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SHAPE OPTIMIZATION FOR COMBINATIONS OF STEKLOV
EIGENVALUES ON RIEMANNIAN SURFACES

ROMAIN PETRIDES

ABSTRACT. We prove existence and regularity of metrics which minimize combinations
of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We
show that there are free boundary minimal immersions into ellipsoids parametrized by
eigenvalues, such that the coordinate functions are eigenfunctions with respect to the
minimal metrics. This work generalizes Fraser-Schoen’s and the author’s maximization
for one eigenvalue among metrics of unit perimeter on a surface giving free boundary
minimal immersions into balls. We also generalize the previous results of critical metrics
for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.

1. INTRODUCTION
Let 3 be a compact connected surface with boundary. We denote by
0=o00(g) <o1(g) < 02(g) <+ < omlg) = +o0

the eigenvalues with respect to the Dirichlet to Neumann operator Ty, : C* (0¥) — C* (0%)
associated to the laplacian A, = —divg(V) for a Riemannian metric g on ¥. This means
that for one function u € C* (0%), Ty(u) = 0,4, where 0, is the outward pointing normal
derivative and 4 is the harmonic extention of u on ¥. The eigenvalues o, (g) are called
Steklov eigenvalues on .

In [ES16], Fraser and Schoen studied the maximization problem for g — 0,,(g)Lg (0%),
where L, (0X) stands for the length or the boundary 0% of 3. The motivation was the
construction of free boundary minimal surfaces into Euclidean balls, whose induced metrics
are critical metrics of Steklov eigenvalues on this surface among metrics with boundary
of unit length. This problem is analogous to the seminal work by Nadirashvili [Nad96]
and El-Soufi and Ilias [ESI00], who proved the one to one link between critical metrics
for Laplace eigenvalues on closed surfaces among metrics with unit area and minimal
immersions into a round sphere. This is a beautiful example of a connection between two
apparently different fields : spectral geometry and the theory of minimal surfaces.

Concerning spectral geometry, the study of Steklov eigenvalues gained a lot of interest in
the past decades. We refer to the nice initiating survey by Girouard and Polterovich [GP17],
setting the typical questions of spectral geometry in the context of Steklov eigenvalues
(upper bounds of the eigenvalues and their multiplicity with respect to the topology,
extremal domains, study of the nodal sets, asymptotics of eigenvalues, isospectrality...) and
all the answers given afterwards. In the current paper, we will focus on geometric upper
bounds and on the existence question of maximizers for combinations of eigenvalues. Since
the paper by Fraser and Schoen [FS16], many advances where given for the maximisation
question for one eigenvalue, mainly for the first one. The existence a smooth maximal
metric for the first nonzero Steklov eigenvalue for any finite topology of 3 was recently
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solved in [Pet19] and [MP20] (see also [KS20] in the particular case of high topology). Up
to a conformal factor equal to one on the boundary of ¥, these metrics are the pull-back
metrics of the Euclidean one for some free boundary minimal immersions into a ball. In
particular, for surfaces of genus zero these immersions are embeddings and the target
ball has dimension 3 (see [FS16]). As recent results for genus zero surfaces, in [GL20],
the authors study more carefully the shape of these surfaces as the number of boundary
components goes to +00, while in [KOO21], the authors perform a numerical method for
maximization of eigenvalues in order to make beautiful pictures of the maximal shapes.

For the maximization problem of higher eigenvalues o,,, in the main result in [Pet19],
we prove the following alternative: either their is a maximal metric for the isoperimetric
problem on a fixed surface, or the sharp bound for this problem can be computed as a sum
of sharp bounds for previous eigenvalues (o, kK < m) on surfaces of previous topologies.
Both alternatives may occur: for m = 1 and any topologies we have maximal metrics (see
[MP20]), while on the disk, for instance, we never have maximizers for m > 2. Indeed,
testing a metric on the disk converging in some sense to a disjoint union of m flat disks of
same perimeter, we obtain that sup, om(g9)Le(S') > 2mm (see e.g [ES19]), and the only
possible critical metrics for Steklov eigenvalues are flat disks (see [F'S15]), so that if there
is a maximal metric, sup, om(g)Ly(S') = 27 [m£L]) which is false for m > 2. We can
deduce from [Petl9] that the previous large inequality is an equality. By the way, this is
a classical result by [HPST75] since they prove by test function methods on the disk that
om(9)Ly(St) < 2mm for any metric on the disk and any m. However, this technique to
compute sharp bounds was used and fruitful in the analogous context of the Laplacian on
spheres and projective planes (see [Petl8],[KNPP19],[Kar19]). By the example of the disk,
it seems that maximizing higher eigenvalues do not often give a connected maximizer, so
that we cannot build new minimal surfaces. In the current paper, we propose a more flexible
way to build free boundary minimal surfaces, working on a combination of eigenvalues
instead of a single one.

Concerning the theory of minimal surfaces with free boundary, a very first example is
the classical Plateau problem: are there area-minimizing disks whose boundary is a closed
curve in R? ? This problem was independently solved by Douglas and Radé. Later, Courant
[Coud0] asked for disks minimizing the area where the boundary lies in a constrained
surface of R3. This started an active research on the so-called free-boundary minimal
surfaces (see e.g Hildebrandt [Hil85]). Their construction are somewhat analogous to
classical constructions of closed minimal surfaces but require subtle techniques due to the
boundary. Some techniques follow the natural generalization of the Plateau problem, by a
minmax on the Dirichlet energy: see [Fra00], [LP19], [LSZ20]. Other Techniques follow
Algrem Pitt’s min-max theory on varifolds [Lil5], [GLWZ21]. Other ones are somewhat
intermediate by the so-called viscosity method [Pi20]. In order to build examples with
more elaborate topology, many authors focused on the particular case of target balls. Using
perturbation techniques, Folha, Pacard, and Zolotareva [FPZ17] obtained the existence
of examples in B? with genus 0 and 1 and k boundary components for k large. Using an
equivariant version of min-max theory, Ketover obtained the existence of free boundary
minimal surfaces in B? of unbounded genus and three boundary components [Kel7, [Kel7al.
Examples of the same topological type using desingularization techniques were found
by Kapouleas and Li [KL17]. Examples with high genus and connected boundary were
constructed by Kapouleas and Wiygul [KW17]. Another recent result by Carlotto, Franz
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and Schulz [CFS20] gives existence of free boundary minimal surfaces with arbitrary genus,
connected boundary, and dihedral symmetry. As already said, existence of free boundary
minimal immersions for any topology was solved in [Petl19] and [MP20]. As explained
below, in the current paper, we focus on free boundary minimal surfaces into Euclidean
ellipsoids arising by maximization of finite combinations of Steklov eigenvalues.

Let F': (Ri)m — R, be a C! function with m > 1, depending on eigenvalues. We set
Sp(5) = if F (Lg(0%)o1(9), -+, Lg(0Z)om(g)) ,

kM

where the infimum is taken over all smooth metrics on ¥. We changed the ”maximization
point of view into a minimization since it is more natural for all the examples we give
below, like —1 -+ ——. For sums of eigenvalues, we minimize ﬁ We only assume
the following condltlon on F, satisfied for all the functionals we consider in the introduction:

(H) F' is a nonincreasing function with respect to all the coordinates
As we notice below, for 1 < k < m, we naturally have to introduce
SF,k(E) = lng (07 T 707 Lg(az)akJrl (g)v T 7Lg(82)am(g)) .

If ¥ is oriented of genus v, we denote Sp(vy) := Sp(X) and Spi(y) := Spi(X). We have

Theorem 1.1. Assume that 3 is a compact oriented surface of genus v > 0 with b > 1
boundary components. Assume that F satisfies (H). If the two following assumptions

(1.1) Sr(7,b) < Sra(7,b)

and

(1.2) (v,b) = (0,1) or {SF(% b) < Sp(y—1,b+1)

SF(77 b) < SF(’Ya b— 1)

hold, then there is a smooth metric g on X, realizing the minimum Sg(y). Moreover, there
is a (possibly branched) free boundary minimal immersion ® : ¥ — R?, into some ellipsoid

£={ (a1, om) ERY 5 xR oy 112+ o fo = 1]

endowed with the Euclidean metric & on R? with d = iy +---+im,. The coordinate functions
of @y are eigenfunctions with respect to oy := op(g) for 1 < k < m. Moreover, iy is a
positive integer if and only if OpF (o1, ,0m) < 0.

This is a generalization of the author’s result about maximization of one single eigenvalue
g+ Lg(0X)0m(g) for m > 1 [Pet19]. The first assumption (L.1)) just prevents the first
eigenvalue of minimizing sequences from converging to 0. With this assumption, we
always obtain a connected surface at the limit. In this case, Theorem always gives a
minimizer on the disk, while Sg(v,b) < Sp(y—1,b+4 1) and Sp(v,b) < Sp(y,b—1) are
natural conditions to prevent from possible degeneration of minimizing sequences to lower
topologies. As already said, for F(o1) = g%’ strict inequalities occur for any topology.

We also prove in Theorem [2.1below, that critical metrics g for combinations of eigenvalues
are metrics conformal to the induced metrics of free boundary minimal immersions ®
into (Pseudo)-Euclidean ellipsoids, with a conformal factor determined in terms of the
coordinate functions of ® on 9% (which are also eigenfunctions with respect to g) (see
section [2). With assumption (H) for F, the target manifold is a Euclidean ellipsoid. If
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only one eigenvalue appears, the target manifold is a ball. Therefore, we also generalize
the characterization of critical metrics for Steklov eigenvalues on surfaces with boundary
by Fraser and Schoen [FS16].

Notice that the eigenvalues appearing in minimal immersion may not be all the eigenvalues
appearing in the functional. One might just assume in addition that (o1, -, 0y,) is not a
critical point of F' to have a non-empty conclusion.

Following the same strategy as in [Pet19], we split our minimization into two minimiza-
tions:

Sp(%) = inf Sr(2,[g]) .
g
where we denote [g] the conformal class of some metric g on ¥ and
Sr(%10]) = Inf F(Lg(0%)o1(g), -+ Lg(O%)om(9))

is defined as a conformal constrained minimization. As previously, we define

SFJC(Z7 [g]) = }é’l[f] F (07 T 505 Lg(az)0k+1(g), Tt 7Lg(82)0m(g)) )
g€lg
and we have the conformal minimization result:

Theorem 1.2. Let (X, g) be a Riemannian surface without boundary. Let 1 < k < m. We
assume that F satisfies (H), and that

(1.3) Sr(Z,[9]) < Srr(Z, [9])
and
(1.4) Sr(2,[9]) < Sk(S,[3]) |

for any compact Riemanian surface (i,f]) obtained as a disjoint union of (3,[g]) and at
most k — 1 copies of spheres, or the disjoint union of at most k copies of spheres.

Then there is a minimal smooth metric g for Sp(X,[g]). Moreover, there is a free
boundary harmonic map ® : (X, g) — RY into

5:{(1’17-.. 7$m)€Ri1 XX]Rzmy)\1|l'1’2++)\m‘l'm|2:1} ,

a Buclidean ellipsoid in R?, where d = iy + - -+ + i,,, such that the coordinate functions
of @y are eigenfunctions with respect to oy, := 01(g) for 1 <k < m and § = e**g is given
from ® by

e’ =d.0,® on 0X .

Again, this is a generalization of the author’s result about maximization of one single
eigenvalue g — Lg(0X)0.,(g) for m > 1 in the conformal case [Pet19]. The first assumption
(1.3) just gives that the sequence of metrics have at most k connected components at the
limit. Assuming in addition , just gives a connected surface at the limit.

We also have a characterization of critical metrics in the conformal case. By Theorem
below, the conformal factors of critical metrics § = e?“g € [g] for combinations of
eigenvalues arise as some densities of energy of some harmonic maps ® into (Pseudo)-
Euclidean ellipsoids (whose coordinate functions are also eigenfunctions with respect to
g) (see section . We loose conformality of ® because the set of variations to compute
the Euler-Lagrange equation for g is constrained to conformal classes. With assumption
(H) for F, the target manifold is a Euclidean ellipsoid. If only one eigenvalue appears,
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the target manifold is a ball. Therefore, we also generalize the characterization of critical
metrics for Steklov eigenvalues on surfaces with boundary in the conformal case by Fraser
and Schoen [FS16].

Theorem is then a relatively straightforward consequence of Theorem as soon as
we know the Deligne-Mumford compactification theorem for sequence of surfaces such that
the sequence of associated conformal classes degenerates (see [ZHU10]), and the precise
description of sequences free boundary harmonic maps into ellipsoids on these surfaces
(bubble tree convergence, see [JLZ19]). We chose to skip this proof in the current paper
while it relatively follows the proof of the same result for one eigenvalue written in [Pet19].
Then, in the current paper we prove Theorem which needs stronger results than in
[Pet19] because the target manifold is not as symmetric as a sphere anymore and because
the eigenfunctions we have to deal with are not associated to the same eigenvalue anymore.
The main novelty is in section 3, while we explain in section 4 all the new ideas we need to
improve the previous results in [Pet19].

As fruitful as the variational methods on one eigenvalue developped in [Petl8] and
[Pet19] were for the construction of new minimal surfaces and/or the computations of
sharp eigenvalue bounds, Theorem and Theorem are opening ways to pursue a
deeper understanding of these questions for combination of eigenvalues. We would like to
emphasize that Theorem already gives minimizers for a wild number of combinations
F on the disk. For instance, for F satisfying F(o1, -+ ,0.,) — +00 as 01 — 0 uniformly
with respect to the other variables, is automatic.

In a forecoming paper we aim at constructing new free boundary minimal disks into some
Euclidean ellipsoids by maximization of linear combinations of o1 and o9 as an application
of Theorem In this case, to have existence of a maximizer, we need to prove (1.1
which is not automatic. What’s interesting in this case is that we will prove that there are
linar combinations such that the minimizer is not a branched cover over an ellipse but a
non flat free boundary minimal surface into an ellipsoid.

There are also interesting recent developments on minimization of infinite combinations of
Steklov eigenvalues via the Steklov zeta function ), o(g)™* for s > 1 (and its meromorphic
extensions for s < 1) in [JS18], [JS20]. The authors prove in these papers that the flat
disk minimizes this functional among metrics on the disk having perimeter 27. It would
be interesting to understand how the minimizers of the partial sum Z,]:[:l or(g)~° behave
as N — +oo on the disk, and if minimizing partial sums give a new method to prove
existence of a minimizer for other topologies of the surface.

The paper is organized as follows:

In section 2, we make simple remarks about the link between Steklov eigenvalues and
free boundary minimal surfaces into ellipsoids. Then we state and prove Theorem [2.1] and
characterizing critical metrics for very general finite combination of eigenvalues.

In section 3, we recall the harmonic replacement procedure and prove a quantitative
e-regularity estimate for eigenmaps. It is based on a deep understanding of the structure
of the equation of harmonic-like maps, initiated by the celebrated paper by Riviere [Riv08],
and energy convexity results initiated by Colding and Minicozzi [CMO0§] we explain more in
details in section 5. This is a key result for W !2-convergence of eigenfunctions in section 4.

In section 4, we prove Theorem . The techniques are based on [Pet19] but stronger
and simpler intermediate lemma are introduced.
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2. CRITICAL METRICS FOR COMBINATIONS OF EIGENVALUES

2.1. Free boundary minimal immersions into ellipsoids. We show link between free
boundary minimal immersions into ellipsoids and the Steklov eigenvalues of some associated
metric. Let & C R™ be an ellipsoid of parameters ¢ = diag (o1, -+ ,0,), with o; > 0,
defined by

E={(x1, - ,an) €&t + -+ opad =1},
endowed with the induced metric of the Euclidean metric £&. We know that x is a harmonic
map. We compute the outward normal derivative of z on &:

opx=v,

where the outward normal of the ellipsoid is denoted by v = % where |oz| = (Y1 | 0222)

Now, let @ : (3,h) — R™ be such that ®(9X) € £, a n — 1 dimentional ellipsoid of
parameter ¢ = (o1, -+ ,0p). A well-known characterisation of ® : (X,h) — R" to be
minimal with free boundary in £ is free boundary harmonicity in £ and conformality. ® is
harmonic in £ with free boundary if it is a critical point of the energy

1
E(®) = Z/E\V<I>\idAh

under the constraint ®(9%) C £. The Euler-Lagrange characterization is
Ap® =0in ¥ and 9,8 € (TpE)™ on I%

N[

Then 9, = fv for some function f = ®.9,P. Conformality is characterized by the
vanishing of

0=Vl f —dowde:=" (Ve § - doi da;) .
=1

2u

For a smooth positive function e*“, such that g = e*“h, we have

Agf :e_QuAhf and augf:e_u nd s

and if ® : (X, h) — R” is a minimal isometric immersion with free boundary in £, setting
g = €*"h for any function u extending the following formula on the boundary,

1
eu :¢ay®: W on 82,
g

the coordinates of ® are Steklov eigenfunctions on (3, g) with eigenvalues o1, --- , op.

2.2. Critical metrics for combinations of eigenvalues. We prove in this part general
properties for critical metrics of functionals depending on Steklov eigenvalues. The notion
of critical metrics in the context of eigenvalues depending on metrics was introduced by
[EST00] who generalized a result by [Nad96] (Laplace eigenvalues in the closed case). They
used that in variational theory, there is a classical way to generalize the notion of derivative
of a locally Lipschitz functional by sub-gradients (see for instance [Clal3]). Here, we say
that g is critical with respect to F'(Lg(0X)o1(g), -, Lg(0X)om(g)) if the product of the
left and right derivative of t = F(Lg14,(0X)01(g +th), -+, Lgr4n(0X)0m (g + th)) is non
positive for any 2-symmetric variation h. Of course, an extremal metric satisfies this
condition.
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Theorem 2.1. Let Y be a compact surface with a non-empty boundary and F : (Ri)m —-R
be a smooth function with m > 1. Let g be a critical metric for the functional

g = F(Lg(0%)o1(g), -, Lg(0%)om(g))

and we assume that Ly(0X) = 1. Then, there are m non-negative integers i1, --- iy, and
there is a map ® : ¥ — R x - - - x R which is conformal and harmonic with free boundary
into the space

m
£ = {(331,--- , Tm) € R% x .-+ x R eq0 |x1|2 4+t €om |:13m|2 = Zekaktk} ,
k=1

where for 1 <k <m, o, = ox(g), ty, =[O L (01, -+ ,0m)|, €k is the sign of OpF' (01, -+, 0m)
and € is endowed with the pseudo-Fuclidean metric defined for (x1,- -+ ,Zp) € R X - - xR™
by €1 |dz|* + - + € |dam|.

Notice that if Oy F (o1, -+ ,0m,) all have the same sign, then the target manifold is the

ellipsoid of a Euclidean space. t; is nothing but the meanvalue of }@klz. This result is
a generalization of the result by Fraser and Schoen in [F'S13], when only one eigenvalue
appears in the functional, while they noticed that critical metrics for Steklov eigenvalues on
surfaces with boundary arise as the induced metric of a free boundary minimal immersion
into a ball. They were inspired by the seminal paper by Nadirashvili [Nad96] and El Soufi
and Ilias [ESI00].

Proof. We aim at using the oposite signs of the left and right derivative at t = 0 for
t = F (Lgin(E)o1(g+th), - Lgyen(X)om(g + th))

for h a smooth symmetric 2-form. For h € L?(S?(TY)) a L? symmetric 2-form on TS and
f € L?(0%). We denote by

Quup)(®) = ﬁktk/z (IVerlz g - doy, @ day, h)gdAg

k=1
il g
+>an [ % (1 o) gL,
— oy 2

for ® € E1(g) x---x Epn(g) € C°(X). Ek(g) denotes the set of all eigenfunctions associated
to the eigenvalue 0% (g). In the following, we denote by 7 and v a unit tangent vector-field
and normal vector-field to 0% with respect to the metric g. The goal of the following 4
steps is to prove that for any L? symmetric 2-form h on T'Y and any function f € L?(9Y),
there is a map ® € S(E1(g)) X - -+ x S(Em(g)) such that Q, r)(®) = 0. Here, S(E;i(g))
is the unit sphere in E;(g) endowed with the L?(9%, g)-norm with respect to g on the
boundary.
In the following, let h € C*>°(TX) be a smooth symmetric 2-form on T'Y.

(2.1)

STEP 1 :
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If ¢ is an eigenfunction associated to some eigenvalue oy = oy (g-+th) with fz (¢t)2 dLg it =
1, then up to a subsequence ast — 0, we have o > 0 such that

oy — o and ¢y — ¢ in C2(M) ast — 0

where faz $?dL, =1, Agp =0 and 0,¢ = 0.

Proof of STEP 1 :

We have A ,¢" = 0 and &/ﬁméf)t =ol¢t. Inachart §: U — V such that 0 (90X NU) =
R x {0} NV, the equation is given by
1 s i ) —

T (o + )7 I+ TH106) = 0
ayt¢t — Ut¢t ,

where v is the unit normal with respect to g + th. Locally, we have a constant Cy > 1 and
to > 0 such that for |t| < to,

(2.2)

1
— &< g+th<Cy€
Co

where £ is the Euclidean metric, so that we have constants C7 > 1 and Cy > 1 with

1 g
& IX|% < /g + th] (g + th)? X:X; < C1 || X

1 2 2 2
& Vo ar< |96, aapm < o [ Vo e,

1

& @ras | @am<e | @)

ox
Since Ly, = 140(1), o4 is bounded as t — 0. Up to a subsequence, we assume that o, — o
as t — 0. Therefore, by standard elliptic theory, since v, = v + o(1) as t — 0 is uniformly
transversal to the boundary and since o;¢! is bounded in L?, up to a subsequence, ¢y

converges in C?(M) to some function ¢. When we let ¢ — 0, A and ¢ satisfy the conclusion
of STEP 1.

STEP 2 :

For any k € {0,1,--- ,m}, or(g +th) = or(g) ast — 0.

Proof of STEP 2

We argue by induction. We have that o¢(g +th) = 0 = o¢(g). We now assume for k& > 1
that for any | < k — 1 we have o;(g + th) — o;(g) as t — 0.

Let (¢f, ¢4, , ¢t 1, ¢%) an orthonormal basis of eigenfunctions associated to (g +
th),o1(g+th), -+ ,05_1(g +th),or(g+th). By the STEP 1, we have up to a subsequence,

(2.3) o1(g+th) = oy and ¢f — ¢y in C3(X) ast — 0



for any 1 <1 < k for some functions ¢; and values o¢p < g1 < -+ < gy, such that

Agpp=0forany 1 <1<k
O,¢; = oy for any 1 <[ <k
Jos G10vdLg = oy for any 1 < 1,1’ < k.

By this equation, we already have o; > oy(g) for any 1 <[ < k. We also know by the
assumption that o; = 0;(g) for 1 <1 <k — 1. We now prove that o5, < o;(g). Let ¢ be a
k-th eigenfunction with respect to oj(g) such that

(2.4) Y?dL, =1 and / YprdLy =0
ox ox

for ] <k —1. Then
S5 IV (@ =m0y en dAgsen

faz (Y — Wt(¢))2 dLg+th

where 7, : C*°(X) — Eo(g+th)® E1(g+th)®---@® Ex_1(g+th) the orthonormal projection
in L?(0X) with respect to the metric g + th, extended by a harmonic function on ¥ with
respect to g. By (2.3) and (2.4]), we get that

/ VA dL g eh = / YdLy +o(1) = o(1) as t — 0
ox [2)>
and by (2.3|) and what is just before,

or(g+th) <

k—1
() = Z ( / ¢¢§dLg+th> ¢ —0in C3O%) ast — 0.
=1 0%

on the boundary. Then 7;()) — 0 in C*(X) as a harmonic function. Then,

V|2 dA
or(g+th) < fZ‘L‘gg
Jos ()" dLyg
and oy, < 0x(g). As already said, oy, > 01(g) and we obtain STEP 2.

+o(1l) = ox(g) ast — 0

STEP 3 :

Up to a subsequence as t — 0, we have the existence of eigenfunctions qb; and ¢, in

S(Ex(g)) such that
2
Vi |
5 Yg,h | dA,
g
o
[ Za- @),
on 2

where qbzr is the limit as t — 0 and t > 0 and ¢, is the limit ast — 0 and t < 0.

At)\k(g + th) — i
t

- / —doi ® dey +
(2.5) >

Proof of STEP 3
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By connexity of S(Ei(g)) x --- x S(Emn(g)), it is equivalent to prove that there are
&t and &~ in S(E1(g)) x -+ X S(Fm(g)) such that Q(®T)Qx(P~) < 0. We use in this
step that g is a critical metric for the functional. Qn(®") and Q,(®~) correspond to the
opposite signs of the right and left derivatives at 0 with respect to t for the variation
g+thoft — F(Liwoi(g+th), -, Liom(g+th)). Here, we denoted Ly = Ly, (0%) =
1+ % [on h(T,7)dLg + o(t).

Let’s compute the left and right derivatives of an eigenvalue oy = oy (g + th) with its
associated eigenfunction ¢! in Ey(g + th) with unit L?(g +th)-norm. By STEP 2, we know
that o; converges to o = 0(g) and ¢! to ¢ € S(Ey(g)) in C*(X) as t — 0. We denote by
71, the projection in L?(9%, g) on the whole eigenspace associated to ox(g), extended by a
harmonic function in X, and by R! = ¢! — m(¢!). In some chart, we have the equation on
)

AGRY = Ay
= (Ag_Ag+th)¢t

1 .
_<\/|E \/W) (\g\g 5J¢)

_\/ﬁ ((\/I? Vg + th\) gijajéf)t)

!1+th! <\/|g+th|( (g+th)ij)aj¢t)
and the equation on 0%

OR' —oR' = (01 — 0) ¢' — g(vy — v, V)
We set
(2.6) ar = |o— o] + HRtHoo—i—]t]
and dividing by oy we write the previous equation as
Ay <it> =L on X

at
0, (%) ok =500 — So (474, V9)

converges to

_ 1 L, AN iky  lig.
fo—2(g,h)gAg¢+2\/mé’z (\/\57l(g,h)g975;¢) \/m@( lg9lg hklgjaj¢>

where f '

ast — 0 and

t

ast — 0 in C?(9%). where v := 1 is the unit normal with respect to g and v := (&1;)
is computed knowing that

(g +th) (v,1r) =1 and (g+th) (v, 7)=0.
Indeed, taking the derivative at t = 0 gives
h(v,v) +2g(v,v) =0 and h(v,7) + g(v,7) =0,

g (”t _ wt) — (v, Vo)

t=0
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so that in the orthonormal basis (7,v), we have

(2.7) = <h(y, T+ h(”Q”)y> .

Up to a subsequence, by elliptic regularity of the equation we let

t Rt ol —o
— —>ty, — — Ry,
at Qi Qi

Then, the previous equation becomes as t — 0

AgRo = t()f() inX
8,,R0 — O'Ro = (Sogb — tog(D, V(ﬁ) on 82 .

We integrate it against ¢ so that by integration by part and since Ay¢ = 0, 9,¢ = ¢ and

faz <Z>2dLg =1,
0=ty (/E f()gZSdAg — /82 g(f/, ng))¢dLg> + g .

If tg, then 50 = 0 and ARy and 0,Ry — cRy = 0, which means that Ry = 0 since
Ry € Ey(g)* on 9% as a limit of - (gbt — mx(¢")). However, by (2.6), the convergence

A= Ml + HRtHoo i

at
is absurd. Therefore, ty # 0 and

do )
2 - - /E fobdA, + /@ Eg(u,wdeg
-/ (‘§<g,h>g<—Ag¢> ot (Vi >gg“aj¢)>dAg

i . ik lj
*L(MM 1™ hiag' 950 )dA o[ gV,
- /(;(9’ h)g (—98g0 +IV9[2) — (do © do, ))dA

b

—dpast—0.

1=

—>50—|—HROHOO—|-|150]:0ast—>O

. 1
# [ (962900~ S 0., 000+ 10 ¥9)) i,

\V4 2
= / - Vo dAy— | Z4h(r,7)dL,
> 2 . ox 2

where the second equality has to be read in a suitable atlas with partitions of unity and
the third one is got with an integration by parts. For the last inequality, we easily compute
that

9(0, Vo) = —h(v,7)0-¢ — %h(u, V)0, ¢
by , that
(ga h)g = h(Ta 7—) + h(V, V)

since (7,v) is an orthonormal basis and that

h(v,V¢) = h(r,v)0:¢ + h(v,v)0,¢
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so that
. 1 o
9(0,V9) = 5 (9:h)y 0 + h (v, V) = —0,0h(r, 7)¢ = =5 ¢*h(r,7) .

Up to a subsequence, noting that Ly = 1+ & [« h(7, 7)dLg + o(t) we have the existence of
eigenfunctions ¢ and ¢, in S(Ej(g)) such that (2.5) holds true as t — 0 with ¢ > 0 and
t — 0 with ¢t < 0. This ends the proof of STEP 3.

STEP J :

For any (h, f) € L2(S*(TX) x L*(0%)), there is a map ® € S(E1(g)) x - x S(En(g))
such that Q, 5)(®) = 0 where, S(E;(g)) is the unit sphere in E;(g) endowed with the
L? (9%) norm with respect to g.

From the following STEP, if h € C*°(T'X) we have that
4

dt |t=0+

Therefore, the maps ®F = (¢1, -, ¢5) € S(E1(g)) x --- x S(Em(g)) satisfy

Q(h,h(T,T))((D+)Q(h,h(7,7'))((I)i) <0.

As a product of connected spaces S(F1(g)) X -+ X S(E,,(g)) is a connected space we have
that

(2.8) Vh € C*°(TX),3® € S(Ei(g)) x -+ X S(Em(g)) st Qan(r,r)(P) =0

Now, let (h, f) € L?(S*(TX) x L*(0X)). There is a sequence (hy, f,) € C®(S?*(TX) x
C>(0%)) such that (hy, fr) — (h, f) in QQ(SQ(TE)) x L?(0%) as n — +o0. Up to a smooth
perturbation close to %, one can find h,, € C>®(S?(TY)) such that
’ = oy 0 8 () = o

Therefore, there is ®,, € S(E1(g)) x - x S(Ey,(g)) such that Qi 1) (®,,) = 0. Since

S(E1(g)) x -~ x S(En(g)) is a compact subspace of a finite-dimensional space, up to a
subsequence, ®,, converges to ® in S(E1(g)) x - -+ x S(En(g9)) endowed with the C? norm.

Passing to the limit as n — 400, we get Q. r)(®) = 0 with ® € S(E1(g))x---xS(Em(g))-
This ends the proof of STEP 4.

Proof of STEP /

F(At)‘l(g + th)7 U 7AtAk(g + th’)) = Q(h,h(‘r,ﬂ')) (d)it) U 7¢7in) .

End of the Proof of Theorem (2.1 :

Denoting S%(TY) the set of symmetric 2-forms on ¥, We now let C' be the convex hull
of the following set included in L? (S*(TX)) x L*(9%) :

m \V4 2 m
{(Zéktk <—d¢k®d¢k+ | 2%9) ,— (katko;(l —¢i)>> i (P1,-+ k) € E} ;

k=1 k=1
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where E = S(E1(g)) x --- x S(En(g)). If (0,0) ¢ C, by the Hahn-Banach theorem, there
is a symmetric 2-form h and a function f such that

V(w,0) € C;/(w,h)gdAg +/ OfdLy > 0.
) ox

This means that for any ® € E, Q,(P) > 0 and this contradicts the STEP 4. Therefore,
(0,0) € C and one can define

(p:(cplv'” 7q)m):(¢%77 ?[17”' 7¢%n77¢27nn)
such that ¢} € Ex(g), [y |®x|°dLy = 1 and

- S J J |V‘I’k|.«2;
(2.9) > entr —Zd¢k®d¢k+ 529 =0
k=1 j=1
on X and
(2.10) > entror(l = |24*) =0
k=1

. N2 . 12
on %, where we denote by |®;|> = Py (qf)i) and |V<I>k|3 =>% ‘qui‘g. The trace
with respect to g gives that

m m
Zakektk |(I)k|2 = ngfktk on 0% .
k=1 k=1

We now choose 5;; = /1 @}, instead of ¥y, so that the new map ® lives in the ellipsoid

m
g = {(xla' c 7$m) € Ril X oo X Rim;elal |:’U1|2 + - +€m0m |xm|2 = Zekaktk} )
k=1

on 0%. By the Steklov eigenvalue equations on the maps, we deduce that Agé =0on X
and 9,® ¢ (Tq;g)J_ on 0%, since the vector (o1®1, -+ , 0, Py,) is normal to ® with respect
to the pseudo-Riemannian metric G = ¢ |dz1|* + - - - + €, |da,,|*. This is the equation
satisfied by the critical maps of the energy [, G(V®,V®)dA, for maps ® satisfying the
constraint ® € £.

We now get from that

o (|
> en —Zd¢i®d¢i+7

k=1 j=1

2
g =0

or equivalently that

~ m 2 ~  ~
*(G) = (Z €k Vq)k‘g) g = G(V(I),V(I))g
k=1

and we obtain that the map @ is conformal. This ends the proof of Theorem
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We now state the analogous theorem concerning the critical metric for combination
of eigenvalues in the conformally constraint case, generalizing previous results in [FS13],
inspired by previous results in [ESI03] and again, perfectly adaptable in the conformally
constraint Steklov case.

Theorem 2.2. Let (3, g) be a compact Riemannian surface with a smooth boundary and
F (Ri)m — R be a smooth function with m > 1. Let g € [g] be a critical metric for the
functional

g F(Lg(X)o1(9), -+ Lg(E)om(9))
defined on the conformal class [g] of g and we assume that Lg(X) = 1. Then there
are m non-negative integers ii,- - iy, and there is a harmonic map with free boundary
$:¥ - R x--- x R™ into the space

m
&= {($1,~ .- ,.,”Um) S R x --- x Rim;elUl ’$1‘2 + o+ €nom \xm\Q = Zek()’ktk}
k=1

endowed with the pseudo-Euclidean metric on R" x - .- x Rim
e1]dzr|? + -+ em |dzg|?

where for 1 < k < m, o = ok(g), tx = |OkF (o1, -+ ,0m)| and € is the sign of
OF (o1, ,0m).

The proof of this result follows the lines of the proof of Theorem but is even simpler
since the variations we use stay in the conformal class of g. Of course, the conclusion has
to be weaker than in Theorem [2.1] and we exatly loose that the obtained harmonic maps
are conformal. More precisely, we can follow step 1, step 2 and step 3 with the symmetric
2-forms h = fg, where f is a smooth function to compute the left and right derivative at
t =0 for

t= F (At A +E)g), s At (E)Am((L+1f)g)) -
Notice than the Dirichlet energy is conformally invariant. Then, denoting by

m
Q@)= [ (Zektm (1 12 g) far,
o0x =1
for ® € F1(g) x -+ X Enn(g) € C*(X), where Fx(g) denotes the set of all eigenfunctions
associated to the eigenvalue oy (g), we prove that for any f, there is a map ® € S(E1(g)) %
-+ x S(Em(g)) such that Q¢(P) = 0. Here again, S(E;(g)) is the unit sphere in F;(g)
endowed with the L? norm with respect to g. Again, by a standard Hahn-Banach argument
we complete the proof. These arguments are performed again in the next section to
compute the Euler Lagrange equation of a perturbated functional.

3. HARMONIC REPLACEMENT OF STEKLOV EIGENMAPS

Harmonic replacement is a canonical way to replace a map by a smooth map, decreasing
the energy locally, keeping same Dirichlet boundary conditions and a constraint target
manifolds. However, in the positively curved target manifolds, such a map is not globally
unique. As an analogue to the geodesic problem, one has to restrict such result in a domain
with small energy. Thanks to the so-called ”energy convexity”, proved by Colding and
Minicozzi [CM08], harmonic maps are local minimizers of the energy in a quantitative
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setting. Notice that it is proved in [LP19] a free-boundary version of this energy-convexity
result with a very simple proof, based on on two ingredients: using a e-regularity result
on harmonic maps and a classical Hardy inequality. This technique is well adapted and
generalizable to a large class of conformally invariant variational problems.

In this section, we adapt such a result in our context when N := £ is the ellipsoid of
parameter ¢ = diag (01, -- ,04). In the following, we set ® : D, — R? such that the
coordinates satisfy a Steklov equation on the half-disk Dy :=D NR,:

{A(I):O in Dy

3.1
(3:-1) 0,P=0® onl,

where I = [—1,1] x {0}. We also denore A = 0D \ I. Notice that now the target manifold
is no more an ellipsoid £ on the boundary I. We aim at replacing such a map by a free
boundary harmonic-like map into £ up to a weight w, satisfying w € L* and % € L°°. For
this weight, let C, be a constant such that

V:UEE,CLSOJ(J:)SCLU.

We say that u : Dy — R? is w?-harmonic with free boundary into the half-disk if it is a
critical point of the following energy

(3.2) E,(v) = / w? |[Vu)? dz
D4

among all v : Dy — R?such that v(I) C £. In a W2 setting, we say that u € W12 (]D)+, ]Rd)
is a w?-harmonic map with free boundary into the half-disk if

(3.3) / w? (Vu, Vo)dz =0,
Dy

for any v € Wh? (D+,Rd) such that v(x) € Ty(,)€ a.e.
From ® : D, — RY, we define P = %, where w satisfies the following equation

(3.4)

We also define
o, (Dy, e?Udz) = inf —_
* ( + ) g@EW},’Q(DJr) f]I @Qe“dx

where the infimum holds for W12(ID, ) functions satisfying ¢ =0 on A = Dy \ I. Then we
have the following result

Proposition 3.1. Let § > 1 and o = diag (01,--- ,04) such that |o| + |0 < 6. We
assume for instance that o1 < --- < 04. Then, there is g9 := £(d) and C := C(9) uniform
in 8, such that, for any map ® = (¢1,--- ,¢q) € W2 (D4, RY) NCO(Dy), satisfying

e C, <9, where w satisfies ,

o o, IVEF <&

o O satisfies , ie A® =0 and 0,9 = ge"®

° U, (ID), eQde) > 04
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Let U be the free boundary w?-harmonic replacement of&) = % and we denote by ¥ = wl.
Then

1
(3.5) / V@ - 0)Pdr<C [ Vol d.
2 Jp, Dy

Proof. Since ® = ¥ on the arc boundary of D, we start with the following formula

(3.6) / IV (® — 0)|* da :/ ]V(I)|2dx—/ |V\IJ|2dx—2/ (V(® - 1), V) dx
Dy Dy Dy Dy

and by integration by parts on the last term, we get

(3.7) /D \V(@—xy)\?da::/ |V<I>|2dx—/ ]V\P\Qda:—Q/H(é[)—\I!) 0, Udx

D, D,

We have that Aw = 0 and that —w ™ 'div (w2V\TJ> = 0 because it is w?-harmonic. ¥ is

then harmonic:

AV = —div (V <w\i)) = —div (w_1w2vlfl + E’Vw) = —w  div <w2V@) —(Aw) U =0.
We also have the boundary equation 0,V = 0, (w@) = w@,,\il + (Oyw) . Therefore

(3.8) —2/<q>—\p,ayq/> :—2/<<I>—\11,wayxff>—2/(<b—\p) T =L +1.
I I I

Then, the second right-hand term I satisfies
/ <V(<I> - \p),\iw> +/ (@ —0). <v\fz,w>‘
Dy Dy

1 1
1 2 2 2
2(/ \V(cp_q/)\?) (/ vaﬁ) +/ @ 0|V +/ Vef?
01 Joy Dy Dy Dy

where for the inequality, we used that

| = 2

IN

-2 12 ~(2 (~2
o1 ’\If’ - (min oi> M < M - ‘@’ <1inD, .
1<i<d £ £
To estimate the first right-hand term of (3.8)), I, we use that U is a critical point for the
energy E, (see (3.2])) on the half disk under the boundary constraint ¥ € £. This means
that —div <w2V\T/ = 0 and that 8,,\5 S (T\-I;S)J'. Then 8,,&1 is parallel to the outward

normal 1 = ﬁ—é” of the ellipsoid and we have

(3.9) I := _2/]1((1) — D). (mﬁ) - —2/H((c1> —0) w) 7.0, = /H|<1> — 02 #.0,¥
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noticing again that |W|% = |®|% on I. Notice that up to reduce o (see proposition , we

can assume that ‘\fl‘g > 1 in D, (in particular ¥+ 0) and we obtain:

L o= /qu> — 029, ((a\ﬂ)
/D + <v ()5 - @\i) WV (\a@()> " /D + (\5 - @E) div (w29 (|o¥])) .

~ 2
Simply computing %div <w2V ‘O'\I/’ ) in two ways, we have that

vlot|[ - |v (o7)[
~div (w*V (’a\i’)):uﬂ‘ ‘U ’)a\i‘ & >’ :—oﬂ’a\ff’\VﬁF

and the equation becomes
L o= 2 vq>—\1z.<1>—\pv)if‘
= 2 (- w s ws (o)

2 [ Vw? = 2 2| Tlio=2
| e - —Q,V‘U\If‘ o jo-vPw ’J\I/’|Vn] .
Dy w Dy

And we have that for any 0 <n < 1

11| Sn/m |V(q>—\11)|2+2/m+ |(I)—\II|Q‘V‘O'{IVJH2

12 2 ~
vo [ e ([v]ow| s ey 2o jwar)
Dy w

Gathering all the previous computations, and setting
X? = / IV (® — ¥)|* dz and Y :/ IVwl|?
Dy Dy
we can write (3.7]) as
(1-m)X*< /

D

~12
yv¢>|2dx—/ Ve + € ]@—\I}\Q’V\P’
4 Dy n Joy

+C</D+\V(®—\Il)]2>é (/D+|V“‘2>%+C/D+ Vwf? .

for a constant C' depending on o4, = and C,,. Thanks to g9 > 0 given by (5.11)), we have

o1

(3.10)

~ 12
/ \@—\py?’vqf‘ SDE()/ IV (@ — 0)|2dz
D4 D,

for a universal constant D > 0. Then, we have a constant C' > 0 depending on oy, a% and
C,, such that

D
(3.11) (1—n—05‘)> X2§/ |V<I>]2dx—/ VU2 dz + 2CXY + CY? .
n D4 Dy
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Now, let’s prove that the difference of energies of ® and ¥ is non positive. Let 1 <7 < d.
We test (¢; — 1;) in the variational characterization of o, (]D, 62“), we have

o V@i -l de
T (@i — ) eudl

so that we get setting o, := o, (ID>+, ezudx) and we sum on ¢

o; < o, (D+, ezudx)

(3.12) U*/|(I)—\I/‘26udl§/ |V<I>\2dx+/ yvq>|2dx—2/ (VO, V) dx .
I D4 D4 Dy

Moreover, we integrate the g;-Steklov eigenfunction equation Aw; = 0 and 0,v; = g;0;e¥
against 2 (1; — ¢;) to get

2/ \V¢i|2dac—2/ (Ves, Vapy) dx = 2ai/(¢i)26“dl—2)\¢/¢izpie“dl.
D D4 I I
We sum on ¢ and we get that
(3.13) 2/ VD[ da 2/ VD, V) do 2/(@,@ W),
D D I

Now suming on ¢ and remembering that |\I’|(2S = |<I>\?: on I, we get have that
2(0, — W), = [&— T2 on I .
We sum (3.12)) and (3.13]) to get

(3.14) / V|2 d —/ VU2 dz < /(\@ — U2 o |®— \If|2) eldr <0,
Dy Dy I

because 01 < - < gg < 04.
Therefore, using (3.11]), choosing first n = % and then g such that 8C Dey < 1, we have

thats::,/l—n—%Z%andweget

Ccy\? c?
(3.15) <5X - > < Y? (C’ + ) :
S S
so that we get the proposition up to increase C. &

_ Notice that if the target manifold on the boundary is a sphere, we already have that
® = ¥ and that ¢ = %, where w is the harmonic extension of |®| is already a free boundary
|q>]2—harmonic map. In the previous proposition we only find a local non-exact result.

Notice then that is the target manifold is a sphere, we do not need this section to prove
Claim [4.§] and Claim for sequences of eigenfunctions given by Claim

4. EXISTENCE OF A MAXIMAL METRIC IN THE CONFORMAL CONSTRAINT CASE

4.1. Selection of a maximizing sequence. Let (3, g) be a smooth Riemannian manifold
without boundary. We denote respectively by M(90X) and M;(90X) the set of Radon
measures and probability measures on ¥, endowed with the topology of the weak-%
convergence. We let € > 0. Let K, be the heat operator associated to g, so that for any
positive Radon measure, v € M(0X), K.[v]dL4 is the solution at time € > 0 of the heat
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equation on (9%, g) which converges to v as € — 0 for the weak-x convergence in M(9X).
We set
(4.1) Ac=  inf F(M(KJv]g), -, A(Kcv]g)) > —oc0.

rveMi (%)
A. is finite since F' is decreasing with respect to all coordinates and because all the
eigenvalues are bounded by the result by [KKP14]. We know that v — K[v] is continuous
from M(0X) to C°(0X). Therefore, by continuity of the functional and compactness of

M (0%), up to the extraction of a subsequence, a minimizing sequence for the variational
problem (4.1) converges in M (M) to a measure v, € M;(0X). We have

(4.2) Ae = F (M (Ke[velg), -+ s Am(Ke[velg)) -

We set e = K.[v]. Then, the sequence of smooth positive functions ec defines a
minimizing sequence for the variational problem S (X, [g]) as € — 0. Indeed, by definition
Ac > Sp(Z,[g]). Now, if § = e?“g € [g] is such that A3(X) =1 and

(4.3) F (@), (@) < Sp(S. (o) +

for some small 7 > 0. Then knowing that K.[e*] — e* in CY(X) as € — 0, there is ¢g > 0
such that
n

Ac<F (Al(KE[eu]g% t a)\m(Ke[eu]g)) <F (A1(§)7 T 7)‘m(§)) + 5

for any e < €. This, with ([4.3), we get that Ac < Sp(Z,[g]) + 1. This means that
Ae — Sp(3,[g]) as € — 0 as required.

Now, for a given ¢, e = K [v,] corresponds to the minimum of a variational problem
([.1). We let o, be the limit of of = oy (e?"<g) as e — 0.

We obtain by the following claim a system of equations corresponding to this critical
point of a regularized functional depending on e.

Claim 4.1. Let € > 0. Then, there are non-negative integers i{,--- iy, and a map
P, : Y - R x - x Rim such that
e The family of coordinate functions (@f’j ) 1s independent.

1<k<m,1<j<if
e Vke{l,---,m},A;®F =0 and 9,0F = gFetpk
2 2
o fon IVE2dA, = [y e @2 dL, = 1
o \@6@5 >1 in 0% and ]@6\25 =1 on supp(v:)

where ®F : ¥ — R% is a coordinate map of ®. and @]j’j : 2 — R is a coordinate function of
Pk, \<I>€|(295 =Y, ok ’fbff is the norm of ®. with respect to the quadratic form associated

to the ellipsoid & and ‘@ff is the Euclidean norm of ® in R% and o = o1,(e2%<g).

Proof. Notice that the proof is written in the same spirit as the proof of Theorem or
the proof of proposition 1 in [Pet19]. Since € > 0 is set, we omit the ¢ index of 0%, @, i,
Ve, €% and &..

Let 1 € M(OX) be a positive radon measure and ¢ > 0. We now denote by of = a;,(e2%tg)
where e“ = K.[v + tu]. Let ¢; € S(Ei(e*“tg)) (ie ¢ is an eigenfunction associated to
of such that | ox d7€"dLy = 1). As we did in the proof of Theorem we can easily

2ut
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prove that of — o := o1,(e?%g) as t — 0T and ¢; converges to ¢ € S(Ey(e*%g)) (ie ¢ is
an eigenfunction associated to oy, such that [, ¢?e“dLy =1 in C*(X)).

Now we focus on the equation satisfied by R; = ¢ — mx(¢¢) where 7y, is the orthonormal
projection in L2(9%, e*) on Ex(e?"g), extended by a harmonic function on X.

(4.4) Bo (%) - b

Oy (%) — ake“% = %e“gﬁt + O%UfKe[u]gbt
where
(4.5) o = ||Rillog ++ |of — o) -

Up to the extraction of a subsequence, we have

oF — oy

t
— — 1y and — (50 and & — Ry in C2(Z)
(673 Ot (673

as t — 0". The last limit follows from the standard elliptic theory applied to the equation
(4.4). We pass to the limit in this equation (4.4]) and and get

AgRo =0
(4.6)
Oy Ry — ope“ Ry = dpe" ¢ + toO'kKe[u]gﬁ ,

and
(4.7) 1 = ||Rol| o + to + [d0] -
We integrate (4.6)) against ¢ and we get that

do + took Kg[u]qbzd[/g =0.
ox

If o = 0, then, dp = 0 and (4.6) becomes AygRy = 0 and 0, Ry — oxe" Ry = 0. As a limit
of functions in Ej(e?“g)*, the orthononormal space to Ej(e?“g) in L?(9X), we have that
Ry € Ei(e®"g) N Ex(e?"g)* on 0% so that Ry = 0, contradicting (4.7). Therefore, tg # 0
and

of —a; &

- = = —ak/ K [u]¢*dLy as t — 0T .
13 lo )

Since F ((1 + tfaz d,u) ol (1 + tfaz d,u) a{”) > A for any ¢t > 0, we deduce from
that

(4.8)

Vi € M(0%),3(¢1,- -, bm) €S (Er(e*g)) x -+ x S (Em(e®g)) ,

/(92 (;O’ktk (1- Kﬁ[qbg])) dp < 0

where t = O, F (A1, -+, Am). We define the following subset of C°(9%)
K ={U €C0%);3(P1,--+ , ) € E1(e®g)" x -+ X Ep(e*g)"™

m
st U= oty <K€[|<I>k|2] - 1) and / 1By |2 et =1}
k=1 )y

(4.9)

(4.10)

and
F={fecC’0%);f>0}.
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The set F' is closed and convex. The set K is convex as the convex hull of
m
{Zaktk (Keld?] = 1) 1 (61, dm) € S(E1(eg))™ x -+ x S<Em<ez“g>>”} -
k=1

Since Ey(e?“g) x --- x Ep,(e2%g) is finite dimensional, the vector space spanned by this
set is finite dimensional and is a compact set since it is bounded. Therefore K is also a
compact set. If F'N K = (), by the Hahn-Banach theorem, there is € M(9X) such that

(4.11) VfEF,/ fd,uZ()andV\IleK,/ Wdu < 0.
M M

We deduce that p # 0, that p is positive but (4.11)) contradicts (4.9). We proved that
FNK #0. Tt gives (®1,--- ,®,,) € E1(e2%g9) x -+ x Ep(e?"g)'™ such that

m
> Zaktk .

m
Vlgkgm,/ ‘(I)k|2€u:1 and K. [ZO‘]J}C’(I)HZ
ox =1

k=1

By Gaussian decomposition of some non-negative quadratic forms defined, we can assume
that (@11, Pris- , Py, P, ) is a family of independent eigenfunctions in
L?(9%, g) and satisfies up to a renormalization

(4.12) / (Z Ok |c1>k|2> e'dL, =1 and K, [Z Ok |c1>k|2] >1.
Z \k=1

k=1

1:/ |c1>y?geUdLg:/ K. [|<1>|§] dyz/ dv =1
ox 0% o)

Therefore, K, [@@} = 1 v-a.e and since K [|<I>\Z] is continuous, K [|<I>|§} =1 on supp(v).
This ends the proof of Claim

We can write that

¢
We know by [KKP14] that the multiplicity of ¢ is bounded by k and the topology of .

Therefore since the family of coordinate functions (@f’j ) is independent the
1<k<m, 1< <"

sum 4§ + - - - + if,,, is bounded with respect to € and up to the extraction of a subsequence,
we assume that the indices 7}, do not depend on e.

4.2. Notations for local analysis and rescalings. Let (X, g) be a smooth Riemannian
surface with L,(0%) = 1.

We recall that M(9Y) is the set of positive Radon measures provided with the weak*
topology and M (9X) the subset of probability measures on 9X.

For an open set {2 C ¥ we denote by oy (€2, g) the solution of the following minimization
problem

V|2 dA
0, (Q,9) = inf —fQ‘ 80’92 g ,
sew2(Q) [oanas P2dLg

where W(}’z(Q) denotes the set of W12(Q) functions ¢ such that ¢ = 0 on 9\ 9.
For all the paper, we fix dg > 0, a constant Cy > 1 and a family (xl)l:h“,L of points in
Y. and smooth functions v; : 2 — R such that
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forany [ € {1,..., L}, the metric g, = e 2" g is a flat metric in the ball B, (z;,20) =

Q.
L

Y= U w; where w; = By, (x,0).

=1
For any 1 <1< L, Cy? < e < C2.

e For any z € w; and 0 < 7 < 8, By(z,Cy'r) C By, (x,7) C By(x,Cor)
For 1 <1 < L and a point z € Dys(0), we let

ef)l(z) — evl (expgl,zl (Z))

and z = expy, , (2)

and for z € ; and a set Q C §,

so that for Q C €, identifying R x {0} with R,

~1
/ e'dLy = /~ e dz .
a0Nox QINR

For other functions ¢ € L'(M) or measures v € M(X), we let
(Z;l(z) = ¢(expgl7$l(z)) and 7' = exp;hxl(z/) .
Let p(x,y) be the heat kernel of (M, g) at time € > 0. Then, for y, z € Q;, we let
PL(z,y) = "G pe(expy, ,, (2), expy, 4, (1))

so that for a density e*(*) = Jo pe(z,y)dv(y) for Q@ C € and some measure v, we have

et — /N ﬁle(z,y)dﬂ(y) and qgl(z)ﬁla(z,gjl)dz = / d(x)pe(x,y)dLg(x) .
QINR QNox

and for ¢ € L'(0%). When the context is clear, we drop the exponent [ in all the notations.

QINR

One fundamental remark for all the following analysis is some scale invariance properties
for the heat kernel p.(x,y) and o, (Q, 62“9). We shall give convenient notations to handle
this scale invariance. For parameters a € R?,_ and a > 0, we denote the following rescaled
objects by

- . ﬁ—
LY o YL

o
) — geiilazta) ¢f(z) = &(az +a)and U = H;,a(ﬁ) )

T =

pe(2,y) = apl(az +a,ay +a),
where H, o(z) = az + a, so that if e¥®) = [, p.(z,y)dv(y), we have

elz) — /S%Rﬁa(z,y)dﬁ(y) and o &(2)pe(2z,9)dz = /Qqﬁ(w)pg(x,y)dLg(y) .

We also let for z € R2

Z = expy, , (az +a) and Q= expy, ,, (@ +a) ,
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so that £ = z. Then we also have that
Ox (Q, eng) = 0, (Q, ede) .
4.3. A bubble tree. Up to the extraction of a subsequence, we denote by v the weak-

limit of {e"<dLg}e>0 as € — 0. Then v is also the weak-x limit of {vc}es0 as € — 0. Indeed,
let ¢ € CO(0%),

¢ (dve — K[ve]dLyg)
0%

/8 (=Kl dv.
< ||¢ = K]l +0ase—0.

¢ (dve — e“EdLg)‘ =

[

One can perform a bubble-tree to capture the scales of concentration of the sequence of
measure e“dL, on the boundary. We refer to the work in [Pet19]:

Claim 4.2. There are points ai,--- ,a5 € R x {0} and scales 0 < a5y < afy_; < -+ < ]
satisfying for 1 <1 < N, of — 0 as ¢ — 0 and there are points q1,--- ,qc; such that
e% dz — ; with respect to the weak-star convergence in M(I'\ {q1,--- ,dc, }), where U; s a
measure without atom on R x {0} and

N
4.13 / dv + / dv; =1.
( ) ox ; Rx{0}

dg(ac,as
Setting F; = {j > 4 % s bounded }, we also have for j # i that

. aj . dy(a;, aj)
(4.14) jeli=—= —.500andj¢ F; =

'
&; o;

—re—0 100 .

The main technical work in the paper is to prove that the measures v or 7; for 1 <i < N
are regular (i.e absolutely continuous with respect to dL, or the Lebesgue measure with a
smooth density). Once we proved it, we refer to section 6.2 in [Pet19).

From now on, we prove that v and 7; are regular measures. We assume that fo (0} dv; >0
for any i (one may have N = 0, but as already said, we prove it a posteriori). We will also
have estimates on the surface’s scaling as soon as faz dv > 0.

4.4. Regularity estimates at the scale \/e. The proof of the regularity of a limiting
measure U := 1; is immediate if we assume that the sequence {%} is bounded (ae := o

is the scale defined in in claim [4.2). The very suitable scale /e arises naturally from the
choice of the heat kernel. Indeed, in this case, we let 6y = lim._,q m and we denote

by # the weak* limit of 7, in M(R?). Let Ry > 0 and z € Dg,. We have by (5.13)) that

i v AgenBPq A
e (L) — ul(@) s u)d <20 % | < — 2% (14 0(1).
e“(z) = e"Va /632p5(27y) ve(y) < Tms o e S %47790( o(1))
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Since fJIR el (2)dl > 14 e g, where limp_, 1 o lime_,0 ae,r = 0, we get that 6y < +oo. Now,
we let e be a smooth function on R? defined by

I
N 460
4.15 a(z) — / eidA .
( ) € R2 \/47'('90 V(y)

Let Ry > 0, R > Ry and z € Dg,. We have that

/ aape(za y)dVa(y) — )
ox

euf(z) — e,[l‘(z)

_lz—yl?
e 40

/ o, P ) + /HRzaAz,y)daE(y)— [ o

IN

so that
lz—y|?
A ) A _(r-Rg)? e o
ele(x) _ gt < 0 _(1+o0(1))e 5% +/ Pe(2,y) — ——=— | di
N o\ Varfy |
lzyl? _lz=ul?
¢ (a. — dp) +/ ¢ D g+ o(1)
+ ——(dV, — dv —F—avTo
VATl R VATl
e

Ay _(B-Rg? e Wy
— ———e 80 + ———drase—0.
R\l

NZ VAamby

Letting R — 400, we get for any Ry > 0 that
(4.16) el = ¢%in CO(Dp,) ase — 0.

Therefore, the limit e%dz of the sequence of measures {e%dz} is absolutely continuous with
respect to the Lebesgue measure, with a smooth density and it is a probability measure.
Up to the end of the proof, we assume that % — +oo for the remaining measures 7;.

We cannot expect to get good estimates on the potential e"c since {ace¥} is not
uniformly bounded anymore. However, the eigenfunctions which are coordinates of &,
given by Claim satisfy lots of conditions. The purpose is now to prove that thanks to
finer and finer estimates, they converge in suitable function spaces up to the extraction of
a subsequence. We still have an immediate very partial result arising from a look at the
scale y/e. This weaker but fundamental result is the consequence of Claim It states
that at the scale /e, the sequence of eigenfunctions is bounded at the neighborhood of
the support of v.. As already said, this scale comes naturally from the choice of the heat
kernel.

Claim 4.3. For any R > 0, there is a constant Cr > 0 such that for any sequence (z¢) of
points of 0¥ with dy(ze, supp(ve)) < Ry/€, we have

(=)

< Cg foralle >0 and k€ {1,--- ,m}
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Proof. We refer the reader to Section for the notations used during this proof. We can
assume that x. € w; for 1 <[ < L fixed and we set

(i)s(x) = (i)s (\/gx + -i'e)

forx €D s . Then
v

AP =0 in Dy 2
\faa “5(\[1“35)@]; on Is =
for 1 < k < m. By estimate of Section (v/epe) is uniformly bounded so that
(ﬁeﬁs(\/ngrff)) is uniformly bounded.
Now, we let y. € supp(v.) be such that dg (z.,y.) < Ry/e. By Claim we have that
K. [|c1>e|§s] (ye) = 1. Let us write then with (5.12), in Section that for p > 0,

1=K, [|<1>6|§£] (ve) > iUkK[ 62] (¥e)

= Zak/ Pe yya

)@k dry)

Y

_ 202 k
Ukie p 0/ ‘fl) ‘ dLy(y)
kz_l VimeAg By (ye,2pCoy/2)N0S !

U 1 _ 202/ k‘
o~ C )<I> ‘ dl .
; V 47714003 ]D)+ Zs

We set 2z, = ﬁ (Je — Z-) so that, up to a subsequence, Z. — 29 as ¢ — 0 and we deduce

Vv

from the previous inequality that, for any p > 0, {®*} is bounded in L*(I1,(20)). By
elliptic regularity of the Dirichlet-to-Neumann operator (see Taylor [Tay11], Chapter 7.11,
page 37), we get that {q@é} is uniformly bounded in I, by some constant D,. Setting
Cr = Dacyr gives the claim.

&

4.5. Singularity points. The eigenfunctions given by Claim has uniformly bounded
Dirichlet energy, but we cannot a priori say anything for instance about the sequence of
their L?(9%, g)-norm on the boundary, except in the scale 1/z, as noticed in Claim We
need two ingredients to perform asymptotic analysis on eigenfunctions given by Claim

e L2-estimates on the sequence of eigenfunctions at every intermediate scale a. > /2.
By conformal invariance of the L?-norm of the gradient, this is given by Poincaré
inequalities. They hold on functions vanishing on curves connecting two points
whose distance is uniformly lower bounded by a positive constant.

e W2 approximations by a w?-harmonic replacement. As noticed in Proposition

this is possible if there is a local smallness assumption on ————5—.
o*(Dy,e?ve g)

We define points such that at their neighbourhood, we cannot have the previous properties.
Fortunately, as noticed in [Petl9], there is just a final number of singularity points. In the
following Claim, we give their precise scale of appearance.
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Claim 4.4. Up to the extraction of a subsequence of {€"<}.~o there are at most s sequences
of points pi,--- ,p5 € 0% with 0 < s < m such that p; — p; as € — 0 and positive scales
r{ <--- <rf such that for any 1 <1 < s, setting A; as

A ={r>0,Di(r)c D\ LJD;(@);aAD;@%&%MﬂSJm@%)
J
i=1

lim (inf A5) >0,

e—0

ri:=min4; - 0ase—0,

o (ID);% (r) ,ezﬂfdx) =om(e'e).

Proof. We easily build this sequence by induction on 4, as soon as inf A; = 0. This sequence
has to stop because if inf A,,,+1 = 0, there are at least m 4 2 disjoint domains D; in ¥ such
that o, (Di, e2ue d:c) = o (e g). The associated first eigenfunctions extended by 0 on X
are test functions for the variational problem of o,,(e"<). Their Rayleigh quotient is equal
to o (e¥e) for the min-max characterization of o,,(e"). Therefore the case of equality
gives that one of them is an eigenfunction and this contradicts the maximum principle. <

Far from the singularity points defined in Claim the nodal domains of eigenfunctions

cannot shrink inside balls whose radii converge to 0 outside U§:1 ]Dp§ (107“;7). Thanks to

the following Poincaré inequality result (proposition , we will have uniform bounds
of the L? norm at every scale when the eigenfunction vanishes and the nodal set of the
sequence of eigenfunction has length uniformly lower bounded. They hold on the following
domains we use during the proof:

P

S
Qx =D\ [ Dk,
ke i=1

for some fixed number 1 < K < 10 chosen independent of the problem we consider, p > 0,
and z; € D1 such that if ¢ # j, then z; # x; and
P

T i —
10p < d(zi, 0D _1 ); —_ .
p < min <mi1n (x4 1ép) lgél]n 5
We have the following proposition, coming from capacity estimates:

Proposition 4.1 ([AH96], Corollary 8.2.2 and [Hen05|, pages 95-97). Let r > 0 fized.
Then, we have a constant C, > 0 such that for every f € C>°(Q1) which vanishes on a
smooth piecewise curve I' CC Qi which connects two points of distance r > 0,

1 22y < CrlIV Il 2y -
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4.6. Regularity estimates in the non concentrated case. All the cases of Claim
the ambiant scale or the scales satisfying % — 400 are very similar to handle. In both
cases, the sequence of maps ®. arising from Claim are ”almost-weakly-harmonic” maps
into an ellipsoid.

Indeed, since KE[@E]?:E] =1 on supp(ve), if one can prove that supp(v.) = 93, we get

that |¢>5]§€ =1 on 9%, and thanks to the eigenfunction equation, ®. is a free boundary
harmonic map into an ellipsoid. By compactness results on sequences of free boundary
harmonic maps into some manifold [Sch06, [LP17], JLZ19], we conclude that, ®. converges
in Cl’j) A2\ C) as € = 0, where C is the set of concentration points of v. Therefore, knowing
that |<I>|?: =1 on 0¥ and 9,9, = o®., the sequence of densities e* = &..0,P. also
converges and we get the expected regularity result.

However supp(v,) can be far from being equal to 0X. In this case we will prove that
we still have convergence as € — 0 of the sequence of maps ®, given by Claim (.1} to a
map ® which satisfies the weak equation of free boundary harmonic maps into an ellipsoid.
Thanks to the regularity results of free boundary harmonic maps into some manifold, we
will get that ® is smooth and that the limiting measure v = ($.0,®) dL, is absolutely
continous with respect to dL4 with a smooth density. By the maximum principle, ®.0,®
is a positive density.

We now assume that | oy, dv > 0. We aim at proving a pointwise bound on eigenfunctions
and then thanks to strong pointwise estimates deduce energy estimates and the W2
convergence of eigenfunctions.

4.6.1. Pointwise estimates on eigenfunctions. We aim at proving that ®. is bounded far
from the sequence of singularity points pj given by Claim [£.4, We set for p > 0

B(p) =2\ (U By (mm)) :
=1

Notice that the novelty compared to [Pet19] is that in the following Claim, the bounds of
the eigenfunctions in W12 (X(p)) and C° (X(p)) do not depend on p.

Claim 4.5. We assume that v # 0. Then there are constants C1 and Co such that

(4.17) Vp > 0, limsup || D[ yy1.2(5(,)) < C1
e—0
e—>

Proof. Notice that (4.17) is implied by (4.18) since [|[V®.|| 12(x) 18 bounded by 1.

Now, let us prove , the strategy proof is the same as in [Pet19], but we aim
at getting here constants C; and (s, not depending on p. Since the eigenfunctions are
harmonic functions, by harnack inequalities far from the boundary, we just have to get
uniform bounds at the neighbourhood of the boundary 9%. We set

(4.19) 67 = d (supp(ve) \ Te (1075),5)
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for i € {1,---,s}. Up to a subsequence, we have a constant 0 < 6 < o that {1,---,s} =
I U Is, where

(4.20) L={ie{l,---,s};6{ >0ase—0}and [, = {i e {1,---,s}; 0 >0} .

Up to reduce B , we also assume that

(4.21) supp(v=) N <32\ <U I (p§)>> #0.
=1

This is possible because the limiting measure of v, has a non-empty support on X \
{pla"' )ps}' -
We have the following covering of 0% \ |J;_, ]DYE (p5) by intervals of radius %:

aZ\UH LLJ

satisfying also

< — + +
{z;d(x,0%) 200} \ U ID pl L_J]Dw0 qx)

Let’s handle estimates on the balls ]DJFS (gr) and then estimates at the neighbourhood of
100
the singularity points p{ in the following steps:

STEP 1 :
There is a constant Co such that for any |l € {1,--- L} and any coordinate @é’j,
eltherV5>0V:c€]D+( ), | @59 (2 ))SC%
50
or Ve > 0,Vx ye]D)Jr (q1), ’@k’j ‘ < ’@fj(iv)’ §02’¢§’j(y)‘ .

50

Proof of STEP 1

Let [ € {1,---,L}. Let 1 <k <m, 1< j < and up to change ®/ into —®7 let
(z<) be a sequence of points such that

dMI(z.) = sup ‘@lm ‘ .
z€l 5 (q1)
30

In particular z. € 0X. We set
0 = d(Ze, supp(Pe) N1 5 (@) -
We divide the proof of into three cases.
CASE 1 - We assume that . = O(y/€). Then, {¢57(z.)} is bounded by Claim

CASE 2 - We assume that . — 0 and (Si: —0ase— 0. We let

e = @I;’j(égx + Z.) and e = 5ol (Feztae)
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for € DT |, so that 1 is still harmonic and

Ope = o.€"1). on 551 -
ys_-is

Let y. € supp(ve) be such that |z. —y.| = . and set z. = 5 SO that 2. — 29 as
e — 0 up to the extraction of a subsequence. Thanks to Claim A3, we know that
Pe(ze) = D59 (y.) = O(1). Thanks to estimates on the heat kernel, there exists
D1 > 0 such that

517

e’ < Djonl: .
2

We first assume that ¢, does not vanish in ]D)gL. Then, we can apply Harnack’s inequality
and get some constant Dy > 0 such that

Y. > Do) (0) on DT

4
for all e > 0. Since ). is positive on ]Dr;' (z¢) C D3, by the equation, it is also superharmonic
and we can write that

Velz) > —

—2mfee] Jont (=)

Yedo .

Taking only the part of the integral which lies in DT 1, we get the existence of some constant
4
D3 > 0 such that
1115(25) > D31p:(0)

and this concludes the proof of (4 in this case since ®& Ix2) = v.(0) = O(1).

We now assume that ) Vanlshes on D3 . Since . — 0 as e — 0, and z. € I.(p), by
definition and Claim . 4.4] 1), vamshes on a piecewise smooth curve in ID)+ which
connects two pomts of distance greater than 1. By proposition E 4.1| for Q = D;, we get
some constant C' > 0 such that

fgse [ veta

which proves by trace Sobolev embeddings that {i.} is bounded in L?(I;). By elliptic
regularity, 1. is bounded in L> (]D)Jr) which gives that {®57(z.)} is bounded. The study

of these three cases completes the proof of with a constant Ca(p).

CASE 3 - We assume that 67! = O(1) and that, {®*7} vanishes in D* (¢;). Then
e%s ! is uniformly bounded in ]I+ ) b ) and {Pg k1 is bounded in L2 ID) b
{e*=} i y v 5 ) Y

0 10\4

1
proposition Then {@Ig’j } is bounded by some constant Co in L™ <]I H qz)) by standard
50

/\%\%

elliptic theory on the eigenvalue equation. So is {@’g’j (xe)}-

CASE 4 - We assume that §-1 = 0(1) and that {®7} does not vanishes in D% (q).
20

Then {e%} is uniformly bounded in I ; () by (5.13). Moreover {®%71 has a constant sign
0

and up to take —®*7 we assume that ®%7 > 0 in D% (g;). Therefore ®*J is a positive

. . %
harmonic function with 8,,@5’3 = gle CI’IS’J and a sequence of potentials {e"} uniformly
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bounded in ID)Jr (z). Then ®*7 satisfies a Harnack inequality on ID)Jr (¢;). This conclude
the proof of STEP 1.
STEP 2 :

There is 1 =1,---, L such that
v5>0vxe}15( 1), | Pe(x)] < Co.

Proof of STEP 2

By @.21), let I =1,---,L be such that I ; (¢;) N supp(vz) # 0. The proof is the same
as in the previous STEP, except in Case 41.001nstead of getting a Harnack inequality if

{@f’j } does not vanishes in D% (¢;), we proceed as in Case 2 of STEP 1 and we get a
uniform bound. This concludesmiche proof of STEP 2.
STEP 3 :

Up to increase Co,

ve>0Ve e S\ | [JDg(H)u D% () | 9:(2) < Ca
i€l iel, 10
where the definition of Iy and I is given at the beginning of the proof in (4.20))
Proof of STEP 3 :

We first have that, up to increase C5, we use the previous STEP 1 and STEP 2 with
local L* bounds at the neighbourhood of the boundary. We also use a global Harnack

280}. By the definition of the

inequality for harmonic functions on {z € ¥;d(z,0%) >
covering before Step 1 and since ¥ is connected, we get

(4.22) Ve > 0,Vr € X\ (U D% (p;?)) @ ()] < Cy

i=1 10
Let’s now prove the uniform bound in the neighbourhood of points p; for ¢ € I;. Let
1<k<m,1<j <14 and up to change @’;J into —@f’], let (z¢) be a sequence of points
such that
() = sup B2 (a)]
TeX\ <Ui611 Dg;s (r5)VWUier, D-% (pf)>

10

We set
56 = d(-%sy supp(ﬂe)) .
Ifx. € ID)(;E (p3) \ID)‘% (p5) for some i € I, then by the maximum principle, either x. ¢ 0%

10
and we get the STEP 3 by (4.22) or z. € 9%. We then assume that z € Is=(pf) \ I 5 (p5)-
10

We divide the proof of (4.18)) into four cases as in the proof of STEP 1. The proof is the
same in cases 1, 2 and 3. The key point is that we can always apply proposition by the
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choice of 8¢ in (4.19). To adapt case 4, we assume that . — 2. Then = ¢ {p1,--- ,ps}-
Indeed, Because of Claim we have

Vi € {]-a e 78}75upp(y<€) N HlOrf(pf) 7é @ .

Indeed, if not, by uniform estimates on the heat kernel, rfeﬂf(riE #+P7) — () uniformly on
x € D. We would then get
Ox (Drf (p‘z?% 62“5) — 100

as € — 0 which is not possible by Claim . Now, since = ¢ {p1,--- ,ps}, up to reduce &
in all the previous steps, and thanks to (4.22)), we conclude the proof of STEP 3.

STEP J :

We prove the remaining estimate for indices in Io. Up to increase Co,

4
Vi€ I,Vp € (0, =), limsup sup [P (z) < Cy.
2 =0 z€X\Dp(p;)

Proof of STEP 4

For i € Iy, 6t > . By convergence properties of the heat kernel, we know that for

any 0 < p <6, " = K.(v:) converges uniformly to 0 on I (p;) \]Ig (pi). Therefore, by
standard elliptic estimates, up to a subsequence, ®. converges in C2(ID)%F (pi) \ D} (p;)) for
2

any p > 0 to a harmonic map ®, with Neumann boundary conditions.
Notice that at this stage, ® is defined on D;(p;) \ {p;} and may be unbounded since
2

the C° bound of ®(z) depend on |z — p;| as |2 — p;| — 0. Since ® is harmonic and V&
belongs to L? (ID);F (p,)) as a weak limit of V®, in L?, by point removability, ® is in
2

fact harmonic on Dj (p;). By STEP 3, @ is bounded by C5 on D (p;) \ D% (p;). By the
2 3 10

10

maximum principle and strong convergence on C*(D} (p;) \ D,y (p;)) for any p and i € I,
2
the maximum of ®. on X(p) does not depend on p. Then, we get STEP 4.

Gathering STEP 4 and STEP 3 proves (4.18)). As already said this also proves (4.17)).
The proof of the Claim is complete.
¢

4.6.2. W2 convergence of eigenfunctions. In this section, we set the following weight
function w. defined as the harmonic extension on ¥ of the function [®.|¢_ defined on 9%

(4.23) {Ag“’a -0

Oywe = |Pc|g.  on % .

After pointwise estimates, we want to prove energy estimates on ®.. Then, we aim at
proving that Vw, converges to 0 in L? by the global structure of the equation on ®, given
by Claim in order to use the quantitative estimate of section [3] for w.-harmonic maps.

We first give quantitative non-concentration estimates:



32 ROMAIN PETRIDES

Claim 4.6. We assume that v # 0. Then, we have the following: quantitative non-
concentration estimates on e¥s and |V‘I>€\f], there are constants D1 > 0 and Dy > 0 such
that

D
(4.24) Vp > 0,Yr > 0,limsup sup / e'*dLg < 71 ,
e=0 2ex(p)nds J By () In(y)
. 2 D2
(4.25) Vp > 0,Vr > 0,limsup sup / Vo, |7dA, < .
e=0  z€X(p) J By(z,r) In(1)

We skip the proof since we follow here the same lines as in [Pet19] but again, here, D;
and Dy do not depend on p.

Now we aim at getting better uniform estimates than in Claim This is a necessary
claim to prove that \<I)€|§E is uniformly lower bounded by a positive constant on 9% (so
that we can divide by w, in the key Claim . We also prove a uniform convergence of
|®E|§6 to 1 close to the support of v..

Claim 4.7. We assume that v #£ 0. Then for any p > 0, there exists . — 0 as e — 0
such that

(4.26) Vo € 2(p) NOT, [®[2 (2) > 1 - B,

(4.27) Va € X(p) N supp(ve), )\‘1)5@5 (x) — 1‘ <1-p:.

Again, we skip the proof of this Claim since its proof follows the same lines as in [Pet19].
It is a consequence of Claim and Claim

We are now able to pass to the limit in W12 and on the equation. The key point is to
work on the energy of w. = |®¢|g_.

We notice first that fz(p) ]Vw5|§ has to converge to 0 as € — 0 and then p — 0. This is
forced because cut-off functions around the singularity points have a small energy controlled
by ln% (independent of €), and because of the bounds w. > 1—: on X(p) and |w. — 1| < B¢
on su/})p(ue) and the structure of the global equation on ..

Then, by the harmonic replacement estimates (Claim (3.1))), the free boundary (w.)?-
harmonic replacements \,175 of the radial projection @ = % of ®, are then W2 close to
®.. Thanks to the estimates in the appendix, free boundary (wE)Z—harmonic maps with

small energy are bounded in W?2? for any p € (1,2), so that they converge in W12 %«
by standard compact Sobolev embeddings.

Claim 4.8. We assume that v # 0. Then up to the extraction of a subsequence of {®.}
there is a function ® € WH2(X) such that for any p > 0,

(4.28) . — & in WH(2(p)) ase — 0.
Moreover, ® € C%*(X,) and satisfies

(4.29) @7 =1 on 05\ {p1,- - ,ps}
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and for 1 < k < m, & satisfies
A,k = n Y
(4.30) { 9@ =0 "

0,0% = 0, ®*dv  on 0%

m a weak sense.

Proof. In the first step, we prove (4.28)), in the second one we prove (4.29)) and finally we
prove (4.30)).

STEP 1 :

We have the following energy convergence on we, the harmonic extension of \(I>E|5E on X:
for any p > 0, there is 6 > 0 small enough such that on X5,(p) = {z € X(p),d(x,0%) < 6}

(4.31) lim lim IVwe|*dA, =0.
p—0e—0 Egp(p)

Notice first that by Claim and standard elliptic estimates on harmonic functions
(see also proposition , we is uniformly lower bounded by a positive constant on X(p)
for any p, so that we can divide by w, all along the proof. More precisely, we have that
that for any p > 0,

(4.32) we>1—pf.ase—0on X(p)NoX.
First, we define a cut-off function n € C° (E(f)) such that n =1 on X(p) and

/ V|? < ; :

(4.33) lim lim 77 Ve | | ;’65 dA, =0.

p—0e—0 =

In fact we first prove that

We 1ntegrate the eigenvalue equatlon Ag®. =0 and 0,P. = 0.P.e", against 0.nP. and
agnq)g, where @, iz and we get, remembering that w. = |®.[¢_ on 9%,

(4.34) / 0 |VB. [ dA, + / (Vi1,0:0..V.), dA, = / 2lon P e,
by by ox

where we consider the norm of the gradient with respect to the ellipsoid and that

—~ P ®.|?
(4.35) /n<v<1>s,v<1>€> dAg—i—/ v, %% v, dAg:/ nMeUgdLg’
b &e b We g oy We

Since 5; € &.. We have that

(o -85)700, ootz (01 g 0.

V—,0.0.. VO,

£

(4.36) <v§;, v<1>> -

Ee We We
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2
noticing that ... V&, = (., Vo), =V I‘I’Zlge >, we compute the first left-hand side

term of (4.35)), by considering first the last-hand term in (4.36)):

1 1 |3
N(V—,0:0. VO, )dA; = [ n{ V—,V = )dA,
b)) We b)) We 2
P, P> 1 ®.|> 1
_ /<V77,V > | |55dA /77| ’gEAg (> dAg+/ | E|€5n81, <> dL,
» We g » 2 We ox 2 We

|P. |7 |7 1
_/ (Vi, Vwe), 2525%4 /Zn ;355 ]Vw5|§dAg—2/ (Vn,Vw5>gdAg,

where we notice at the last step that Ajw, = 0. Therefore, using and -,

iy Vo
/n|w€|2| gl,)ggdAg:/ | 8|gEdAg+/ <vn, 0c e vq>> dA,
p) We . We X We g

oL N @ |E 1
_/ n@ “dL, /(V Vo), 2525dA 2/(V17,sz>gdAg

/' ’%A / lo<®[* " dLgy + o
ax We

In (1)

for a some constant C' > 0 indepent of C' and p. We also have by (4.32)) and (4.34) that

‘V(I)E@‘E 2 2 ue
n dAg < n |V<I>E|(gs dAg < n|oPc|" e dLg — <V77,O'E<I>E.V(I)E>g dAg ,
b3 w b)) ) b

£

so that

d_|2 |2 /
[ T, < [ - 70 g, o CC
b w? o% We In (1)
P

for a some constant C’ > 0 indepent of C' and p. We have that

|U£(I)a|§
(4.37) / N (we —1) ———=e"dL; -+ 0ase—0.
0%

We

Indeed, remember that e"s = K.(v.) and that \<I>a|i =1 on supp(ve) by (4.27). Then

/ ||@c]g, — 1] evdL, = / </ pe(,y) ||®ele, — 1] dve<y)> dLy(2)
3(p)Nox 3(p)nNox X
= / / H<I>€\g€ - 1‘ dys(y)> dLgy(z)
S(p)nos |Jox

< 54D [ [ e, dLy)
i—1 7 2(p)NOZ J By (pi, f5)

for some constant D, and using uniform estimates on the heat kernel, and remembering
2
that % is bounded, we conclude the proof of (4.37). Then we have that
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o, |7 c'C

lim [ 7|Vw.|® | El’ga dA, < 2
e—0 » CUE ]-nl
p

and letting p — 0 completes the proof of (4.33). The STEP 1 of the current Claim
easily follows from uniform lower boundedness by a positive constant of |P| ¢. in the set
{z € X(p),d(z,0%) < 0,} for some 0, small enough.

STEP 2 :

We prove now ([A.28)), the strong W12((p))-convergence of {®.} for any p.

This result is just a consequence of the quantative estimate (3.5 in Claim and the
first Step. Indeed, by Claim [4.4]and the boundedness of the energy, up to partitions of unity,
one can focus on disks ;I for  small enough to satisfy the assumptions of Claim (3.1]).
To apply STEP 1, we also assume r < J,. We define the free boundary (w5)2—harmonic

replacement W, of ;}Z = %. Then, by e-regularity results on these maps (see proposition
in the appendix), we know that \17; is bounded in W24(DY) for any ¢ € (0,2). In
2

particular, by compactness embeddings, up to a subsequence W, converges strongly in
Wh2(DY) and in C%*(DY). Since ®. — W, converges to 0 in WH2(D;}), and ¥, = w. U,
convergzs strongly in WlQ’Q(DJ%F), we obtain that ®. converges strongly in Wl’Q(]]])'g).

This completes the proof of STEP 2 in the current Claim.

STEP 3 : We prove now the weak eigenvalue equation .

Let ® be the strong limit in W2(X(p)) for any p. By the previous convergence results,
® € CO*(%(p)). Again, we can argue locally up to partitions of unity and take a half-disk
D, for r small enough to satisfy o, (D, €2%) > o,,(e%). Let ¢ € C°(D,). We have that

¢ (0cPee"dLy — oPdv) = ¢
Y ox

+ (o (e'dA, —dv) .
o0x

(0P —0®)e"=dL,

Then on the first right-hand term, we have that

C (0.0, — o) e™dL, < (/H o, — odf? e“EdLg>

1
1 - 9 2
(st [ o)

) 3
C </D+ IV (@, — (I))\gdAg>

for some constant C' independent of €. Letting ¢ — 0 in a weak sense to the eigenvalue
equation A;®. =0 and 9,P, = . P.e%t, we get the equation @ in a weak sense on
Y(p) for any p, and then on ¥\ {p1,--- ,ps}. Since ® belongs to WH?(X) as a strong limit
of ®., equation occurs on ¥ in a weak sense and STEP 3 is proved.

ox

IN
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By strong convergence in any LP of ®., up to a subsequence again, we have that ]¢>|z~ >1
dAg-a.e on 0X. By continuity of ® on (p), |<I>|§ > 1 holds everywhere on 0% except
maybe on {pi,---ps}. Since Vw, converges to 0, we obtain that w is a constant. Then
|®|2 is a constant. Since [y, <|<I>\Z — 1) dv = 0 by the previous convergences, [, dv # 0
and v does not have any atom, we conclude that |<§|(2g =1on 90X\ {p1, - ,ps} and we get
(4.29). This concludes the proof of the Claim.

&

Notice that this Claim can be adapted to prove precisely Theorem for k > 1, if there
is j > 1 is such that o5 — 0 as ¢ — 0 and 05, — 0 is uniformly lower bounded by a
positive constant. In this case, notice that we do use directly proposition [3.1] We just
delete the coordinates of . associated to of,--- , 05 because they necessarily converge to

a constant in W12, We then apply proposition E to the map @, restricted to coordiantes
associated to eigenvalues o o5 S s O

Now, we are able to prove Theorem with the asumption [, oy dv > 0. We have that

|®]§ —10n 8%\ {p1,---,ps}. Moreover, ¢ is harmonic in ¥ and 8,® € (To€)* on O%. It
is exactly the asumption of being a weak free boundary harmonic map into the ellipsoid £.
Therefore ® is a smooth map and satisfies the free boundary harmonic map equation in £
in a strong sense. Now, we have that

v=(0,02.9)dL,,
which means that v is absolutely continous with respect to dL, with a smooth density.

4.7. Regularity estimates in the concentrated case.

4 7.1. Reduction to a similar problem as in the non-concentrated case. We now assume
\[ — 400, where a, := af for some 7 is given by Clalm . We set 0. m, where

a: — a € R? as e — 0. Then
(4.38) e —>0ase—0.

As noticed in the beginning of Section we handle this case similarly to the non-
concentrated case. For all the section, we refer to for all the notations we use at the
scale of concentration: we use the ”hat” notations for all the objects which play the same
role as the previous objects up to translation and dilatation.

First, notice that

(4.39) eledr —die —, 0in M(R) as e — 0.
Indeed, for ¢ € CY(Ig,) for some Ry > 0, and R > Ry, we can write that

/R ((2) (62125(Z)dz—dﬁg(z)> = / ( /ER Pe(y; )C(z))dLg(y)> dv.(z)
/ < / C(f’?))ﬁs(z,x)dz> di.(z)
/ (/ (2, 2)dz — 1) ((z)die () .
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By estimates (5.15]) on the heat kernel, we have that

/E | (/ pa<x,y>|<<@>\dLg<y>> dvez) < ¢l sup /H pe(, y)dLy ()

HRO xEE\ﬁR

(R—Rq)?
67 80¢
< Ol ———] —=>0ase—0.

VO

By estimates (5.13) on the heat kernel, we have that

[ ([ 60~ ctneni) i < s [ oo M' .

— Qase—0

since ( is uniformly continuous on R. Finally, we have by the heat kernel estimate (|5.16))
that
lim lim sup
R—+400e—0 z€lp,
so that we get (4.39). We denote by © the weak star limit of both {e%dz} and {7.} in
M(R).

Now, in order to perform the same pointwise estimates as previously we have to be far
from singularity points. By rescalings of the points p; and radii ;, we only keeping indices
1 <7 < s such that

/ Pe(z,2)dz — 1‘ =0,

Ir

)

(4.40) e 4 0and la: —pf| = O (a:) ase — 0,
Qe
Denoting I this set of indices of cardinal I =¢ < s, and o : {1,--- ,t} — I a reordering,
we denote . .
P = " Pol) g = Lol)
Qe Qe

and assume that up to a subsequence, ]5? converges to p; for any j. These points ﬁ; with
radius 75 play the same role as p§ and 7“§ in the previous section. We set for p > 0,

Qp) =D\ [J Dy (55)

which plays the same role as ¥(p) in the previous section.

We have by Claim

(4.41) lim lim ele = / dv; .
p—=0e=0 Jo(p)nRx{0} Rx{0}

We aim at getting regularity estimates on d. and e’ in Q(p), thanks to (4.41)), and
following the proof of Claim [4.5] and Claim We get:

Claim 4.9. We assume that 0; # 0 in Claim[{.9 We have the following
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o Estimates on i’g, there are Ch > 0 and Cy > 0 such that

4.42 Vp > 0, limsu H <c,

(442) p P I el gy = 1

(4.43) <C
e—0 Co(Q(p))

e Quantitative non-concentration estimates on e and ]V&%F: there are Dy > 0 and
D1 > 0 such that

; D
(4.44) Vp > 0,Yr > 0,limsup sup / e < i ,
e0 2eQ(p) /1 (2) In()
A D
(4.45) Vp > 0,Vr > 0,limsup sup / Vo, |2 < =
e=0  zeQ(p) /Dr(z) ln(%)

4.7.2. Global pointwise bound of eigenfunctions. What is slightly different to the non-
concentrated case is that we need a pointwise estimate of {®.} on the whole surface in
order to perform in Claim the same estimates as in the proof of Claim [4.7] Indeed,
since the heat kernel is globally defined on the whole surface, we have to be sure that
the integral estimates on the thin parts stay bounded in order to get the expected sharp
pointwise inequality on the eigenfunctions in the bubble, we proved in Claim on the
surface.

In this section, we aim at proving that up to a subsequence, we have a uniform bound
for the sequence of eigenfunctions on a large global surface ¥, . defined below in ,
far from singularity points.

Claim 4.10. For any p > 0, there is a constant Co(p) > 0 such that
Qe

ln<1+ M)

The proof is based on the estimates of Claim We formulate in Claim below
what we need. One can also follow the lines of Claim 11 in the original paper [Pet19].

First, we will only be able to give a uniform pointwise bound far from singularity points
on all the dyadic annuli centered at a. at the intermediate scales between o, and dg.
We denote by {wj } k=0, ko.ko+1 (With kg > 0) a family of sequences such that w§ = o,
Wiy+1 = 00 and for any k € {0,--- , ko},

E

Ve € 5., |02 (2) < Colp)

—0ase—0,

C"lc-|—1
where the set
i

Ik_{ie{l s}; ‘ps |:O()andr

—>Oasg—>0}
Wy,

is non empty for any k € {1,--- ,ko}, and the indices i € I \ Uzozl I, satisty

' i

e or [p5 —as| = O(ae) as € = 0,
e or dy(a,p;) is lower bounded as € — 0.

| — 0 and ‘png a| as e — 0,

i

e cither |p5 —
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It is easy to prove by induction that such a family {w}} exists. Up to reorder with a
p5

bijection oy : {1,---,lx} — I, we denote by pz*! = %{:% Let Ry > 0 be such that
k

pik(l)_ae
1

for any €, k.1, pet = < Ry. Up to a subsequence we assume that pz"! — p** as

e— 0.
For p > 0 and € > 0, we set

(4.46) Ype=2\S5,¢,
where S is the singularity set

ko g
Sp,e = (U U w?D;r (ﬁk’l) + as) U U B;—(ﬁup) )

k=01=1 i€l +1

where we denote by Iy := I defined as indices ¢ satisfying (4.40) and Ij,4+1 are indices ¢
satisfying that dg(p;, a) is lower bounded by a positive constant.
We fix 0 < p < 1. In order to prove Claim (4.10]), we need a key pointwise estimate on
ve Rg

annuli 'yaA*,;O =D \]D):LE around p; (where Ry is defined just before the definition
2 > Ro
(4.46) of X, ,): either the sequence (®.) is bounded in U, = AJIFLO \ Sy~ or it satisfies a

pPYe
Harnack inequality on this set. Notice that we very often have S,. " = (). It is only non

empty at the scales wid.

Claim 4.11. We have that for 1 < i < s, 1 < j < t;, there is B(p) > 0 such that for
all eigenfunction ¢. as a coordinate of ®.° (®. is the map in Claz'm ), and for all
sequence 2Ry < ve < Q‘ST?O, either

Vo € Up, |¢e(2)] < B(p)

o € U 500 < Jou(o)] < Blo) lo-to)
Now we set
mo(t) = - ®. (2)dl()

Tt Jonj (ac)

the mean value on half circles centered at a. of ®.. We classically have
t [op. Ov®e(u)du
7%@:ﬁ@g_/ m825 ds .

TS
Therefore, since 9, ®. is bounded in L', we have a classical log estimate on m,

(1.47) hm@MSUx%N+m<i>-

£

Since by Claim | fe(a)| is uniformly bounded, by Claim and (4.47)), we get Claim
410l
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4.7.3. Wh2_estimates on eigenfunctions. Now, using the estimates by Claim we can
adapt the proof of Claim on the bubble scale (follow the lines of Claim 12 in [Pet19])

Claim 4.12. We have for any p > 0, there exists S — 0 as € — 0 such that

(4.48) Vo € (o) 0 (R x {0)).[b]_ (2) 21 5.
and
(4.49) v € Q(p) N supp (52) ' b, (2)— 1‘ <B..

€

Then one following the lines of Claim can pass to the limit in WH2(Q(p)) for any
p>0.

Claim 4.13. Up to the extraction of a subsequence of {®.}, there is a map ® € Wh2(R2)
such that for any p > 0

(4.50) b, — & in WHEHQ(p)) .

. .12
Moreover the limiting function satisfies ® € C%*(Q(p)) and ‘@‘ =1 4n Rx{0}\{p1, -, Pt}
and the equation A® =0 and 8,® = o®di on R x {0} in a weak sense on Ra_.

12
Finally, let’s prove Theorem with 7; # 0 in Claim We have that ‘@‘ =1

everywhere except maybe on a finite number of points. Since we have that Ad =0 and
0,9 = o®r in a weak sense, then 9,P € (Tég )L which is exactly the asumption of being

a weakly free boundary harmonic map into the ellipsoid £. Therefore d is a smooth map
and satisfies the free boundary harmonic map equation in £ in a strong sense. Now, with
0,® = o®U again, we have that

U = ($.9,®) Leb ,

which means that © is absolutely continous with respect to Leb with a smooth density. Up
to conformal diffeomorphism of the half plane to the disk and point removability of finite
energy free boundary harmonic maps, we complete the proof of Theorem

5. APPENDIX

5.1. Classical oscillation estimates for harmonic functions. We have (see e.g [Sch06),
JLZ19] for a more general result)

Proposition 5.1. Let M be a compact submanifold of R™. If u € W12 (D, ,R™) is a
harmonic map such that u(I) C M, we have,

1
sup dist(u(z), M) < C (/ |Vu\2> i )
a:E]D)T Dy

2

1

2
am|w@—u@nsc</ wwﬂ .
a:,ye]D)"l' D4

1
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5.2. Estimates on free boundary w?-harmonic maps. We give a e-regularity result
on free boundary w?-harmonic maps into an ellipsoid £ C R™, and we explain how to
prove (5.11)). Let w be a W!2-function which satisfies the inequalities

(5.1) Clw <Sw<Cy.

Let M be a compact submanifold of R™. We assume for simplicity that dim(M) =m — 1,
and that we have a global normal vector N. This is the case for ellipsoids. For spheres, we
refer to [LP17]. For more general results, see [JLZ19]. At a neighbourhood U of M, we
can define the orthonormal projection p : U — M, and the symmetry with respect to M,
s =2p—id. Let u € W42 (D, M) a free boundary w?-harmonic map as defined in section
It satisfies the equation

—div(w?Vu) =0 in Dy
(5.2) {82u = (Ou.N(u)) N(u) on [~1,1] x {0} .

in a weak sense. We assume that u(z) € U a.e for = in Dy, up to reduce the energy thanks

to Claim ((5.1)) and we set

(5.3) i(z) = {u(x) if v €Dy

souop(x) ifxeD_,

where p(z1,22) = (r1, —z2). Then we easily check that u satisfies in a weak sense the
following equation in D thanks to (5.2))

(5.4) —div(AVu) =0in D,
where A € W2(D, Gl,,(R)) such that A € L™ and A~! € L* is defined by
w?id in Dy
5.5 Alx) =
(5:5) (@) {szs(sl(:n)) inD_.

Working with @, we easily prove from classical Wente-type equations the following e-
regularity result on u:

Proposition 5.2. Let § > 0, p < +o00. There is gy := €9(M,d) > 0, and a constant
C := C(p, M, 6) such that if w satisfies (5.1]) with C,, < J, then any weak w?-harmonic

map u € WL2(DT, M) with
/ Vul|? +/ v (wQ){2 <ep,
D+ D+

satisfies that for any q € (1,2), w € W>4(DT) and for any 1 < p < +o0
2

(5.6) IVull oty < ClIVUll 2 psy -

+
1
2

For more results, see theorem V.3 of [RivI2]. The bootstrap stops at W24 with ¢ < 2
since we do not have more assumption about the regularity of w?. In this case, then there
is not a priori e-regularity for the L>-norm of the gradient of w. Therefore, we cannot use
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directly the techniques in [LP19] to short-cut the proof of Proposition More precisely
with a L version of (5.6 for u = ¥, we would prove directly that

(5.7) 1
0,1 < ¢ </D+ yv<<1>_\11)|2> (/M \v@f)Q .

11=/|<1>—x1/|§ﬁ.a,,if§/\q>—\1z|§
I I

from (3.9) thanks to a classical Hardy inequality.
In our context, we have that |[Vu|?* belongs to the local Hardy space h!(D) since it is
controlled by a Jacobian:

(5.8) \Val* < CC,Vi.AVi = CC,Va.Viy
where AV#@ = V41 is the Hodge decomposition of AV and we get:

12 -
(5.9) [P, 5, < OC IVl ao) 19l 20
For more general results see Lamm-Lin [LL13]. We also use the following Claim in [LLI13]

Claim 5.1. Q € h'(D) such that Q > 0 a.e. Then there is a solution f € VVol’2 (D)NL>® (D)
such that

(5.10) {Af =@ inD

f=0 on 0D ,
satisfying
[l + 1V Az < CIQU ) -

~2
Then we set Q = ‘V\IJ’ € h!(D) in order to use the Claim with the formula (5.9). We

extend the free-boundary w?-harmonic map U on D by (5.3) and we get thanks to [CMOS)]
that if there is a map ® such that ® = ¥ on I, extended by ® on D

2 2
o )V\II‘ < Cf]m ‘V\I/’ < gq for gq sufficiently small,

and if we have

-

(5.11) /D\@_&)ﬁv@fgc\@/ﬂ)\v(@_&s)f.

5.3. Uniform estimates on the heat kernel. The heat kernel p.(z,y) at time ¢ > 0
of the boundary of a compact Riemannian ¥, g is defined on a union of circles (0%, ¢g). At
time £ > 0 it satisfies uniform bounds: there is Ay > 1 and p > 0 such that for any € > 0,

(5.12) Yo,y € 8, 0 Ao G 1)

e
ApVidme Ve

We also have uniform bounds on the local rescaled heat kernel p.(z,y) by some parameters

a: € R and o > 0 such that a. — a € R and o, — 0 as € — 0. We refer to the notations

used in the section We have for any R > 0, for any fixed 0 < p < 1

< pa(%?J) <

ol o) )
5.13 1= p) < pelz,y) < 1
(5.13) g TP Sy < e (14))
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uniformly on I x [, where 6, = m, for all € > 0 small enough. For a sequence of

measures v, € M(X), we also have uniform bounds for R > r > 0 and . — 0 as ¢ — 0:

_ (R—1)?

e 80¢
5.14 sup / 2p. (&, y)dve(y) = O | ———
(5.14) L S =(Z,y)dve(y) R

We prove it thanks to (5.12)) and (5.13)). Let x € Dr_, and let us write that

ae/ . pa(avjvy)dVa(y) = evl(i)/ ﬁe(xaz)d’)s(z)"i_/ aepa(i'ay)d%(y)
I\Ir 2 \IR

o\l

I
c? C2R
_|x—z\2
e 80¢ R
< 2 / € i)
lo2r\Pr 0,
acsAg dg(Z,y)
+/ e 2= dv.(y)
62\19(%,0‘600 By Vdme
_(Bon)? A 2 2
e 860 6% aZ(R—-r1)
S O + 0te e,sT

\/@ Vdame ’

where I, C I,(ac, a:Cor) C I(ae, cCoR). This proves |i We also have that

_(R-n)?

R

(5.15) sup /pg(x,y)dAg(y):O c 98
xGE\ﬁR I €

Let 2 € ¥\ Ip. We assume that = € Loz \ Ir. We write that

_lz—zl? ro _(®’-n)?

pe(x,y)dL /p z,2)dl < 8- (] < 50:
[ reear = [ nna< [ .

if € is small enough. If z € ¥\ E)C(%R C X\ By(ae, a:RCy), we write that

[pe(way)dLg(y) < / pe(z,y)dLy(y)
I I4(ae,aeCor)

A dg(z,y)?
< =2 e dLy(y)
vare J1,(a,a-Cor)
_ag(Rfr)z
4e
< 0O

e
Ve
This proves Now let’s prove that

5.16 lim i
(10 LN

/ Pe(z,x)dz — 1’ =0.
Dr
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We fix 0 < p < % and R > 0. Then for € small enough, we have by 1' that

_ \x—zﬁ(l—p) 1+
R e E p
Pe(z,2)dz < / ———(1+p)dz = ——=
/H‘R ° R 47T9€ \% ]' - p

for any x € I, and that

_lz=z>(14p)
e 40¢
/p;(z,:c)dz > /(1—p)dz
Ir Ir 47T0€
,m —|z—z\2
¢ i (1—p)dz / ¢ dz
> - (1= _ -
- R 470, p R\Ip \2me
1—p

> ———+o0o(l)ase—0
> =L o)

uniformly on I,. Letting € — 0, then R — +o0c and then p — 0 gives (5.16)).
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