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EXTREMAL METRICS FOR COMBINATIONS OF LAPLACE

EIGENVALUES AND MINIMAL SURFACES INTO ELLIPSOIDS

ROMAIN PETRIDES

Abstract. We give a variational method for existence and regularity of metrics which
minimize combinations of eigenvalues of the Laplacian among metrics of unit area on
a surface. We show that there are minimal immersions into ellipsoids parametrized by
eigenvalues, such that the coordinate functions are eigenfunctions with respect to the
minimal metrics. This work generalizes the author’s maximization for one eigenvalue
among metrics of unit area on a surface related to minimal surfaces into spheres. This
work also generalizes the previous characterizations of critical metrics for one eigenvalue
to any combination of eigenvalues from target spheres to target ellipsoids.

1. Introduction

Let Σ be a compact connected surface without boundary. We denote by

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ · · · ≤ λm(g)→ +∞
the eigenvalues with respect to the laplacian ∆g = −divg(∇) for a Riemannian metric g
on Σ. Obtaining sharp bounds on Riemannian quantities depending on the eigenvalues λm
with respect to the metric g has been the subject of intensive studies in various fields over
the past decades. Because of the scaling properties of the eigenvalues λm(αg) = α−1λm(g),
one can hope for relevant bounds fixing the area Ag(Σ) = 1 of the surface. With this
assumption, the sharp lower bound for any eigenvalue is 0, using the classical ”Cheeger
dumbbells” as minimizing sequences - creating as many ”disconnections” of the surface
as needed. The classical Hersch result [Her70] gave the upper bound 8π for the first
eigenvalue on the sphere, only realized by the round sphere. Then Berger [Ber73, Remark
2.6] asked the question whether the supremum of the first eigenvalue among metrics of area
1 is finite and if on tori, this supremum is realized by the flat equilateral torus. In their
celebrated paper [YY80], Yang and Yau gave a bound depending only on the topology
of the surface on the first eigenvalue. In particular, the supremum is finite. After that,
Yau [Yau82, problem 71] raised the natural question about the finiteness of the supremum
of the following eigenvalues, λm(g) among metrics of area 1, later proved by Korevaar
[Kor93].

Thanks to these results, one can expect by variational methods to maximize eigenvalues
among surfaces of fixed area. Nadirashvili [Nad96] answered the question by Berger proving
that the flat equilateral torus maximizes the first eigenvalue among tori. Moreover, the Euler-
Lagrange equation associated to this variational problem reveals that the maximal metrics
are induced metrics of a minimal immersion into a sphere. This makes connection to many
problems about minimal surfaces into spheres (see for instance [Cal67, LY82, MR86]...),
while it gives regularity of critical configurations for eigenvalues. One might naturally ask
for existence of maximizers for any topology and any m. After many investigations for low
topology (see discussions below), a general variational method was stated by the author
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[Pet14a, Pet18, Pet19]. His work was inspired by [FS16] who noticed the link between
Steklov eigenvalues and free boundary minimal surfaces into Euclidean balls. For instance,
combining gap results in [MS19a] and the main result in [Pet14a] gives existence of minimal
immersions by first eigenfunctions for any topology by maximization of the first eigenvalue.

Now, working with higher eigenvalues, one would prefer to optimize a combination of
them instead of maximizing just one for several reasons. As discussed below, the natural
eigenvalue functionals initially raised by Berger [Ber73, Proposition 4.22] and Yang and
Yau [YY80] are λ1 + · · ·+λm, or 1

λ1
+ · · ·+ 1

λm
. Moreover, many studies ask for interaction

properties between lots of eigenvalues and eigenfunctions, even with infinite combinations
to capture properties on global Riemannian invariants (see [Sel56, OPS88, BBG94]...). We
can also simply remark that maximizing one single eigenvalue may not give a connected
maximal configuration if it is not the first one (see [Nad02, Pet14, KNPP19, Kar19b]...).
In this case, the maximizers just correspond to maximizers of lower eigenvalues in the
connected components, preventing from building new minimal surfaces. This appears to
be the general picture: maximizing just one eigenvalue forces some previous eigenvalues to
shrink.

In the current paper, we give a much more general and flexible way to obtain sharp
bounds and extremal metrics for combination of eigenvalues. We perform a variational
procedure on a C1 function F :

(
R?+
)m → R+ with m ≥ 1, depending on eigenvalues. We

set

ΛF (Σ) = inf
g
F (Ag(Σ)λ1(g), · · · , Ag(Σ)λm(g)) ,

where the infimum is taken over all smooth metrics on Σ. We changed the ”maximization”
point of view into a ”minimization” since it is more natural for all the examples we give
below, like 1

λ1
+ · · ·+ 1

λm
. For sums of eigenvalues, we minimize 1

λ1+···+λm . We only assume
the following condition on F , satisfied for all the functionals we consider in the introduction:

(H) F is a nonincreasing function with respect to all the coordinates

As we notice below, for 1 ≤ k ≤ m, we naturally introduce

ΛF,k(Σ) = inf
g
F (0, · · · , 0, Ag(Σ)λk+1(g), · · · , Ag(Σ)λm(g)) .

If Σ is oriented of genus γ, we denote ΛF (γ) := ΛF (Σ) and ΛF,k(γ) := ΛF,k(Σ). We state

Theorem 1.1. Assume that Σ is a closed oriented surface of genus γ ≥ 0. Assume that F
satisfies (H). If the two following assumptions

(1.1) ΛF (γ) < ΛF,1(γ)

and

(1.2) γ = 0 or ΛF (γ) < ΛF (γ − 1)

hold, then there is a metric g on Σ, realizing the minimum ΛF (γ), and g is smooth up to
possible conical singularities. Moreover, there is a (possibly branched) conformal minimal
immersion Φ : (Σ, g)→ E into

E =
{

(x1, · · · , xm) ∈ Ri1 × · · · × Rim ;λ1 |x1|2 + · · ·+ λm |xm|2 = 1
}
,
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a Euclidean ellipsoid in Ri1 × · · · × Rim, such that the coordinate functions of Φk are
eigenfunctions with respect to λk := λk(g) for 1 ≤ k ≤ m. Moreover, denoting for some

map Ψ : Σ→ Ri: Eg(Ψ) = 1
2

´
Σ |∇Ψ|2g where |∇Ψ|2g =

∑i
j=1 |∇ψj |

2
g we have

2Eg (Φk) = λk

ˆ
Σ
|Φk|2 dAg = Ag (Σ)

λk |∂kF (λ1Ag(Σ), · · · , λmAg(Σ))|∑m
i=1 λi |∂iF (λ1Ag(Σ), · · · , λmAg(Σ))|

.

This is a generalization of the author’s result about maximization of one single eigenvalue
g 7→ Ag(Σ)λm(g) for m = 1 [Pet14a] and m > 1 [Pet18]. The first assumption (1.1) just
prevents the first eigenvalue of minimizing sequences from converging to 0. With this
assumption, we always obtain a connected surface at the limit. In this case, Theorem (1.1)
always gives a minimizer on the sphere, while ΛF (γ) < ΛF (γ − 1) is a natural condition
to prevent from possible degeneration of minimizing sequences to lower topologies. As
already said, for F (λ1) = 1

λ1
, strict inequalities occur for any topology.

We also prove in Theorem 3.1 below, that critical metrics g for combinations of eigenvalues
are metrics conformal to the induced metrics of minimal immersions Φ into (Pseudo)-
Euclidean ellipsoids, with a conformal factor determined in terms of the coordinate functions
of Φ (which are also eigenfunctions with respect to g) (see section 3). With assumption
(H) for F , the target manifold is a Euclidean ellipsoid. If only one eigenvalue appears, the
target manifold is a sphere. Therefore, we also generalize the characterization of critical
metrics for eigenvalues settled by Nadirashvili [Nad96] and then El Soufi-Ilias [ESI00] for
one Laplace eigenvalue on closed surfaces, and by Fraser and Schoen [FS16] for critical
metrics on one Steklov eigenvalue on surfaces with boundary.

Notice that the eigenvalues appearing in minimal immersion may not be all the eigenvalues
appearing in the functional. One might just assume in addition that (λ1, · · · , λm) is not a
critical point of F to have a non-empty conclusion. More precisely, up to a rearrangement
of coordinates functions of Φ associated to the same eigenvalue, we can modify the target
ellipsoid

Ẽ = {(x1, · · · , xs) ∈ Rj1 × · · · × Rjs ;µ1 |x1|2 + · · ·+ µs |xs|2 = 1}
where

{µ1, · · · , µs} = {λi; i ∈ {1, · · · ,m} and ∂iF (λ1Ag(Σ), · · · , λmAg(Σ)) 6= 0}
and jk ≤ mult(µk). In particular, the dimension of the target ellipsoid satisfies

max{2, s− 1} ≤ j1 + · · ·+ js − 1 ≤
s∑

k=1

mult(µk)− 1 ≤ m− 1 +mult(λm)− 1,

where the lower bound 2 is necessary because Φ is a (possibly branched) immersion.
A generalization of Theorem 1.1 is given in section 2 (Theorem 2.1). We presented

Theorem 1.1 first because it is sufficient for the applications of the introduction and the
general Theorem 2.1 gives minor improvements for the existence question. In the following,
we discuss the motivations and applications for these theorems.

Remark 1. Notice that in the current paper, we favor the minimization of functionals
g 7→ F (λ1(g)Ag(Σ), · · · , λm(g)Ag(Σ)) under all the metrics rather than the minimization
of g 7→ F (λ1(g), · · · , λm(g)) under the metrics of fixed area. These problems are exactly
the same when the map F is homogeneous while it does not a priori give the same extremal
metrics otherwise. All the techniques used in the current paper are also adaptable for the
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second family of problem: thanks to the use of Lagrange multipliers associated to the area
constraint on admissible metrics Ag(Σ) = A0, we can notice that the minimal metrics are
still associated to harmonic/minimal maps into ellipsoids. The second family of problems
seems to be more convenient in the context of minimization of the trace of the heat kernel
we raise in Section 1.4, while the first family of problems is convenient for all the following
examples of applications given in the introduction.

1.1. Maximization of one eigenvalue. In the previous papers [Pet14a] and [Pet18], the
author stated a general program for the following maximization problem

Λm(γ) = sup
g
Ag(Σ)λm(g)

for m ≥ 1, where the supremum is taken among all Riemannian metrics on Σ (oriented of
genus γ), computing by induction Λm(γ) and the associated extremal metrics by induction,
because one of the following case has to occur

• There is a maximal metric on Σ. In this case, the metric arises as the induced
metric of a possibly branched minimal immersion into a Euclidean sphere or
• Λm(γ) can be computed as a sum of previous values Λmi(γi) for

∑s
i=1mi = m and∑s

i=1 γi ≤ γ (and γ1 < γ if s = 1) naturally arising as the maximal m-th eigenvalue
of a new surface without boundary (not necessarily connected), obtained by cutting
Σ along a finite number of closed curves.

It turns out that both alternatives can occur thanks to these typical examples

• For k = 1, [MS19a] proved that if a surface Σγ of genus γ is realized by a maximal
metric g, then by a very clever and beautiful glueing around two points on Σγ

with a thin cylinder, one can build a perturbated metric gε on a surface Σγ+1 of
genus γ + 1, such that Agε(Σγ+1)λ1(gε) > Ag(Σγ)λ1(g). By induction, this result
combined with the author’s result, and Hersch’s result for the initialization, the
proof of existence of a maximal metric for the first eigenvalue is complete for any
γ. Another recent similar result is given in the Steklov case in [MP20].
• For γ = 0, on the sphere, Λm(S2) is never realized by a smooth metric for m ≥ 2

and we deduce by the other alternative that Λm(S2) = 8πm for any m ≥ 1.
Indeed, we know by [CES03] that Λm(S2) ≥ Λm−1(S2) + 8π and by induction that
Λm(S2) ≥ 8πk. Moreover, if there is a maximal metric g associated to Λm(S2), then
g is the induced metric of a minimal immersion into a Euclidean unit sphere, where
the coordinate functions are associated to the m-th eigenvalue λm(g) = 2, and we
must have λm−1(g) < 2. It is the case by Hersch theorem [Her70] for m = 1. In
[KNPP19] the four authors remarked that it is not possible when m ≥ 2 thanks to
previous results by Ejiri [Eji98]: any minimal 2-sphere into a Euclidean sphere has
a degree d such that Ag(S2) = 4πd and m ≥ d+ 1 as soon as d > 1, so that since
8πd = Ag(S2)λm(g) ≥ 8πm, we have d > 1 and

8πd = Ag(S2)λm(g) = Λm(0) ≥ 8πm ≥ 8π(d+ 1)

leads to a contradiction. By beautiful refined estimates on the so-called spectral
index of harmonic maps, the same kind of result occurs on the projective plane
Λm(RP2) = 4π(2m+ 1) (see [Kar19b])

Both applications led to significative improvements in a long story of investigations. For
k = 1, Hersch [Her70] proved that Λ1(0) = 8π is only reached on the sphere. Nadirashvili
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solved the Berger problem for the first eigenvalue on tori, proving that Λ1(1) = 8π2
√

3
only

realized by the flat equilateral torus [Nad96]. It is also proved Λ1(2) = 16π is realized by
an infinite set of well described metrics [JLNNP05, NS19]. We do not know the explicit
maximal surfaces for γ ≥ 3 but it is proved in [Kar19a] that they cannot arise from the
upper bound on the first eigenvalue by Yang and Yau (see below), countrary to genus
0 and 2. Similar results were proved in the non-orientable case on the projective space
[LY82] and on the Klein bottle [JNP06, ESGJ06, CKM19]. For γ = 0, beyond the result
by Hersch for m = 1, there is a test function method to prove that Λ2(0) = 16π is not
realized (see [Nad02, Pet14]). The following results for the sphere and projective plane
[NS17, NP18] were completed in [KNPP19, Kar19b] for any m. The use of [Pet18], [MS17]
and [MS19a] completes the proof of existence of a maximal metric for the first eigenvalue
for any topology of Σ.

The question whether there is a maximal metric on Σ for m ≥ 2 and γ ≥ 1 or not is
still open, but it is likely that it is not the case at least for a large m when γ is fixed, so
that we should be able to deduce lots of sharp bounds for eigenvalues. This maximizing
method for m ≥ 2 is not the best way to build other new minimal surfaces, because of the
topological degenerations (disconnection, loss of genus) of maximal configurations. Thanks
to the new approach in the current paper, we relax the target manifold from a Euclidean
sphere to a (Pseudo-)Euclidean ellipsoid, which gives much more possibilities to describe
extremal behaviours on eigenvalues.

1.2. Non-planar minimal spheres into 3-ellipsoids. A problem raised by Yau [Yau87]
in section 4, asked for existence of non-planar embedded spheres into 3-ellipsoids. This result
is a priori surprising since a classical result by Morse stated that some ellipsoids contain at
most three embedded closed geodesics: the equatorial ones. However, in higher dimension,
fruitful works initiated by Marques and Neves [MN17] lead to the general resolution of the
following famous Yau’s conjecture by min-max methods (see Song [Son18]): any manifold
of dimension 3 admits infinitely many smoothly embedded minimal surfaces.

In this context, for ellipsoids, we look for many numbers of embedded minimal spheres.
Of course, ellipsoids contain at least 4 planar embedded spheres (equatorial spheres) but
one might expect more ones, which are non-planar. This question, left open for years was
recently solved by Haslhofer and Ketover [HK19]: sufficiently elongated ellipsoids contain
a non-planar minimal sphere. With other methods, Bettiol and Piccione [BP21] proved
the existence of infinitely many non-planar minimal spheres into rotationally symmetric
sufficiently elongated ellipsoids.

In our setting, we focus on the minimisation of combinations of first and second eigen-
values on spheres: F (x1, x2). We might obtain new minimal spheres into rotationally
symmetric 3-ellipsoids. Indeed, since the multiplicity of the second eigenvalue is bounded
by 3 on spheres (see [HON99]), the minimal immersions given by Theorem 1.1 have at
most 4 independent coordinates (which are eigenfunctions associated to first and second
eigenvalues of some metric on the sphere, see section 3). In Theorem 1.1, the second
assumption is automatic on spheres. The first one is immediate for many choices of F . For
instance, for the combination F (x1, x2) = 1

x1
+ 2

x2
(see section 1.3). However, for some

other choices like F (x1, x2) = 1
x1+tx2

for t > 0, one needs to prove the gap assumption

ΛF,1(0) > ΛF (0).
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In our construction, some combinations do not give non-planar minimal surfaces into a 3-
ellipsoid (e.g for F depending on one eigenvalue only or for F (x1, x2) = 1

x1
+ 2
x2

). Moreover,
we also have to rule out 2-ellipsoids and branched covers over 2-ellipsoids. Therefore,
we have to choose carefully the combinations. In [Pet21a], we build non-planar minimal
spheres into ellipsoids by this method, for instance by the maximization of λ1 + tλ2:

Theorem 1.2 ([Pet21a]). For any t > 0, there are maximal metrics for the functional
g 7→ (λ1(g) + tλ2(g))Ag

(
S2
)
. Moreover, for any t > t? for some t? < 1, first and

second eigenfunctions associated to maximal metrics gt of g 7→ (λ1(g) + tλ2(g))Ag
(
S2
)

are
coordinate functions of non-planar minimal spheres Σt into the 3-dimensional rotationally
symmetric ellipsoid parametrized by Λ := (λ1(gt), λ2(gt), λ2(gt), λ2(gt)). Moreover, for
t1 6= t2, Σt1 is not isometric to Σt2 and as t→ +∞, Σt converges to the disjoint union of
two round spheres with same area.

Such a result is not specific to Laplace eigenvalues. In the Steklov case, with analogous
methods, we can build non-planar free boundary minimal disks into rotationally symmetric
ellipsoids in R3 as proved in a forecoming paper.

1.3. The Berger problem, the Hersch-Yang-Yau inequality. We aim at studying
the minimizing problem corresponding to Λfm , by applying Theorem 1.1 with the family
of functions

fm(x1, · · · , xm) =

m∑
i=1

1

xi

for m ≥ 1. One might ask:

Q1: Are the minimizers of Λfm(γ) for m ≥ 1, if they exist (which is the case on the
sphere by Theorem 1.1), the same as the minimizers of Λf1(γ), corresponding to the
maximizer of Λ1(γ) ?

The answer is sometimes yes and sometimes no. Let’s give examples: By [Pet14a]
and [MS19a], there is a metric, maximizer for the first eigenvalue Λ1(γ), such that the
multiplicity mγ is at least mγ ≥ 3 since it arises from a minimal immersion into a Euclidean
sphere, so that

(1.3) Λfm(γ) ≤ m

Λ1(γ)

holds true for any 1 ≤ m ≤ mγ . We would like to know whether this inequality is an
equality or not. The inequality (1.3) is strict if and only if other metrics than the maximizer
of the first eigenvalue arise by minimizing Λfm(γ).

The very first example was given by Hersch [Her70] on the sphere:

(1.4)
1

λ1(g)
+

1

λ2(g)
+

1

λ3(g)
≥ 3Ag(S2)

8π
.

with equality if and only if g is a round metric. This gives a positive answer to Q1 for
Λf3(S2)

Berger proved in [Ber73] that for γ = 1, we have flat tori with metric gε at the
neighbourhood of the flat equilateral torus such that

6∑
i=1

1

λi(gε)
<

6Agε (T)

Λ1(1)
=

3
√

3Agε (T)

4π2
,
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which implies that the minimiser of Λf6(1) given by Theorem 1.1 cannot be a flat equilateral
torus, the maximizer of Λ1(1). Notice that with this inequality, 1.4, [KNPP19] and Theorem
1.1 we obtain the needed gap assumption to prove existence of a minimal metric for Λf6

on the torus:

Λf6(1) <
3
√

3

4π2
<

3

8π
+

1

32π
+

1

40π
+

1

48π
≤ Λf6(0)

Studying now Λf3(γ): Yang and Yau [YY80] proved in their celebrated seminal paper
that on Σ one has

1

λ1(g)
+

1

λ2(g)
+

1

λ3(g)
≥ 3Ag(Σγ)

8πd

as soon as there is a meromorphic map π : Σγ → S2 of degree d. One can choose such a

map with d ≤ γ+ 1 (see [YY80]) and even d ≤
[
γ+3

2

]
, see [ESI84], which gave in particular

(1.5)
1

λ1(g)
+

1

λ2(g)
+

1

λ3(g)
≥ 3Ag(Σγ)

8π
[
γ+3

2

] .
For the non-orientable case, we refer to [Kar16]. In the case γ = 0, the first inequality
(1.3) is an equality because thanks to Hersch, the infimum Λf3(0) is realized only for the
round sphere. It could be interesting to know whether the round sphere is still a minimizer
for Λfm(0) for m ≥ 4.

A particular case of the Yang-Yau inequality (1.5) gives the very used upper bound on
the first eigenvalue

Ag(Σγ)λ1(g) ≤ 8π

[
γ + 3

2

]
.

This upper bound was also reproved in [LY82]. We know that this bound for the first
eigenvalue is sharp for γ = 0 by Hersch, and γ = 2 by [NS19]. However, it is not sharp for
γ = 1 [Nad96] and for γ > 2 [Kar19a]. Notice that the inequality (1.5) is sharp again for
γ = 0 and γ = 2 but it would be interesting to know whether one of these inequalities is
an equality:

3

8π
[
γ+3

2

] ≤ Λf3(γ) ≤ 3

Λ1(γ)
.

1.4. Asymptotic behaviour as m→ +∞. Many Riemannian invariants depend on the
whole spectrum of Riemannian manifolds. Variational problems for these invariants can be
represented as a variational problem for infinite combination of eigenvalues. For instance
one can think about the ζ function, the trace of the heat kernel Zt or the determinant of the
Laplacian. We refer for instance to the starting papers by [Sel56] and [CdV73a, CdV73b]
for trace formula on ζ and Zt. A striking example for variational questions is the celebrated
result by B. Osgood R. Phillips P. Sarnak [OPS88, OPS88]: proving the uniformization
theorem by extremizing the determinant with respect to metrics in a fixed conformal class
(see also [Cha04, Gur09] for nice developments on the determinant functional).

Meanwhile, the works about embeddings by eigenfunctions via the heat kernel initiated
in [Ber85, BBG94] (see also [Por16] for extended results and state of art) suggest to increase
our knowledge on the critical configurations for these embeddings with respect to the
metric.
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On Σ endowed with a smooth metric g, we set for instance

ζsm(x) =
m∑
i=1

x−si

for s > 0, where ζ1
m := fm was previously introduced. Noticing that this is the partial

sum of the formal series ζs∞(x) =
∑∞

i=1 x
−s
i , one can evaluate for the sequence xi = λi(g),

which perfectly makes sense by the Weyl law when s > 1, and we get

ζs(g) =

+∞∑
i=1

1

λi(g)s

for s > 1, the ζ function on (Σγ , g). We also set,

Dm(x) :=

(
d

ds
ζsm

)
s=0

(x) =
m∑
i=1

ln

(
1

xi

)
one can eveluate for the sequence xi = λi(g) to get

exp (−Dm(x)) =

m∏
i=1

λi(g) ,

formally related to the determinant of the Laplacian as m→ +∞, defined as

det (∆g) = exp
(
−ζ ′0(g)

)
,

where ζ ′0 is the derivative at s = 0 of the holomorphic extention of ζ. We finally set

Ztm(x) =
m∑
i=1

e−xit

for t > 0, as the partial sum of Zt∞(x) =
∑+∞

i=1 exp(−xit), one can evaluate for the sequence
xi = λi(g) to get

Zt(g) =
+∞∑
i=1

e−λi(g)t ,

the trace of the heat Kernel on (Σγ , g). One natural question is

Q2: If they exist, which is the case on the sphere, are the minimizers of Λζsm(γ), ΛDm(γ),
ΛZtm(γ) converging to the minimizers of the ζ function, ζ ′(0) or the trace of the Heat-kernel
among metrics of unit area, as m→ +∞ ? What are these minimizers ?

Notice that in the case of Λζsm(γ), the question is still relevant in the case s ≤ 1, where
for any metric, the sum does not converge. What is the asymptotic of the sequence Λζsm(γ)
as m → +∞ ? We also have the link between question Q1 and question Q2 in the case
s = 1.

It is conjectured in [ESI02, M96] that the round sphere is the only minimizer of the trace
of the heat kernel for any t > 0, while we know by [OPS88] that it is a global minimizer of
the determinant. By Berger computations [Ber73] the flat equilateral torus is not always the
minimizer of all of these functionals among flat tori whereas by computations in [Mon88],
it is a minimum for the trace of the heat kernel among flat tori.
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1.5. Plan of the paper. In section 2 we state a more general theorem than Theorem 1.1,
(Theorem 2.1 below). We also discuss strategy of proof for these theorems, and reduce
the proof to the minimization problem of combinations of eigenvalues in the conformally
constraint case (see Theorem 2.2 below).

In section 3, we make simple remarks about the link between eigenvalues and minimal
surfaces into ellipsoids. Then we state and prove Theorem 3.1 and 3.2 characterizing
critical metrics for very general finite combination of eigenvalues.

In section 4, we recall the harmonic replacement procedure and prove a quantitative
ε-regularity estimate for eigenmaps. It is based on a deep understanding of the structure
of the equation of harmonic-like maps, initiated by the celebrated paper by Riviere [Riv08],
and energy convexity results initiated by Colding and Minicozzi [CM08] that we explain in
details in section 6. This is a key result for W 1,2-convergence of eigenfunctions in section 5.

In section 5, we prove Theorem 2.2. The techniques are based on [Pet18], but stronger
and simpler intermediate lemma are introduced.

2. Generalizations and strategies on the proof

2.1. Generalization of the main theorem. We give a generalization of Theorem 1.1.

Theorem 2.1. Let Σ be a compact connected surface. We assume that F satisfies (H).

Then there is a compact surface Σ̂ obtained from Σ by cutting Σ along a finite number of
closed curves and glueing disks along these curves, and there is a smooth metric (up to

possible conical singularities) g on Σ̂, ”realizing” the minimum ΛF (Σ̂) = ΛF (Σ). There is

also a (possibly branched) conformal minimal immersion Φ : (Σ̂, g)→ E into

E =
{

(x1, · · · , xm) ∈ Ri1 × · · · × Rim ;λ1 |x1|2 + · · ·+ λm |xm|2 = 1
}
,

a Euclidean ellipsoid on Ri1 × · · · × Rim, where i1, · · · , im are non-negative integers, such
that the coordinate functions of Φk are eigenfunctions with respect to λk := λk(g) for
1 ≤ k ≤ m. Moreover,

2Eg (Φk) = λk

ˆ
Σ
|Φk|2 dAg = Ag (Σ)

λk |∂kF (λ1Ag(Σ), · · · , λmAg(Σ))|∑m
i=1 λi |∂iF (λ1Ag(Σ), · · · , λmAg(Σ))|

.

As stated in Theorem 3.1, the critical metrics for combinations of eigenvalues are
conformal to the induced metrics of a minimal immersion into a Pseudo-Euclidean ellipsoid,
with a determined conformal factor with respect to the coordinates. Again, with assumption
(H), we have a Euclidean ellipsoid in the conclusion of Theorem 2.1.

Let’s give two kinds of gap assuptions: let 1 ≤ k ≤ m. Assume for instance that

(2.1) ΛF (Σ) < ΛF,k(Σ)

Then, we only allow the appearance of at most k thick parts in the asymptotic analysis
because the eigenvalue λk must not converge to 0: then, Σ̂ has at most k connected
components. For k = 1 again (assumption (1.1)), Σ̂ is a connected surface.

For instance, assume in addition that

(2.2) ΛF (Σ) < ΛF (Σ̃) ,

for any compact surface Σ̃ obtained from Σ by cutting Σ along a finite number of closed
curves and glue disks along these curves, so that the new surface has at most k connected
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components. Then Σ̂ = Σ: there is no topological degeneration (disconnection, loss of
genus) for the maximizing sequence.

2.2. Minimization in the conformal constraint case. Let (Σ, g) be a compact Rie-
mannian surface without boundary. We set

ΛF (Σ, [g]) = inf
g̃∈[g]

F (Ag̃(Σ)λ1(g̃), · · · , Ag̃(Σ)λm(g̃))

where the infimum is taken over all metrics g̃ on Σ in the conformal class [g] of g in Σ.
Again, if we also set for 1 ≤ k ≤ m

ΛF,k(Σ, [g]) = inf
g̃∈[g]

F (0, · · · , 0, Ag̃(Σ)λk+1(g̃), · · · , Ag̃(Σ)λm(g̃)) ,

we have the same theorem as Theorem 2.1 in the conformal constraint case (with gap
assumptions):

Theorem 2.2. Let (Σ, g) be a Riemannian surface without boundary. Let 1 ≤ k ≤ m. We
assume that F satisfies (H), and that

(2.3) ΛF (Σ, [g]) < ΛF,k(Σ, [g])

and

(2.4) ΛF (Σ, [g]) < ΛF (Σ̃, [g̃]) ,

for any compact Riemanian surface (Σ̃, g̃) obtained as a disjoint union of (Σ, [g]) and at
most k − 1 copies of spheres, or a disjoint union of at most k copies of spheres.

Then, there is a minimal metric g̃ for ΛF (Σ, [g]), which is smooth up to possible conical
singularities. Moreover, there is a harmonic map Φ : (Σ, g)→ E into

E =
{

(x1, · · · , xm) ∈ Ri1 × · · · × Rim ;λ1 |x1|2 + · · ·+ λm |xm|2 = 1
}
,

a Euclidean ellipsoid in Ri1 × · · · × Rim, where i1, · · · , im are non-negative integers, such
that the coordinate functions of Φk are eigenfunctions with respect to λk := λk(g̃) for
1 ≤ k ≤ m and g̃ is given from Φ by

g̃ =

∑m
k=1 λk |∇Φk|2g∑m
k=1 λ

2
k |Φk|2

g .

Moreover,

2Eg̃(Φk) = λk

ˆ
Σ
|Φk|2 dAg̃ = Ag̃ (Σ)

λk |∂kF (λ1Ag̃ (Σ) , · · · , λmAg̃ (Σ))|∑m
i=1 λi |∂iF (λ1Ag̃ (Σ) , · · · , λmAg̃ (Σ))|

.

As stated in Theorem 3.2 below, the conformal factor of critical metrics for combinations
of eigenvalues arises as a density of some energy of a harmonic map into a Pseudo-Euclidean
ellipsoid. With assumption (1), we have a Euclidean ellipsoid in the conclusion of Theorem
2.2. This characterization of critical metrics is also a generalization of previous results for
one eigenvalue (see [ESI03, FS16]), when the target manifold is a sphere, or a ball in the
Steklov case.

While theorem 2.2 is a step to prove the main result of this paper, questions Q1 and Q2
stated before are still very interesting in the conformally constraint case. The known results
on the ζ function, the trace of the heat kernel and the determinant of the Laplacian suggest
that we could find sequences of critical metrics as m → +∞ converging to a constant
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curvature metric in the conformal class by a homogeneisation process. It is proved in
[OPS88] for the determinant of the Laplacian.

This theorem is a generalization in the context of combination of eigenvalues of the
maximization of one eigenvalue in a constraint conformal class proved by the author [Pet18]:

Λm(Σ, [g]) = sup
g̃∈[g]

Ag̃(Σ)λm(g̃) .

Recently, Karpukhin, Nadirashvili, Penskoi and Polterovich wrote another proof of the
maximization of one eigenvalue in a conformal class Λm(Σ, [g]) in [KNPP20]. As in [Pet18],
they look for a suitable maximizing sequence for the variational problem Λm(Σ, [g]),
of conformal factors for g viewed as the density of a probability measure. However
their sequence is constructed in a radically different way: they started with a previous
construction in [NS15]. Recently again, Karpukhin and Stern developped another interesting
min-max approach in [KS20] for existence question of a maximizer of Λ1(Σ, [g]) and
Λ2(Σ, [g]), leading to a deeper understanding of the maximum. In the current paper, we
use again the original author’s construction in [Pet14a], inspired by the work by Fraser
and Schoen in the Steklov context for m = 1 [FS16]. This construction is more geometric
since it uses a global regularizer for the conformal factor, the heat flow, so that we obtain
a canonical maximizing sequence of smooth metrics e2uεg. It is also more natural for
problems involving combination of eigenvalues.

2.3. Proving the main Theorem with the conformal constraint result. As in
[Pet14a] (and [Pet18] in case of multibubbling and disconnections), we use Theorem 2.2 to
prove Theorem 2.1 by a maximization of ΛF (γ) among all the conformal classes [g] of Σγ .
Indeed, if the gap assumptions (2.1) and (2.2) hold true, one has a maximizing sequence
of conformal classes [hn], such that (2.3) and (2.4) hold for any conformal class of the
sequence. For simplicity, we assume that Σ is orientable of genus γ. For non-orientable
questions, see [MS17]. We choose here a metric of constant curvature 0 (with fixed area if
γ = 1) or −1 (if γ ≥ 2) as a representative. Then using Theorem (2.2), one has a maximal
smooth metric gn ∈ [hn] in each conformal class, whose conformal factor with respect
to hn is some density of energy of a harmonic map into a Euclidean ellipsoid. Then we
just have to perform an asymptotic analysis on a sequence of harmonic maps. Following
[Pet14a] or [Pet18], (based on the work from [ZHU10]) one has to prevent from bubbling
on harmonic maps and degeneration of the sequence of conformal classes [hn] (closed
geodesics which shrink as n→ +∞). In both cases, the surface asymptotically disconnects
into at most k thick parts, where k is the minimal eigenvalue that does not shrink as
n → +∞. In Theorem 1.1, k = 1. Moreover, cutting along the closed geodesics whose

length go to 0, and along the necks of bubbles give a surface Σ̃ defined in Theorem 2.1. In
Theorem 1.1, we even have one thick part of genus γ̃ ≤ γ − 1. Notice that the harmonic
map perfectly converges in the thick parts. So does the metric. One can transplant the
eigenfunctions of the limit metric on the limit surface of genus γ̃ on Σγ as test functions

for the maximizing sequence gn to prove that ΛF (Σ) ≤ ΛF (Σ̃). The gap assumption (2.2)
leads to a contradiction.

2.4. Summary for the proof of the conformal constraint result. Let’s discuss about
the proof of Theorem 2.2 in section 5.
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2.4.1. Section 5.1. We replace the minimization over all the conformal factors by a mini-
mization on a regularizing functional built with the heat kernel. This gives a canonical
minimizing sequence of conformal metrics e2uεg for ΛF (Σ) as ε→ 0.

2.4.2. Section 5.2 and 5.4. The main idea in [Pet14a, Pet18] was to perform an asymptotic
analysis on the sequence of eigenfunctions Φε coming from the Euler-Lagrange equation
for the regularized problem stated in Claim 5.1 as ε → 0. We introduce in section 5.2,
the notations adapted to the scale invariance of the eigenvalue equation and the scale
invariance of the heat kernel. In our construction, the natural scaling for good estimates is√
ε, the scaling of the heat kernel (see section 5.4)

2.4.3. Section 5.3. In [Pet18], one added difficulty for maximization of Λm(Σ, [g]) for m > 1
compared to the case m = 1 ([Pet14a]) is bubbling. If m > 1, one cannot prevent from
concentration phenomena on the sequence of measures e2uεdAg and the appearance of k
thick parts (the added thick parts are spherical, so-called bubbles). We only use a posteriori
the gap assumptions to prevent from bubbles. Of course, this is handled the same way in
the current paper, where the maximal number of thick parts is the smallest k such that λk
does not shrink. As explained below, we assume k = 1 for the proof as in Theorem 1.1.
We then have one thick part.

2.4.4. Section 5.5. For deep reasons, the author defined in [Pet18], some ”singularity”
points to perform the analysis in the thick parts (the same as in the case m = 1) and to
perform a delicate neck analysis in the thin parts. These points have a nature very different
to the concentration points appearing at each scale of the bubbling. This is more visible
now since the maximal number of thick parts in the bubbling is the smallest k such that
λk does not shrink (k = 1 in theorem (1.1)), whereas the number of ”singularity” points is
m to gather all the possible degenerations for eigenfunctions appearing in the analysis.

If the functional only depends on the first eigenvalue (m = 1) and if Σ is not diffeomorphic
to a sphere, the thick part cannot be a sphere (by a Hersch argument specific to the first
eigenvalue, see [Kok14] and a gap result [Pet14a]) and we do not have any concentration
point nor singularity points. In the other cases m > 1, we a priori still have singularity
points. Even in the case k = 1 (the case of our proof), the thick part can a priori be
a sphere so that the main difficulties raised in [Pet18] still hold. The case k > 1 works
the same way up to a classical bubble tree construction. In the current paper, one of the
novelties is a careful selection of the scales of these singularity points by a simplified proof.

2.4.5. Section 5.6.1. We prove that the sequence of eigenfunctions is uniformly bounded
far from singularity points. The technique in [Pet14a] is improved for Section 5.6.2.

2.4.6. Section 5.6.2. We perform a local replacement procedure by the use of |Φ|2E -harmonic
maps. In the case where only one eigenvalue appears, by the symmetries of the target
manifold (a Euclidean sphere), the projection Φ

|Φ| is already |Φ|2-harmonic: the replacement

is global. One of the difficulties in [Pet18] was to prove that the radial coordinate |Φε| is
lower bounded by a uniform positive constant and converges to 1 as strongly as possible.
In the current paper, in addition to these, a new difficulty appears since Φ

|Φ|E
is not |Φ|2E -

harmonic anymore. Fortunately, the radial projection of eigenmaps on E is still locally
close in W 1,2 to their |Φ|2E -harmonic replacement with a control by the L2-norm of ∇ |Φ|E
(proved in section 4). By a use of the singularity points they renamed ”bad points” in
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[KNPP20], the four authors proved with their construction that the eigenfunctions converge
in W 1,2 in the neighbourhood of the other points, the ”good points”. This comes from the
use of a nice construction of local quasi-continuous replacement of W 1,2 functions. In the
current paper, the |Φ|2E -harmonic replacement has strong W 1,p convergence properties for
any p < +∞ (see section 6.1).

2.4.7. Section 5.7. We adapt the previous analysis for convergence of eigenfunctions in
bubbles. We need to add a neck analysis. The technique in [Pet18] is improved.

3. Critical metrics and minimal ellipsoids

In this section, we prove that any critical metric for combinations of eigenvalue arise
from a nice geometric configuration. The work on this section can also be done in the
Steklov eigenvalues context. While previous computations have been done to compute the
critical metrics for eigenvalues, no one noticed this general picture before.

3.1. Minimal immersions into ellipsoids. In this part, we explain the link between
minimal immersions into ellipsoids and the Laplace eigenvalue of the induced metric times
one function of the coordinates of the minimal immersion. Let E ⊂ Rn be an ellipsoid of
parameters Λ = diag (λ1, · · · , λn), with λi > 0, defined by

E = {(x1, · · · , xn) ∈ E ;λ1x
2
1 + · · ·+ λnx

2
n = 1} ,

endowed with the induced metric of the Euclidean metric ξ. The outward normal of the
ellipsoid is denoted by

ν =
Λx

|Λx|
where

|Λx| =

(
n∑
i=1

λ2
ix

2
i

) 1
2

.

Now, let Φ : Σ→ E be a conformal immersion of a Riemannian compact surface without
boundary (Σ, g) into E , a n− 1 dimentional ellipsoid of parameter Λ = (λ1, · · · , λn). Then
there is a smooth positive function e2u, such that g = e2uh, where the h = φ?(ξ) and we
have

∆gf = e−2u∆hf ,

Notice that the mean curvature vector of the isometric immersion Φ : (Σ, h) → Rn is
H = ∆hΦ and is orthogonal to Σ.

If in addition, the isometric immersion Φ : (Σ, h)→ E satisfies

∆hΦ =
|H|
|ΛΦ|

ΛΦ ,

which is exactly the assumption of being minimal into E , then setting

g = e2uh e2u =
|H|
|ΛΦ|

,

the coordinates of Φ are eigenfunctions on (Σ, g) with eigenvalues λ1, · · · , λn:

∆gΦ = ΛΦ .



14 ROMAIN PETRIDES

Another well-known characterisation of an immersion Φ : (Σ, g)→ Rn to be minimal in
E is harmonicity in E and conformality. Φ is harmonic in E if it is a critical point of the
energy

E(Φ) =
1

2

ˆ
Σ
|∇Φ|2g dAg

under the constraint Φ(Σ) ⊂ E . The Euler-Lagrange characterization is

∆gΦ ∈ (TΦE)⊥

Then ∆gΦ = fν ◦ Φ for some function f and simply computing f with 0 = 1
2∆g |Φ|2E , we

obtain the equation

∆gΦ =
|∇Φ|2g
|ΛΦ|2

ΛΦ = 〈∇Φ,∇ (ν ◦ Φ)〉 ν ◦ Φ .

We obtain another formula for the conformal factor of g with respect to the metric h

e2u =
|H|
|ΛΦ|

=
|∇Φ|2E
|ΛΦ|2

.

Conformality is characterized by the vanishing of

0 = |∇Φ|2g
g

2
− dΦ⊗ dΦ :=

n∑
i=1

(
|∇Φi|2g

g

2
− dΦi ⊗ dΦi

)
.

3.2. Critical metrics for combinations of eigenvalues. This part proves the general
properties for critical metrics of functionals depending on Laplace eigenvalues. The notion
of critical metrics was introduced by [ESI00] who generalized a result by [Nad96]. They
used that in variational theory, there is a classical way to generalize the notion of derivative
of a locally Lipschitz functional by sub-gradients (see e.g. [Cla13]). Here, we say that g
is critical with respect to F (Ag(Σ)λ1(g), · · · , Ag(Σ)λm(g)) if the product of the left and
right derivative of t 7→ F (Ag+th(Σ)λ1(g + th), · · · , Ag+th(Σ)λm(g + th)) is non positive for
any symmetric 2-tensor variation h. Of course, a maximal metric satisfies this condition.

Theorem 3.1. Let Σ be a compact surface and F :
(
R?+
)m → R be a smooth function with

m ≥ 1. Let g be a critical metric for the functional

g 7→ F (Ag(Σ)λ1(g), · · · , Ag(Σ)λm(g))

and we assume that Ag(Σ) = 1. Then, there are m non-negative integers i1, · · · , im and
there is a map Φ : Σ→ Ri1 × · · · × Rim which is conformal and harmonic into the space

E =

{
(x1, · · · , xm) ∈ Ri1 × · · · × Rim ; ε1λ1 |x1|2 + · · ·+ εmλm |xm|2 =

m∑
k=1

εkλktk

}
where for 1 ≤ k ≤ m, λk = λk(g), tk = |∂kF (λ1, · · · , λm)| = Ag(Σ)−1

´
Σ |Φk|2 dAg, εk is

the sign of ∂kF (λ1, · · · , λm) and E is endowed with the pseudo-Euclidean metric defined

for (x1, · · · , xm) ∈ Ri1 × · · · × Rim by ε1 |dx1|2 + · · ·+ εm |dxm|2.

Notice that if ∂kF (λ1, · · · , λm) all have the same sign, then the target manifold is the
ellipsoid of a Euclidean space. This result is a generalization of the result by El Soufi and
Ilias [ESI00, ESI03, ESI08] when only one eigenvalue appears in the functional, proving
that they arise as the induced metric of a (possibly branched) minimal immersion into a



EXTREMAL METRICS AND MINIMAL SURFACES INTO ELLIPSOIDS 15

sphere. They were inspired by the seminal paper by Nadirashvili [Nad96]. This result was
reproved by Fraser and Schoen in [FS13], while they noticed that critical metrics for Steklov
eigenvalues on surfaces with boundary arise as the induced metric of a free boundary
minimal immersion into a ball. The same work can be done for Steklov eigenvalues: critical
metric of general functionals are conformal to induced metrics of a free boundary minimal
surface into an ellipsoid (possibly of a pseudo-Euclidean space).

Proof. We aim at using the oposite signs of the left and right derivative at t = 0 for

t 7→ F (Ag+th(Σ)λ1(g + th), · · · , Ag+th(Σ)λm(g + th))

for h a symmetric 2-tensor on TΣ. We denote by

Qh(Φ) =

ˆ
Σ

m∑
k=1

εktk

(
|∇Φk|2g

g

2
− dΦk ⊗ dΦk + λk

(
1− |Φk|2

) g
2
, h
)
g
dAg

for Φ ∈ E1(g)×· · ·×Em(g) ∈ C∞(Σ). Ek(g) denotes the set of all eigenfunctions associated
to the eigenvalue λk(g). The goal of the following 3 steps is to prove that for any symmetric
2-tensor h on TΣ, there is a map Φ ∈ S(E1(g)) × · · · × S(Em(g)) such that Qh(Φ) = 0.
Here, S(Ei(g)) is the unit sphere in Ei(g) endowed with the L2 norm with respect to g.
Let h be a symmetric 2-tensor on TΣ.

STEP 1 :

If φt is an eigenfunction associated to some eigenvalue λt = λk(g+th) with
´

Σ

(
φt
)2
dAg+th =

1, then up to a subsequence as t→ 0, we have

λt → λ and φt → φ in C2(Σ) as t→ 0 ,

where
´

Σ φ
2dAg = 1 and ∆gφ = λφ.

Proof of STEP 1 :

We have ∆g+thφ
t = λtφ

t. In a chart, the equation is given by

− 1√
|g + th|

∂i

(
(g + th)ij

√
|g + th|∂jφt

)
= λtφ

t .

Locally, we have a constant C0 > 1 and t0 > 0 such that for |t| < t0,

1

C0
ξ ≤ g + th ≤ C0ξ

where ξ is the Euclidean metric, so that we have constants C1 > 1 and C2 > 1 with

1

C1
‖X‖2 ≤

√
|g + th| (g + th)ij XiXj ≤ C1 ‖X‖2

1

C2

ˆ
Σ

(
φt
)2
dAg ≤

ˆ
Σ

(
φt
)2
dAg+th ≤ C2

ˆ
Σ

(
φt
)2
dAg .

Since Ag+th = 1 + o(1), λt is bounded as t → 0. Up to a subsequence, we assume that
λt → λ as t→ 0. Therefore, by standard elliptic theory, since λtφ

t is bounded in L2, up to
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a subsequence, φt converges in C3(Σ) to some function φ. When we let t → 0, λ and φ
satisfy the conclusion of STEP 1.

STEP 2 :

For any k ∈ {0, 1, · · · ,m}, λk(g + th)→ λk(g) as t→ 0.

Proof of STEP 2 :

Looking at the min-max definition of eigenvalues :

λk(g) = inf
Ek+1

max
φ∈Ek+1\{0}

´
Σ |∇φ|

2
gdAg´

Σ φ
2dAg

where the infimum is taken on spaces of smooth functions of dimension k + 1, and the
smooth dependance of the Rayleigh quotient on the metric g, λk has to be continuous.

STEP 3 :

There is a map Φ ∈ S(E1(g))× · · · × S(Em(g)) such that Qh(Φ) = 0 where, S(Ei(g)) is
the unit sphere in Ei(g) endowed with the L2 norm with respect to g.

Proof of STEP 3 :

By connectedness of S(E1(g)) × · · · × S(Em(g)), it is equivalent to prove that there
are Φ+ and Φ− in S(E1(g))× · · · × S(Em(g)) such that Qh(Φ+)Qh(Φ−) ≤ 0. We use in
this step that g is a critical metric for the functional. Qh(Φ+) and Qh(Φ−) correspond to
the opposite signs of the right and left derivatives at 0 with respect to t for the variation
g + th of t 7→ F (Atλ1(g + th), · · · , Atλm(g + th)). Here, we denoted At = Ag+th(Σ) =
1 + t

´
Σ(g, h)gdAg + o(t).

Let’s compute the left and right derivatives of an eigenvalue λt = λk(g + th) with its
associated eigenfunction φt in Ek(g+ th) with unit L2(g+ th)-norm. By STEP 2, we know

that λt converges to λ = λk(g). In fact we will only need to compute the variation
λ
t±
j
−λ

t±j

for one subsequence t−j → 0 such that t−j < 0 and for one subsequence t+j → 0 such that

t+j > 0.

By STEP 1 we have subsequences t±j → 0 with t−j < 0 and t+j > 0, φt
±
j to φ± ∈ S(Ek(g))

in C3(Σ) as j → +∞. We denote by πk the projection in L2(g) on the whole eigenspace
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associated to λk(g), and by Rt = φt−πk(φt). In some chart, we have for any t the equation

∆gR
t − λRt = ∆gφ

t − λφt

= (∆g −∆g+th)φt − (λ− λt)φt

= −

(
1√
|g|
− 1√

|g + th|

)
∂i(
√
|g|gij∂jφt)

− 1√
|g + th|

∂i

((√
|g| −

√
|g + th|

)
gij∂jφ

t
)

− 1√
|g + th|

∂i

(√
|g + th|

(
gij − (g + th)ij

)
∂jφ

t
)

−(λ− λt)φt

We set

(3.1) αt = |λ− λt|+
∥∥Rt∥∥∞ + |t|

and dividing by αt we write the previous equation as

∆g

(
Rt

αt

)
− λR

t

αt
=
f t

αt
+
λt − λ
αt

φt

where f
t±
j

t±j
converges to

f±0 =
1

2
(g, h)g∆gφ

± +
1

2
√
|g|
∂i

(√
|g|(g, h)gg

ij∂jφ
±
)
− 1√

|g|
∂i

(√
|g|gikhklglj∂jφ±

)
in C1 as j → +∞.

By elliptic regularity of the equation, there is a subsequence of (tj) we still denote tj → 0
as j → +∞ such that

t±j
αt±j

→ t±0 ,
λt
±
j − λ
αt±j

→ δ±0 as j → +∞

and

φt
±
j → φ± in C3 (Σ) ,

Rt
±
j

αt±j

→ R±0 in C2 (Σ) as j → +∞ .

Then, the previous equation becomes as j → +∞

∆gR
±
0 − λR

±
0 = t±0 f

±
0 + δ±0 φ

± .

We integrate it against φ± so that by integration by part on the left-hand term and since

∆gφ
± = λφ± and

´
Σ (φ±)

2
dAg = 1,

0 = t±0

ˆ
Σ
f±0 φ

± + δ±0 .
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If t±0 = 0, then δ±0 = 0 and ∆gR
±
0 −λR

±
0 = 0, which means that R±0 = 0 since R±0 ∈ Ek(g)⊥

as a limit of 1
α
t±
j

(
φt
±
j − πk(φt

±
j )
)

. However, by (3.1), the convergence

1 =

∣∣∣λ− λt±j ∣∣∣+
∥∥∥Rt±j ∥∥∥

∞
+ |tj |

αt±j

→ δ±0 +
∥∥R±0 ∥∥∞ +

∣∣t±0 ∣∣ = 0 as l→ +∞

is absurd. Therefore, t±0 6= 0 and

lim
j→+∞

λk(g + t±j h)− λk
t±j

= lim
j→+∞

λk(g + t±j h)− λk
αt±j

αt±j
t±j

=
δ±0
t±0

= −
ˆ

Σ
f±0 φ

±

=

ˆ
Σ

(
φ

2
(g, h)g

(
−∆gφ

±)− φ

2
√
|g|
∂i

(√
|g|(g, h)gg

ij∂jφ
±
))

dAg

+

ˆ
Σ

(
φ±√
|g|
∂i

(√
|g|gikhklglj∂jφ±

))
dAg

=

ˆ
Σ

(
1

2
(g, h)g

(
−φ±∆gφ

± +
∣∣∇φ±∣∣2

g

)
− (dφ± ⊗ dφ±, h)g

)
dAg

=

ˆ
Σ

(
−dφ± ⊗ dφ± +

|∇φ±|2g
2

g − λ
(
φ±
)2 g

2
, h

)
g

dAg

where the second equality has to be read in a suitable atlas with partitions of unity and the
third one is got with an integration by parts. Noting that At = 1 + t

´
Σ(g, h)gdAg + o(t),

for any k, we have the existence of eigenfunctions φ+
k and φ−k in S(Ek(g)) such that

At±j
λk(g + t±j h)− λk

t±j
→
ˆ

Σ

(
−dφ±k ⊗ dφ

±
k +
|∇φ±|2g

2
g − λk(1−

(
φ±k
)2

)
g

2
, h

)
g

dAg

as t→ 0 when t > 0 for φ+
k or t < 0 for φ−k . Then, we have that

F (At±j
λ1(g + t±j h), · · · , At±j λk(g + t±j h))− F (λ1(g), · · · , Aλk(g))

t±j
→ Qh(φ±1 , · · · , φ

±
m) ,

as j → +∞. Therefore, the maps Φ± = (φ±1 , · · · , φ±m) ∈ S(E1(g))× · · · × S(Em(g)) satisfy

Qh(Φ+)Qh(Φ−) ≤ 0 .

As a product of connected spaces S(E1(g)) × · · · × S(Em(g)) is a connected space and
there is Φ ∈ S(E1(g))×· · ·×S(Em(g)) such that Qh(Φ) = 0. This ends the proof of STEP 3.

End of the Proof of Theorem 3.1 :
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We now let C be the convex hull of the following set of symmetric 2-tensors :{
m∑
k=1

εktk

(
−dφk ⊗ dφk +

|∇φk|2g
2

g − λk(1− φ2
k)
g

2

)
; (φ1, · · · , φk) ∈ E

}
,

where E = S(E1(g))× · · · × S(Em(g)). If 0 /∈ C, by the Hahn-Banach theorem, there is a
symmetric 2-tensors h such that

∀ω ∈ C;

ˆ
Σ

(ω, h)gdAg > 0 .

This means that for any Φ ∈ E, Qh(Φ) > 0 and this contradicts the STEP 3. Therefore,
0 ∈ C and one can define

Φ = (Φ1, · · · ,Φm) = (φ1
1, · · · , φ

i1
1 , · · · , φ

1
m, · · · , φimm )

such that φjk ∈ Ek(g),
´

Σ |Φk|2 dAg = 1 and

(3.2)
m∑
k=1

εktk

− ik∑
j=1

dφjk ⊗ dφ
j
k +
|∇Φk|2g

2
g − λk(1− |Φk|2)

g

2

 = 0 ,

where we denote by |Φk|2 =
∑ik

j=1

(
φjk

)2
and |∇Φk|2g =

∑ik
j=1

∣∣∣∇φjk∣∣∣2
g
. The trace with

respect to g gives that
m∑
k=1

λkεktk |Φk|2 =

m∑
k=1

λkεktk .

We now choose Φ̃k =
√
tkΦk instead of Φk so that the new map Φ̃ lives in the ellipsoid

E =

{
(x1, · · · , xm) ∈ Ri1+···+im ; ε1λ1 |x1|2 + · · ·+ εmλm |xm|2 =

m∑
k=1

εkλktk

}
.

By the eigenvalue equations on the maps, we deduce that ∆gΦ̃ ∈ (TΦE)⊥ since the
vector (λ1Φ1, · · · , λmΦm) is normal to Φ with respect to the pseudo-Riemannian metric

G = ε1 |dx1|2 + · · ·+ εm |dxm|2. This is the equation satisfied by the critical maps of the
energy

´
ΣG(∇Φ,∇Φ)dAg for maps Φ satisfying the constraint Φ ∈ E .

We now get from (3.2) that

m∑
k=1

εk

− ik∑
j=1

dφ̃jk ⊗ dφ̃
j
k +

∣∣∣∇Φ̃k

∣∣∣2
g

2
g

 = 0

or equivalently that

Φ̃∗(G) =

(
m∑
k=1

εk

∣∣∣∇Φ̃k

∣∣∣2
g

)
g

2
= G(∇Φ̃,∇Φ̃)

g

2

and we obtain that the map Φ̃ is conformal. This ends the proof of Theorem 3.1.
♦
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We now state the analogous theorem concerning the critical metric for combination
of eigenvalues in the conformally constraint case, generalizing previous results [ESI03]
and again, perfectly adaptable in the conformally constraint Steklov case (proof for one
eigenvalue: [FS13])

Theorem 3.2. Let (Σ, g) be a compact Riemannian surface and F :
(
R?+
)m → R be a

smooth function with m ≥ 1. Let g̃ ∈ [g] be a critical metric for the functional

g̃ 7→ F (Ag̃(Σ)λ1(g̃), · · · , Ag̃(Σ)λm(g̃))

defined on the conformal class [g] of g and we assume that Ag̃(Σ) = 1. Then, there are
m non-negative integers i1, · · · , im and there is a map Φ : Σ→ Ri1 × · · · × Rim which is
harmonic into the space

E =

{
(x1, · · · , xm) ∈ Ri1 × · · · × Rim ; ε1λ1 |x1|2 + · · ·+ εmλm |xm|2 =

m∑
k=1

εkλktk

}
endowed with the pseudo-Euclidean metric on Ri1 × · · · × Rim

ε1 |dx1|2 + · · ·+ εm |dxm|2

where for 1 ≤ k ≤ m, λk = λk(g), tk = |∂kF (λ1, · · · , λm)| = Ag̃(Σ)−1
´

Σ |Φk|2 dAg̃ and εk
is the sign of ∂kF (λ1, · · · , λm).

The proof of this result follows the lines of the proof of Theorem 3.1, but is even simpler
since the variations we use stay in the conformal class of g. Of course, the conclusion has
to be weaker than in Theorem 3.1 and we exatly loose that the obtained harmonic maps
are conformal. More precisely, we can follow step 1, step 2 and step 3 with the symmetric
2-tensors h = fg, where f is a smooth function to compute the left and right derivative at
t = 0 for

t 7→ F
(
A(1+tf)g(Σ)λ1((1 + tf)g), · · · , A(1+tf)g(Σ)λm((1 + tf)g)

)
.

Notice than the Dirichlet energy is conformally invariant. Then, denoting by

Qf (Φ) =

ˆ
Σ

(
m∑
k=1

εktkλk

(
1− |Φk|2

) g
2

)
fdAg

for Φ ∈ E1(g)× · · · × Em(g) ∈ C∞(Σ), where Ek(g) denotes the set of all eigenfunctions
associated to the eigenvalue λk(g), we prove that for any f , there is a map Φ ∈ S(E1(g))×
· · · × S(Em(g)) such that Qf (Φ) = 0. Here again, S(Ei(g)) is the unit sphere in Ei(g)
endowed with the L2 norm with respect to g. Again, by a standard Hahn-Banach argument
we complete the proof. These arguments are performed again in the next section to
compute the Euler Lagrange equation of a perturbated functional.

4. A quantitative approximation by harmonic replacement

We prove in this section the tool we use to prove Claim 5.8 and Claim 5.13 in the key
estimates on sequences of eigenfunctions given by Claim 5.1. Since it is an interesting
quantitative estimate, we state it here independently to the proof of the main theorem of
the current paper.

Harmonic replacement is a canonical way to replace a map by a smooth map, decreasing
the energy locally, keeping the same Dirichlet boundary conditions and a constraint target
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manifold. However, in the positively curved target manifolds, such a map is not globally
unique. As an analogue to the geodesic problem, one has to restrict such result in a
domain with small energy. The following result, so-called ”energy convexity” was proved
by Colding and Minicozzi in [CM08] and it is also proved, simplified and generalized in
[LP19] using the ε-regularity result on harmonic maps and a classical Hardy inequality.

Theorem 4.1. Let M be a compact submanifold of Rn. Then there is a constant ε0 :=
ε(M) > 0 such that if u, v ∈ W 1,2(D,M) with u|∂D = v|∂D, E(u) ≤ ε0 and u is weakly
harmonic, then we have the energy convexity

(4.1)
1

2

ˆ
D
|∇(v − u)|2 ≤

ˆ
D
|∇v|2 −

ˆ
D
|∇u|2 .

Notice that thanks to the techniques developped in [LL13] and in [LP19], one can
generalize this energy convexity to a large class of conformally invariant elliptic variational
problems.

We apply such techniques in our context, when M := E is the ellipsoid of parameter
Λ = diag (λ1, · · · , λd). We still have maps Φ : Σ → Rd, satisfying that ∆Φ is parallel to
ΛΦ (like for the harmonic map equation into E) but the novelty is that they do not lie
into the ellipsoid E . Therefore, we first apply the natural radial projection on E . Notice
that this projection is also the orthonormal projection on the ellipsoid, with respect to the
Ellipsoid scalar product 〈., .〉E := 〈Λ., .〉. Now because of the projection, we shall adapt

Theorem (4.1). We will compare the map Φ = (φ1, · · · , φd) ∈W 1,2 ∩ L∞
(
D,Rd \ {0}

)
to

a more clever harmonic-like function. Let ω be a weight satisfying ω ∈ L∞ and 1
ω ∈ L

∞.
We denote by Cω a constant such that

∀x ∈ Σ,
1

Cω
≤ ω(x) ≤ Cω

On a surface Σ, we say that u : Σ → E is ω2-harmonic if it is a critical point of the
following energy

(4.2) Eω(v) =

ˆ
Σ
ω2 |∇v|2g dAg ,

among all v ∈W 1,2 (Σ, E). For a map v on a disk D, with small energy, we say that u is
the ω2-harmonic replacement of v if it is ω2-harmonic on D and if u = v on ∂D.

We have the following quantitative result on the projection of eigenmaps on the ellipsoid,
with equation ∆Φ = e2uΛΦ, comparing this projection to the ω2-harmonic replacement

of the radial projection Φ̃ = Φ
ω of Φ, where ω = |Φ|E . Moreover, a quantitative estimate

occurs, with a smallness assumption on 1
λ?(D,e2udx)

, the inverse of the first non-zero Dirichlet

eigenvalue on the disk with respect to e2u.

Proposition 4.1. Let Λ = diag (λ1, · · · , λd) and a constant C > 0. We assume that
λ1 ≤ · · · ≤ λd. Then there is ε1 := ε1(Λ, C), such that for any map Φ = (φ1, · · · , φd) ∈
W 1,2 ∩ L∞

(
D,Rd

)
, satisfying

• Cω ≤ C, where ω = |Φ|E
•
´
D |∇Φ|2 ≤ ε0

• ∆Φ = e2uΛΦ.
• λ?

(
D, e2udx

)
≥ λd
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We denote Ψ̃ the ω2-harmonic replacement of Φ̃ := Φ
ω and we denote by Ψ = ωΨ̃. Then

(4.3)
1

4

ˆ
D
|∇ (Φ−Ψ)|2 dx ≤

(
2

λ1
+ 1

) ˆ
D
|∇ω|2 dx .

Proof. Since Φ = Ψ on the boundary of D, we start with the following formula

(4.4)

ˆ
D
|∇ (Φ−Ψ)|2 dx =

ˆ
D
|∇Φ|2 dx−

ˆ
D
|∇Ψ|2 dx− 2

ˆ
D
〈Φ−Ψ,∆Ψ〉

Now, we have the following equation on Ψ:

∆Ψ = −div
(
∇
(
ωΨ̃
))

= −div
(
ω−1ω2∇Ψ̃ + Ψ̃∇ω

)
= −ω−1div

(
ω2∇Ψ̃

)
+ Ψ̃∆ω .

We then have that

(4.5) − 2

ˆ
D
〈Φ−Ψ,∆Ψ〉 = −2

ˆ
D

〈
Φ−Ψ,

(
−ω−1div

(
ω2∇Ψ̃

))〉
− 2

ˆ
D

〈
Φ−Ψ, Ψ̃∆ω

〉
and that the second right-hand term satisfies

2

∣∣∣∣ˆ
D

〈
Φ−Ψ, Ψ̃∆ω

〉∣∣∣∣ = 2

∣∣∣∣ˆ
D

〈
∇ (Φ−Ψ) , Ψ̃∇ω

〉
+

ˆ
D

(Φ−Ψ) .
〈
∇Ψ̃,∇ω

〉∣∣∣∣
≤ 2

(
1

λ1

ˆ
D
|∇ (Φ−Ψ)|2

) 1
2
(ˆ

D
|∇ω|2

) 1
2

+

ˆ
D
|Φ−Ψ|2

∣∣∣∇Ψ̃
∣∣∣2 +

ˆ
D
|∇ω|2 ,

where for the inequality, we used that

λ1

∣∣∣Ψ̃∣∣∣2 =

(
min

1≤i≤d
λi

) ∣∣∣Ψ̃∣∣∣2 ≤ ∣∣∣Ψ̃∣∣∣2
E

=
∣∣∣Φ̃∣∣∣2
E

= 1 ,

To estimate the first right-hand term of (4.5), we use that Ψ̃ is a critical point for the energy

Eω (see (4.2)) on the disk. We have the Euler-Lagrange equation −div
(
ω2∇Ψ̃

)
∈
(
T

Ψ̃
E
)⊥

.

More precisely, −div
(
ω2∇Ψ̃

)
is parallel to ΛΨ̃ and computing 0 = 1

2∆

(∣∣∣Ψ̃∣∣∣2
E

)
we deduce

the equation

(4.6) − div
(
ω2∇Ψ̃

)
= ω2QΛΨ̃ , where Q =

∣∣∣∇Ψ̃
∣∣∣2
E∣∣∣ΛΨ̃
∣∣∣2 .

Therefore,

−2

ˆ
D

〈
Φ−Ψ,

(
−ω−1div

(
ω2∇Ψ̃

))〉
= −2

ˆ
D
〈Φ−Ψ,ΛΨ〉Q =

ˆ
D
|Φ−Ψ|2E Q
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noticing again that |Ψ|2E = |Φ|2E so that −2 〈Ψ,Φ−Ψ〉E = |Φ−Ψ|2E . We can write (4.4) asˆ
D
|∇ (Φ−Ψ)|2 dx ≤

ˆ
D
|∇Φ|2 dx−

ˆ
D
|∇Ψ|2 dx+

(
1 +

λ2
d

λ1

)ˆ
D
|Φ−Ψ|2

∣∣∣∇Ψ̃
∣∣∣2

+2

(
1

λ1

ˆ
D
|∇ (Φ−Ψ)|2

) 1
2
(ˆ

D
|∇ω|2

) 1
2

+

ˆ
D
|∇ω|2 .

(4.7)

We choose ε1 < ε0 where ε0 is given by (6.9) in the appendix, we have thatˆ
D
|Φ−Ψ|2

∣∣∣∇Ψ̃
∣∣∣2 ≤ Dε1

ˆ
D
|∇ (Φ−Ψ)|2 dx

for a universal constant D > 0. Let η > 0. Letting
(

1 +
λ2
d
λ1

)
Dε1 ≤ η, we have that

(4.8) (1− η)X2 ≤
ˆ
D
|∇Φ|2 dx−

ˆ
D
|∇Ψ|2 dx+

2√
λ1
XY + Y 2 ,

where X2 =
´
D |∇ (Φ−Ψ)|2 dx and Y 2 =

´
D |∇ω|

2.
Now, let’s prove that the difference of energies of Φ and Ψ is non positive. Let 1 ≤ i ≤ d.

We test (φi − ψi) in the variational characterization of λ?
(
D, e2u

)
, we have

λi ≤ λ?
(
D, e2udx

)
≤
´
D |∇ (φi − ψi)|2 dx´
D (φi − ψi)2 e2udx

so that we get setting λ? := λ?
(
D, e2udx

)
and summing on i

(4.9) λ?

ˆ
D
|Φ−Ψ|2 e2udx ≤

ˆ
D
|∇Φ|2 dx+

ˆ
D
|∇Φ|2 dx− 2

ˆ
D
〈∇Φ,∇Ψ〉 dx .

Moreover, we integrate the λi-eigenfunction equation ∆ψi = λiψie
2u against 2 (ψi − φi) to

get

2

ˆ
D
|∇φi|2 dx− 2

ˆ
D
〈∇φi,∇ψi〉 dx = 2λi

ˆ
D

(φi)
2 e2udx− 2λi

ˆ
D
φiψie

2udx .

We sum on i and we get that

(4.10) 2

ˆ
D
|∇Φ|2 dx− 2

ˆ
D
〈∇Φ,∇Ψ〉 dx = 2

ˆ
D
〈Φ,Φ−Ψ〉E e

2udx .

Now suming on i and remembering that |Ψ|2E = |Φ|2E , we have that

2 〈Φ,Φ−Ψ〉E = |Φ−Ψ|2E .

We sum (4.9) and (4.10) to get

(4.11)

ˆ
D
|∇Φ|2 dx−

ˆ
D
|∇Ψ|2 dx ≤

ˆ
D

(
|Φ−Ψ|2E − λ? |Φ−Ψ|2

)
e2udx ≤ 0 ,

because λ1 ≤ · · · ≤ λd ≤ λ?. Therefore, using (4.8), we get(√
1− ηX − Y√

λ1 (1− η)

)2

≤ Y 2

(
1 +

1

λ1 (1− η)

)
,(4.12)

so that choosing (1− η)2 = 1
2 gives the claim. ♦
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Notice that if the target manifold is a sphere, we already have that Φ̃ = Ψ̃ and that

Φ̃ = Φ
|Φ| is already a |Φ|2-harmonic map. In the previous proposition we only find a local

non-exact result. Notice then that if the target manifold is a sphere, we do not need this
section to prove Claim 5.8 and Claim 5.13 for sequences of eigenfunctions given by Claim
5.1. It would be interesting to know whether there is a global projection of eigenmaps on
ellipsoids that are harmonic-like maps.

5. Existence of a maximal metric in the conformal constraint case

5.1. Selection of a maximizing sequence. Let (Σ, g) be a smooth Riemannian manifold
without boundary. We denote respectively byM(Σ) andM1(Σ) the set of Radon measures
and probability measures on Σ, endowed with the topology of the weak-? convergence. We
let ε > 0. Let Kε be the heat operator associated to g, so that for any positive Radon
measure, ν ∈M(Σ), Kε[ν]dAg is the solution at time ε > 0 of the heat equation on (Σ, g)
which converges to ν as ε→ 0 for the weak-? convergence in M(Σ). We set

(5.1) Λε = inf
ν∈M1(Σ)

F (λ1(Kε[ν]g), · · · , λm(Kε[ν]g)) > −∞ .

Λε is finite since F is decreasing with respect to all coordinates and because all the
eigenvalues are bounded by the result by Korevaar [Kor93]. We know that ν 7→ Kε[ν] is
continuous fromM(Σ) to C0(Σ). Therefore, by continuity of the functional and compactness
ofM1(Σ), up to the extraction of a subsequence, a minimizing sequence for the variational
problem (5.1) converges in M1(Σ) to a measure νε ∈M1(Σ). We have

(5.2) Λε = F (λ1(Kε[νε]g), · · · , λm(Kε[νε]g)) .

We set e2uε = Kε[νε]. Then, the sequence of smooth positive functions e2uε defines
a minimizing sequence for the variational problem ΛF (Σ, [g]). Indeed, by definition
Λε ≥ ΛF (Σ, [g]). Now, if g̃ = e2ug ∈ [g] is such that Ag̃(Σ) = 1 and

(5.3) F (λ1(g̃), · · · , λm(g̃)) ≤ ΛF (Σ, [g]) +
η

2

for some small η > 0, then, knowing that Kε[e
2u]→ e2u in C0(Σ) as ε→ 0, there is ε0 > 0

such that

Λε ≤ F
(
λ1(Kε[e

2u]g), · · · , λm(Kε[e
2u]g)

)
≤ F (λ1(g̃), · · · , λm(g̃)) +

η

2

for any ε < ε0. This, with (5.3), we get that Λε ≤ ΛF (Σ, [g]) + η. This means that
Λε → ΛF (Σ, [g]) as ε→ 0 as required.

Now, for a given ε, e2uε = Kε[νε] corresponds to the minimum of a variational problem
(5.1). We let λk be the limit of λεk = λk(e

2uεg) as ε→ 0. Notice that by the asumpsions
on F , λ1 6= 0.

We obtain by the following claim a system of equations corresponding to this critical
point of a regularized functional depending on ε.

Claim 5.1. Let ε > 0. Then, there are non-negative integers iε1, · · · , iεm and a map
Φε : Σ→ Riε1 × · · · × Riεm such that

• The family of coordinate functions
(

Φk,j
ε

)
1≤k≤m,1≤j≤iεk

is independent.

• ∀k ∈ {1, · · · ,m},∆gΦ
k
ε = λkε e

2uεΦk
ε

•
´

Σ |∇Φε|2g dAg =
´

Σ e
2uε |Φε|2Eε dAg = 1
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• Kε[|Φε|2Eε ] ≥ 1 in Σ

• Kε[|Φε|2Eε ] = 1 on supp(νε),

where Φk
ε : Σ→ Riεk is a coordinate map of Φε and Φk,j

ε : Σ→ R is a coordinate function of

Φk
ε , |Φε|2Eε =

∑m
k=1 λ

k
ε

∣∣Φk
ε

∣∣2 is the norm of Φε with respect to the quadratic form associated

to the ellipsoid Eε and
∣∣Φk

ε

∣∣2 is the Euclidean norm of Φk
ε in Riεk and λkε = λk(e

2uεg).

Proof. Notice that the proof is written in the same spirit as the proof of Theorem 3.1 or
the proof of Claim 3.1 in [Pet18]. Since ε > 0 is set, we omit the ε indices of λkε , Φε, i

ε
k, νε,

e2uε and Eε.
Let µ ∈M(Σ) be a positive radon measure and t ≥ 0. We now denote by λkt = λk(e2utg)

where e2ut = Kε[ν + tµ]. Let φt ∈ S(Ek(e
2utg)) (ie φt is an eigenfunction associated to

λkt such that
´

Σ φ
2
t e

2utdAg = 1). As we did in the proof of Theorem 3.1, we can easily

prove that λkt → λk := λk(e
2ug) as t→ 0+ and φt converges to φ ∈ S(Ek(e

2ug)) up to the
extraction of a subsequence tj → 0+ (ie φ is an eigenfunction associated to λk such that´

Σ φ
2e2udAg = 1 in C2(Σ)).

Now we focus on the equation satisfied by Rt = φt− πk(φt) where πk is the orthonormal
projection on Ek(e

2ug)

(5.4) ∆g

(
Rt
αt

)
− λke2uRt

αt
=
λkt − λk
αt

e2uφt +
t

αt
λktKε[µ]φt

where

(5.5) αt = ‖Rt‖∞ + t+
∣∣∣λkt − λk∣∣∣ .

Up to the extraction of a subsequence, we have

t

αt
→ t0 and

λkt − λk
αt

→ δ0 and
Rt
αt
→ R0 in C2(Σ)

as t→ 0+. The last limit follows from the standard elliptic theory applied to the equation
(5.4). We pass to the limit in this equation (5.4) and (5.5) and get

(5.6) ∆g (R0)− λke2uR0 = δ0e
2uφt + t0λkKε[µ]φ

and

(5.7) 1 = ‖R0‖∞ + t0 + |δ0| .

We integrate (5.6) against φ and we get that

δ0 + t0λk

ˆ
Σ
Kε[µ]φ2dAg = 0 .

If t0 = 0, then, δ0 = 0 and (5.6) becomes ∆g (R0)− λke2uR0 = 0. As a limit of functions

in Ek(e2ug)⊥, we have that R0 ∈ Ek(e2ug)∩Ek(e2ug)⊥ so that R0 = 0, contradicting (5.7).
Therefore, t0 6= 0 and

(5.8)
λkt − λt

t
→ δ0

t0
= −λk

ˆ
Σ
Kε[µ]φ2dAg as t→ 0+ .
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Since F
((

1 + t
´

Σ dµ
)
λ1
t , · · · ,

(
1 + t

´
Σ dµ

)
λmt
)
≥ Λε for any t > 0, we deduce from (5.8)

that

∀µ ∈M(Σ), ∃(φ1, · · · , φm) ∈S
(
E1(e2ug)

)
× · · · × S

(
Em(e2ug)

)
,

ˆ
Σ

(
m∑
k=1

λktk
(
1−Kε[φ

2
i ]
))

dµ ≤ 0
(5.9)

where tk = ∂kF (λ1, · · · , λm). We define the following subset of C0(Σ)

K = {Ψ ∈ C0(Σ); ∃(Φ1, · · · ,Φm) ∈ E1(e2ug)i1 × · · · × Em(e2ug)im

s.t Ψ =

m∑
k=1

λktk

(
Kε[|Φk|2]− 1

)
and

ˆ
Σ
|Φk|2 e2u = 1}

(5.10)

and

F = {f ∈ C0(Σ); f ≥ 0} .

The set F is closed and convex. The set K is convex as the convex hull of{
m∑
k=1

λktk
(
Kε[φ

2
k]− 1

)
; (φ1, · · · , φm) ∈ S(E1(e2ug))× · · · × S(Em(e2ug))

}
.

Since E1(e2ug) × · · · × Em(e2ug) is finite dimensional, the vector space spanned by this
set is finite dimensional and is a compact set since it is bounded. Therefore K is also a
compact set. If F ∩K = ∅, by the Hahn-Banach theorem, there is µ ∈M(Σ) such that

(5.11) ∀f ∈ F,
ˆ
M
fdµ ≥ 0 and ∀Ψ ∈ K,

ˆ
M

Ψdµ < 0 .

We deduce that µ 6= 0, that µ is positive but (5.11) contradicts (5.9). We proved that
F ∩K 6= ∅. It gives (Φ1, · · · ,Φm) ∈ E1(e2ug)i1 × · · · × Em(e2ug)im such that

∀1 ≤ k ≤ m,
ˆ

Σ
|Φk|2 e2u = 1 and Kε

[
m∑
k=1

λktk |Φk|2
]
≥

m∑
k=1

λktk .

Up to a renormalization of the family (Φ1, · · · ,Φm), we obtain that

(5.12)

ˆ
Σ

(
m∑
k=1

λk |Φk|2
)
e2udAg = 1 and Kε

[
m∑
k=1

λk |Φk|2
]
≥ 1 .

and we can write that

1 =

ˆ
Σ
|Φ|2E e

2udAg =

ˆ
Σ
Kε

[
|Φ|2E

]
dν ≥

ˆ
Σ
dν = 1

Therefore, Kε

[
|Φ|2E

]
= 1 ν-a.e and since Kε

[
|Φ|2E

]
is continuous, Kε

[
|Φ|2E

]
= 1 on supp(ν).

In order to complete the claim, let’s prove that up to change the family (Φk,j)1≤k≤m,1≤j≤ik ,
we can assume that it is a family of independent eigenfunctions in L2(g). It suffices to prove
that for any k ∈ {1, · · · ,m} such that λk 6= λk−1, the family (Φl,j)k≤i≤k+κ,1≤j≤il can be
assumed to be a family of independent functions where κ ≥ 0 is chosen such that k+κ ≤ m,
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λk+κ = λk and λk+κ+1 > λk. We relabel this family (ϕ1, · · · , ϕθ). Let (u1, · · · , uνk) be a
basis of Ek(e

2ug). Then we can write

ϕj =

νk∑
l=1

αj,lul for 1 ≤ j ≤ θ, αj,l ∈ R .

Now we define the quadratic form q : Rνk → R by

q(x) =
θ∑
j=1

(
νk∑
l=1

αj,lxl

)2

By the Gaussian decomposition of quadratic forms, we have independent linear forms
Lα,1, · · · , Lα,νk and εα,1, · · · , εα,νk ∈ {−1, 0, 1} depending on α = (αj,l) such that

q(x) =

νk∑
l=1

εα,l (Lα,l(x))2

Of course, since q(x) ≥ 0, we have that εα,l ∈ {0, 1}, and we replace the family (ϕ1, · · · , ϕθ)
by the family (Lα,l(u1, · · · , uνk))1≤l≤νk; s.t. εα,l=1.

This ends the proof of Claim 5.12.
♦

We know by [Che76] that the multiplicity of λkε is bounded by k and the topology of Σ.

Therefore since the family of coordinate functions
(

Φk,j
ε

)
1≤k≤m,1≤j≤iεk

is independent the

sum iε1 + · · ·+ iεm, is bounded with respect to ε and up to the extraction of a subsequence,
we assume that the indices iεk do not depend on ε.

5.2. Notations for local analysis and rescalings. Let (Σ, g) be a smooth Riemannian
surface with Ag(Σ) = 1.

We recall that M(Σ) is the set of positive Radon measures provided with the weak?

topology and M1(Σ) the subset of probability measures.
For an open set Ω ⊂ Σ we denote by λ? (Ω, g) the first Dirichlet eigenvalue in (Ω, g).
For all the paper, we fix δ0 > 0, a constant C0 > 1 and a family (xl)l=1,...,L of points in

Σ and smooth functions vl : Σ 7→ R such that

• for any l ∈ {1, . . . , L}, the metric gl = e−2vlg is a flat metric in the ballBgl (xl, 2δ0) =
Ωl.

• Σ =
L⋃
l=1

ωl where ωl = Bgl (xl, δ0).

• For any 1 ≤ l ≤ L, C−2
0 ≤ e2vl ≤ C2

0 .

• For any x ∈ ωl and 0 < r < δ0, Bg(x,C
−1
0 r) ⊂ Bgi(x, r) ⊂ Bg(x,C0r)

For 1 ≤ l ≤ L and a point z ∈ D2δ0(0), we let

e2ṽl(z) = e2vl(expgl,xl
(z)) and z̄l = expgl,xl(z)

and for x ∈ Ωl and a set Ω ⊂ Ωl,

x̃l = exp−1
gl,xl

(x) and Ω̃l = exp−1
gl,xl

(Ω) .
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For a smooth density e2u with e2ug ∈ [g], we let

e2ũl(z) = e2ṽl(z)e2u(expgl,xl
(z))

so that for Ω ⊂ Ωl, ˆ
Ω
e2udAg =

ˆ
Ω̃l
e2ũldx .

For other functions φ ∈ L1(M) or measures ν ∈M(Σ), we let

φ̃l(z) = φ(expgl,xl(z)) and ν̃l = exp?gl,xl(ν) .

Let pε(x, y) be the heat kernel of (M, g) at time ε > 0. Then, for y, z ∈ Ω̃l, we let

p̃lε(z, y) = e2ṽl(z)pε(expgl,xl(z), expgl,xl(y))

so that for a density e2u(x) =
´

Ω pε(x, y)dν(y) for Ω ⊂ Ωl and some measure ν, we have

e2ũl(z) =

ˆ
Ω̃l
p̃lε(z, y)dν̃(y) and

ˆ
Ω̃l
φ̃l(z)p̃lε(z, ỹ

l)dz =

ˆ
Ω
φ(x)pε(x, y)dAg(x) .

for φ ∈ L1(Σ). When the context is clear, we drop the exponent l in all the notations.

One fundamental remark for all the following analysis is some scale invariance properties
for the heat kernel pε(x, y) and λ?

(
Ω, e2ug

)
. We shall give convenient notations to handle

this scale invariance. For parameters a ∈ R2 and α > 0, we denote the following rescaled
objects by

x̂ =
x̃− a
α

and Ω̂ =
Ω̃− a
α

,

e2û(z) = α2e2ũ(αz+a), φ̂(z) = φ̃(αz + a) and ν̂ = H?
a,α(ν̃) ,

p̂ε(z, y) = α2p̃lε(αz + a, αy + a) ,

where Ha,α(x) = αx+ a, so that if e2u(x) =
´

Ω pε(x, y)dν(y), we have

e2û(z) =

ˆ
Ω̂
p̂ε(z, y)dν̂(y)

and ˆ
Ω̂
φ(z)p̂ε(z, ŷ)dz =

ˆ
Ω
φ(x)pε(x, y)dAg(y) .

We also let for z ∈ R2,

z̆ = expgl,xl(αz + a) and Ω̆ = expgl,xl(αΩ + a) ,

so that ˆ̆z = z. Then we also have that

λ?
(
Ω, e2ug

)
= λ?

(
Ω̂, e2ûdx

)
.
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5.3. No concentration or one bubble. From here to the end of the paper, we assume
a stronger assumption on F than (2.3) and (2.4):

(H’) The maximizing sequence e2uεdAg of ΛF (Σ, [g]) given by Claim 5.1 satisfies that
λ1(e2uε) does not converge to 0.

It slightly simplifies the presentation of the proof. In the end of this subsection, we
explain and leave to the reader how to prove Therorem 2.2 with the general assumptions

Up to the extraction of a subsequence, we denote by ν the weak-? limit of {e2uεdAg}ε>0

as ε→ 0. Then ν is also the weak-? limit of {νε}ε>0 as ε→ 0. Indeed, let ζ ∈ C0(Σ),∣∣∣∣ˆ
Σ
ζ
(
dνε − e2uεdAg

)∣∣∣∣ =

∣∣∣∣ˆ
Σ
ζ (dνε −Kε[νε]dAg)

∣∣∣∣
=

∣∣∣∣ˆ
Σ

(ζ −Kε[ζ]) dνε

∣∣∣∣
≤ ‖ζ −Kε[ζ]‖∞ → 0 as ε→ 0 .

In the following claim, we aim at proving that if the sequence {e2uεdAg}ε>0 concentrates,
then there is only one bubble.

Claim 5.2. With assumption (H’), one of these situations occur

(i) The limiting measure of {e2uεdAg}ε>0 does not have any atoms.
(ii) There are points xε ∈ Σ, scales αε > 0 and a probability measure ν̂ ∈ M1(R2)

without atoms such that αε → 0 and the measure

e2ûε(z)dz := α2
εe

2ũε(aε+αεz)dz

converges to ν̂ with respect to the weak-? convergence in R2 as ε→ 0, where aε = x̃ε.

Proof. Let us assume that e2uεdAg concentrates as ε→ 0. We assume that ν = mδx + µ
where δx is the Dirac measure at x ∈ Σ, m 6= 0 and µ 6= 0. Then we let η1 and η2 be
smooth functions such that


η1 = 1 in Bg(x, r)

η1 = 0 in Σ \Bg(x, r
1
2 )´

Σ |∇η1|2g dAg ≤
C

ln( 1
r )

and 
η2 = 1 in Σ \Bg(x, r

1
4 )

η2 = 0 in Bg(x, r
1
2 )´

Σ |∇η2|2g dAg ≤
C

ln( 1
r )

.
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Such functions exist with a constant independent of ε and r because the capacity of a point
is zero. Since η1 and η2 are orthogonal functions,

λ1(e2uεg) ≤ max

{ ´
Σ |∇η1|2g dAg´

Σ (η1)2 e2uεdAg
,

´
Σ |∇η2|2g dAg´

Σ (η2)2 e2uεdAg

}

≤ C

ln
(

1
r

) max

 1´
Bg(x,r) e

2uεdAg
,

1´
Σ\Bg(x,r

1
4 )
e2uεdAg


≤ C

ln
(

1
r

) max

 1

m+ o(1)
,

1´
Σ\Bg(x,r

1
4 )
dµ+ o(1)

 as ε→ 0

We let ε → 0 and then, r → 0 and we obtain that λ1(e2uεg) → 0 as ε → 0, which is not
possible. Therefore, ν = δx. We now aim at proving that there is only one bubble at the
neighborhood of x in order to prove (ii).

We let some points a1
ε , a

2
ε and some scales α1

ε and α2
ε such that α1

ε > α2
ε and for i ∈ {1, 2},(

αiε
)2
e2ũε(aiε+α

i
εz)dz ⇀ ν̂i as ε→ 0

for ν̂1 and ν̂2 two non-zero measures on R2 and such that if a2
ε−a1

ε
α1
ε

converges to a0 as ε→ 0,

then
´
R2\z0 dν̂1 > 0. We then aim at proving that

|a2
ε−a1

ε |
α1
ε

+ α1
ε
α2
ε

is bounded. Assume by

contradiction that this quantity goes to +∞ as ε→ 0.
We choose for R > 1 a function ηR such that

ηR = 1 in DR
ηR = 0 in R2 \ DR2´
R2 |∇ηR|2 dz ≤ C

ln(R)

.

We define η1 and η2 by η̃1(z) = ηR

(
z−a1

ε
α1
ε

)(
1− ηR2

(
z−a2

ε
α2
ε

))
and η̃2(z) = ηR

(
z−a2

ε
α2
ε

)
on

the chart ωl at the neighborhood of x and extended by zero elsewhere. They have disjoint
supports on Σ and

λ1(e2uεg) ≤ max

{ ´
Σ |∇η1|2g dAg´

Σ (η1)2 e2uεdAg
,

´
Σ |∇η2|2g dAg´

Σ (η2)2 e2uεdAg

}

≤ max


2
(´

R2 |∇ηR|2 +
´
R2 |∇ηR2 |2

)
´
DR\D

R4

(
α2
ε
α1
ε

)2

(a0)

dν̂1 + o(1)
,

´
R2 |∇ηR|2´

DR dν̂2 + o(1)


as ε → 0, where a0 is the limit of a2

ε−a1
ε

α1
ε

as ε → 0 if it exists. If not, we can replace

DR \ D
R4

(
α2
ε
α1
ε

)2

(a0)
by DR in the formula. Letting ε→ 0 and then R→ +∞, we get that

λ1(e2uεg)→ 0 as ε→ 0, which is not possible. Thus, as expected
|a2
ε−a1

ε |
α1
ε

+ α1
ε
α2
ε
, is bounded

and up to a translation and a dilatation in R2, we have that ν̂1 = ν̂2, and there is never
dichotomy. In order to detect the bubble, one can pullback the measure ηe2ũεdz on S2

by the stereographic projection σ (we denote this measure µε), and by Hersch theorem
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[Her70], we have that
´
S2 x◦θεdµε = 0 up to a conformal diffeomorphism θε. We can define

points aε and scales αε such that if α2
εe

2ũε(aε+αεz)dz converges to ν̂ and σ?θ?µε converges
to µ, then µ = ν̂ up to an isometry of R2. By the Hersch condition, and because of the
concentration, µ is a non-zero measure. If µ is not a probability measure or if µ has an
atom, then by the Hersch condition one can find a dichotomy which is a contradiction.
This ends the proof of claim 5.2.

♦

Thanks to this dichotomy, we just have to deal with two cases of analysis :

• (i) occurs and we prove that the limiting probability measure ν is absolutely
continuous with respect to dAg with a smooth density e2u on Σ, and that the
metric e2ug is smooth up to conical singularities.
• (ii) occurs and we prove that the limiting probability measure ν̂ on R2 is absolutely

continous with respect to the Lebesgue measure with a smooth density e2û and
that the metric e2ûξ is smooth up to conical singularities.

If case (i) occurs, and once we prove the expected regularity, thanks to upper semi-
continuity of the eigenvalues in the space of probability measures M1(Σ) endowed with
the weak-? topology, and the monotonicity assumptions we made on F ,

F
(
λ1(e2ug), · · · , λm(e2ug)

)
≤ ΛF (Σ, [g])

which proves that e2ug is a minimal metric for the functional
If case (ii) occurs and once we prove the expected regularity, using this regularity result

and the gap assumption (2.4), we obtain a contradiction. Indeed, we denote by

e2ǔdAh = σ?
(
e2ûdz

)
the pullback metric on the sphere S2 by the stereographic projection σ with respect to the
north pole p = (0, 0, 1). We let (ψ0, ψ1, · · · , ψm) be eigenfunctions on the sphere associated
to 0 = λ0(e2ǔh) < λ1(e2ǔh) ≤ · · · ≤ λm(e2ǔh) and η be a cutoff function on the sphere

such that η = 1 on S2 \ Bh(p, r), η = 0 on Bh(p, r) and
´
S2 |∇η|2 ≤ C

ln( 1
r )

. Then, we test

the transplantation of the functions θ̃k = (ηψk) ◦σ−1 extended by zero on Σ for 1 ≤ k ≤ m.
This gives as ε→ 0 that

λεk ≤
´

Σ |∇θk|
2
g dAg´

Σ θ
2
ke

2uεdAg
+ o(1) ≤

´
S2\Bh(p,r2) |∇ψk|

2
g dAh´

S2\Bh(p,r) ψ
2
ke

2uεdAh
+ o(1) .

Letting ε→ 0 and then r → 0, we get that for any 1 ≤ k ≤ m,

lim sup
ε→0

λεk ≤ λk(e2ug)

Thanks to this property and the monotonicity assumption we made on F , we get that
ΛF (S2) ≤ ΛF (Σ, [g]). This contradicts (2.4).

Therefore, in order to prove Theorem 2.2, we prove the regularity of the limiting measures.
It is the purpose of the remaining proof.

To prove Theorem 2.2 with assumptions (2.3) (2.4), one has to perform the same
dichotomy argument as in Claim 5.2 to build by induction a so-called bubble tree (see
proposition 2 in [Pet18]). Notice that the number of thick parts (surface+bubbles) is
controlled by the least k such that the k-th eigenvalue does not go to 0. Then we
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can conclude as soon as we prove the regularity of the limiting measures in every thick
part. Again, all the following regularity estimates in the current paper on eigenfunctions
associated to eigenvalues not srinking to 0 work perfectly well for that.

5.4. Regularity estimates at the scale
√
ε. In case (ii) of Claim 5.2, the proof of

the regularity of the limiting measure is immediate when we assume that the sequence
{ αε√

ε
} is bounded, where αε is the scale defined in (ii), in claim 5.2. The very suitable

scale
√
ε arises naturally from the choice of the heat kernel. Indeed, in this case, we let

θ0 = limε→0
ε

e2ṽ(x0)α2
ε

and we denote by ν̂ the weak? limit of ν̂ε in M(R2). Let R0 > 0 and

z ∈ DR0 . We have by (6.11) that

e2ûε(z) = e2vl(x̆)α2
ε

ˆ
Σ
pε(z̆, y)dνε(y) ≤ A0e

2vl(z̆)α2
ε

4πε

ˆ
Σ
dνε ≤

A0

4πθ0
(1 + o(1)) .

Since
´
DR e

2ûε(z)dz ≥ 1 + αε,R, where limR→+∞ limε→0 αε,R = 0, we get that θ0 < +∞.

Now, we let e2û be a smooth function on R2 defined by

(5.13) e2û(z) =

ˆ
R2

e
− |z−y|

2

4θ0

4πθ0
dν̂(y) .

Let R0 > 0, R > R0 and z ∈ DR0 . We have that∣∣∣e2ûε(z) − e2û(z)
∣∣∣ =

∣∣∣∣ˆ
Σ
α2
εpε(z̆, y)dνε(y)− e2û(z)

∣∣∣∣
≤
ˆ

Σ\D̆R
α2
εpε(z̆, y)dνε(y) +

∣∣∣∣∣∣
ˆ
DR
p̂ε(z, y)dν̂ε(y)−

ˆ
R2

e
− |z−y|

2

4θ0

4πθ0
dν̂(y)

∣∣∣∣∣∣
so that∣∣∣e2ûε(z) − e2û(z)

∣∣∣ ≤ A0

4πθ0
(1 + o(1))e

− (R−R0)2

8θ0 +

∣∣∣∣∣∣
ˆ
DR

p̂ε(z, y)− e
− |z−y|

2

4θ0

4πθ0

 dν̂ε

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ˆ
DR

e
− |z−y|

2

8θ0

4πθ0
(dν̂ε − dν̂)

∣∣∣∣∣∣+

ˆ
R2\DR

e
− |z−y|

2

4θ0

4πθ0
dν̂ + o(1)

→ A0

4πθ0
e
− (R−R0)2

8θ0 +

ˆ
R2\DR

e
− |z−y|

2

4θ0

4πθ0
dν̂ as ε→ 0 .

Letting R→ +∞, we get for any R0 > 0 that

(5.14) e2ûε → e2û in C0(DR0) as ε→ 0 .

Therefore, the limit e2ûdz of the sequence of measures {e2ûεdz} is absolutely continuous
with respect to the Lebesgue measure, with a smooth density and it is a probability
measure.

Now up to the end of the proof we assume that αε√
ε
→ +∞.
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We cannot expect to get good estimates on the potential e2uε since {α2
εe

2uε} is not
uniformly bounded anymore. However, the eigenfunctions which are coordinates of Φε,
given by Claim 5.1 satisfy lots of conditions. The purpose is now to prove that thanks to
finer and finer estimates, they converge in suitable function spaces up to the extraction of
a subsequence. We still have an immediate very partial result arising from a look at the
scale

√
ε. This weaker but fundamental result is the consequence of Claim 5.1. It states

that at the scale
√
ε, the sequence of eigenfunctions is bounded at the neighborhood of

the support of νε. As already said, this scale comes naturally from the choice of the heat
kernel.

Claim 5.3. For any R > 0, there is a constant CR > 0 such that for any sequence (zε) of
points of Σ with dg(zε, supp(νε)) ≤ R

√
ε, we have∣∣∣Φk

ε (zε)
∣∣∣ ≤ CR for all ε > 0 and k ∈ {1, · · · ,m}

Proof. We refer the reader to Section 5.2 for the notations used during this proof. We can
assume that xε ∈ ωl for 1 ≤ l ≤ L fixed and we set

Φ̂ε(x) = Φ̃ε

(√
εx+ x̃ε

)
for x ∈ D δ√

ε
. Then

∆ξΦ̂
k
ε = ελεke

2ũε(
√
εx+x̃ε)Φ̂k

ε

in Dδ√ε for 1 ≤ k ≤ m. By estimate (6.10) of Section 6.2, (εpε) is uniformly bounded so

that
(
εe2ũε(

√
εx+x̃ε)

)
is uniformly bounded.

Now, we let yε ∈ supp(νε) be such that dg (xε, yε) ≤ R
√
ε. By Claim 5.1, we have that

Kε

[
|Φε|2Eε

]
(yε) = 1. Let us write then with (6.10), in Section 6.2, that for ρ > 0,

1 = Kε

[
|Φε|2Eε

]
(yε) ≥

m∑
k=1

λkKε

[∣∣∣Φk
ε

∣∣∣2] (yε)

=

m∑
k=1

λk

ˆ
Σ
pε (y, yε)

∣∣∣Φk
ε(y)

∣∣∣2 dAg(y)

≥
m∑
k=1

λk
1

4πA0ε
e−ρ

2C2
0

ˆ
Bg(yε,2ρC0

√
ε)

∣∣∣Φk
ε(y)

∣∣∣2 dAg(y)

≥
m∑
k=1

λk
1

4πA0C2
0

e−ρ
2C2

0

ˆ
D2ρ(ẑε)

∣∣∣Φ̂k
ε(z)

∣∣∣2 dz .
We set ẑε = 1√

ε
(ỹε − x̃ε) so that, up to a subsequence, ẑε → z0 as ε→ 0 and we deduce

from the previous inequality that, for any ρ > 0, {Φ̂k
ε} is bounded in L2(Dρ(z0)). Thus,

by the Sobolev embedding W 2,2 ⊂ C0 (see [GT01], Corollary 7.11, page 158) and the L2

elliptic estimate (see [GT01], Theorem 9.11, page 235), it is clear that
{
φ̂ε

}
is uniformly

bounded in Dρ by some constant Dρ. Setting CR = D2C0R gives the claim.
♦
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5.5. Singularity points. In order to prove finer and finer estimates on the sequence of
eigenfunctions given by Claim 5.1, we have to work far from the neighbourhood of points
having bad properties to pass to the limit. As in [Pet18], we call them singularity points.
Indeed, for instance, this sequence of eigenfunctions has uniformly bounded Dirichlet
energy, but for instance, we cannot a priori tell anything about the sequence of their L2(g)
norm (except in the scale

√
ε as noticed in Claim 5.3).

We prove in a first part of this section that there are at most m singularity points.
Because the bad properties are concentrated around these points, they will not affect the
regularity properties of the limit of the minimizing sequence nor the energy estimates.
Notice that the terminology ”good point”-”bad point” is rather used in [KNPP20]. ”Bad
points” correspond to the ”singularity points” in the originated proof of the author for
maximization of the m-th eigenvalue in a conformal class [Pet18].

We recall in a second part the tools we need to have L2 estimates on the sequence of
eigenfunctions, using Poincaré inequalities if they vanish on curves connecting two points
whose distance is uniformly lower bounded by a positive constant. All eigenfunctions
vanishing outside the neighbourhood of singularity points satisfy this property.

5.5.1. Scales of singularity points. Following [Pet18], we would like to localize these singu-
larity points. At their neighbourhood, we cannot use any quantitative estimates coming
from Section 4 nor the Poincaré inequalities (Proposition 5.1 below). In the current paper,
we give a more precise and simpler Claim than in [Pet18], giving the scales of appearance
of these singularity points.

Claim 5.4. Up to the extraction of a subsequence of {e2uεg}ε>0 we can find a maximal
collection of points pε1, · · · , pεs ∈ Σ with 0 ≤ s ≤ m − 1 such that pεi → pi as ε → 0 and
positive scales rε1 ≤ · · · ≤ rεs such that for any 1 ≤ i ≤ s, setting Aεi as

Aεi =

r > 0;Dr (p) ⊂ Σ \

 i⋃
j=1

Drεj
(
pεj

) and λ?
(
Dr (p) , e2ũεdx

)
≤ λm(e2uεg)


lim
ε→0

(inf Aεs) > 0 ,

rεi := minAεi → 0 as ε→ 0 ,

Drεi (pεi ) ⊂ Σ \

i−1⋃
j=1

Drεj
(
pεj

) ,

λ?
(
Drεi (pεi ) , e

2ũεdx
)

= λm(e2uεg) .

Proof. We first define

Aε0 =
{
r > 0;Dr (p) ⊂ Σ and λ?

(
Dr (p) , e2ũεdx

)
≤ λm(e2uεg)

}
Notice first that if limε→0 inf Aε0 > 0 then s = 0 and there is not such a sequence and
the claim is proved. Otherwise limε→0 inf Aε0 = 0. We set rε1 = minAε0 (notice that the

infimum is a minimum) and we chose pε1 such that Drε1 (pε1) ⊂ Σ and λ?
(
Drε1 (pε1) , e2ũεdx

)
≤

λm(e2uεg). Since rε1 is a minimum, the previous inequality has to be an equality.
If for a given i ≥ 1 the sequences rε1, · · · , rεi , pε1, · · · , pεi are built, then if limε→0 inf Aεi > 0,

the construction terminates and s = i. Otherwise limε→0 inf Aεi = 0 and we set rεi+1 =
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minAεi , and we chose pε1 such that Drεi+1

(
pεi+1

)
⊂ Σ and λ?

(
Drεi+1

(
pεi+1

)
, e2ũεdx

)
≤

λm(e2uεg). Since rεi+1 is a minimum, the previous inequality has to be an equality.
Finally we prove that this sequence terminates after m − 1 steps. Indeed, if not, we

set Dε
i = Drεi (pεi ) for i ∈ {1, · · · ,m}. The domains Dε

i are disjoint in Σ and we have

λ?
(
Dε
i , e

2uε
)

= λm(e2uεg). Let ϕεi be first Dirichlet eigenfunctions on Dε
i extended by 0

on Σ. We also take ϕε0 ∈ C∞c (Σ \
⋃
Dε
i ) such that ϕε0 = 1 on Σ \

⋃m
i=1 D√rεi (pεi ) and

ˆ
Σ
|∇ϕεi |

2
g dAg ≤

C

ln
(

1
rεm

)
We use these functions as test functions for the variational characterization of λm(e2uε , g):

λm(e2uε , g) = inf
Em+1

max
ϕ∈Em+1

´
Σ |∇ϕ|

2
g dAg´

Σ (ϕ)2 dAg
≤ max

0≤i≤m

{´
Σ |∇ϕ

ε
i |

2
g dAg´

Σ (ϕεi )
2 dAg

}
= λm(e2uε , g)

where the inequality holds because the test functions have support in disjoint sets.
Therefore, we obtain the case of equality in the variational characterization of λm(e2uε , g)

and deduce that there is a linear combination of the ϕi which is an eigenfunction associated
to λm(e2uε , g). Such a function vanishes on an open set : this is absurd. ♦

Notice that for m = 1, such singularities never occur. That’s why we do not deal with
this problem in [Pet14a].

5.5.2. Poincaré inequalities and nodal lines. We aim at stating a specific Poincaré inequality
in Proposition 5.1. Thanks to this, we have uniform bounds of the L2 norm at every scale
when the nodal set of the sequence of eigenfunction has length uniformly lower bounded.
Far from the singularity points defined in Claim 5.4, this is exactly the property we have
since nodal domains of eigenfunctions cannot shrink inside balls whose radii converge to 0

outside
⋃i
j=1 Dpεj

(
10rεj

)
. Let us state the Poincaré inequalities on the domains we consider

during the proof: we denote by

ΩK = D 1
Kρ
\

s⋃
i=1

DKρ(xi) ,

where ρ > 0, 1 ≤ K < 10, xi ∈ D 1
ρ

such that if i 6= j, then xi 6= xj and

10ρ < min

(
min
i
d(xi, ∂D 1

10ρ
); min

i 6=j

|xi − xj |
2

)
.

We state the following proposition, coming from capacity estimates

Proposition 5.1 ([AH96], Corollary 8.2.2 and [Hen05], pages 95-97). Let r > 0 and
1 < K < 10 fixed. Then, we have a constant Cr > 0 such that for every f ∈ C∞(Ω1) which
vanishes on a smooth piecewise curve Γ ⊂⊂ ΩK which connects two points of distance
r > 0,

‖f‖L2(ΩK) ≤ Cr ‖∇f‖L2(Ω1) .
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5.6. Regularity estimates in the non concentrated case. The cases of Claim 5.2: (i),
and (ii) when αε√

ε
→ +∞ are very similar to handle. In both cases, the sequence of maps

Φε arising from Claim 5.1 are ”almost-weakly-harmonic” maps into an ellipsoid.
Indeed, since Kε[|Φε|2Eε ] = 1 on supp(νε), if one can prove that supp(νε) = Σ, we get that

|Φε|2Eε = 1. Using the eigenfunction equation, and that ∆g(|Φε|2Eε) = 0, we obtain that Φε

is a harmonic map into an ellipsoid and a formula for the densities e2uε =

∑m
k=1 λ

ε
k|∇Φkε |2g∑m

k=1(λεk)
2|Φkε |2

.

By compactness results on sequences of harmonic maps into some manifold [Hel96, Riv08],
we conclude that without concentration, Φε converges in C2(Σ) as ε→ 0. Therefore, the
sequence of densities e2uε also converges and we get a regularity result.

However supp(νε) can be far from being equal to Σ. In this case we will prove that we
still have convergence as ε→ 0 of the sequence of maps Φε given by Claim 5.1, to a map
Φ which satisfies the weak equation of harmonic maps into an ellipsoid. Thanks to the
regularity results by Hélein [Hel96] of weak harmonic maps into some manifold, we will

get that Φ is smooth and that the limiting measure ν =

∑m
k=1 λk|∇Φk|2

g∑m
k=1 λ

2
k|Φk|

2 dAg is absolutely

continous with respect to dAg with a smooth density.
Notice also that the zeros of this density are isolated and give conical singularities to

the metric we get.

We now assume that (i) of Claim 5.2 occurs. We aim at proving a pointwise bound on
eigenfunctions and then thanks to strong pointwise estimates deduce energy estimates and
the W 1,2 convergence of eigenfunctions.

5.6.1. Pointwise estimates on eigenfunctions. We aim at proving that Φε is bounded far
from the sequence of singularity points pεi given by Claim 5.4. We set for ρ > 0

Σ(ρ) = Σ \

(
s⋃
i=1

Bg (pi, ρ)

)
.

Notice that the novelty compared to [Pet18] is that in the following Claim, the bounds of
the eigenfunctions in W 1,2 (Σ(ρ)) and C0 (Σ(ρ)) do not depend on ρ.

Claim 5.5. We assume that (i) of Claim 5.2 holds. Then there are constants C1 and C2

such that

(5.15) ∀ρ > 0, lim sup
ε→0

‖Φε‖W 1,2(Σ(ρ)) ≤ C1 ,

(5.16) ∀ρ > 0, lim sup
ε→0

‖Φε‖C0(Σ(ρ)) ≤ C2 ,

Proof. Notice that (5.15) is implied by (5.16) since ‖∇Φε‖L2(Σ) is bounded by 1.

Now, let us prove (5.16), the strategy proof is the same as in [Pet18], but we aim at
getting here constants C1 and C2, not depending on ρ. We set

(5.17) δεi = d
(
supp(νε) \ D10rεi

(pεi ), p
ε
i

)
,
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for i ∈ {1, · · · , s}. Up to a subsequence, we have a constant 0 < δ̃ < δ0 that {1, · · · , s} =
I1 ∪ I2, where

(5.18) I1 = {i ∈ {1, · · · , s}; δεi → 0 as ε→ 0} and I2 = {i ∈ {1, · · · , s}; δεi ≥ δ̃} .

Up to reduce δ̃, we also assume that

(5.19) supp(νε) ∩

(
Σ \

(
s⋃
i=1

Dδ̃ (pεi )

))
6= ∅ .

This is possible because the limiting measure of νε has a non-empty support on Σ \
{p1, · · · , ps}.

We have the following finite covering of Σ \
⋃s
i=1 D δ̃

10

(pεi ) by balls of radius δ̃
100 :

Σ \
s⋃
i=1

D δ̃
10

(pεi ) ⊂
L⋃
l=1

D δ̃
100

(ql) ,

where for l = 1, · · · , L, ql ∈ Σ \
⋃s
i=1 D δ̃

10

(pεi ). Let’s handle estimates on the balls D δ̃
100

(qk)

and then estimates at the neighbourhood of the singularity points pεi in the following steps:

STEP 1 :

There is a constant C2 such that for any l ∈ {1, · · · , L} and any coordinate Φi,j
ε ,

either ∀ε > 0,∀x ∈ D δ̃
50

(ql),
∣∣∣Φk,j

ε (x)
∣∣∣ ≤ C2 ,

or ∀ε > 0, ∀x, y ∈ D δ̃
50

(ql),
1

C2

∣∣∣Φk,j
ε (y)

∣∣∣ ≤ ∣∣∣Φk,j
ε (x)

∣∣∣ ≤ C2

∣∣∣Φk,j
ε (y)

∣∣∣ .
Proof of STEP 1 :

Let l ∈ {1, · · · , L}. Let 1 ≤ k ≤ m, 1 ≤ j ≤ ik and up to change Φk,j
ε into −Φk,j

ε , let

xε ∈ D δ̃
50

(ql) be a sequence of points such that

Φk,j
ε (xε) = sup

x∈D δ̃
50

(ql)

∣∣∣Φk,j
ε (x)

∣∣∣ .
We set

δε = d(x̃ε, supp(ν̃ε) ∩ D δ̃
20

(ql)) .

We divide the proof of (5.16) into three cases.

Case 1 - We assume that δε = O(
√
ε). Then, {φk,jε (xε)} is bounded by Claim 5.3.

Case 2 - We assume that δε → 0 and
√
ε
δε
→ 0 as ε→ 0. We let

ψε = Φ̃k,j
ε (δεx+ x̃ε) and e2wε = δ2

εe
2ũε(δεx+xε)

for x ∈ Dδδ−1
ε

so that

∆ψε = λεe
2wεψε in Dδδ−1

ε
.

Let yε ∈ supp(νε) be such that |xε − yε| = δε and set zε = ỹε−x̃ε
δε

so that zε → z0 as
ε → 0 up to the extraction of a subsequence. Thanks to Claim 5.3, we know that
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ψε(zε) = Φk,j
ε (yε) = O(1). Thanks to estimates (6.12) on the heat kernel, there exists

D1 > 0 such that

e2wε ≤ D1 on D 1
2
.

We first assume that ψε does not vanish in D3. Then, we can apply Harnack’s inequality
and get some constant D2 > 0 such that

ψε ≥ D2ψε(0) on D 1
4

for all ε > 0. Since ψε is positive on D|zε|(zε) ⊂ D3, by the equation, it is also superharmonic
and we can write that

ψε(zε) ≥
1

2π |zε|

ˆ
∂D|zε|(zε)

ψεdσ .

Taking only the part of the integral which lies in D 1
4
, we get the existence of some constant

D3 > 0 such that

ψε(zε) ≥ D3ψε(0)

and this concludes the proof of (5.16) in this case since Φk,j
ε (xε) = ψε(0) = O(1).

We now assume that ψε vanishes somewhere on D3 : ψε(zε) = 0. We claim that ψε
vanishes on a piecewise smooth curve in D4 which connects two points of distance greater
than 1. By contradiction, we assume the contrary. It means that the connected component

of nodal set of Φ̃k,j
ε containing δεzε + x̃ε is a subset of Dδε(δεzε + x̃ε). Then, one nodal

domain Dε of Φ̃k,j
ε is a subset of Dδε(δεzε + x̃ε). This gives that

(5.20) λ?

(
Dδε(δεzε + x̃ε), e

2uεg
)
≤ λ?

(
Dε, e

2uεg
)

= λm
(
Σ, e2uεg

)
.

Since δε → 0 as ε → 0, and xε ∈ Σε(ρ) for ρ small enough, we obtain a contradiction
with Claim 5.4. By proposition 5.1 for Ω = D5, we get some constant C > 0 such thatˆ

D4

ψ2
ε ≤ C

ˆ
D5

|∇ψε|2 dx

which proves that {ψε} is bounded in L2(D4). By elliptic regularity, ψε is bounded in

L∞(D 1
4
) which gives that {Φk,j

ε (xε)} is bounded. The study of these three cases completes

the proof of (5.16) with a constant C2(ρ).

Case 3 - We assume that δ−1
ε = O(1) and that, {Φk,j

ε } vanishes somewhere in D δ̃
20

(ql).

Up to the extraction of a subsequence, we assume that δε → δ̂ > 0 and xε → x as ε→ 0.
Then {e2uε} is uniformly bounded in D δ̂

2

(x̃) by (6.11).

In a same argument as previously in CASE 2 (see (5.20) and the arguments around), Φ̃k,j
ε

has to vanish on a piecewise smooth curve which connects to points of distance uniformly
lower bounded as ε→ 0. Indeed, if not, one would build a new sequence of balls of radius
converging to 0 having first Dirichlet eigenvalue less than λm

(
Σ, e2uεg

)
. This contradicts

Claim 5.4. Therefore, {Φk,j
ε } is bounded in L2

(
D δ̃

40

(ql)

)
by proposition 5.1.

Then {Φk,j
ε } is bounded by some constant C2 in L∞

(
D δ̃

50

(ql) ∩ D δ̂
4

(x̃)

)
by standard

elliptic theory on the eigenvalue equation. So is {Φk,j
ε (xε)}.



EXTREMAL METRICS AND MINIMAL SURFACES INTO ELLIPSOIDS 39

Case 4 - We assume that δ−1
ε = O(1) and that {Φk,j

ε } does not vanishes in D δ̃
20

(ql).

Then {e2uε} is uniformly bounded in D δ̃
10

(x) by (6.11). Moreover {Φk,j
ε } has a constant

sign and up to take −Φk,j
ε , we assume that Φk,j

ε > 0 in D δ̃
20

(ql). Therefore Φk,j
ε is a positive

sub-harmonic function with potential {e2uε} uniformly bounded in D δ
R0

(x). Then Φk,j
ε

satisfies a Harnack inequality on D δ
50

(ql). This conclude the proof of STEP 1.

STEP 2 :

There is l = 1, · · · , L such that

∀ε > 0,∀x ∈ D δ̃
50

(ql), |Φε(x)| ≤ C2 .

Proof of STEP 2 :

By (5.19), let l = 1, · · · , L be such that D δ̃
100

(ql) ∩ supp(νε) 6= ∅. The proof is the same

as in the previous STEP, except in Case 4. Instead of getting a Harnack inequality if

{Φk,j
ε } does not vanishes in D δ̃

20

(ql), we proceed as in Case 2 of STEP 1 and we get a

uniform bound. This concludes the proof of STEP 2.

STEP 3 :

Up to increase C2,

∀ε > 0,∀x ∈ Σ \

⋃
i∈I1

Dδεi (p
ε
i ) ∪

⋃
i∈I2

D δ̃
10

(pεi )

 , |Φε(x)| ≤ C2 ,

where the definition of I1 and I2 is given at the beginning of the proof in (5.18)

Proof of STEP 3 :

We first have that, up to increase C2, by the previous STEP 1 and STEP 2, since Σ is
connected,

(5.21) ∀ε > 0,∀x ∈ Σ \

(
s⋃
i=1

D δ̃
10

(pεi )

)
, |Φε(x)| ≤ C2 .

Let’s now prove the uniform bound in the neighbourhood of points pεi for i ∈ I1. Let

1 ≤ k ≤ m, 1 ≤ j ≤ ik and up to change Φk,j
ε into −Φk,j

ε , let (xε) be a sequence of points
such that

Φk,j
ε (xε) = sup

x∈Σ\
(⋃

i∈I1
Dδε
i

(pεi )∪
⋃
i∈I2

D
δ̃
10

(pεi )

)
∣∣∣Φk,j

ε (x)
∣∣∣ .

We set

δε = d(x̃ε, supp(ν̃ε)) .

If xε ∈ D δ̃
10

(pεi ) \Dδεi (p
ε
i ) for some i ∈ I1, we divide the proof of (5.16) into four cases as in

the proof of STEP 1. The proof is the same in cases 1, 2 and 3. The key point is that we
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can always apply proposition 5.1 by the choice of δiε in (5.17). To adapt case 4, we assume
that xε → x. Then x /∈ {p1, · · · , ps}. Indeed, Because of Claim 5.4, we have

∀i ∈ {1, · · · , s}, supp(νε) ∩ D10rεi
(pεi ) 6= ∅ .

Indeed, if not, by uniform estimates on the heat kernel, (rεi )
2 e2ũε(rεi x+pεi ) → 0 uniformly

on x ∈ D. We would then get

λ?
(
Drεi (p

ε
i ), e

2ũε
)
→ +∞

as ε→ 0 which is not possible by Claim 5.4. Now, since x /∈ {p1, · · · , ps}, up to reduce δ̃
in all the previous steps, and thanks to (5.21), we conclude the proof of STEP 3.

STEP 4 :

We prove the remaining estimate for indices in I2. Up to increase C2,

∀i ∈ I2,∀ρ ∈ (0,
δ̃

2
), lim sup

ε→0
sup

x∈Σ\Dρ(pi)

|Φε| (x) ≤ C2 .

Proof of STEP 4 :

For i ∈ I2, δiε ≥ δ̃. By convergence properties of the heat kernel, we know that for any

0 < ρ < δ̃, e2uε = Kε(νε) converges uniformly to 0 on Dδ̃ (pi) \ D ρ
2

(pi). Therefore, by

standard elliptic estimates, up to a subsequence, Φε converges in C2(D δ̃
2

(pi) \ Dρ (pi)) for

any ρ > 0 to a Euclidean harmonic map Φ.
Notice that at this stage, Φ is defined on D δ̃

2

(pi) \ {pi} and may be unbounded since

the C0 bound of Φ(x) depend on |x− pi| as |x− pi| → 0. Since Φ is harmonic and ∇Φ

belongs to L2

(
D δ̃

2

(pi)

)
as a weak limit of ∇Φε in L2, by point removability, Φ is in

fact harmonic on D δ̃
2

(pi). By STEP 3, Φ is bounded by C2 on D δ̃
2

(pi) \ D δ̃
10

(pi). By the

maximum principle and strong convergence on C2(D δ̃
2

(pi) \ Dρ (pi)) for any ρ and i ∈ I2,

the maximum of Φε on Σ(ρ) does not depend on ρ. Then, we get STEP 4.

Gathering STEP 4 and STEP 3 proves (5.16). As already said this also proves (5.15).
The proof of the Claim is complete.

♦

5.6.2. W 1,2 convergence of eigenfunctions. In this section, we set ωε = |Φε|Eε . After
pointwise estimates, we want to prove energy estimates on Φε. Then, we aim at proving
that ∇ωε converges to 0 in L2 by the global structure of the equation on Φε given by Claim
5.1, in order to use the quantitative estimate of section 4 for ωε-harmonic maps.

We first give quantitative non-concentration estimates. We follow here the same lines as
in [Pet18] but again, here, D1 and D2 do not depend on ρ.

Claim 5.6. We assume that (i) of Claim 5.2 holds. Then, we have the following: quan-
titative non-concentration estimates on e2uε and |∇Φε|2g, there are constants D1 > 0 and
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D2 > 0 such that

(5.22) ∀ρ > 0, ∀r > 0, lim sup
ε→0

sup
x∈Σ(ρ)

ˆ
Bg(x,r)

e2uεdAg ≤
D1

ln(1
r )
,

(5.23) ∀ρ > 0, ∀r > 0, lim sup
ε→0

sup
x∈Σ(ρ)

ˆ
Bg(x,r)

|∇Φε|2gdAg ≤
D2√
ln(1

r )
.

Proof. By isocapacity estimates (see [M11], section 2.3.3, corollary of Theorem 2.3.2)

ˆ
Bg(x,r)

e2uεdAg ≤
Cap2(Bg(x, r), Bg(x, δ0))

λ?(Bg(x, r), e2uεg)
≤
Cap2(D r

C0
,DC0δ0)

λm
≤ 2π

λm ln
(
C2

0δ0
r

) ,
where δ0 is defined in section 5.2 and the second inequality comes from Claim 5.4. We
obtain (5.22).

Finally, we prove (5.23). We set z = x̃ for x ∈ Σ(ρ) and for 0 < r ≤ δ

Fε(r) =

ˆ
Dr(z)

∣∣∣∇Φ̃ε

∣∣∣2 dx .
We just aim at proving that

Fε(r) ≤
D0√
ln
(

1
r

) .
We know that Φ̃ε satisfies the equations

∆Φ̃k
ε = λεke

2uεΦ̃k
ε in Dδ

and we deduce that

Fε(r) =
m∑
k=1

(
λεk

ˆ
Dr(z)

e2ũε
∣∣∣Φ̃k

ε

∣∣∣2 dx+

ˆ
∂Dr(z)

Φ̃k
ε .∂νΦ̃k

εdσξ

)
.

Using (5.16) and (5.22), there exist some constants K1, K2 and K independent of ε, r, ρ
and z, such that

Fε(r)
2 ≤ K1

ln
(

1
r

)2 +K2

(ˆ
∂Dr(x)

∣∣∣∇Φ̃ε

∣∣∣ dσξ
)2

≤ K

(
1

ln
(

1
r

)2 + rF ′ε(r)

)
for any 0 < r < δ. We divide by rFε(r)

2 and integrate between r and δ and get

ln

(
δ

r

)
−K

(
1

Fε(r)
− 1

Fε(δ)

)
≤ K

(ˆ δ

r

1

r (ln r)2 Fε(r)

)
≤ K

Fε(r)2

(
1

ln 1
δ

− 1

ln 1
r

)
.

By the conformal invariance of the L2-norm of the gradient, Fε(δ) is bounded. Multiplying
by Fε(r)

2, we get a constant C > 0 such that

Fε(r)
2 ln

(
δ

r

)
≤ KFε(r) + C .
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Therefore, Fε(r)(ln

(
δ

r

)) 1
2

− K

2
(
ln
(
δ
r

)) 1
2

2

≤ C +
K2

4
(
ln
(
δ
r

)) .
We get (5.23) and this ends the proof of the claim. ♦

Now we aim at getting better uniform estimates than in Claim 5.1. This is a necessary
claim to prove that |Φε|2Eε is uniformly lower bounded by a positive constant (so that we

can divide by |Φε|Eε in the key Claim 5.8). We also prove a uniform convergence of |Φε|2Eε
to 1 close to the support of νε.

Claim 5.7. We assume that (i) of Claim 5.2 holds. Then for any ρ > 0, there exists
βε → 0 as ε→ 0 such that

(5.24) ∀x ∈ Σ(ρ), |Φε|2Eε (x) ≥ 1− βε ,

(5.25) ∀x ∈ Σ(ρ) ∩ supp(νε),
∣∣∣|Φε|2Eε (x)− 1

∣∣∣ ≤ βε .
Moreover, for any smooth function G : Ri1+···+im → R such that there is a constant CG

such that for any X, |G(X)| ≤ CG
(
|X|+ |X|2

)
, we have

(5.26) ∀x ∈ Σ(ρ), |G (Φε) (x)−Kε[G (Φε)](x)| ≤

(
CG + ‖G‖

C1

(
B2C0

\B 1
2λm

)
)
βε .

Proof. Notice that (5.24) and (5.25) are just consequences of the Euler-Lagrange equation
Claim 5.12 combined with

(5.27) ∀x ∈ Σ(ρ),
∣∣∣|Φε|2Eε (x)−Kε[|Φε|2Eε ](x)

∣∣∣ ≤ βε .
Notice that (5.27) is just (5.50) in the case G(X) = |X|2Eε Let’s prove (5.50) in 3 STEPS:

STEP 1 :

Let 1 ≤ i ≤ s. We prove that at the neighbourhood of the singular points defined in
Claim 5.4,

sup
x∈Σ(ρ)

ˆ
Bg(pi,

ρ
10

)
|Φε(y)|2Eε pε(x, y)dAg(y) = O(e−

ρ2

8ε ) .

Proof of STEP 1 :

Let x ∈ Σ(ρ). Then, by estimates (6.10) of Section 6.2

e
ρ2

8ε

ˆ
Bg(pi,

ρ
10

)
|Φε(y)|2Eε pε(x, y)dAg(y) ≤ A0

4πε
e−

31ρ2

400ε

´
Bg(pi,

ρ
10

) |Φε|2 e2uεdAg

infBg(pi,
ρ
10

) e
2uε

≤ A0

4πε

e−
31ρ2

400ε

infBg(pi,
ρ
10

) e
2uε



EXTREMAL METRICS AND MINIMAL SURFACES INTO ELLIPSOIDS 43

since by Claim 5.1, ˆ
Σ
|Φε|2Eε e

2uεdAg =

ˆ
Σ
Kε[|Φε|2Eε ]dνε = 1 .

We assume by contradiction that

inf
Bg(pi,

ρ
10

)
e2uε ≤ e−

31ρ2

400ε

ε
.

Let y ∈ Bg(pi, ρ10) be such that e2uε(y) = infBg(pi,
ρ
10

) e
2uε . Then, by (6.10) of Section 6.2,

e2uε(y) =

ˆ
Σ
pε(y, x)dνε(x) ≥ e−( 2ρ

10 )
2 1

4ε

4πA0ε

ˆ
Bg(pi,

ρ
10

)
dνε .

We deduce from this and the previous inequality thatˆ
Bg(pi,

ρ
10

)
dνε ≤ 4πA0e

− 27ρ2

400ε .

Let z ∈ Bg(pi, ρ20), and let us write thanks again to (6.10) of Section 6.2 that

e2uε(z) ≤ A0

´
Bg(pi,

ρ
10

) dνε + e−
ρ2

4ε
1

202

4πε
≤ A2

0

ε
e−

27ρ2

400ε +
A0

4πε
e−

ρ2

1600ε .

Then,
∥∥e2uε

∥∥
C0(Bg(pi,

ρ
20

))
→ 0 as ε→ 0. Then λ?

(
Bg(pi,

ρ
20), e2uεg

)
→ +∞ as ε→ 0 which

contradicts Claim 5.4 since for any ε, there is a domain included in Bg(pi,
ρ
20) such that the

first eigenvalue on this domain for e2uεg is bounded. This completes the proof of Step 1.

STEP 2 :

There exists βε → 0 as ε→ 0 such that

(5.28) ∀x, y ∈ Σ(ρ), dg(x, y) ≤
√
ε

βε
⇒ |Φε(x)− Φε(y)|Eε ≤ βε .

Proof of STEP 2 :

We set γε =
∥∥εe2uε

∥∥ 1
3

L∞(Σ(ρ)). We have γε → 0 as ε→ 0. Indeed, for r > 0, and x ∈ Σ(ρ)

such that γ3
ε = εe2uε(x),

εe2uε(x) ≤ A0√
4π

ˆ
Bg(x,r)

dνε + o(1) =
A0√
4π
ν(Bg(x, r)) + o(1) ≤ A0D1√

4π ln
(

1
r

) + o(1)

by the estimate (6.10), since νε ⇀? ν as ε→ 0 and by (5.22) of Claim 5.6. Letting ε→ 0
and then r → 0, we get γε → 0 as ε → 0. We also have that γε√

ε
→ +∞ as ε → 0, since

γε ≥ 2−
1
3 ε

1
3 (indeed 1

2 ≤ ‖e
2uε‖L1(Σ(ρ)) ≤ ‖e2uε‖L∞(Σ(ρ))). Let now let xε, yε ∈ Σ(ρ) with
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dg(xε, yε) ≤
√
ε

γε
. Up to the extraction of a subsequence, xε ∈ Ωl for some l fixed, and we

set  Φ̂ε(x) = Φ̃(x̃ε +
√
ε

γε
x)

e2ûε(x) = ε
γ2
ε
e

2ũε(x̃ε+
√
ε

γε
x)

.

Notice from the definition of γε that
∥∥e2ûε

∥∥
L∞
≤ γε and that the following equation holds

(5.29) ∆ξΦ̂
k
ε = λεke

2ûεΦ̂k
ε in D3C0 .

Let αε be the mean value of Φ̂ε in D3C0 . Then∥∥∥Φ̂ε − αε
∥∥∥
L∞(D2C0

(0))
≤ D

∥∥∥∆Φ̂ε

∥∥∥
L2(D3C0

(0))
+D

∥∥∥Φ̂ε − αε
∥∥∥
L2(D3C0

(0))

≤ 2Dλm ‖Φε‖L∞(Σ(ρ))

∥∥∥e2ûε
∥∥∥
L∞(D3C0

(0))
+D′

∥∥∥∇Φ̂ε

∥∥∥
L2(D3C0

(0))

≤ D′′C2γε +
D′
√
D2

ln
(

γε
3C2

0

√
ε

) 1
4

.

The first inequality comes from standard elliptic regularity theory. The second inequality
comes from the classical Poincaré inequality on D3C0 , and finally we use (5.16) and (5.23)
in Claim 5.5 and Claim 5.6. Setting

βε = 2D′′C2γε +
2D′
√
D2

ln
(

γε
3C2

0

√
ε

) 1
4

,

we have that βε → 0 as ε→ 0 and that

|Φε(xε)− Φε(yε)| ≤ βε .

Up to increasing βε so that
√
ε

βε
≤
√
ε

γε
we proved Step 2.

STEP 3 :

We prove now (5.50) and complete the proof of the Claim.

Proof of STEP 3 :

For x ∈ Σ(ρ), we write thanks to (5.16) that

|F (Φε)−Kε[G (Φε)]| (x) ≤
ˆ
Bg(x,

√
ε

βε
)
|G (Φε) (x)−G (Φε) (y)| pε(x, y)dAg(y)

+2 ‖G(Φε)‖L∞(Σ( ρ
10

))

ˆ
Σ\Bg(x,

√
ε

βε
)
pε(x, y)dAg(y)

+

s∑
i=1

ˆ
Bg(pi,

ρ
10

)
|G (Φε) (y)| pε(x, y)dAg(y) .
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We can estimate the first right-hand side term thanks to (5.28), the second RHS term
thanks to (5.16) and (6.10) of Section 6.2 and the third RHS term thanks to Step 1, the

assumption G(X) ≤ CG
(
|X|+ |X|2

)
on G and a Hölder inequality to obtain

|G (Φε)−Kε[G (Φε)]| (x) ≤

(
CG + ‖G‖

C1

(
B2C0

\B 1
2λm

)
)(

βε + 2e
− 1

4C4
0β

2
ε + 2se−

ρ2

8ε
× 1

2

)
.

Up to increase βε (independently from G) we get (5.50).

♦

We are now able to pass to the limit in W 1,2 and on the equation. The key point is to
work on the energy of ωε = |Φε|Eε .

We notice first that
´

Σ(ρ) |∇ωε|
2
g has to converge to 0 as ε→ 0 and then ρ→ 0. This is

forced because cut-off functions around the singularity points have a small energy controlled
by 1

ln 1
ρ

(independent of ε), and because of the bounds ωε ≥ 1−βε on Σ(ρ) and |ωε − 1| ≤ βε
on supp(νε) and the structure of the global equation on Φε.

Then, by the harmonic replacement estimates (Claim (4.1)), the (ωε)
2-harmonic replace-

ments Ψ̃ε of the radial projection Φ̃ε = Φε
ωε

of Φε are then W 1,2 close to Φ̃ε. Thanks to

the estimates in the appendix, (ωε)
2-harmonic maps with small energy are bounded in

W 2,p for any p ∈ (1, 2), so that they converge in W 1,2 ∩ C0,α by standard compact Sobolev
embeddings.

Claim 5.8. We assume that (i) of Claim 5.2 holds. Then up to the extraction of a
subsequence of {Φε} there is a function Φ ∈W 1,2(Σ) such that for any ρ > 0,

(5.30) Φε → Φ in W 1,2(Σ(ρ)) as ε→ 0 .

Moreover, Φ ∈ C0,α(Σρ) and satisfies

(5.31) |Φ|2E = 1 on Σ \ {p1, · · · , ps}

and for 1 ≤ k ≤ m, Φ satisfies

(5.32) ∆gΦ
k = λkΦ

kdν

in a weak sense on Σ.

Proof. In the first step, we prove (5.33), in a second step (5.30), and in the third one we
prove (5.31). Finally we prove (5.32).

STEP 1 :

We first prove the following energy convergence on ωε = |Φε|Eε

(5.33) lim
ρ→0

lim
ε→0

ˆ
Σ(ρ)
|∇ωε|2 = 0
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First, we define a cut-off function η ∈ C∞c
(
Σ(
√
ρ)
)

such that η = 1 on Σ(ρ) and
ˆ

Σ
|∇η|2 ≤ C

ln 1
ρ

.

We integrate the eigenvalue equation ∆gΦε = ΛεΦεe
2uε , against ΛεηΦε and ΛεηΦ̃ε, where

Φ̃ε = Φε
ωε

and we get

(5.34)

ˆ
Σ
η |∇Φε|2Eε dAg +

ˆ
Σ

〈
∇η,∇

(
ω2
ε

2

)〉
g

dAg =

ˆ
Σ
η |ΛεΦε|2 e2uεdAg ,

where we consider the norm of the gradient with respect to the ellipsoid and that

(5.35)

ˆ
Σ
η
〈
∇Φ̃ε,∇Φε

〉
Eε
dAg +

ˆ
Σ
〈∇η,∇ωε〉g dAg =

ˆ
Σ
η
|ΛεΦε|2

ωε
e2uεdAg ,

where we used that 〈Φε,∇Φε〉Eε = ∇
(
ω2
ε

2

)
= ωε∇ωε.

Since Φ̃ε ∈ Eε. We have that

(5.36)
〈
∇Φ̃ε,∇Φε

〉
Eε

=

〈(
∇Φε − Φ̃ε∇ωε

)
,∇Φε

〉
Eε

ωε
=
|∇Φε|2Eε − |∇ωε|

2

ωε
,

Therefore since ω2
ε ≥ 1− βε by (5.24),

ˆ
Σ
η
|∇ωε|2

ωε
dAg =

ˆ
Σ
η
|∇Φε|2Eε
ωε

dAg −
ˆ

Σ
η
|ΛεΦε|2

ωε
e2uεdAg +

ˆ
Σ
〈∇η,∇ωε〉g dAg

≤ 1√
1− βε

ˆ
Σ
η |∇Φε|2Eε dAg −

ˆ
Σ
η |ΛεΦε|2 e2uεdAg

+

ˆ
Σ
η

(
1− 1

ωε

)
|ΛεΦε|2 e2uεdAg +

ˆ
Σ
〈∇η,∇ωε〉g dAg

and noting (5.34) and that βε → 0 as ε→ 0, we deduce

ˆ
Σ
η
|∇ωε|2

ωε
dAg ≤

ˆ
Σ

(1− ωε) 〈∇η,∇ωε〉g dAg +

ˆ
Σ
η (ωε − 1)

|ΛεΦε|2

ωε
e2uεdAg + o(1)

≤
(ˆ

Σ
|∇ωε|2g dAg

) 1
2
(ˆ

Σ
(1− ωε)2 |∇η|2g dAg

) 1
2

+

ˆ
Σ
η (ωε − 1)

|ΛεΦε|2

ωε
e2uεdAg + o(1)

≤ C2√
ln
(

1
ρ

) +

ˆ
Σ
η (ωε − 1)

|ΛεΦε|2

ωε
e2uεdAg + o(1) .

We set for X ∈ Ri1+···+im

G(X) =
∣∣|X|Eε − 1

∣∣ |ΛεX|2
|X|Eε
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and we claim that

(5.37)

∣∣∣∣∣
ˆ

Σ
η (ωε − 1)

|ΛεΦε|2

ωε
e2uεdAg

∣∣∣∣∣ ≤
ˆ

Σ(ρ)
G (Φε) e

2uεdAg → 0 as ε→ 0 .

Indeed, we have e2uε = Kε[νε] and we obtain
ˆ

Σ(ρ)
G (Φε) e

2uεdAg =

ˆ
Σ(ρ)

(ˆ
Σ
G (Φε) (x)pε(x, y)dνε(y)

)
dAg(x)

=

ˆ
Σ( ρ

10)

((ˆ
Σ(ρ)

G (Φε) (x)pε(x, y)dAg(x)

)
−G(Φε)(y)

)
dνε(y)

+

ˆ
Σ( ρ

10
)
G(Φε)(y)dνε(y)

+
s∑
i=1

ˆ
Bg(pi,

ρ
10

)

(ˆ
Σ(ρ)

G (Φε) (x)pε(x, y)dAg(x)

)
dνε(y)

≤
ˆ

Σ( ρ
10)

(Kε[G (Φε)]−G(Φε)) dνε +

ˆ
Σ( ρ

10
)
G(Φε)dνε

+ ‖G‖
C0

(
B2C0

\B 1
2λm

) s∑
i=1

ˆ
Bg(pi,

ρ
10

)

(ˆ
Σ(ρ)

pε(x, y)dAg(x)

)
dνε(y)

where the first term after the inequality holds because G ≥ 0, and the third term holds
because of (5.16). We use that G satisfies the assumptions for (5.50) for the first term
(notice that the slight dependance on ε of G does not matter since CG+‖G‖

C1

(
B2C0

\B 1
2λm

)
is uniformly bounded as ε→ 0). We use (5.25) for the second term, and (6.10) of Section
6.2 for the third term. We then obtain (5.37). Then we have that

lim
ε→0

ˆ
Σ(
√
ρ)

|∇ωε|2

ωε
dAg ≤

C2√
ln 1

ρ

and letting ρ→ 0 completes the proof of STEP 1 of the current Claim.

STEP 2 :

We prove now (5.30), the strong W 1,2(Σ(ρ))-convergence of {Φε} for any ρ.

This result is just a consequence of the quantative estimate (4.3) in Claim (4.1) and the
first Step. Indeed, by Claim 5.4 and the boundedness of the energy, up to partitions of
unity, one can focus on disks Dr for r small enough to satisfy the assumptions of Claim

(4.1). We take the (ωε)
2-harmonic replacement Ψ̃ε of Φ̃ε = Φε

ωε
. Then, by ε-regularity

results on (ωε)
2-harmonic maps (see proposition 6.1 in the appendix), we know that Ψ̃ε

is bounded in W 2,p(D r
2
) for any p ∈ (0, 2). In particular, by compactness embeddings,

up to a subsequence Ψ̃ε converges strongly in W 1,2(D r
2
) and in C0,α(D r

2
). Since Φε −Ψε
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converges to 0 in W 1,2(Dr), and Ψε = ωεΨ̃ε converges strongly in W 1,2(D r
2
), we obtain

that Φε converges strongly in W 1,2(D r
2
).

This completes the proof of STEP 2 in the current Claim.

STEP 3 : We prove now the weak eigenvalue equation (5.32).

Let Φ be the strong limit in W 1,2(Σ(ρ)) for any ρ. By the previous convergence results,
Φ ∈ C0,α(Σ(ρ)). Again, we can argue locally up to partitions of unity and take a disk Dr
for r small enough to satisfy λ?(Dr, e2ũε) ≥ λm(e2uεg). Let ζ ∈ C∞c (Dr). We have thatˆ

Σ
ζ
(
ΛεΦεe

2uεdAg − ΛΦdν
)

=

ˆ
Σ
ζ (ΛεΦε − ΛΦ) e2uεdAg

+

ˆ
Σ
ζΛΦ

(
e2uεdAg − dν

)
.

Then on the first right-hand term, we have that

ˆ
Σ
ζ (ΛεΦε − ΛΦ) e2uεdAg ≤

(ˆ
Dr
ζ

2 |ΛεΦε − ΛΦ|2 e2uεdAg

) 1
2

≤
(

1

λ?(Dr, e2ũε)

ˆ
Dr

∣∣∇ (ζ |ΛεΦε − ΛΦ|
)∣∣2
g
dAg

) 1
2

≤ C

(ˆ
Dr
|∇ (Φε − Φ)|2g dAg

) 1
2

for some constant C independent of ε. Letting ε → 0 in a weak sense to the eigenvalue
equation ∆gΦε = ΛεΦεe

2uε , we get the equation (5.32) in a weak sense on Σ(ρ) for any ρ,
and then on Σ \ {p1, · · · , ps}. Since Φ belongs to W 1,2(Σ) as a strong limit of Φε, equation
(5.32) occurs on Σ in a weak sense and STEP 3 is proved.

By strong convergence in any Lp of Φε, up to a subsequence again, we have that
|Φ|2E ≥ 1 dAg-a.e on Σ. By continuity of Φ on Σ(ρ), |Φ|2E ≥ 1 holds everywhere except

maybe on {p1, · · · ps}. Since ∇ωε converges to 0, we obtain that |Φ|2E is a constant. Since´
Σ

(
|Φ|2E − 1

)
dν = 0 by the previous convergences,

´
Σ dν 6= 0 and ν does not have any

atom, we conclude that |Φ|2E = 1 on Σ \ {p1, · · · , ps} and we get (5.31). This concludes the
proof of the Claim.

♦

Notice that this Claim can be adapted to prove precisely Theorem 2.2 for k > 1, if there
is j ≥ 1 is such that λεj → 0 as ε→ 0 and λεj+1 is uniformly lower bounded by a positive
constant. In this case, notice that we do use directly proposition 4.1. We just delete the
coordinates of Φε associated to λε1, · · · , λεj because they necessarily converge to a constant

in W 1,2. We then apply proposition 4.1 to the map Φε restricted to coordinates associated
to eigenvalues λεj+1, · · · , λεm.

Now, we are able to prove Theorem 2.2 with the assumption (i) of Claim 5.2. We have

that |Φ|2E = 1. Moreover, ∆Φ ∈ (TΦE)⊥ which is exactly the assumption of being a weakly
harmonic map into the ellipsoid E . Therefore Φ is a smooth map and satisfies the harmonic
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map equation in E in a strong sense. Now, noticing that ∆(|Φ|2E) = 0, it is easy to compute,
thanks to the equation ∆Φ = ΛΦν that

ν =

∑m
k=1 λk |∇Φk|2g∑m
k=1 λ

2
k |Φk|2

dAg ,

which means that ν is absolutely continous with respect to dAg with a smooth density.
The zeros of this density are exactly the conical singularities one may get for the metric

g̃ =

∑m
k=1 λk |∇Φk|2g∑m
k=1 λ

2
k |Φk|2

g

such that Φ is an eigenmap ∆g̃Φ = ΛΦ and Φ ∈ E .

5.7. Regularity estimates in the concentrated case.

5.7.1. Reduction to a similar problem as in the non-concentrated case. We now assume
that (ii) of Claim 5.2 occurs and that αε√

ε
→ +∞. We set θε = ε

e2ṽl(a)α2
ε
, where aε → a ∈ R2

as ε→ 0. Then

(5.38) θε → 0 as ε→ 0 .

As noticed in the beginning of Section 5.6 we handle this case similarly to the non-
concentrated case. For all the section, we refer to 5.2 for all the notations we use at the
scale of concentration: we use the ”hat” notations for all the objects which play the same
role as the previous objects in the non-concentrated case up to translation and dilatation.

First, notice that

(5.39) e2ûεdx− dν̂ε ⇀? 0 in M(R2) as ε→ 0 .

Indeed, for ζ ∈ C0
c (DR0) for some R0 > 0, and R > R0, we can write that

ˆ
R2

ζ(z)
(
e2ûε(z)dz − dν̂ε(z)

)
=

ˆ
Σ\D̆R

(ˆ
D̆R0

pε(y, x)ζ(ŷ)dAg(y)

)
dνε(x)

+

ˆ
DR

(ˆ
DR

(ζ(z)− ζ(x)) p̂ε(z, x)dz

)
dν̂ε(x)

+

ˆ
DR0

(ˆ
DR
p̂ε(z, x)dz − 1

)
ζ(x)dν̂ε(x) .

By estimates (6.13) on the heat kernel, we have that

ˆ
Σ\D̆R

(ˆ
D̆R0

pε(x, y) |ζ(ŷ)| dAg(y)

)
dνε(x) ≤ ‖ζ‖∞ sup

x∈Σ\D̆R

ˆ
D̆R0

pε(x, y)dAg(y)

≤ O

e− (R−R0)2

8θε

θε

→ 0 as ε→ 0 .
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By estimates (6.11) on the heat kernel, we have that

ˆ
DR

(ˆ
DR
|ζ(z)− ζ(x)| p̂ε(z, x)dz

)
dν̂ε(x) ≤ sup

x∈DR

ˆ
R2

|ζ(x)− ζ(z)| e
− |x−z|

2

8θε

2πθε
dz

→ 0 as ε→ 0

since ζ is uniformly continuous on R2. Finally, we have by the heat kernel estimate (6.14)
that

lim
R→+∞

lim
ε→0

sup
x∈DR0

∣∣∣∣ˆ
DR
p̂ε(z, x)dz − 1

∣∣∣∣ = 0 ,

so that we get (5.39). We denote by ν̂ the weak star limit of both {e2ûεdx} and {ν̂ε} in
M(R2).

Now, in order to perform the same pointwise estimates as previously we have to be far
from singularity points. By rescalings of the points pεi and radii rεi given by Claim 5.4, we
only keep indices 1 ≤ i ≤ s such that

(5.40)
rεi
αε
→ 0 and |aε − pεi | = O (αε) as ε→ 0 ,

Denoting I this set of indices of cardinal ]I = t ≤ s, and σ : {1, · · · , t} → I a reordering,
we denote

p̂εj =
aε − pεσ(j)

αε
and r̂εj =

rεσ(j)

αε
,

and assume that up to a subsequence, p̂εj converges to p̂j for any j. These points p̂εj with
radius r̂εi play the same role as pεj and rεj in the previous section. We set for ρ > 0,

Ω(ρ) = D 1
ρ
\

t⋃
j=1

Dρ(p̂j) ,

which plays the same role as Σ(ρ) in the previous section.
We have by Claim 5.2, case (ii),

(5.41) lim
ρ→0

lim
ε→0

ˆ
Ω(ρ)

e2ûε = 1 .

We aim at getting regularity estimates on Φ̂ε and e2ûε in Ω(ρ), thanks to (5.41), and
following the proof of Claim 5.5 and Claim 5.6. We get:

Claim 5.9. We assume that case (ii) of Claim 5.2 holds. We have the following

• Estimates on Φ̂ε, there are C1 > 0 and C2 > 0 such that

(5.42) ∀ρ > 0, lim sup
ε→0

∥∥∥Φ̂ε

∥∥∥
W 1,2(Ω(ρ))

≤ C1 ,

(5.43) ∀ρ > 0, lim sup
ε→0

∥∥∥Φ̂ε

∥∥∥
C0(Ω(ρ))

≤ C2 .
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• Quantitative non-concentration estimates on e2ûε and |∇Φ̂ε|2: there are D2 > 0
and D1 > 0 such that

(5.44) ∀ρ > 0,∀r > 0, lim sup
ε→0

sup
x∈Ω(ρ)

ˆ
Dr(x)

e2ûε ≤ D1

ln(1
r )
,

(5.45) ∀ρ > 0,∀r > 0, lim sup
ε→0

sup
x∈Ω(ρ)

ˆ
Dr(x)

|∇Φ̂ε|2 ≤
D2√
ln(1

r )
.

The proof of this claim follows line by line the proof of Claim 5.5 and Claim 5.6, so that
we can skip to write it here.

5.7.2. Global pointwise bound of eigenfunctions. What is slightly different to the non-
concentrated case is that we need a pointwise estimate of {Φε} on the whole surface in
order to perform in Claim 5.12, the same estimates as in the proof of Claim 5.7. Indeed,
since the heat kernel is globally defined on the whole surface, we have to be sure that
the integral estimates on the thin parts stay bounded in order to get the expected sharp
pointwise inequality on the eigenfunctions in the bubble, we proved in Claim 5.7 on the
surface.

In this section, we aim at proving that up to a subsequence, we have a uniform bound
for the sequence of eigenfunctions on a large global surface Σρ,ε defined below in (5.46),
far from singularity points.

Claim 5.10. For any ρ > 0, there is a constant C0(ρ) > 0 such that

∀x ∈ Σε,ρ, |Φε| (x) ≤ C0(ρ)

∣∣∣∣ln(1 +

∣∣∣∣ αε
dg(x, aε)

∣∣∣∣)∣∣∣∣ .
The proof is based on the estimates of Claim 5.5, reproved in Claim 5.11 below. One

can also follow the lines of Claim 11 in the original paper [Pet18].
First, we will only be able to give a uniform pointwise bound far from singularity points

on all the dyadic annuli centered at aε at the intermediate scales between αε and δ0.
We denote by {ωεk}k=0,··· ,k0,k0+1 (with k0 ≥ 0) a family of sequences such that ωε0 = αε,
ωεk0+1 = δ0 and for any k ∈ {0, · · · , k0},

ωεk
ωεk+1

→ 0 as ε→ 0 ,

where the set

Ik =

{
i ∈ {1, · · · s}; |p

ε
i − aε|
ωεk

= O(1) and
rεi
ωεk
→ 0 as ε→ 0

}
is non empty for any k ∈ {1, · · · , k0}, and such that the indices i ∈ I \

⋃k0
k=1 Ik satisfy

• either |pεi − aε| → 0 and
rεi
|pεi−aε|

is uniformly lower bounded by a positive constant

as ε→ 0,

• or |pεi − aε| = O(αε) and
rεi
αε
→ 0 as ε→ 0,

• or dg(ā, p̄i) is lower bounded as ε→ 0.
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It is easy to prove by induction that up to a subsequence, such a family {ωεk} exists. As
before (see discussion around (5.40)), notice that indices that satisfy the first condition are
not ”true” singularity points if we rescale the problem at center aε and radius |pεi − aε| so
that we do not need to keep them in the analysis. We denote by I0 the indices satisfying
the second condition. They correspond to indices I0 := I satisfying (5.40). We denote by
Ik0+1 the indices satisfying the third condition. They correspond to indices i satisfying
that dg(p̄i, ā) is lower bounded by a positive constant.

Up to reorder with a bijection σk : {1, · · · , lk} → Ik, we denote by pε
k,l =

pε
σk(l)

−aε
ωεk

. Let

R0 > 0 be such that for any ε, k, l,
∣∣pεk,l∣∣ =

pε
σk(l)

−aε
ωεk

≤ R0. Up to a subsequence we

assume that pε
k,l → pk,l as ε→ 0.

For ρ > 0 and ε > 0, we set

(5.46) Σρ,ε = Σ \ Sρ,ε ,
where Sε is the singularity set

Sρ,ε =

(
k0⋃
k=0

lk⋃
l=1

ωkεDρ
(
pk,l
)

+ aε

)
∪

⋃
i∈Ik0+1

Bg(p̄i, ρ) .

In the following claim, we take a sequence γε → 0. We denote by Ωε
γε

, Φε
γε

the rescalings
of center aε and radii γε of sequences of sets Ωε and functions Φε:

Ωε
γε

=
1

γε

(
Ω̃− aε

)
and Φε

γε
(z) = Φ̃ε(γεz + aε)

We fix 0 < ρ < 1. In order to prove Claim (5.10), we need a key pointwise estimate on
annuli γεAR0

ρ

(aε) := D γεR0
ρ

(aε) \ Dρ γε
R0

(aε) around p̄i (where R0 is defined just before the

definition (5.46) of Σε,ρ): either the sequence
(
Φε

γε)
is bounded in Uρ = AR0

ρ

\ Sρ,ε
γε

or it

satisfies a Harnack inequality on this set. Notice that we very often have AR0
ρ

∩ Sρ,ε
γε

= ∅.

It is only non empty at the scales ωi,jε .

Claim 5.11. We have that for 1 ≤ i ≤ s, 1 ≤ j ≤ ti, there is B(ρ) > 0 such that for

all eigenfunction φε as a coordinate of Φε
γε

(Φε is the map in Claim 5.1 ), and for all

sequence 2R0
√
ε < γε <

δ0
2R0

, either

∀x ∈ Uρ, |φε(x)| ≤ B(ρ)

or

∀x, y ∈ Uρ,
|φε(y)|
B(ρ)

≤ |φε(x)| ≤ B(ρ) |φε(y)| .

Proof. Let a subsequence εm → 0 as m→ +∞ and let xm ∈ Uρ be such that |φεm(xm)| =
maxx∈Uρ |φεm(x)|. We set δm = d(xm, supp

(
νεm

γεm
)
) and take ym ∈ supp

(
νεm

γεm
)

such
that |xm − ym| = δm. We consider 3 cases.

Case 1 - δm = O
(√

εm
γεm

)
.

We apply Claim 5.3 for the sequence: {expgl,xl(γεmxm + pi)}m of points in M and we
get a uniform bound for |φεm(xm)|.
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Case 2 - δm → 0 and δmγεm√
εm
→ +∞ as m→ +∞. We set

e2wm = δ2
me

2uεm
γεm (xm + δmx) ,

ψm = φεm(xm + δmx) ,

zm =
1

δm
(ym − xm) ,

so that

∆ψm = λεme
2wmψm .

Up to the extraction of a subsequence, there is z0 ∈ R2 with |z0| = 1 such that zm → z0 as
m→ +∞. By the heat kernel estimates (6.12), there is D1 > 0 such that

e2wm ≤ D1 on D 1
2
.

By Claim 5.3, since ym ∈ supp (νεm
γεm ), ψm(zm) = O(1) as m→ +∞.

We first assume that ψm does not vanish in D3(0). Up to take −ψm, we may assume
that ψm > 0 on D3(0). Then, by Harnack inequality, we get D2 > 0 such that

∀x ∈ D 1
4
, ψm(x) ≥ D2ψm(0) .

Since ψm is positive, ψm is superharmonic in D|zm|(zm) ⊂ D3(0). Then,

ψm(zm) ≥ 1

2π |zm|

ˆ
∂D|zm|(zm)

ψmdσ

and keeping the part of the integral which lies in D 1
4
, we get a constant D3 > 0 such that

ψm(zm) ≥ D3ψm(0). We conclude that φεm
γεm (xm) = ψm(0) = O(1).

We assume now that ψm vanishes somewhere in D3(0). By Claim 5.4, ψm vanishes in
D4(0) on a piecewise smooth curve between two points of distance greater than 1. By
proposition 5.1 for Ω = D5(0), we get a Poincaré inequalityˆ

D4(0)
ψ2
mdx ≤ C1

ˆ
D5(0)

|∇ψm|2 dx .

By elliptic regularity, ψm is uniformly bounded on D 1
4
(0) and φεm

γεm (xm) = ψm(0) = O(1).

Case 3 - 1
δm

= O(1). Up to the extraction of a subsequence, we assume that xm → x in
Uρ as m→ +∞.

We first assume that ψm := φεm
γεm vanishes somewhere in U ρ

2
. We get with Claim 5.4

and proposition 5.1 for Ω = U ρ
4

a constant Cr > 0 such thatˆ
U ρ

3

ψ2
mdx ≤ Cr

ˆ
U ρ

4

|∇ψm|2 dx .

By (6.12), there are some constants r̃ > 0 and D1 > 0 such that

e2uεm
ω
εm
i ≤ D1 on Dr̃(x) .

By elliptic estimates, {ψm} is uniformly bounded on U ρ
2
∩D r̃

2
(x) so that φβεm

γεm
(xm) = O(1).

We assume now that ψm := φεm
γεm does not vanish in U ρ

2
. Up to take −ψm, we may

assume that ψm > 0 on U ρ
2
.
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Let’s assume that ym → y as m→ +∞ with y ∈ U 7ρ
10

. By Claim 5.1, ψm(ym) = O(1).

By (6.12), there exists a constant D1 > 0 such that

e2uεm
ω
εm
i ≤ D1 in Dδ−δ̃(x) ,

where δ̃ = min
(
δ
4 ,

ρ
40

)
. By Harnack’s inequality, there exists D2 > 0 such that

∀z ∈ U 6ρ
10
∩ Dδ−2δ̃(x), ψm(xm) ≤ D2ψm(z) .

By superharmonicity on ∂D3δ̃(ym) ⊂ U ρ
2
,

ψm(ym) ≥ 1

2π × 3δ̃

ˆ
∂D3δ̃(ym)

ψmdσ

We keep the part of the integral which lies in U 6ρ
10
∩ Dδ−2δ̃ since the length of ∂D3δ̃(ym) ∩

U 6ρ
10
∩Dδ−2δ̃ is uniformly bounded below and we get a constant D3 > 0 such that ψm(ym) ≥

D3ψm(xm). Then, φβεm
ωεmi

(xm) = ψm(xm) = O(1).
Assume now that ym ∈ R2 \ U 8ρ

10
. By (6.12), there is a constant D1 > 0 such that

e2uεm
γεm ≤ D1 in U 9ρ

10
.

By Harnack inequality, there exists a constant C1 > 0 such that

∀z ∈ Uρ, |ψm| (xm) ≤ C1 |ψm| (z)

By definition of xm, we get

∀z, z̃ ∈ Uρ,
∣∣∣φεmγεm ∣∣∣ (z̃) ≤ ∣∣∣φεmγεm ∣∣∣ (xm) ≤ C1

∣∣∣φεmγεm ∣∣∣ (z)
which concludes the proof of the Claim. ♦

Now we set

mε(t) =
1

2πt

ˆ
∂Dt(aε)

Φε(x)dl(x)

the mean value on circles centered at aε of Φε. We classically have

mε(t) = fε(αε)−
ˆ t

αε

´
Ds ∆Φε(u)du

2πs
ds .

Therefore, since ∆Φε is bounded in L1, we have a classical log estimate on mε

(5.47) |mε(t)| ≤ |fε(αε)|+ ln

(
t

αε

)
.

Since by Claim 5.9, |fε(αε)| is uniformly bounded, by Claim 5.11 and (5.47), we get Claim
5.10.
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5.7.3. W 1,2-estimates on eigenfunctions. Now, using the estimates by Claim 5.10, we can
adapt the proof of Claim 5.7 on the bubble scale:

Claim 5.12. We have for any ρ > 0, there exists βε → 0 as ε→ 0 such that

(5.48) ∀x ∈ Ω(ρ),
∣∣∣Φ̂ε

∣∣∣2
Eε

(x) ≥ 1− βε

and

(5.49) ∀x ∈ Ω(ρ) ∩ supp (ν̂ε) ,

∣∣∣∣∣∣∣Φ̂ε

∣∣∣2
Eε

(x)− 1

∣∣∣∣ ≤ βε .
Moreover, for any smooth function G : Ri1+···+im → R such that there is a constant CG

such that for any X, |G(X)| ≤ CG
(
|X|+ |X|2

)
, we have that for all x ∈ Σ

(5.50) x̂ ∈ Ω(ρ)⇒
∣∣∣G(Φ̂ε

)
(x̂)−Kε[G (Φε)](x)

∣∣∣ ≤ (CG + ‖G‖
C1

(
B2C2

\B 1
2λm

)
)
βε .

Proof. As in the proof of Claim 5.7, it suffices to prove that there is a sequence βε → 0 as
ε→ 0 such that for all x ∈ Σ,

(5.51) x̂ ∈ Ω(ρ)⇒
∣∣∣∣∣∣∣Φ̂ε(x̂)

∣∣∣2
Eε
−Kε[|Φε|2Eε ](x)

∣∣∣∣ ≤ βε .
Indeed, (5.51) gives (5.48) and (5.49) for x ∈ supp(νε) by Claim 5.1. Notice that (5.51) is
again a specific case of (5.50). We can then follow the lines of the following proof of (5.51)
in order to prove (5.50).

Step 1: We recall that aε → a as ε→ 0 with z̃i0 = a.
For 1 ≤ j ≤ s0 and θε = ε

e2ṽl(a)α2
ε
,

(5.52) sup
x∈Ω(ρ)

ˆ
D ρ

10
(p0,j)

∣∣∣Φ̂ε(z)
∣∣∣2 p̂ε(z, x)dz = O(e−

ρ2

8θε ) .

For 0 ≤ i ≤ t, 1 ≤ j ≤ si and τ εi = ε

e2ṽl(a)(ωεi )
2 ,

(5.53) sup
x∈Ω(ρ)

ˆ
D ρ

10
(pi,j)

∣∣∣Φε
ωεi (z)

∣∣∣2 pεωεi (z, αε
ωεi
x

)
dz = O(e

− ρ2

8τε
i ) .

For 1 ≤ i ≤ s and i 6= i0,

(5.54) sup
x∈Ω(ρ)

ˆ
Bg(pi,

ρ
10

)
|Φε(z)|2 pε(x̆, z)dAg(z) = O(e−

ρ2

8ε ) .

Note that (5.54) was already proved in STEP 1 of Claim 5.7. Note also that the proof of
(5.52) reduces to (5.53) for i = 0. By scale invariance on properties satisfied by singularity
points and the uniform estimates on the heat kernel, the proof of (5.53) follows the lines of
the proof of STEP 1 in Claim 5.7, so that we can skip it (see also [Pet18])

Step 2: There is a sequence βε → 0 as ε→ 0 such that

(5.55) ∀x, y ∈ Ω(ρ), |x− y| ≤
√
θε
βε
⇒
∣∣∣Φ̂ε(x)− Φ̂ε(y)

∣∣∣ ≤ βε .
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Again, by scale invariance, we follow the same lines as in the proof of STEP 2 in Claim
5.7 (see also [Pet18])

Step 3: We prove (5.51).

Let x ∈M be such that x̂ ∈ Ω(ρ).∣∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣2
Eε
−Kε[|Φε|2Eε ](x)

∣∣∣∣ ≤ ˆ
M
pε(x, y)

∣∣∣|Φε(x)|2Eε − |Φε(y)|2Eε
∣∣∣ dAg(y)

≤
ˆ
D√θε
βε

(x̂)
p̂ε(z, x̂)

∣∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣2
Eε
−
∣∣∣Φ̂ε(z)

∣∣∣2
Eε

∣∣∣∣ dz
+Iε

+
∑
i 6=i0

ˆ
Bg(pi,

ρ
10

)
|Φε|2Eε pε(x, y)dAg(y)

+
t∑
i=0

st∑
j=1

ˆ
Dρ(pi,j)

∣∣∣Φε
ωεi
∣∣∣2
Eε
pε
ωεi

(
z,
αε
ωεi
x̂

)
dz ,

where

Iε =

ˆ
M\D̆√θε

βε

(x̂)
pε(x, y)

(
C2

2 (ρ) + C2
0 (ρ)

(
ln

(
1 +

dg(y, āε)

αε

)
+ 1

)2
)
dAg(y) .

Here, we used Claim 5.9 and Claim 5.10. By (5.52), (5.53), (5.54) and (5.55),∣∣∣∣∣∣∣Φ̂ε(x̂)
∣∣∣2
Eε
−Kε[|Φε|2](x)

∣∣∣∣
Eε
≤ 2C2(ρ)βε +O(e

− ρ2

8α2
ε ) + Iε

and there exists some constants K0(ρ) > 0 and K1(ρ) > 0 such that

Iε ≤ K0(ρ) ln

(
δ(M)

αε

)2 ˆ
M\Ωl

pε(x, y)dAg(y)

+K1(ρ)

ˆ
Ω̂l\D√θε

βε

(x̂)
p̂ε(z, x̂)

(
ln(1 + |z|)2 + 1

)
dz .

Since α2
ε
ε → +∞ as ε→ 0,

ln

(
δ(M)

αε

)2 ˆ
M\Ωl

pε(x, y)dAg(y) ≤ ln

(
δ(M)

αε

)2

×O

e− δ(M)2

4ε

ε

 = o(1) as ε→ 0

and by (6.10),ˆ
Ω̂l\D√θε

βε

(x̂)
p̂ε(z, x̂)

(
ln(1 + |z|)2 + 1

)
dz ≤

ˆ
R2\D√θε

βε

A0

4πθε
e−
|x̂−z|2

8θε

(
ln(1 + |z|)2 + 1

)
dz

≤
ˆ
R2\D 1

βε

(0)

A0

4π
e−
|y|2

8

(
ln
(

1 +
∣∣∣x̂+

√
θεy
∣∣∣)2

+ 1

)
dy

= o(1) uniformly for x̂ ∈ Ω(ρ) .
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Up to increase βε, we get (5.51).
♦

Now, one can pass to the limit in W 1,2(Ω(ρ)).

Claim 5.13. Up to the extraction of a subsequence of {Φ̂ε}, there is a map Φ̂ ∈W 1,2(R2)
such that for any ρ > 0

(5.56) Φ̂ε → Φ̂ in W 1,2(Ω(ρ)) .

Moreover the limiting function satisfies Φ̂ ∈ C0,α(Ω(ρ)) and
∣∣∣Φ̂∣∣∣2 = 1 in R2 \ {p̂1, · · · , p̂t}

and the equation ∆Φ̂ = ΛΦ̂dν̂ in a weak sense on R2.

We can follow the lines of Claim 5.7 to prove this claim.

Now, let’s prove Theorem 2.2 with the assumption (ii) of Claim 5.2. We have that∣∣∣Φ̂∣∣∣2 = 1 everywhere except maybe on a finite number of points. Since we have that

∆Φ̂ = ΛΦ̂ν in a weak sense, then ∆Φ̂ ∈
(
TΦ̂E

)⊥
which is exactly the assumption of being a

weakly harmonic map into the ellipsoid E . Therefore Φ̂ is a smooth map and satisfies the

harmonic map equation in E in a strong sense. Now, noticing that ∆

(∣∣∣Φ̂∣∣∣2
E

)
= 0, thanks

to the equation ∆Φ̂ = ΛΦ̂ν̂, we have that

ν̂ =

∑m
k=1 λk

∣∣∣∇Φ̂k

∣∣∣2
g∑m

k=1 λ
2
k

∣∣∣Φ̂k

∣∣∣2 Leb ,

which means that ν̂ is absolutely continous with respect to Leb with a smooth density. By
energy reasons, after a stereographic projection we get a measure on the sphere without
atom. By point-removability theorem, the harmonic map is defined on all the sphere and
we get a smooth conformal factor with respect to the round metric h. The zeros of this
conformal factor are exactly the conical singularities one may get for the metric

ǧ =

∑m
k=1 λk

∣∣∇Φ̌k

∣∣2
g∑m

k=1 λ
2
k

∣∣Φ̌k

∣∣2 h

such that Φ̌ satisfies ∆ǧΦ̌ = ΛΦ̌ and Φ̌ ∈ E . This completes the proof of Theorem 2.2.

6. Appendix

6.1. Estimates on ω2-harmonic maps. Let ω be a W 1,2-function which satisfies the
inequalities

(6.1)
1

Cω
≤ ω ≤ Cω .

We have the following ε-regularity result on ω2-harmonic maps into a compact manifold
M ⊂ Rm, stated with an added smallness assumption on the L2 norm of ∇

(
ω2
)
. For

simplicity, we assume that the dimension of M is m− 1 and that we have a global normal
~N (this is the case in the current paper). Therefore, locally, we can define the normal
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ν ∈W 1,2 (D,Rm) to a map u ∈W 1,2 (D,M) as ν = ~N ◦ u. The Euler-Lagrange equation

for this map is −div(ω2∇u) ∈ (TuM)⊥ and we also get that

(6.2) − div(ω2∇u) = ω2 〈∇u,∇ν〉 ν .

This is exactly the harmonic map equation when ω = 1. We have the following ε-regularity
on ω2-harmonic maps adapted from the celebrated paper by Rivière [Riv08].

Proposition 6.1. There is ε0 > 0, and a constant Cp such that if a ω2-harmonic map
u ∈W 1,2(D,M) satisfies ˆ

D
|∇u|2 +

ˆ
D

∣∣∇ (ω2
)∣∣2 ≤ ε0 ,

then for any q ∈ (1, 2), u ∈W 2,q(D 1
2
) and for any p < +∞,

(6.3) ‖∇u‖Lp(D 1
2

) ≤ Cp ‖∇u‖L2(D) .

Proof. u is a weak solution of

(6.4) div(ω2∇u) = ω2Ω∇u,

where Ω, is defined by

Ωi,j = νj∇νi − νi∇νj ∈ L2(D) ,

where ν(x) is a normal vector to Tu(x)M . Notice that Ωi,j = Ωj,i.
Moreover there is C > 0 such that

ω2|Ω| ≤ C|∇u| almost everywhere .

In order to prove the ε-regularity, we follow the strategy of Rivière [Riv08]. Since Ω is
anti-symmetric, there is P ∈W 1,2(D, SO(m)), such that

div( tP∇P − tPΩP ) = 0,

and

‖∇P‖2 ≤ 2‖Ω‖2.

Hence we have ,

div(Q∇u) = ∇⊥B(Q∇u)

with Q = tPω2 and ∇⊥B = − tP∇P + tPΩP . Then we would like to rewrite the system
like a Jacobian on the right hand-side. Let A ∈W 1,2(D, Glm(R)) and C ∈W 1,2(D,Mm(R)),
such that

div(AQ∇ũ) = ∇A (Q∇u) +A∇⊥B(Q∇u) = ∇⊥C∇u.

Hence A and C must satisfy

(6.5)

{
∆A = ∇⊥C∇(Q−1)−∇A∇⊥B
∆C = ∇A∇⊥Q− div(A (∇B)Q)
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This is the same system as in (V.36) of [Riv12]. Hence there exists A ∈W 1,2(D, Glm(R))
and C ∈W 1,2(D,Mm) such that

(6.6)


∆A = ∇⊥C∇(Q−1)−∇A∇⊥B on D
∂νA = 0 on ∂D and

´
DA = π2Id

∆C = ∇A∇⊥Q+ div(A (∇B)Q) on D
C = 0 on ∂D

with ˆ
D
|∇A|2 dx+ ‖dist(A,SO(m))‖∞ ≤ C

(ˆ
D
|Ω|2dx+

ˆ
D
|∇
(
ω2
)
|2 dx

)
and

ˆ
D
|∇C|2 dx ≤ C

(ˆ
D
|Ω|2dx+

ˆ
D
|∇
(
ω2
)
|2 dx

)
.

Finally setting, Ã = AQ, we have

(6.7) ∆(Ã∇u) = ∇⊥C∇u .
Then we are reduced to some classical Wente-type equation and the result follows directly

from theorem V.3 of [Riv12]. ♦

Notice that when the target manifold is a sphere, this result was already proved in
[KhS20], and the analysis to handle (6.7) is done in this case. Of course, as in the spherical
case, the bootstrap stops at W 2,q with q < 2 since we do not have more assumption about
the regularity of ω2. We generalized here the spherical case to the non-symmetric case
thanks to the celebrated construction by Rivière [Riv08].

We notice that in this case, there is not a priori ε-regularity for the L∞-norm of the
gradient of u. Therefore, we cannot use directly the very simple proof in [LP19] of the
Colding-Minicozzi energy convexity result in [CM08]. We have to go back to the techniques
by Lamm and Lin [LL13], to prove that, thanks to a deep use of the structure of the

equations (6.2), (6.4) (6.7), |∇u|2 belongs to the local Hardy space h1(D). We skip the
proof here since we just have to replace tP ∈ SO(m) in their proof by tPω2 in our case
remembering the proof of Proposition 6.1 and assumption (6.1). We also use the Claim
proved by Lamm and Lin [LL13]

Claim 6.1. Q ∈ h1(D) such that Q ≥ 0 a.e. Then there is a solution f ∈W 1,2
0 (D)∩L∞ (D)

such that

(6.8)

{
∆f = Q in D
f = 0 on ∂D ,

satisfying
‖f‖L∞ + ‖∇f‖L2 ≤ C ‖Q‖h1(D) .

We set Q =
∣∣∣∇Ψ̃

∣∣∣2 ∈ h1(D) for a ω2 -harmonic map Ψ̃ on D and we get thanks to [CM08]

that if there is a map Φ̃ such that Ψ̃ = Φ̃ on D and if
´
D

∣∣∣∇Ψ̃
∣∣∣2 ≤ ε0 for ε0 sufficiently

small,

(6.9)

ˆ
D

∣∣∣Ψ̃− Φ̃
∣∣∣2 ∣∣∣∇Ψ̃

∣∣∣2 ≤ C ˆ
D

∣∣∣∇Ψ̃
∣∣∣2 ˆ

D

∣∣∣∇(Ψ̃− Φ̃
)∣∣∣2 .
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6.2. Uniform estimates on the heat kernel. The heat kernel pε(x, y) of a compact
Riemannian surface (Σ, g) at time ε > 0 satisfies uniform bounds (see [Dav89, Gri12] for
state of art): there is A0 > 1 and ρ > 0 such that for any ε > 0,

(6.10) ∀x, y ∈ Σ,
1

A04πε
e−

dg(x,y)2

4ε
(1−ρ) ≤ pε(x, y) ≤ A0

4πε
e−

dg(x,y)2

4ε
(1+ρ) .

We also have uniform bounds on the local rescaled heat kernel p̂ε(x, y) by some parameters
aε ∈ R2 and αε > 0 such that aε → a ∈ R2 and αε → 0 as ε→ 0. We refer to the notations
used in the section 5.2. We have for any R > 0, for any fixed 0 < ρ < 1

(6.11)
e−
|y−z|2

4θε
(1+ρ)

4πθε
(1− ρ) ≤ p̂ε(z, y) ≤ e−

|y−z|2
4θε

(1−ρ)

4πθε
(1 + ρ)

uniformly on DR × DR, where θε = ε
e2ṽl(a)α2

ε
, for all ε > 0 small enough.

For a sequence of measures νε ∈ M1(Σ), we also have uniform bounds for R > r > 0
and θε → 0 as ε→ 0:

(6.12) sup
x∈DR−r

ˆ
Σ\D̆R

α2
εpε(x̆, y)dνε(y) = O

e− (R−r)2
8θε

θε

 .

We prove it thanks to (6.10) and (6.11). Let x ∈ DR−r and let us write that

α2
ε

ˆ
Σ\D̆R

pε(x̆, y)dνε(y) = e−2vl(x̆)

ˆ
D
C2

0R
\DR

p̂ε(x, z)dν̂ε(z) +

ˆ
Σ\D̆

C2
0R

α2
εpε(x̆, y)dνε(y)

≤ C2
0

ˆ
D
C2

0R
\DR

e−
|x−z|2

8θε

2πθε
dν̂ε(z)

+

ˆ
Σ\Bg(āε,

αεC
2
0R

C0
)

α2
εA0

4πε
e−

dg(x̆,y)2

4ε dνε(y)

≤ O

e− (R−r)2
8θε

θε

+
A0α

2
ε

4πε
e−

α2
ε(R−r)2

4ε ,

where D̆r ⊂ Bg(āε, αεC0r) ⊂ Bg(āε, αεC0R). This proves (6.12). We also have that

(6.13) sup
x∈Σ\D̆R

ˆ
D̆r
pε(x, y)dAg(y) = O

e− (R−r)2
8θε

θε

 .

Let x ∈ Σ \ D̆R. We assume that x ∈ DC2
0R
\ DR. We write that

ˆ
D̆r
pε(x, y)dAg(y) =

ˆ
Dr
p̂ε(z, x̆)dz ≤ 1

2πθε

ˆ
Dr
e−
|x−z|2

8θε dz ≤ r2

θε
e−

(R−r)2
8θε
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if ε is small enough. If x ∈ Σ \ D̆C2
0R
⊂ Σ \Bg(āε, αεRC0), we write thatˆ

D̆r
pε(x, y)dAg(y) ≤

ˆ
Bg(āε,αεC0r)

pε(x, y)dAg(y)

≤ A0

4πε

ˆ
Bg(āε,αεC0r)

e−
dg(x,y)2

4ε dAg(y)

≤ O

e−α2
ε(R−r)2

4ε

θε

 .

This proves 6.13. Now let’s prove that

(6.14) lim
R→+∞

lim
ε→0

sup
x∈Dr

∣∣∣∣ˆ
DR
p̂ε(z, x)dz − 1

∣∣∣∣ = 0 .

We fix 0 < ρ < 1
2 and R > 0. Then for ε small enough, we have by (6.11) that

ˆ
DR
p̂ε(z, x)dz ≤

ˆ
R2

e−
|x−z|2(1−ρ)

4θε

4πθε
(1 + ρ)dz =

1 + ρ

1− ρ
for any x ∈ Dr and that

ˆ
DR
p̂ε(z, x)dz ≥

ˆ
DR

e−
|x−z|2(1+ρ)

4θε

4πθε
(1− ρ)dz

≥
ˆ
R2

e−
|x−z|2(1+ρ)

4θε

4πθε
(1− ρ)dz −

ˆ
R2\DR

e
−|x−z|2

8θε

2πε
dz

≥ 1− ρ
1 + ρ

+ o(1) as ε→ 0

uniformly on Dr. Letting ε→ 0, then R→ +∞ and then ρ→ 0 gives (6.14).
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