ε → 0.
Proof. We use Claim 3.3 in the appendix where we extend Φ ε by φ i ε = 0 for i ≥ p ε + 2. We have that

-div g ∇ Φ ε ω ε n-2 ∇ Φ ε ω ε = λ n 2 ε e nuε Φ ε -div g ∇ Φ ε ω ε n-2 ∇ Φ ε ω ε -Q ε ∇Φ ε We notice that A ε = λ n 2 ε e nuε Φ ε satisfies (|A ε |) ε is bounded in L 1
and it remains to prove that

B ε = -div g ∇ Φ ε ω ε n-2 ∇ Φ ε ω ε -Q ε ∇Φ ε satisfies B ε W -1,n → 0 as ε → 0. Let η : M → R N be such that ˆM |η| n + |∇η| n g dv g < +∞.
We have by an integration by parts that

ˆM B ε .ηdv g = ˆM ∇η ∇ Φ ε ω ε n-2 ∇ Φ ε ω ε -Q ε ∇Φ ε = ˆM ∇ Φ ε ω ε n-2 -|∇Φ ε | n-2 ∇η∇ Φ ε ω ε + ˆM |∇Φ ε | n-2 -Q ε ∇η∇ Φ ε ω ε + ˆM Q ε ∇η.∇ Φ ε - Φ ε ω ε dv g
The second right-hand term satisfies by (2.3) and then a Hölder inequality

ˆM |∇Φ ε | n-2 -Q ε ∇η∇ Φ ε ω ε ≤ O δ 2 n ε |∇η| L n .
The third right-hand term satisfies by a Hölder inequality, then (2.2), and then another Hölder inequality,

ˆM Q ε ∇η.∇ Φ ε - Φ ε ω ε dv g ≤ O (δ ε ) |∇η| L n .
we write the first right-hand term as

ˆM ∇ Φ ε ω ε n-2 -|∇Φ ε | n-2 ∇η∇ Φ ε ω ε ≤ c n ˆM ∇ Φ ε - Φ ε ω ε g |∇Φ ε | n-2 g |∇η| g
for a constant c n depending only on the dimension n where we used that

∇ Φ ε ω ε 2 g ≤ |∇Φ ε | 2 g 1 -δ ε ≤ 2 |∇Φ ε | 2 g
for ε small enough. Then, we have

ˆM ∇ Φ ε - Φ ε ω ε g |∇Φ ε | n-2 g |∇η| g = ˆM ∇ Φ ε - Φ ε ω ε g |∇Φ ε | n-2 g -Q ε |∇η| g + ˆM ∇ Φ ε - Φ ε ω ε g Q ε |∇η| g
and as before, we apply (2.3) and then a Hölder inequality for the first term and Hölder inequalities and (2.2) for the second term to obtain

ˆM ∇ Φ ε ω ε n-2 -|∇Φ ε | n-2 ∇η∇ Φ ε ω ε ≤ O δ 2 n ε |∇η| L n
and gathering all the previous inequalities gives the Claim. ♦

In the next subsections, we aim at proving that the strong convergence holds in a better space, in order to pass to the limit on the sequence of equations satisfied by Φ ε .

2.3. Regularity of the limiting measures. We choose to prove in detail the regularity of μ0 on M , meaning that it is absolutely continous with respect to dv g and that the density is C 0,α as the density of energy of a n-harmonic map.

The proof of the regularity of the measures μi in R n is similar, because locally, all the regularity estimates we make hold for any rescalings centered at q i ε with scale α i ε of the involved functions. Just notice that since the metric rescales as g α i ε zq i ε , it converges to a Euclidean metric as ε → 0. Up to a reverse stereographic projection and thanks to the point removability property of n-harmonic maps, the regular measures in R n give C 0,α conformal factors for the round sphere.

2.3.1. Selection of bad points. In the following, we perform local regularity estimates on (Φ ε ). These estimates can only be done far from "bad points" we select in Claim 2.4. For Ω ⊂ M a domain of M , we set

λ ⋆ (Ω, e nuε , Q ε ) = inf ϕ∈C ∞ c (Ω) ´Ω |∇ϕ| 2 g Q ε dv g ´Ω ϕ 2 e nuε dv g .
Then, knowing that λ ε is a k-th eigenvalue on M we have:

Claim 2.4. Up to a subsequence, there is 0 < r ⋆ < 1 and a set of at most k bad points

B = {p 1 , • • • , p s } ⊂ M and such that for any p ∈ M \ {p 1 , • • • , p s } and any r < min (r ⋆ , d g (x, {p 1 , • • • , p s })), then λ ⋆ (B r (p), e nuε , Q ε ) ≥ λ 2 n ε .
Notice that the atoms of µ 0 belong to this set of points {p 1 , • • • , p s }.

Proof. We set

r 1 ε = inf{r > 0; ∃p ∈ M, λ ⋆ (B r (p), e nuε , Q ε ) < λ 2 n ε }.
If r 1 ε does not converge to 0, then up to a subsequence, there is r ⋆ such that r 1 ε > r ⋆ and Claim 2.4 is proved for this r ⋆ and B = ∅. If r 1 ε → 0, then we let p ε 1 be such that λ

⋆ B r 1 ε (p 1 ε ), e nuε , Q ε = λ 2 n
ε . By induction assume that for j ∈ N we constructed

r 1 ε ≤ r 2 ε ≤ • • • ≤ r j-1 ε such that r j-1 ε → 0 and points p 1 ε , • • • , p j-1 ε such that ∀i 1 = i 2 , B r i ε (p ε i ) ∩ B r i ε (p i ε ) = ∅ and ∀i, λ ⋆ B r i ε (p i ε ), e nuε , Q ε = λ 2 n ε
then we set

r j ε = inf{r > 0; ∃p ∈ M, ∀i, B r (p) ∩ B r i ε (p i ε ) = ∅ and λ ⋆ (B r (p), e nuε , Q ε ) < λ 2 n ε }
Then if r j ε does not converge to 0 and up to a subsequence, there is r ⋆ such that r j ε > r ⋆ and the proof of Claim 2.4 is proved for this r ⋆ and B = {p 1 , • • • , p j-1 } where up to a subsequence we took

p 1 , • • • , p j-1 as limits of p ε 1 , • • • , p ε j-1 as ε → 0. If r j ε → 0, then let p ε j be such that λ ⋆ B r j ε (p 1 ε ), e nuε , Q ε = λ 2 n ε and B r j ε (p j ε ) ∩ B r j ε (p i ε ) = ∅ for i < j.
This induction process has to stop because if we have we constructed

r 1 ε ≤ r 2 ε ≤ • • • ≤ r k+1 ε such that r k+1 ε → 0 and points p 1 ε , • • • , p k+1 ε such that ∀i 1 = i 2 , B r i ε (p ε i ) ∩ B r i ε (p i ε ) = ∅ and ∀i, λ ⋆ B r i ε (p i ε ), e nuε , Q ε = λ 2 n ε
then, using the first eigenfunction ϕ i associated to the eigenvalue λ ⋆ B r i ε (p i ε ), e nuε , Q ε extended by 0 in M \B r i ε (p i ε ), we have by the min-max characterization of the k-th eigenvalue on M , λ ε and since ϕ i are orthogonal functions that

λ ε ≤ max i=1,••• ,k+1 ´M |∇ϕ i | 2 g Q ε λ n-2 2 ε dv g ´M (ϕ i ) 2 e nuε dv g ≤ λ n 2 ε λ n-2 2 ε = λ ε .
The case of equality in the min-max characterization of λ ε implies that a linear combination of ϕ i is an eigenfunction for λ ε which is impossible since it vanishes on an open set. ♦ 2.3.2. Non concentration of the energy. Far from bad points, the energy cannot have concentration points:

Claim 2.5. Let p ∈ M \ {p 1 , • • • , p s }, then lim r→0 lim sup ε→0 ˆBr(p) e nuε = lim r→0 lim sup ε→0 ˆBr(p) Q ε ∇ Φ ε ω ε 2 = lim r→0 lim sup ε→0 ˆBr(p) Q ε |∇Φ ε | 2 = 0 (2.4) Proof. Let η ∈ C ∞ c (D √ r (p)) with 0 ≤ η ≤ 1, η = 1 in B r (p) and ´M |∇η| n g ≤ C ln( 1 r )
, and we first have using 2.4

ˆM ηe nuε ≤ ˆM η 2 e nuε 1 2 ≤   1 λ ⋆ B √ r (p), e nuε , Q ε ˆB√ r (p) |∇η| 2   1 2 ≤   1 λ 2 n ε ˆB√ r (p) |∇η| n 2 n   1 2 ≤ C λ ε ln 1 r 1 n Now, we integrate the equation -div g (Q ε ∇Φ ε ) = λ n 2 ε e nuε Φ ε against η Φε ω 2 ε and we obtain ˆM Q ε η ∇ Φ ε ω 2 ε , ∇Φ ε + ˆM Q ε ∇η∇Φ ε Φ ε ω 2 ε = λ n 2 ε ˆM ηe nuε so that ˆM ηQ ε ∇ Φ ε ω ε 2 =λ n 2 ε ˆM ηe nuε -ˆM ηQ ε ∇ Φ ε ω 2 ε ∇ω ε Φ ε ω ε -ˆM Q ε ∇η∇Φ ε Φ ε ω 2 ε ≤ C ln 1 r 1 n + ˆM ηQ ε |∇ω ε | 2 ω ε + ˆB√ r (p) Q ε |∇ω ε | 2 ω 2 ε 1 2 ˆM Q ε |∇η| 2 1 2
where we used that

|Φ ε | = ω ε , so that ˆB√ r (p) ηQ ε ∇ Φ ε ω ε 2 ≤ C ln 1 r 1 n 1 + O δ 1 2 ε + O (δ ε )
Now, to conclude, we have by (2.2) that for any p ∈ M , ˆB√ r (p)

Q ε |∇Φ ε | 2 - ˆBr(p) Q ε ∇ Φ ε ω ε 2 ≤ O δ 1 2 ε and the proof of the Claim is complete. ♦ 2.3.3. W 1,n -convergence of eigenfunctions and n-harmonic replacement. Let p ∈ M \ {p 1 , • • • , p s }, and ρ ε > 0 be such that B ρε (p) ⊂ M \ {p 1 , • • • , p s } .
We denote by Ψ ε : B ρε (p) → S pε the n-harmonic replacement of Φε ωε on B ρε (p) and we set

P ε = |∇Ψ ε | 2 n-2 2 .
Claim 2.6. The four following upper estimates occur

(2.5) ˆBρε(p) Q ε ∇ Φ ε ω ε 2 g - ˆBρε(p) Q ε |∇Ψ ε | 2 g ≤ O δ 1 2 ε (2.6) ˆBρε(p) Q ε |∇Φ ε | 2 g - ˆBρε(p) Q ε |∇Ψ ε | 2 g ≤ O δ 1 2 ε (2.7) ˆBρε(p) P ε |∇Φ ε | 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g ≤ O δ 1 2 ε + δ 2 n ε (2.8) ˆBρε(p) P ε ∇ Φ ε ω ε 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g ≤ O δ 1 2 ε + δ 2 n ε as ε → 0.
Proof. We first prove (2.5) We test the function

Φ i ε ωε -Ψ i ε in the variational characterization of λ ⋆ := λ ⋆ B ρε (p), e nuε , Qε λ n-2 2 ε : λ n 2 ε ˆBρε(p) Φ i ε ω ε -Ψ i ε 2 e nuε ≤ λ ε λ ⋆ ˆBρε(p) Q ε ∇ Φ i ε ω ε -Ψ i ε 2
and we sum on i to get thanks to Claim 2.4

λ n 2 ε ˆBρε(p) Φ ε ω ε -Ψ ε 2 e nuε ≤ ˆBρε(p) Q ε ∇ Φ ε ω ε 2 + ˆBρε(p) Q ε |∇Ψ ε | 2 -2 ˆBρε(p) Q ε ∇ Φ ε ω ε ∇Ψ ε (2.9) Now we test the equation -div g λ 2-n 2 ε Q ε Φ ε = λ ε e nuε Φ ε against Φε ω 2 ε
-Ψε ωε and we get after an integration by part knowing that Φε

ω 2 ε -Ψε ωε = 0 on ∂B r (p) ˆBρε(p) Q ε 1 ω ε ∇Φ ε ∇ Φ ε ω ε -Ψ ε + ∇ 1 ω ε ∇Φ ε Φ ε ω ε -Ψ ε =λ n 2 ε ˆBρε(p) Φ ε ω ε , Φ ε ω ε -Ψ ε e nuε
(2.10) so that,

ˆBρε(p) Q ε ∇ Φ ε ω ε ∇ Φ ε ω ε -Ψ ε = λ n 2 ε ˆBρε(p) Φ ε ω ε , Φ ε ω ε -Ψ ε e nuε - ˆBρε(p) Q ε ∇ 1 ω ε ∇Φ ε Φ ε ω ε -Ψ ε + ˆBρε(p) Q ε Φ ε ∇ 1 ω ε ∇ Φ ε ω ε -Ψ ε (2.11) Knowing that Φε ωε = |Ψ ε |, it is clear that 2 Φε ωε , Φε ωε -Ψ ε = Φε ωε -Ψ ε 2
and multiplying (2.11) by 2, we obtain 2

ˆBρε(p) Q ε ∇ Φ ε ω ε 2 -2 ˆBρε(p) Q ε ∇ Φ ε ω ε ∇Ψ ε = λ n 2 ε ˆBρε(p) Φ ε ω ε -Ψ ε 2 e nuε + 2 ˆBρε(p) Q ε ∇ω ε ω ε ∇Φ ε ω ε Φ ε ω ε -Ψ ε - Φ ε ω ε ∇ Φ ε ω ε -Ψ ε ≤λ n 2 ε ˆBρε(p) Φ ε ω ε -Ψ ε 2 e nuε + O δ 1 2 ε (2.12)
Summing (2.9) and (2.12), we get (2.5). Then, (2.6) easily follows from (2.5) and (2.2) by a triangle inequality. Now let's prove (2.7). We have that

ˆBρε(p) P ε |∇Φ ε | 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g = ˆBρε(p) Q ε |∇Φ ε | 2 g - ˆBρε(p) Q ε |∇Ψ ε | 2 g + ˆBρε(p) |∇Ψ ε | n-2 -|∇Φ ε | n-2 |∇Φ ε | 2 g -|∇Ψ ε | 2 g + ˆBρε(p) |∇Φ ε | n-2 -Q ε |∇Φ ε | 2 g -|∇Ψ ε | 2 g ≤O δ 1 2 ε + O δ 2 n ε
where we used (2.6) and (2.3). Finally, we prove (2.8). We have by (2.7) that ˆBρε(p)

P ε ∇ Φ ε ω ε 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g ≤O δ 1 2 ε + δ 2 n ε + ˆBρε(p) P ε ∇ Φ ε ω ε 2 g -|∇Φ ε | 2 g ≤O δ 1 2 ε + δ 2 n ε + ˆBρε(p) P ε 1 -ω 2 ε ∇ Φ ε ω ε 2 g ≤O δ 1 2 ε + δ 2 n ε + δ ε since ω 2 ε ≥ 1 -δ ε and we obtain (2.8). The proof is complete ♦ Claim 2.7. There is γ n,g > 0 such that if ˆBρ(p) Q n n-2 ε dv g ≤ γ n,g
then, there is ρ 2 < ρ ε < ρ such that the harmonic replacement Ψ ε : B ρε (p) → S pε of Φε ωε satisfies for any r < ρ 4 :

(2.13)

ˆBr(p) (P ε + Q ε ) |∇ (Φ ε -Ψ ε )| 2 g → 0 as ε → 0.
Proof. STEP 1: Up to reduce γ n,g > 0, there is ρ 2 < ρ ε < ρ such that up to a rotation coordinates of Ψ ε , we have that the first coordinate of the n-harmonic replacement Ψ ε : B ρε (p) → S pε is uniformly lower bounded

(2.14) ∀x ∈ B n ρε (p), ψ 1 ε (x) ≥ 1 2 .
Proof of Step 1: We apply the Courant-Lebesgue lemma to obtain ρ 2 < ρ ε < ρ such that ˆSn-1

pε+1 i=1 ∂ θ ψ i ε (ρ ε .θ) 2 n 2 dθ S n -1 ≤ 1 ln 2 ˆBρ(p) pε+1 i=1 ∇ψ i ε (y) 2 2 n dy ≤ C g ln 2 ˆBρ(p) |∇Ψ ε | n g dv g 2 n
for a constant C g only depending on g. Now, for a given 1 ≤ i 0 ≤ p ε + 1, we have by classical Morrey-Sobolev injections a constant a n such that for any z, z ′ ∈ S n-1

φ i 0 ε (ρ ε z + p) -φ i 0 ε (ρ ε z ′ + p) ≤a n ˆSn-1 ∂ θ φ i 0 ε (ρ ε θ) n dθ S n -1 1 n d S n -1 (z, z ′ ) 1 n ≤a n 2 1 n C g ln 2 ˆBρ(p) |∇Φ ε | n g dv g 1 n ≤ 1 8
where we choose a n 2

1 n Cg ln 2 γ 1 n n,g ≤ 1 8 . Now, let z ε 0 ∈ S n-1 be such that ω ε (ρ ε z ε 0 + p) = max z∈S n-1 ω ε (ρ ε z + p)
Then, up to a rotation of Φ ε , we assume that

φ 1 ε (ρ ε z ε 0 +p) = ω ε (ρ ε z ε 0 +p) and φ i ε (ρ ε z 0 +p) = 0 for i = 1. Knowing in addition that ω 2 ε ≥ 1 -δ ε , this implies that (2.15) ∀z ∈ S n-1 , φ 1 ε (ρ ε z + p) ω ε (ρ ε z + p) ≥ φ 1 ε (ρ ε z ε 0 + p) -1 8 ω ε (ρ ε z ε 0 + p) ≥ 1 - 1 8 √ 1 -δ ε ≥ 3 4 .
Now, let's focus on the n-harmonic extension Ψ ε of Φε ωε on B ρε (p). We define the following 

extension of Ψ ε in R n by setting Ψ ε (ρ ε z) = Ψ ε ρ ε z |z| 2 if |z| ≥ 1 so that we have by conformal invariance of the n-energy ˆRn ∇ Ψ ε n g dv g ≤ 2c g ˆBρε(p) |∇Ψ ε | n g dv g ≤ 2c g γ n,g Now let x ε be such that ψ 1 ε (x ε ) = min x∈Bρ ε (p) ψ 1 ε (x), we aim at proving that ψ 1 ε (x ε ) ≥ 1 2 . We assume that |x ε | < ρ ε since
< R ε < d ε such that sup w,w ′ ∈S n-1 Rε (yε) ψ 1 ε (w) -ψ 1 ε (w ′ ) ≤ a n 2 1 n C g ln 2 ˆBρε(p) ∇ Ψ ε n g dv g 1 n ≤ 1 8
if we assume a n 2

1 n Cg ln 2 2c g γ 1 n
n,g ≤ 1 8 . Now the ε-regularity result independant from the dimension of the target manifold (see Claim 3.2) gives that sup

w∈B n dε 2 (xε) ψ 1 ε (w) -ψ 1 ε (x ε ) ≤ C 1 n n,g ˆBn dε (xε) |∇Ψ ε | n g 1 n ≤ 1 8 if we assume that C 1 n n,g γ 1 n
n,g ≤ 1 8 . Then, gathering all the previous inequalities and noticing that B n dε 2 (x ε ) ∩ S Rε (y ε ) = ∅ and that S ρε (p) ∩ S Rε (y ε ) = ∅ we obtain the desired lower bound.

STEP 2: We prove that i ˆBρε(p)

P ε ∇ φ i ε ω ε -ψ i ε -∇ ln ψ 1 ε φ i ε ω ε -ψ i ε 2 g dv g = ˆBρε(p) P ε ∇ Φ ε ω ε 2 -|∇Ψ ε | 2 ≤ O δ 1 2 ε + δ 2 n ε (2.16)

Proof of Step 2:

We recall that Ψ ε : B ρε (p) → S pε is the n-harmonic replacement of Φε ωε and we obtain

ˆBρε(p) P ε ∇ Φ ε ω ε -Ψ ε 2 g - ˆBρε(p) P ε ∇ Φ ε ω ε 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g =2 ˆBρε(p) P ε ∇Ψ ε , ∇ Ψ ε - Φ ε ω ε g =2 ˆBρε(p) -div g (P ε ∇Ψ ε ) Ψ ε - Φ ε ω ε =2 ˆBρε(p) P ε |∇Ψ ε | 2 g Ψ ε Ψ ε - Φ ε ω ε = ˆBρε(p) P ε |∇Ψ ε | 2 g Ψ ε - Φ ε ω ε 2 Now, for a given u ∈ C ∞ (B ρε (p)) ∩ C 0 B ρε (p)
, such that u = 0 we have the following computation:

ˆBρε(p) P ε ∇u -∇ ln ψ 1 ε u 2 g dv g = ˆBr(p) P ε |∇u| 2 g + ˆBρε(p) P ε ∇ψ 1 ε 2 g (ψ 1 ε ) 2 u 2 - ˆBρε(p) P ε ∇ψ 1 ε ψ 1 ε ∇u 2 = ˆBρε(p) P ε |∇u| 2 g - ˆBρε(p) -div g P ε ∇ψ 1 ε ψ 1 ε u 2 = ˆBρε(p) P ε |∇u| 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g u 2
so that testing this for u = φ i ε ωεψ i ε and summing over i, we obtain

i ˆBρε(p) P ε ∇ φ i ε ω ε -ψ i ε -∇ ln ψ 1 ε φ i ε ω ε -ψ i ε 2 g dv g = ˆBρε(p) P ε ∇ Φ ε ω ε -Ψ ε 2 g - ˆBρε(p) P ε |∇Ψ ε | 2 g Φ ε ω ε -Ψ ε 2 .
Finally, using the previous computations and (2.8) we obtain (2.16) STEP 3: We prove that (2.17)

ˆBρε(p) |∇Ψ ε | n-2 + |∇Φ ε | n-2 ∇ Φ ε ω ε -Φ ε 2 = O δ 2 n ε as ε → 0
and that (2.18)

ˆBρε(p) |∇Ψ ε | n-2 + |∇Φ ε | n-2 (|∇Φ ε | -|∇Ψ ε |) 2 = O δ 1 2 ε + δ 2 n ε as ε → 0
Proof of Step 3: By the same computations as for the proof of (2.2), we have

∇ Φ ε - Φ ε ω ε 2 ≤ |∇ω ε | 2 ω 2 ε + |∇Φ ε | 2 ≤ 2 |∇Φ ε | 2 ≤ 2Q 2 n-2 ε so that writing 2 = 2(n-2) n + 4 n ˆBr(p) |∇Ψ ε | n-2 + |∇Φ ε | n-2 ∇ Φ ε - Φ ε ω ε 2 g ≤2 2(n-2) n ˆBr(p) |∇Ψ ε | n-2 + |∇Φ ε | n-2 Q 2 n ε ∇ Φ ε - Φ ε ω ε 4 n g ≤2 2(n-2) n ˆBr(p) |∇Ψ ε | n-2 + |∇Φ ε | n-2 n n-2 n-2 n ˆBr(p) Q ε ∇ Φ ε - Φ ε ω ε 2 g 2 n ≤O δ 2 n ε
where we used (2.2) for the last inequality, and we obtain (2.17) . Now let's prove (2.18). By (2.5), we have that

O δ 1 2 ε ≥ ˆBρε(p) Q ε |∇Φ ε | 2 -|∇Ψ ε | 2 ≥ ˆBρε(p) P ε |∇Φ ε | 2 -|∇Ψ ε | 2 + ˆBρε(p) (Q ε -P ε ) |∇Φ ε | 2 -|∇Ψ ε | 2 ≥ O δ 1 2 ε + δ 2 n ε + ˆBρε(p) (Q ε -P ε ) |∇Φ ε | 2 -|∇Ψ ε | 2
where we used for the last inequality (2.16), proved in step 2 and (2.17). Now,

ˆBρε(p) (Q ε -P ε ) |∇Φ ε | 2 -|∇Ψ ε | 2 ≥ ˆBρε(p) Q ε -|∇Φ ε | n-2 |∇Φ ε | 2 -|∇Ψ ε | 2 + ˆBρε(p) |∇Φ ε | n-2 -|∇Ψ ε | n-2 |∇Φ ε | 2 -|∇Ψ ε | 2 ≥O δ 2 n ε + ˆBρε(p) (|∇Φ ε | -|∇Ψ ε |) 2 |∇Φ ε | n-2 + |∇Ψ ε | n-2
where we used (2.3) again for the last inequality and we obtain (2.18) by gathering the previous inequalities.

STEP 4: We prove that 

(2.19) i ˆBρε(p) |∇Φ ε | n-2 g ∇ φ i ε ω ε -ψ i ε -∇ ln ψ 1 ε φ i ε ω ε -ψ i ε 2 g dv g → 0 as ε → 0 Proof of
|∇Φ ε | n-2 g -|∇Ψ ε | n-2 g ∇ φ i ε ω ε -ψ i ε -∇ ln ψ 1 ε φ i ε ω ε -ψ i ε 2 g dv g → 0
as ε → 0. We denote D ε this quantity. Using (2.18) in the last inequality, we have that

D ε ≤c n ˆBρε(p) ||∇Φ ε | -|∇Ψ ε || |∇Φ ε | n-3 g + |∇Ψ ε | n-3 2 ∇ Φ ε ω ε -Ψ ε 2 + 8 |∇Ψ ε | 2 ≤O   ˆBρε(p) (|∇Φ ε | -|∇Ψ ε |) 2 |∇Φ ε | n-2 + |∇Ψ ε | n-2 1 2   → 0 as ε → 0
STEP 5: We prove that for any r < ρ

4

(2.20)

ˆBr(p) P ε ∇ Φ ε ω ε -Ψ ε 2 g → 0 as ε → 0
Proof of Step 5: We set ρ 0 = lim ε→0 ρ ε . From (2.16), we have that for any B r (p) ⊂ B ρε (p) with r < ρ 0 , ˆBr(p)

P ε ∇ Φ ε ω ε -Ψ ε 2 ≤2 ˆA P ε ∇ ln ψ 1 ε 2 Φ ε ω ε -Ψ ε 2 + 2 i ˆBr(p) P ε ∇ φ i ε ω ε -ψ i ε -∇ ln ψ 1 ε φ i ε ω ε -ψ i ε 2 g dv g ≤2 ˆBr(p) P ε ∇ ln ψ 1 ε 2 Φ ε ω ε -Ψ ε 2 + O δ 1 2 ε (2.21)
We aim at proving that the right-hand term converges to 0 as ε → 0. By Claim (2.3) applied to Φε ωε and Claim (3.3) applied to Ψ ε , we know that up to a subsequence, the sequence of maps Φε ωε : B ρε (p) → S pε and Ψ ε : B ρε (p) → S pε converge to some maps Φ 0 : B ρ 0 (p) → R N and Ψ 0 : B ρ 0 (p) → R N in W 1,q for any 1 ≤ q < n, and Ψ 0 is a harmonic function into the unit sphere of R N . Moreover, we know from (2.16) and (2.19) that

|∇Ψ ε | n-2 2 g + ∇ Φ ε ω ε n-2 2 g ∇Ψ ε -∇ Φ ε ω ε -∇ ln ψ 1 ε 2 g Ψ ε - Φ ε ω ε → 0
strongly in L 2 as ε → 0. Passing to the limit as ε → 0, we obtain

|∇Ψ 0 | n-2 2 + |∇Φ 0 | n-2 2 ∇Ψ 0 -∇Φ 0 -∇ ln ψ 1 0 (Ψ 0 -Φ 0 ) = 0 If we define Z = {z ∈ B ρ 0 (p); |∇Ψ 0 | n-2 2 + |∇Φ 0 | n-2 2 = 0}, We obtain that ∀z ∈ B ρ 0 (p) \ Z, ∇Ψ 0 -∇Φ 0 -∇ ln ψ 1 0 (Ψ 0 -Φ 0 ) (z) = 0 It is clear that Ψ 0 -Φ 0 =
0 in ∂B ρ 0 as limits of functions such that Ψ ε -Φε ωε = 0 in ∂B ρε . Now by Claim 3.2 and Step 1, we know that

∀z ∈ B ρ 0 (p), ∇ ln ψ 1 0 2 (z) ≤ 4 C 2 n n,g γ 2 n n,g (1 -|z|) 2
Therefore, we have by a classical Hardy inequality that

ˆBρ 0 (p) |∇ (Φ 0 -Ψ 0 )| 2 = ˆBρ 0 (p)\Z |∇ (Φ 0 -Ψ 0 )| 2 = ˆBρ 0 (p)\Z ∇ ln ψ 1 0 2 |Φ 0 -Ψ 0 | 2 ≤4C 2 n n,g γ 2 n n,g ˆBρ 0 (p) |Φ 0 -Ψ 0 | 2 (ρ 0 -|z|) 2 dv g ≤ Cn,g γ 2 n n,g ˆBρ 0 (p) |∇ (Φ 0 -Ψ 0 )| 2 g dv g so that assuming that Cn,g γ 2 n
n,g ≤ 1 2 , we obtain that ∇Φ 0 = a.e ∇Ψ 0 and then that for a.e z ∈ B ρ 0 (p) \ Z, Φ 0 (z) = Ψ 0 (z) and then that Φ 0 = a.e Ψ 0 . Now, coming back to (2.21), it is clear that the right-hand side 2 ˆBr(p)

P ε ∇ ln ψ 1 ε 2 Φ ε ω ε -Ψ ε 2 → 0
as ε → 0 by uniform boundedness of ∇Ψ ε and ∇ψ 1 ε on B r (ρ) (see Claim 3.2 and Step 1 of the current claim) and strong convergence to 0 of Φε ωε -Ψ ε in L 2 . The proof of (2.20) is complete.

STEP 6: We complete the proof of (2.13). We have:

ˆBr(p) Q ε |∇ (Φ ε -Ψ ε )| 2 g ≤2 ˆBr(p) Q ε ∇ Φ ε - Φ ε ω ε 2 g + 2 ˆBr(p) P ε ∇ Φ ε ω ε -Ψ ε 2 g + 2 ˆBr(p) |∇Ψ ε | n-2 g -|∇Φ ε | n-2 g ∇ Φ ε ω ε -Ψ ε 2 g + 2 ˆBr(p) |∇Φ ε | n-2 g -Q ε ∇ Φ ε ω ε -Ψ ε 2 g
The first left-hand term converges to 0 because of (2.2), the second one converges to 0 because of (2.20). The third one converges to 0 by the use of a Hölder inequality and (2.18) and the fourth one converges to 0 thanks to (2.3). The proof of (2.13) is complete. ♦

We noticed that up to a subsequence, Ψ ε and Φε ωε respectively converge to some maps Ψ 0 : B r (p) → R N and Φ 0 : B r (p) → R N in the following sense: for all 1 ≤ p < +∞, and

1 ≤ q < n ˆBr(p) Φ ε ω ε -Φ 0 p 1 p + ˆBr(p) ∇ Φ ε ω ε -Φ 0 q 1 q → 0
as ε → 0. Ψ ε satisfies the same convergence properties but also more (we do not need): there is some α ∈ (0, 1) such that |∇Ψ ε -∇Ψ 0 | converges to 0 in C 0,α . Thanks to Claim 2.7, we obtain that

ˆBr(p) ∇ Φ ε ω ε -Ψ ε n → 0
so that by uniqueness of the limit, Ψ 0 = Φ 0 .

2.3.4.

The limiting measure has a C 0,α density.

Let ζ ∈ C ∞ c B r (p), R N , we have that ˆM ζ λ n 2 ε Φ ε e 2uε dv g -λ n 2 Φ 0 dν = λ n 2 ε -λ n 2 ˆM ζΦ ε e nuε dv g +λ n 2 ˆM ζ (Φ ε -Φ 0 ) e nuε dv g + ˆM ζΦ 0 (e nuε dv g -dν)
Then on the first right-hand term, we have thanks to Claim 2.4 that

ˆM ζ (Φ ε -Φ 0 ) e 2uε dA g ≤ ˆDr(p) ζ 2 |Φ ε -Φ 0 | 2 e nuε dA g 1 2 ≤      λ 2-n 2 ε λ ⋆ B r (p), e nuε , Qε λ n-2 2 ε ˆBr(p) Q ε |∇ (ζ |Φ ε -Φ 0 |)| 2 g dv g      1 2 ≤ C   ˆBr(p) Q ε |∇ (Φ ε -Ψ ε )| 2 1 2 + ˆBr(p) |∇ (Ψ ε -Φ 0 )| n 1 n   → 0 as ε → 0 for some constant C independent of ε. Letting ε → 0 in a weak sense to the eigenvalue equation -div g (Q ε ∇Φ ε ) = λ n 2 ε Φ ε e nuε , we get -div g |∇Φ 0 | n-2 g ∇Φ 0 = λ n 2 Φ 0 μ0
and since Φ 0 is n-harmonic, we obtain that μ0

= |∇Φ 0 | n λ n 2
dv g and the density is a non negative C 0,α function.

Then we obtain that for some global n-harmonic map Φ 0 :

M \ {p 1 , • • • , p s } → R N , μ0 = |∇Φ 0 | n λ n 2
dv g . By a point removability theorem (Claim 3.4), Φ 0 can be extended to Φ 0 : M → R N as a n-harmonic map, and the conformal factor has the expected regularity. As already said, μi

= |∇Φ i | n λ n 2
dx for some n-harmonic map on the Euclidean space R n . A pullback by stereographic projection of the round sphere π and a point removability theorem (Claim 3.4), gives the expected regularity on π ⋆ μi .

In the next section, we prove Theorem 0.2: the embedding W 1,2 (f.g)

→ L 2 (f.g) is compact, where f = |∇Φ 0 | 2 g λ in M (and f = |∇Φ i | 2 g λ in R n ).
We can deduce thanks to Remark 1.1 that the target sphere of Φ 0 (and Φ i ) can be reduced to a finite dimensional sphere. The proof of Proposition 2.1 is complete.

2.4.

A compact embedding for the weighted Sobolev spaces associated to the limiting metrics. In this section, we prove Theorem 0.2. Let f : M → R + be a nonnegative continuous function and we denote Z its zero set. We set L 2 (f.g) the set of measurable functions u :

M → R such that u L 2 (f.g) := ˆM u 2 f n 2 dv g < +∞,
We set W 1,2 (f.g) the completion of C ∞ (M ) with respect to the semi-norm

u W 1,2 (f.g) = ˆM u 2 f n 2 dv g + ˆM |∇u| 2 f n-2 2 dv g
We aim at proving that for f =

|∇Φ 0 | 2 g λ
given by Theorem 0.1, the embedding W 1,2 (f.g) → L 2 (f.g) is compact. For that purpose, we will prove the following local Sobolev embedding: so that knowing that ∇ 2 Ψ 2 g ≥ |∇µ| 2 g (by a Hölder inequality)

1 -ν 0 -θ 2 ˆBr(p) u 2 µ n-2-ν 0 |∇µ| 2 g ≤ 1 θ 2 ˆBr(p) µ n-ν 0 |∇u| 2 g + 1 n -1 ˆBr(p) u 2 µ n-ν 0 (B + k g )
and choosing ν 0 < 1 and θ 2 = 1-ν 0 2 , we obtain such that ˆBr(p)

u 2 ∇µ n-ν 0 2 2 g ≤ 4 (1 -ν 0 ) 2 ˆBr(p) µ n-ν 0 |∇u| 2 g + 2 (1 -ν 0 )(n -1) ˆBr(p) u 2 µ n-ν 0 (B +k g )
and passing to the limit as τ → 0, we have that µ 2 → f as τ → 0 and noticing that nν 0 = n κ 0 we obtain ˆBr(p)

u 2 ∇f n 4κ 0 2 g ≤ 4 (1 -ν 0 ) 2 ˆBr(p) f n 2κ 0 |∇u| 2 g + 2 (1 -ν 0 )(n -1) ˆBr(p) u 2 f n 2κ 0 (f + k g ) so that there is a constant c := c(n, 1 -ν 0 ) such that ˆBr(p) u 2κ 0 f n 2 dv g 1 κ 0 ≤2C 0 r 2- n(κ 0 -1) κ 0 ˆBr(p) |∇u| 2 g f n 2κ 0 (1 + c)dv g + 2C 0 r 2- n(κ 0 -1) κ 0 c ˆBr(p) u 2 f n 2κ 0 (f + k g )dv g ≤2C 0 r 2- n(κ 0 -1) κ 0 A 1- n(κ 0 -1) 2κ 0 (1 + c) ˆBr(p) |∇u| 2 g f n-2 2 dv g + 2C 0 c g r 2 c (A + k g ) ˆBr(p) u 2κ 0 f n 2 dv g 1 κ 0
noticing that f is bounded by a constant A in M and applying a Hölder inequality for the last inequality. Letting r > 0 small enough so that 2C 0 c g r 2 c (A + k g ) < 1 2 , we obtain the expected Sobolev inequality. ♦ Remark 2.1. In the classical Sobolev inequality, the optimal constant 2κ 0 is 2n n-2 . Our Caccioppoli type estimate involved in the proof of the Sobolev inequality seems to be optimal regarding other similar regularity results on the n-harmonic equation (e.g [Sar22]). In this case, we only obtain 2κ 0 < 2n n-1 . It would be interesting to improve

ν 0 > 0 so that f n-ν 0 4 is a H 1 function.
Now, it is clear that the embedding W 1,2 (f.g) → L 2 (f.g) is compact. Indeed, first, any sequence of functions (u k ) bounded in W 1,2 (f.g) has to be bounded in L 2κ 0 (f.g) (up to take a partition of unity to globalize the previous Sobolev inequality). We also know that up to a subsequence, it converges weakly to u ∈ W 1,2 (f.g). Moreover, using the classical compact embedding W 1,2 (g) → L 2 (g) on any compact subset of M \ Z where Z = {x ∈ M ; f (x) = 0}, we deduce that up to a subsequence, the sequence (u k ) converges almost everywhere to u with respect to the measure f n 2 dv g . These two properties prove that up to a subsequence (u k ) converges strongly in L 2 (f.g).

Conclusion.

Let's prove Theorem 0.4. By section 1, there is a Palais-Smale sequence for the maximization problem. We denote λ n 2 ε = λ k (Q ε , e nuε ). We apply proposition 2.1 to this sequence. Theorem 0.4 then follows from upper semi-continuity of λk . Indeed, let θ 0 , • • • , θ k be the (k + 1) first eigenfunctions of the limiting manifold endowed with generalized metrics ( M , f.g) = (M,

f 0 .g)⊔(S n , f 1 .h)⊔• • •⊔(S n , f t .h) if f 0 = 0 or ( M , f.g) = (S n , f 1 .h) ⊔ • • • ⊔ (S n , f t .h) if f 0 = 0,
where f 0 dv g = μ0 and f i dv h = π ⋆ μi (where π : S n → R n ∪ {∞} is a stereographic projection) and f i are C 0,α functions. We use θ 0 , • • • , θ k as test functions in the variational characterization of λ ε in the following way: we set

θε i (x) = η 0 (x)θ i (x) + η 1 x -q ε 1 α ε 1 θ i • π -1 x -q ε 1 α ε 1 + • • • + η t x -q ε t α ε t θ i • π -1 x -q ε t α ε t
where points q ε i and scales α ε i are given by Claim 2.1 and we define

η i ∈ C ∞ c (Ω i (ρ)) as cut-off functions such that η i = 1 in C ∞ Ω i ( √ ρ) and ˆM |∇η 0 | n g ≤ C ln 1 ρ and ˆRn |∇η i | n g ≤ C ln 1 ρ if i ≥ 1 where if we denote p i 1 , • • • , p s i 1 the rescaled bad points, Ω 0 (ρ) = Σ \ s 0 j=1 B ρ p j i = and Ω i (ρ) = B 1 ρ \ s i j=1 B ρ p j i if i ≥ 1. Then, knowing that Q ε (q ε i + α ε i x) → f n-2 2 in L n n-2 (Ω i (ρ)) and λ n 2 ε e nuε (q ε i + α ε i x) → f n 2
for the weak-⋆ convergence of measures on Ω i (ρ), a straightforward computation gives that

λ ε ≤ max ϕ∈ θε 0 ,••• , θε k ´M |∇ϕ| 2 g λ 2-n 2 ε Q ε dv g ´M ϕ 2 e nuε dv g ≤ λ k M , f.h + o(1) + c C ln 1 ρ 1 n
as ε → 0. Letting ε → 0 and then ρ → 0 gives lim sup ε→0 λ ε ≤ λ k M , f.h then Λ k (M, [g]) ≤ λ k M , f.h . By a result by Colbois and El-Soufi [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF] (see also [START_REF] Fraser | Some results on higher eigenvalue optimization[END_REF] in Steklov case), we must have equality, so that the limit of λ ε is the k-th eigenvalue of the limit of the maximizing sequence. We also obtain Theorem 0.1: with the strict inequality assumption, there is no bubbling (t = 0).

Independance of regularity estimates for harmonic maps with respect

to the dimension of the target sphere

In this section, we aim at generalizing the known estimates on n-harmonic maps, noticing carefully their possible dependance on the dimension of the target sphere.

3.1.

A priori estimates for n-harmonic maps from a n-manifold into spheres. We say that Ψ : B n → S p is a τ -approximated n-harmonic map if it is the limit as τ → 0 of a sequence of maps Ψ τ : B n → S p which are solutions of the following minimization problems inf ˆBn |∇ϕ| 2 g + τ n 2 dv g ; ϕ : B n → S p and ϕ = Ψ on ∂B n

It satisfies the following Euler-Lagrange equation

-div g |∇Ψ τ | 2 g + τ n-2 2 ∇Ψ τ = |∇Ψ τ | 2 g + τ n-2 2 |∇Ψ τ | 2 g Ψ τ and we have that Ψ τ ∈ C ∞ (B n )[HL87][Str94]
. We say that Ψ τ is a (τ, n)-harmonic map.

For instance, we will deduce from Proposition 3.4 and [START_REF] Strzelecki | Regularity of p-harmonic maps from the p-dimensional ball into a sphere[END_REF] that any n-harmonic map into a sphere is locally a τ -approximated n-harmonic map. In particular, we deduce a local uniqueness of the harmonic replacement of n-harmonic maps into a sphere S p . We also have the following proposition:

Proposition 3.1. There is a constant ε 0 and a constant C n such that for any p ≥ 2 and any τ -approximated n-harmonic map Ψ :

B n → S p such that ˆBn |∇Ψ| n g ≤ ε 0
we have for any ball

B n r (p) ⊂ B n r n ∇Ψ n C 0 B n r 2 (p) ≤ C n ˆBn r (p) |∇Ψ| n g dv g
In order to prove Proposition 3.1, we first prove that a (τ, n)-harmonic map satisfies the following Claim 3.1. For any p ≥ 2 and any (τ, n)-harmonic map Ψ τ : B n → S p , there is (a τ i,j ) 1≤i,j≤n such that for any

X ∈ R n 1 n |X| 2 ≤ a τ i,j X i X j ≤ n -1 n |X| 2
and ∀i, j, a τ i,j ≤ 1 and such that

u κ g + |∇Ψ| 2 g ≥ P |∇Ψ| 2 κ g + |∇Ψ| 2 g ≥ -div g (a τ ∇u) + ∇ 2 Ψ P + n -2 4 µ n-4 |∇B| 2 where B = |∇Ψ τ | 2 g , µ = (B + τ ) 1 
2 , P = µ n-2 , u = µ n and κ g is a constant such that Ric g ≥ -κ g g.

Proof.

During the proof we set Ψ = Ψ τ , u = u τ and B = |∇Ψ| 2 g and P = (B + τ ) n-2 2 so that u = P B. We have that ∇Ψ.∆ (P ∇Ψ)

= i (-∇ i (∇Ψ.∇ i (P ∇Ψ)) + ∇ i ∇Ψ.∇ i (P ∇Ψ)) = - i ∇ i |∇Ψ| 2 ∇ i P + ∇ i (∇ i ∇Ψ.∇ΨP ) + i (P ∇ i ∇Ψ.∇ i ∇Ψ + ∇ i P ∇ i ∇Ψ.∇Ψ) = - i ∇ i n -2 2 B (B + τ ) n-4 2 + 1 2 P ∇ i B + ∇ 2 Ψ P + n -2 4 (B + τ ) n-4 2 |∇B| 2
Now, we aim at computing ∇Ψ.∆ (P ∇Ψ) in another way, using the equation on the nharmonic map Ψ. We write ∆ g = -d ⋆ g d gd g d ⋆ g the Laplacian acting on forms, so that dΨ, ∆ g (P dΨ) g = -dΨ, d 

ˆBn θ∇ i n -2 2 (B + τ ) n-4 2 (Bδ i,j -∇ i Ψ∇ j Ψ) ∇ j B
where we used again for the second equality that d g d g Ψ = F Ψ and Ψ.dΨ = 0. Combining the previous equalities

P κ g |∇Ψ| 2 g + P |∇Ψ| 4 g ≥ - i ∇ i n -2 2 B (B + τ ) n-4 2 + 1 2 P ∇ i B + i,j n -2 2 ∇ i (B + τ ) n-4 2 (Bδ i,j -∇ i Ψ∇ j Ψ) ∇ j B + ∇ 2 Ψ P + n -2 4 (B + τ ) n-4 2 |∇B| 2
Noticing that ∇u = n 2 P ∇B we obtain that

u κ g + |∇Ψ| 2 g ≥ -div g (a τ ∇u) + ∇ 2 Ψ P + n -2 4 (B + τ ) n-4 2 |∇B| 2
where

a τ i,j = 1 n δ i,j + (n -2) ∇ i Ψ.∇ j Ψ B + τ ♦
We deduce ε-regularity results independant of the dimension of the target sphere on these maps: Claim 3.2. For any n ≥ 3, there is ε n,g > 0 and a constant C n,g such that for any p ≥ 2, any τ > 0 and any (τ, n, g)-harmonic map Ψ τ : B n → S p such that

ˆBn |∇Ψ τ | 2 g + τ n 2 dv g ≤ ε n,g
we have for any ball

B n r (p) ⊂ B n r n ∇Ψ τ n C 0 B n r 2 (p) ≤ C n,g ˆBn r (p) |∇Ψ τ | 2 g + τ n 2 dv g
Proof. Notice that it is sufficient to prove that there is ε n small enough such that for any p ∈ B n and r 0 > 0 such that

B n r 0 (p) ⊂ B n |∇Ψ τ (p)| n ≤ δ r n 0 where ˆBn r 0 (p) |∇Ψ τ | 2 g + τ n 2 dv g = δ ˆBn |∇Ψ τ | 2 g + τ n 2 dv g ≤ δε n,g
We set

F (x) = (r 0 -|x -p|) n |∇Ψ τ | n g
and we let x 0 ∈ B n r 0 (p) be such that F (x 0 ) = sup x∈B n r 0 (p) F (x). Notice that it is sufficient to prove that for ε small enough, F (x 0 ) ≤ δ. We assume by contradiction that F (x 0 ) > δ. We set σ > 0 such that

σ n |∇Ψ τ | n g (x 0 ) = δ 4 Since F (x 0 ) > δ, we have that 2σ ≤ r 0 -|x -p|. By a triangle inequality, we have for x ∈ B σ (x 0 ) that 1 2 ≤ r 0 -|x -p| r 0 -|x 0 -p| ≤ 2
Since F realizes its maximum at x 0 , we have

(r 0 -|x -x 0 |) n sup x∈B n σ (x 0 ) |∇Ψ τ (x)| n ≤ 4 sup x∈B n σ (x 0 ) F (x) = 4F (x 0 ) ≤ 4 (r 0 -|x -x 0 |) n |∇Ψ τ (x 0 )| n
so that by definition of σ (3.1) sup

x∈B n σ (x 0 ) |∇Ψ τ (x)| n ≤ 4 |∇Ψ τ (x 0 )| n = δ σ n . We set g(z) = g(x 0 + σz), τ = σ 2 τ , Ψ(z) = Ψ(x 0 + σz) and Q = ∇ Ψ 2 + τ n-2 2 and ũ = ∇ Ψ 2 + τ n 2 so that we obtain -div g Q∇ Ψ = Q ∇ Ψ 2 Ψ
and by Claim 3.1,

-div g (ã∇ũ) ≤ ũ ∇ Ψ 2 g + κ g where (ã i,j ) is such that for any X ∈ R n 1 n |X| 2 ≤ ãi,j X i X j ≤ n -1 n |X| 2 and ∀i, j, |ã i,j | ≤ 1
By the rescaled version of (3.1) , we obtain

-div g(ã∇ũ) ≤ ũ (1 + κ g )
By standard elliptic a priori estimates for smooth positive subsolutions (see e.g [START_REF] Han | Elliptic partial differential equations[END_REF] chapter 4) and knowing that ũ ≥ 0, we obtain that

δ 4 = ∇ Ψ n g (0) ≤ ũ(0) ≤ K n (1 + κ g) ˆBn ũ ≤ K n,g ˆBn r 0 (p) u τ dv g ≤ K n,g δε n,g
for some constants K n and K n,g . Setting ε n,g = 1 8Kn,g gives the Claim. ♦ Proposition 3.1 then follows letting τ → 0 on the (τ, n) harmonic maps that converge to the τ -approximated n-harmonic map.

3.2. Global strong convergences independant from the dimension of the target manifold. The following claim adapts a result by Courilleau [START_REF] Courilleau | A compactness result for p-harmonic maps[END_REF] to infinite dimensional target manifolds.

Claim 3.3. Let u k : M → R N be a sequence of maps such that lim sup k→+∞ ˆM |u k | 2 + |∇u k | n g dv g < +∞ We assume that div g |∇u k | n-2 g ∇u i k = A i k + B i k lim sup k→+∞ ˆM |A k | + B k W -1,n < +∞ and B k W -1,n → 0 as k → +∞ where we set |u k | 2 = +∞ i=0 u i k 2 and |∇u k | 2 g = +∞ i=0 ∇u i k 2 g and for n ⋆ = n n-1 , B k W -1,n = sup ϕ:M →R N ´M i B i k ϕ i dv g ´M (|ϕ| n⋆ + |∇ϕ| n⋆ ) dv g 1 n⋆
Then, up to a subsequence, there is u : M → R N such that for any 1 ≤ p < +∞ and any 1 ≤ q < n,

(3.2) ˆM |u k -u| p + |∇ (u k -u)| q g dv g → 0 as k → +∞.
Proof. We first notice that by classical compact Sobolev embeddings, up to a diagonal extraction of subsequences, there is a subsequence of (u k ) such that for any i ∈ N, we have 

u i k ⇀ u i in W 1,n u i k → u i in L p for any 1 ≤ p < +∞ u i k → u i a.e ∀k ∈ N, ˆM u i k -u i 2 dv g ≤ 2 -i ∀(ϕ i ), ˆM (|ϕ| n⋆ + |∇ϕ| n⋆ ) dv g < +∞ ⇒ ˆM i ∇ u i k -u i ∇ϕ i → 0 as k → +∞ Then,
u i k -u i 2 p 2 dv g = 0 so that since |u k -u| 2 ≤ m i=0 u i k -u i 2 + 2 -m
we obtain by a Holder inequality that for any m ∈ N,

lim k→+∞ ˆM |u k -u| p dv g ≤ 2 -m
and we obtain the first part of (3.2). Now let's prove (3.2). STEP 1: Up to a new subsequence, we have that

(3.3) +∞ i=0 |∇u k | n-2 g u i k -|∇u| n-2 g ∇u i . ∇u i k -∇u i → a.e 0 as k → +∞ Proof of Step 1: we have that +∞ i=0 |∇u k | n-2 g u i k -|∇u| n-2 g ∇u i . ∇u i k -∇u i ≥ |∇u k | g -|∇u| g |∇u k | n-1 g -|∇u| n-1 g ≥ 0 
Then, we just need upper bounds. Let δ > 0. By Egoroff 's theorem there is E δ ⊂⊂ M such that V ol g (M \ E δ ) < δ and such that |u k -u| 2 converges uniformly to 0 in E δ . We aim at proving that

(3.4) lim k→+∞ ˆEδ +∞ i=0 |∇u k | n-2 g u i k -|∇u| n-2 g ∇u i . ∇u i k -∇u i dv g = 0
Let ε > 0. We let δ ε > 0 be such that for any set such that V ol g (M \ A) < δ ε ˆM\A |∇u| n dv g < ε and we use this with A δε = E δε ∪ E δ . By uniform convergence, let k 0 be such that for any k ≥ k 0 , |uu k | ≤ ε on A δε . We then have that for a cut-off function η ∈ C ∞ c (M ) such that η ≤ 1 and η = 1 in A δε a truncation function

β ε : R N → R N defined as β ε (v) = v if |v| ≤ ε and β ε (v) = ε v |v| if |v| > ε. ˆM η +∞ i=0 |∇u k | n-2 g ∇u i k -|∇u| n-2 g ∇u i . ∇β ε (u k -u) i dv g ≤ ˆM η i A i k + B i k β ε (u k -u) i - ˆM i ∇η |∇u k | n-2 g ∇u i k β ε (u k -u) i -ˆM η i |∇u| n-2 g ∇u i .∇ β ε (u k -u) i ≤ ˆM |A k | |β ε (u k -u)| ∞ + ∇η ∞ ˆM |∇u k | n n-1 n ˆM |β ε (u k -u)| n 1 n + B k W -1,n |β ε (u k -u)| W 1,n + ˆM η i |∇u| n-2 g ∇u i .∇ β ε (u k -u) i ≤ ˆM |A k | ε + o(1) as k → +∞
We also have that

ˆM\A δε η +∞ i=0 |∇u k | n-2 g ∇u i k -|∇u| n-2 g ∇u i ∇β ε (u k -u) i dv g ≤ ˆM\A δε |∇u k | n-1 |∇β ε (u k -u)| + |∇u| n-1 |∇β ε (u k -u)| ≤ C ˆM\A δε |∇u k | n-1 |∇u| + |∇u| n-1 |∇u k | ≤ C ˆM |∇u k | n n-1 n ε 1 n + ˆM |∇u k | n 1 n ε 1 n⋆
and we finally obtain

lim sup k→+∞ ˆAδ +∞ i=0 |∇u k | n-2 g ∇u i k -|∇u| n-2 g ∇u i . ∇(u i k -u i ) dv g ≤ lim sup k→+∞ ˆAδε η +∞ i=0 |∇u k | n-2 g ∇u i k -|∇u| n-2 g ∇u i ∇β ε (u k -u) i dv g ≤ lim sup k→+∞ ˆM |A k | ε + C ˆM |∇u k | n n-1 n ε 1 n + ˆM |∇u k | n 1 n ε 1 n⋆
Letting ε → 0 gives (3.4). Then, letting δ → 0 gives Step 1. We have that by Step 1 that

+∞ i=0 |X k | n-2 X i k -|X| n-2 X i . X i k -X i → 0 as k → +∞
First, it is clear that |X k | is bounded. Indeed, we have deduce from the previous convergence that

|X k | n + |X| n ≤ |X k | n-2 + |X| n-2 |X k | |X| + o(1) as k → +∞.
Up to a subsequence there is Z such that X k weak converges to Z in l 2 R 2 N . Up to another subsequence, we set α = lim k→+∞ |X k | and β = |X|. Then, passing to the limit, we have

α n + β n = α n-2 + β n-2 i X i Z i
By Cauchy-Schwarz inequality and since |Z| ≤ α, we obtain α n + β n ≤ α n-2 + β n-2 αβ so that since 2αβ ≤ α 2 + β 2 , α n + β n ≤ α 2 β n-2 + β 2 α n-2 which implies that α n-2β n-2 α 2β 2 ≤ 0 and that all the previous inequalities are in fact equalities: α = β = |Z| and X, Z = α 2 . In particular Z = X and X k strongly converges to Z = X. Since the limit is independant from the subsequence, Step 2 is proved.

STEP 3: Conclusion: since |∇u k -∇u| is bounded in W 1,n and converges almost everywhere to 0 in (M, g), then, |∇u k -∇u| strongly converges to 0 in L q (M, g) for any q < n. ♦ We can follow and generalize the proof by [START_REF] Mou | Regularity for n-harmonic maps[END_REF] to infinite dimensional target spheres.

3.4. Regular n-harmonic maps are locally (τ, n)-approximated harmonic maps. The aim of the section is to prove the following for C 1 harmonic maps into a possibly infinite dimensional target sphere.

Proposition 3.2. There is δ n,g > 0 such that for any weak n-harmonic map Φ : M → R N into a possibly infinite dimensional target sphere, such that Φ ∈ C 1 and for any ball B r (p) such that ˆB2r on ∂B r (p)

we have that Ψ τ,m converges to Φ as (τ, m) → (0, +∞).

Proof.

Step 1: Since Φ is a C 1 function, it satisfies the a priori estimate on the gradient for x ∈ B r (p)

|∇Φ(x)| 2 g ≤ C ˆB2r (p)
|∇Φ| n g dv g ≤ Cδ n,g

We have for x ∈ B r (p) that |φ 1 (0)φ 1 (x)| 2 ≤ r 2 C g |∇Φ(z)| 2 g ≤ C g Cδ n,g so that taking δ n,g small enough, and up to a rotation of coordinates so that φ 1 (0) = 1 we can assume that .

Knowing that

|∇Φ| 2 = |Φ m | 2 ∇ Φm 2 + |∇ |Φ m || 2 + |∇ (Φ -Φ m )| 2 g
and that Φ m and ∇Φ m converge a.e to Φ and ∇Φ, it is clear by the dominated convergence theorem that the first integral converges to 0 as m → +∞. Thanks to the a priori estimates of Claim 3.1, up to a subsequence, Ψ is the limit as (τ, m) → (0, +∞) of Ψτ,m . We easily obtain that Ψ is also the limit of Ψ τ,m and that the second integral in the previous inequality converges to 0 as (τ, m) → (0, +∞). Moreover, if we set where the second inequality comes from classical weak estimates on the gradient when it satisfies a L ∞ ε-regularity property and the third one comes from a classical Hardy inequality. Letting δ n,g be small enough gives that Φ = Ψ. ♦

Z =

  otherwise, (2.15) proves step 1. We set d ε = ρ ε -|x ε | and y ε = ρ ε xε |xε| . By application of the Courant-Lebesgue theorem and Morrey-Sobolev embeddings again (see the beginning of Step 1), we have existence of a radius dε 2

STEP 2 :

 2 We have that |∇u k -∇u| g → a.e 0 as k → +∞ Proof of Step 2: For a fixed z ∈ M such that (3.3) occurs at the point z, we setX k = ∇u k (z), X = ∇u(z) and for any Y ∈ R 2 N , |Y | = +∞ i=0 g a,b (z) Y i a Y i b

3. 3 .

 3 Point removability. Claim 3.4. Let Ψ : B \ {0} → R N be a C 1 n-harmonic map into an infinite dimensional sphere such that ˆB |∇Ψ| n g dv g < +∞ and |∇Ψ| (x) ≤ C |x| then Ψ : B \ {0} → R N extends to a C 1,α function on B which is n-harmonic.

  (p) |∇Φ| n g dv g ≤ δ n,gfor any (Ψ τ,m ) τ >0,n∈N minimizers ofunder the W 1,n maps Ψ : M → S m such that |Ψ| 2 = a.e 1 and Ψ = (φ 0 ,••• ,φm) ( m i=0 (φ i ) 2 ) 1 2

  ∀x ∈ B r (p) |φ 1 (x)| ≥ 3 4 .Moreover, up to reduce δ n,g , and for τ small enough Ψ τ has to satisfy∀x ∈ B r (p) (ψ τ,m ) 1 (x) ≥ 1 2thanks to the same trick as in the proof of Step 1 of Claim 2.7 based on Courant-Lebesgue lemma and Morrey-Sobolev embeddings.Step 2:We set Φm = Φm |Φm| where Φ m = (φ 0 , • • • , φ m , 0, • • • ). We denote Ψτ,m : M → R N theminimizer of under the W 1,n maps Ψ : M → S m such that |Ψ| 2 = a.e 1 and Ψ = Φm on ∂B r (p). we also set Ψ τ,m = |Φ m | Ψτ,m + Φ -Φ m so that Ψ τ,m -Φ = |Φ m | Ψτ,m -Φm .

gg

  (Φ -Ψ τ,m ) = 2 ˆBr(p) |∇Φ| n g Φ. (Φ -Ψ τ,m ) = ˆBr(p) |∇Φ| n g |Φ -Ψ τ,m | 2and we obtainˆBr(p) |∇ (Φ -Ψ τ,m ) -∇ ln φ 1 (Φ -Ψ τ,m )| 2 g |∇Φ| n-2 g = ˆBr(p) |∇ (Φ -Ψ τ,m )| 2 g |∇Φ| n-2 g -ˆBr(p) |∇Φ| n g |Φ -Ψ τ,m | 2 so that ˆBr(p) |∇ (Φ -Ψ τ,m ) -∇ ln φ 1 (Φ -Ψ τ,m )| 2 g |∇Φ|Moreover, we have by similar computations thatˆBr(p) ∇ Φm -Ψτ,m -∇ ln Ψτ,m 1 Φm -|∇ (Φ -Ψ τ,m ) -∇ ln φ 1 (Φ -Ψ τ,m )| 2 g |∇Φ| |Φ m | 2 -∇ Ψτ,m 2 g + τ n-2 2so that splitting the right-hand side into three terms, we have first right-hand term is non positive, we obtain

  {x ∈ B r (p); |∇Ψ| 2 g + |∇Φ| 2 g = 0}, we have |∇ (Φ -Ψ) -∇ ln ψ 1 (Φ -Ψ)| 2 g + |∇ (Φ -Ψ) -∇ ln φ 1 (Φ -Ψ)| 2 g = 0 in B r (p) \ Z. so that ˆBr(p) |∇ (Φ -Ψ)| 2 g = ˆBr(p)\Z |∇ (Φ -Ψ)| 2 g ≤ 2 ˆBr(p)\Z |∇ ln ψ 1 | 2 + |∇ ln φ 1 | 2 |Φ -Ψ| 2

  (dP ∧ dΨ) g + P |∇Ψ| 4 g -P Ric g (∇Ψ, ∇Ψ) where we used for the second equality that d g d g Ψ = F Ψ, where F is the curvature 2-form, that -d ⋆ g (P dΨ) = P |∇Ψ| 2 Ψ and that Ψ.dΨ = 0. We use again Ψ.dΨ = 0 for the third equality. Now, for a function θ ∈ C ∞ c (B n ), we have Bdθ, dΨ g dP, dΨ g dv g

	⋆ g d g + d g d ⋆ g (P dΨ) g
	= -dΨ, d ⋆ g (dP ∧ dΨ) g + dΨ, d P |∇Ψ| 2 g Ψ	g	+ P dΨ, ⋆ ((⋆F ) ∧ dΨ)) g
	= -dΨ, d ⋆ ˆBn g -θ d g Ψ, d ⋆ g (dP ∧ dΨ) g dv g =	ˆBn	dθ ∧ dΨ, dP ∧ dΨ g dv g
	ˆBn		
	= dθ, dP g = -		

  by weak convergence, we have that for any m ∈ N By the same argument, using Sobolev embeddings, we have for any 1≤ p < +∞ ˆM |u| p dv g ≤ lim inf k→+∞ ˆM |u k | p dv gIn fact, we have equality in the previous inequality. Indeed, for any m ∈ N

	ˆM m i=0	∇u i 2 g	n 2	dv g ≤ lim inf k→+∞	ˆM m i=0	∇u i k	2 g	n 2	dv g ≤ lim inf k→+∞	ˆM |∇u k | n g dv g
	so that passing to the limit as m → +∞, we have ˆM |∇u| n g dv g ≤ lim inf k→+∞ ˆM |∇u k | n g dv g .	
				ˆM m					
				lim k→+∞	i=0					

Claim 2.8. There is κ 0 > 1, there is r 0 > 0 and C 0 > 0 such that for any x ∈ M and any u ∈ C ∞ c (B r (p))

Proof. Using a classical Sobolev inequality, we have a universal constant C 0 such that

We aim at estimating the right-hand term, noticing that f is nothing but the limit of

where

We recall that Ψ τ satisfies by Claim 3.1

where µ = (B + τ ) 1 2 and

We integrate this equation over u 2 µ -ν 0 for ν 0 = n(κ 0 -1) κ 0 and we get

, and the following computations

ˆBr(p) µ n-ν 0 |∇u| 2 g + ˆBr(p) u 2 µ n-ν 0 (B + k g )