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ABSTRACT

Recently, Supervised Contrastive Learning (SCL) has been
shown to significantly outperform the well-known cross-
entropy loss-based learning on most classification tasks. In
SCL, a neural network is trained to optimize two objectives:
pull an anchor and positive samples together in the embedding
space, and push the anchor apart from the negatives. These
two different objectives may be conflicting with one another,
thus requiring a trade-off between them during optimization.
In this work, we formulate the SCL problem as a Multi-
Objective Optimization problem for the fine-tuning phase
of RoBERTa language model. Two methods are utilized to
solve the optimization problem: (i) the linear scalarization
(LS) method, which minimizes a weighted linear combination
of per-task losses; and (ii) the Exact Pareto Optimal (EPO)
method which finds the intersection of the Pareto front with a
given preference vector. We evaluate our approach on several
GLUE benchmark tasks, without using data augmentations,
memory banks, or generating adversarial examples. The
empirical results show that the proposed learning strategy
significantly outperforms a strong competitive contrastive
learning baseline.

1. INTRODUCTION

Recently, contrastive learning has achieved state-of-the-art
performance in various artificial intelligent applications, in-
cluding Natural Language Processing (NLP) (1; 2; 3), Com-
puter Vision (CV) (4) and graph representation learning (5; 6).
Many approaches have been proposed to learn high-quality
representations by minimizing a contrastive loss. The main
common idea behind these approaches is as follows: train an
encoder, a neural network, to increase both intra-class com-
pactness and inter-class separability in the embedding space.
In other words, the goal is to train a model to optimize two
objectives: embed examples belonging to the same class close
to each other, and embed examples from different classes fur-
ther apart.
Contrastive learning has been used in both self-supervised and
supervised Learning settings. In the former, positive pairs

are created by performing data augmentation methods, while
the negatives are formed by the anchor and randomly chosen
examples from the same mini-batch. In the latter, label infor-
mation is leveraged by considering samples belonging to the
same class as positive examples for each other, while negatives
are samples from the remaining classes.
The training in both self-supervised and Supervised Con-
trastive Learning settings is usually done in two steps: a
pretraining step where a contrastive loss is minimized us-
ing the encoder’s normalized representations, followed by a
conventional training step where a simple linear model having
as input the learnt representation is trained using the cross-
entropy loss. In (1), the authors proposed to combine the
cross-entropy loss and a SCL (7) for fine-tuning a large lan-
guage model. Their method improves the performance on
several NLP classification tasks from the GLUE benchmark
over fine-tuning RoBERTa-large model using cross-entropy
loss, especially in the few-shot learning setting.
A variety of contrastive losses have been proposed for opti-
mizing the two objectives mentioned above (8; 7; 2). The main
objective of this work is to investigate the issue of conflicting
objectives and devise new solutions using the Multi-Objective
Optimization (MMO) framework.
Several algorithms exist for MOO. The most straightforward
approach to MOO is the linear scalarization (LS) which min-
imizes the weighted sum of the objective functions given a
preference vector 𝑟. The preference vector, consisting of the
weighting parameters, represents a single trade-off between
objectives. LS has a major limitation: the Pareto optimal so-
lution cannot be obtained for all preference vectors when the
objectives are non-convex. However, LS tends to work well
in practice. In (9), the authors proposed the multiple-gradient
descent algorithm (MGDA), which uses gradient-based opti-
mization to find one solution on the Pareto front. However,
different solutions are found for different initializations and
the preference vector is not taken into account. In (10), the
authors proposed a multi-task learning (MTL) algorithm from
the MOO perspective that scales to high-dimensional prob-
lems. Instead of the uniform weight strategy, they used the
MGDA algorithm to determine the optimal weights to obtain



a solution on the Pareto front. Their method, however, finds
only one single arbitrary Pareto-optimal solution. In (11), the
authors proposed Pareto multi-task learning (Pareto MTL), a
method that splits the objective space into separate cones given
a set of preference rays, and returns a solution per cone. Their
approach is capable of finding several points on the Pareto
front; However, it scales poorly with the number of cones
and does not converge to the exact desired ray on the Pareto
front. Recently, (12) proposed a new approach to find the Ex-
act Pareto Optimal (EPO) solution in the objective space (the
intersection of the Pareto front with a given preference ray).
The technical novelty of our work resides in the formulation
of the SCL problem as a MOO problem. To the best of our
knowledge, this is the first work on fine-tuning a large lan-
guage model by minimizing two objective functions using
MOO. The first objective function encourages the encoder to
maximize the agreement between a cluster of points belonging
to the same class in the latent space, while the second guides
the encoder to represent sentences form different classes far
away from each other in the latent space. We address the
MOO problem using both LS and EPO methods.
We show the merit of our approach on multiple datasets form
the GLUE natural language understanding benchmark. We
evaluate the method on both few-shot (20, 50, 100 labeled
examples) learning as well as the full dataset training settings.
The experiments show the superiority of our approach over two
very strong baselines that fine-tune RoBERTa-base language
model using CE only and CE + SCL objective respectively.
Our contributions can be summarized as follows:

• we formulate the SCL problem as a MMO problem;

• we propose a method to fine-tune pre-trained language
models by using SCL and MOO (here we focus on
RoBERTa-base language models);

• we adapt two well-known MOO approaches to solve
several downstream tasks from the GLUE benchmark.

2. THE PROPOSED APPROACH

We propose to fine-tune the pre-traind RoBERTa language
model by minimizing an objective function that combines the
well-known cross-entropy and a supervised contrastive loss
(See Figure 1). We formulate the contrastive loss optimiza-
tion as a MOO problem. To solve the latter, we investigate
both linear scalarization and exact pareto optimal methods
(12). Similar to (1), we fine-tune RoBERTa on single sen-
tence and sentence-pair classification tasks. Following com-
mon practice for fine-tuning pre-trained language models for
classification (13; 1), we consider the [𝐶𝐿𝑆] token to be the
final representation of the input data.

Fig. 1: The general framework of our proposed approach

2.1. Preliminaries

Let us denote a labeled dataset as D = {(𝑥𝑥𝑥𝑖 , 𝑦𝑖)}𝑖 , where
𝑥𝑥𝑥𝑖 ∈ X represents the 𝑖𝑡ℎ instance of the dataset and
𝑦𝑖 ∈ Y = {1, ..., 𝐶} is its label. We train an encoder
function (a neural network) 𝑓\\\ : X −→ Y parameterized by
\\\.
The goal of MOO is to jointly minimize 𝑚 non-negative
objective functions. In our setting, each objective function is
the expectation of the individual (or mini-batch) loss, ℓ̃ 𝑗 , over
labeled instances of 𝑥𝑥𝑥 and 𝑦, randomly sampled from the data
distribution P𝐷:

ℓ 𝑗 (\\\) = E(𝑥𝑥𝑥,𝑦)∼P𝐷
[ℓ̃ 𝑗 (𝑦, 𝑓\\\ (𝑥𝑥𝑥))] (1)

where 𝑗 ∈ {1, . . . , 𝑚}. The goal of MOO is to find Pareto
optimal solutions.
We define a partial ordering on the objective space by ℓℓℓ(\\\) ⪯
ℓℓℓ(\\\ ′ ), where ℓℓℓ(\\\) = [ℓ1 (\\\), . . . , ℓ𝑚 (\\\)]𝑇 ∈ R𝑚+ , if for all
𝑗 ∈ {1, . . . , 𝑚}, ℓ 𝑗 (\\\) ≤ ℓ 𝑗 (\\\

′ ); for strict inequality, i.e.
ℓℓℓ(\\\) ≺ ℓℓℓ(\\\ ′ ), we have ℓ 𝑗 (\\\) < ℓ 𝑗 (\\\

′ ) for some of the values
of 𝑗 .
Definition (Pareto dominance). A solution \\\1 dominates a
solution \\\2 if ℓℓℓ(\\\1) ≺ ℓℓℓ(\\\2). In other words, \\\1 is not worse
than \\\2 on any objective, and \\\1 is better than \\\2 on at least
one objective, i.e.: ∃𝑞 ∈ {1, . . . , 𝑚} s.t ℓ𝑞 (\\\1) < ℓ𝑞 (\\\2). A
point that is not dominated by any other point is called Pareto
optimal solution. The set of all Pareto optimal solutions is
called Pareto set, denoted by, P\\\\\\\\\ , and its image is called the
Pareto front Pℓℓℓ = {ℓℓℓ(\\\)}\\\∈P\\\

.

2.2. The proposed training strategy

We first define some needed notations, formulate the learning
problem of interest, and then provide details of the proposed
solution. Let S𝑘 = {(𝑥𝑥𝑥𝑖 , 𝑦𝑖) |𝑦𝑖 = 𝑘} denotes the set of all
samples belonging to class 𝑘 within the corpus D. Let B𝑘 be
a mini-batch of 𝑁𝑘 examples randomly sampled from S𝑘 . Let
H𝑘 = 𝑓\\\ (B𝑘) ∈ R𝑁𝑘×𝑑 be the ℓ2 normalization of the highest



level representation of the neural network:

H𝑘 =


ℎℎℎ⊤1
ℎℎℎ⊤2
...

ℎℎℎ⊤|B𝑘 |


∈ R𝑁𝑘×𝑑

where ℎℎℎ 𝑗 is the embedding vector corresponding to instance
𝑗 , whose dimension is denoted by 𝑑, and | · | denotes the
cardinality operator.
Similar to (1; 7), our main goal is to maximize the similarity
between points that belong to the same class and minimizing
the similarity between elements of different classes. We now
proceed with the formulation of the two objective functions.
First, we define the following matrices:

M (𝑘 ) = H𝑘H𝑇
𝑘
∈ R𝑁𝑘×𝑁𝑘 ,

N (𝑘 ) = [H𝑘H𝑇
𝑘′ ]𝑘′∈Y,𝑘′≠𝑘 ∈ R𝑁𝑘×𝑁𝑘

where 𝑁𝑘 =
∑

𝑘′≠𝑘 𝑁𝑘 and [.] denotes the horizontal concate-
nation operator. Matrices M (𝑘 ) , with 𝑘 = 1, · · · , 𝐶, contain
the intra-class similarities, whereas matrices N (𝑘 ) contain
inter-class similarities.

In this work, we aim to find an encoder which maximizes
the intra-class similarities and minimizes the inter-class simi-
larities. To this end, we define the following loss functions:

ℓ̃𝑝𝑜𝑠 = − 1
𝐶

𝐶∑︁
𝑘=1

1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

log


1
𝑁𝑘 − 1

𝑁𝑘∑︁
𝑝=1, 𝑝≠𝑖

exp
(
M (𝑘 )

𝑖, 𝑝
/𝜏

)
(2)

ℓ̃𝑛𝑒𝑔 =
1
𝐶

𝐶∑︁
𝑘=1

1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

log


1
𝑁𝑘

𝑁𝑘∑︁
𝑛=1

exp
(
N (𝑘 )

𝑖,𝑛
/𝜏

) (3)

where 𝐶 is the number of classes, 𝜏 ∈ R+ is a temperature
parameter, and M (𝑘 )

𝑖, 𝑝
and N (𝑘 )

𝑖,𝑛
denotes the (𝑖, 𝑝)th element

of M (𝑘 ) and the (𝑖, 𝑛)th element of N (𝑘 ) respectively. The
objective functions are defined as the expectation of the above
(mini-batch) loss functions over the distribution of the data.

The overall (single mini-batch) loss that we propose in this
work is a weighted linear combination of the above conficting
objectives and the CE loss. When including the latter, the two
objectives to minimize become:

ℓ1 = _ℓ̃𝑝𝑜𝑠 + (1 − _)L𝐶𝐸 (4)
ℓ2 = _ℓ̃𝑛𝑒𝑔 + (1 − _)L𝐶𝐸 (5)

where L𝐶𝐸 is the conventional cross-entropy loss, and _ is
a hyper-parameter that controls the weight of the SCL term
in the objective function. The MOO is solved using both LS
and exact Pareto optimal methods to fine-tuning the pretrained
language model.

• Linear Scalarization method: this is the most straightfor-
ward approach to solve a MOO problem. It converts the latter
to a single-objective optimization problem (Eq 6). Indeed, LS
optimizes the weighted sum of the objectives, i.e.

\∗ = arg min
\\\

E(𝑥𝑥𝑥,𝑦)∼P𝐷

𝑚∑︁
𝑗=1

𝑟 𝑗ℓ 𝑗 (6)

where 𝑟𝑟𝑟 ∈ Ω𝑚 is the preference vector, with

Ω𝑚 :=

{
𝑟𝑟𝑟 ∈ R𝑚+

����� 𝑚∑︁
𝑗=1

𝑟 𝑗 = 1, and 𝑟 𝑗 ≥ 0 ∀ 𝑗
}
.

In our problem formulation𝑚 = 2. Although LS has some the-
oretical limitations, it has been shown to work well in practice.
• Exact Pareto Optimal method: it finds the intersection of
the Pareto front with a given preference ray. This is achieved
by considering the preference vector 𝑟𝑟𝑟 as a ray in the loss
space and training a neural network to reach a Pareto optimal
solution on the inverse ray 𝑟𝑟𝑟−1. Thus, an Exact Pareto optimal
(EPO) solution with respect to a preference vector 𝑟𝑟𝑟 belongs
to the set:

P𝑟𝑟𝑟 =

{
\\\∗ ∈ P\\\

�����𝑟1ℓ
∗
1 = · · · = 𝑟𝑚ℓ

∗
𝑚

}
(7)

where ℓ∗
𝑗
= ℓ 𝑗 (\\\∗). This is achieved by balancing two goals:

finding a descent direction towards the Pareto front and ap-
proaching the desired ray (12).

3. TRAINING DETAILS

We evaluate our approach by measuring top-1 accuracy on
multiple tasks of the GLUE natural language understanding
benchmark namely, SST-2, QNLI and MNLI datasets (14). In
our experiments, for few-shot learning setting, similar to (1),
we sample 500 examples from the original validation set of
each dataset to build our validation set, and half of the valida-
tion to build the test set. Note that, we evaluate our proposed
approach only on SST2, QNLI and MNLI tasks to make a
fair comparison with the baselines, however our method can
be applied on other tasks. We run each experiment with 10
different seeds, and report the average test accuracy and the
standard deviation along with the baselines. Best hyperparam-
eters combination are picked based on the average validation
accuracy. In this paper, we use RoBERTa-base due to the
GPU RAM constraint. During all the fine-tuning runs, we use
AdamW optimizer with a learning rate of 1e-5, batch size of
16, and dropout rate of 0.1. We optimized the temperature
hyper-parameter on the validation set by sweeping for 𝜏 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, _ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and 𝑟1 ∈
{0.1, 0.3, 0.5}. Simulations show that models with best test
accuracies across all experimental settings overwhelmingly
use the hyperparameter combination 𝜏 = 0.3, _ = 0.3, and 𝑟𝑟𝑟 =
[0.1, 0.9]
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Fig. 2: T-SNE plot of the learned embeddings on the SST-2 test set where we have 20 annotated examples to fine-tune RoBERTa-
base language model fine-tuned with CE + LS-based (left), with CE + EPO-based (mid) and with CE + SCL objective (right).

4. RESULTS & ANALYSIS

Here, we report the obtained results of our approach in the
few-shot learning setting (20, 50, 100 annotated examples)
and compare them with those obtained by the baselines that
fine-tune the RoBERTa-base with CE and CE + SCL loss, re-
spectively. Performance is measured in terms of the Accuracy
metric on the test set. We run each experiment with 10 dif-
ferent seeds (details of the experimental setup are explained
in Experiments section). For both CE + LS-based and CE +
EPO-based losses, experiments were carried out using differ-
ent preference vectors. As shown in Table 1, we observe that
our approach obtains significantly better performance than the
baselines. For instance, the CE + EPO-based loss achieves,
on SST-2, an accuracy of 68.96%, which is a 9.24 and 8.6 per-
centage points improvement over CE and CE + SCL respec-
tively when the number of annotated examples is 20. Simi-
larly, CE + LS-based objective achieves better results than the
baselines when the RoBERTa-base is fine-tuned using 20 la-
beled examples, with 1.85 percentage points improvement on
QNLI and 1.9 percentage points improvement on MNLI. This
shows that our approach generalizes better than the baselines.
We believe that this is due to the fact that good generaliza-
tion (high-quality representations) requires capturing well the
similarity between examples in one class and contrasting them
with examples from other classes. Note that, as we increase
the number of annotated examples, performance improvement
over the baseline decreases, leading to 1.5 percentage points
improvement on SST-2 with 50 examples and 0.23 percentage
points improvement with 100 examples. However, our CE
+ EPO-based method achieves consistent improvements on
MNLI dataset across all data regimes. On QNLI dataset, we
see that our method is outperformed by the CE + SCL when
the number of labeled examples is 50. However, overall,
our method performs better than the baselines in the few-shot
learning setting. Figure 2 shows the tSNE plots of the learned
sentence embeddings on SST-2 test set when RoBERTa-base
is fine-tuned using only 20 annotated examples with CE +
LS-based, CE + EPO-based, and CE + SCL losses. As we can
clearly see, our approach forces the encoder to better separate

Loss N SST-2 QNLI MNLI
CE 20 59.72 ± 5.9 50.57 ± 1.8 34.07 ± 1.5
CE + SCL 20 60.34 ± 5.3 50.80 ± 1.8 33.25 ± 1.5
CE + LS-based (Ours) 20 72.06 ± 5.4 51.89 ± 1.6 34.81 ± 1.1
CE + EPO-based (Ours) 20 68.96 ± 3.5 51.44 ± 1.2 33.94 ± 0.9
CE 50 81.64 ± 1.6 61.20 ± 2.5 37.36 ± 2.1
CE + SCL 50 81.42 ± 4.8 66.02 ± 2.4 38.20 ± 1.1
CE + LS-based (Ours) 50 81.92 ± 1.6 62.06 ± 4.2 39.55 ± 1.8
CE + EPO-based (Ours) 50 82.93 ± 0.9 62.93 ± 1.6 40.52 ± 1.5
CE 100 85.32 ± 1.4 72.74 ± 1.4 44.87 ± 1.5
CE + SCL 100 85.41 ± 1.3 73.37 ± 1.1 43.79 ± 1.9
CE + LS-based (Ours) 100 85.64 ± 1.4 73.39 ± 1.2 46.51 ± 1.7
CE + EPO-based (Ours) 100 85.43 ± 1.2 74.29 ± 0.8 46.89 ± 1.6

Table 1: Few-shot classification accuracies on test sets of the
GLUE benchmark where we have N=20, 50, 100 annotated
examples for fine-tuning RoBERTa-base model. We report
mean (and standard deviation) performance over 10 different
seeds for each experiment.

the classes in the embedding space, while forcing it to achieve
more compact clustering.

5. CONCLUSION

In this paper, we propose a novel learning strategy for text
classification tasks. We formulate the supervised contrastive
learning problem as a Multi-Objective Optimization prob-
lem. The proposed loss function includes both supervised
contrastive learning loss and the conventional cross-entropy
loss. To solve the optimization problem, we employed two
well-known approaches, namely the linear scalarization and
the exact Pareto optimal solution search method. We evalu-
ated the proposed method in few-shot learning (20, 50, 100
labeled examples) as well as the full dataset training on several
datasets from GLUE benchmark. Empirically, we demonstrate
the superior performance of our solution over two competing
approaches for fine-tuning RoBERTa-base model. As a fu-
ture work, we aim to adapt the proposed method for the self-
supervised learning setting. We will also extend our approach
to different application domains such as computer vision and
graph representation learning.
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