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ABSTRACT
This paper proposes a novel method to perform privacy-preserving
face identification based on the notion of group testing, and applies
it to a solution using the Cheon-Kim-Kim-Song (CKKS) homomor-
phic encryption scheme. Securely computing the closest reference
template to a given live template requires 𝐾 comparisons, as many
as there are identities in a biometric database. Our solution, named
Grote, replaces element-wise testing by group testing to drasti-
cally reduce the number of such costly, non-linear operations in the
encrypted domain from 𝐾 to up to 2

√
𝐾 . More specifically, we ap-

proximate the max of the coordinates of a large vector by raising to
the 𝛼-th power and cumulative sum in a 2D layout, incurring a small
impact in the accuracy of the system while greatly speeding up its
execution. We implement Grote and evaluate its performance.
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1 INTRODUCTION
Modern data analytics & Machine Learning (ML) have disrupted
many market sectors, ranging from the entertainment industry and
manufacturing (e.g., content prediction algorithms, automatic fault
detection), to more sensitive areas like healthcare or the public
administration (e.g., early-stage cancer detection, fraud prosecu-
tion). This undeniable potential comes with numerous risks. Data
misuse and theft, specially when dealing with personal data, are
ever-present concerns that can be mitigated by resorting to privacy
policies and techniques (as covered in present-day data protection
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legislations such as GDPR [15] in Europe or HIPAA [7] for medical
records in United States).

These risks are exacerbated on certain applications. Hospitals
and health specialists can only use the data of their direct patients,
falling short on the data volume requirements to train accurate pre-
diction models. Banks and finance institutions are limited to their
locally available data to prevent fraud and prosecute tax evasion.
Biometric recognition must employ trusted entities or secure hard-
ware to store the biometric data required for their identification
models, and data manipulation is subject to strict security rules.

Focusing on biometrics, personal data acquisition (e.g., face, fin-
gerprint, iris, ...) and processing raises severe privacy concerns.
Since biometric traits cannot be modified or re-issued, its protec-
tion is deemed indispensable. Standard cryptography enables secure
storage and transmission, yet it falls short for privacy-preserving
processing.

Various advanced cryptographic techniques arise to the chal-
lenge. Fully Homomorphic Encryption (FHE)[22] is a family of en-
cryption schemes that support certain operations between cipher-
texts (typically addition and multiplication), yielding the results of
these operations when decrypting. Secure Multiparty Computation
(MPC) covers a series of techniques (garbled circuits[62], secret
sharing[56]) that split computation of a given function across mul-
tiple distinct parties, jointly collaborating to compute the result
while remaining individually ignorant of the global computation.

In client-server scenarios like biometric identification ormachine-
learning-as-a-service (MLaaS), FHE shines at offloading heavy com-
putation almost exclusively to one party. Moreover, by employing
well established schemes like Brakerski-Gentry-Vaikuntanathan
(BGV [6]), Brakerski / Fan-Vercauteren (BFV [21]) or Cheon-Kim-
Kim-Song (CKKS[9]), we obtain private computation capabilities
suited for biometric operations. Standard FHE provides privacy-
preserving guarantees following an Honest - But - Curious threat
model where parties involved perform the selected protocol with-
out deviation while attempting to obtain as much information from
the private data as possible. However, FHE only offers out-of-the-
shelf encrypted addition and multiplication. Non-linear operations
such as comparisons must be either reformulated using ring prop-
erties as in BFV & BGV [30] or approximated with polynomials
in a small interval [10, 11, 37]. In both cases, several ciphertext-to-
ciphertext multiplications are required to compute an encrypted
comparison, considerably increasing its computational cost and
that of comparison-based operations (e.g., Rectified Linear Units
(ReLU), maximum of an array). Since biometric identification sys-
tems require multiple comparisons (one per record held in the
biometric database of reference), reducing the cost of this operation
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directly improves the practicality of FHE to protect these systems
in real-world deployments.

Our Contribution. We propose a novel method to perform
privacy-preserving biometric identification based on the notion of
group testing, and instantiate it on FHE with the CKKS scheme.
Securely computing the closest reference template to a given live
template requires 𝐾 comparisons, as many as there are identities in
a biometric database. Our solution, named Grote, replaces element-
wise testing by group testing to reduce the number of such costly,
non-linear operations in the encrypted domain. More specifically,
we approximate the max of the coordinates of a large vector (its
infinity norm) by raising to the 𝛼-th power and cumulative sum (its
𝛼 norm) in a 2D layout, incurring a small impact in the accuracy of
the system while greatly speeding up its execution (1.5 times faster).
We implement CKKS-based Grote and show that it outperforms
the straightforward alternative based on batched comparisons.

This work is arranged as follows. Section 2 introduces the CKKS
encryption scheme and the layout of a standard face identification
system. Section 3 details our design of an FHE-enabled privacy-
preserving group testing solution, and instantiates it to the BFV
scheme. Next we validate this approach with experiments on bio-
metric data in Section 4. We conclude the paper with a review of
previous works in Section 5 and some takeaways in Section 6.

2 BACKGROUND
Notation
We use regular letters to denote scalars and polynomials (e.g., 𝑁 , 𝑠)
and bold letters for vectors of scalars and vectors of polynomials
(e.g., x, pk). x[𝑖] denotes the 𝑖th element of vector x. 𝑅𝐿 expresses
a polynomial ring with integer coefficients modulo 𝐿. 𝑝 [𝑖] denotes
the 𝑖th coefficient/element of a polynomial 𝑝 .

We noteU[𝑆 ] to the uniform random distribution in the set 𝑆 ,
and write 𝑟 ∼ U[𝑆 ] to sampling that distribution and assigning
the sample to local variable 𝑟 . N(𝜇, 𝜎) denotes a univariate gauss-
ian distribution with mean 𝜇 and standard deviation 𝜎 . Given a
sampling of an individual coefficient 𝑝 [ 𝑗] from a distribution D
(𝑝 [ 𝑗] ∼ D), we denote the sampling of a polynomial 𝑝 over a ring
𝑅𝐿 as 𝑝 ← D[𝑅𝐿 ] .

We denote [·]𝑞 the reductionmodulo q, and ⌊·⌋, ⌊·⌉, ⌈·⌉ the round-
ing to the previous, nearest and next integer respectively. When
applied to polynomials or vectors, these reductions are performed
coefficient/element-wise. For a polynomial 𝑎, we write its infinity
norm as ∥𝑎∥. We employ (·)? to denote the Boolean evaluation of
the expression inside the brackets, e.g., (3 > 2)? = 1.

2.1 Homomorphic Encryption
A homomorphic encryption (HE) scheme allows certain operations
over ciphertexts, yielding a ciphertext equivalent to encrypting the
result of those same plaintext operations. HE allows third parties
to perform computations on encrypted data without learning the
inputs or the computation results. In contrast to partially homomor-
phic encryption, which supports only one arithmetic operation (e.g.
only additions[48] or only multiplications[51]), fully homomorphic
encryption allows encrypted multiplications and additions, theo-
retically enabling private computation of arbitrary functions. This

concept was conceived by Rivest et al. in the 1970s[50], but it re-
mained abstract until Craig Gentry’s first FHE scheme in 2009[22].
Since then, FHE has gone from theoretical breakthrough to practical
deployment, dropping the initial 30 minutes required to compute a
multiplication between two encrypted values down to less than 20
milliseconds. Even then, FHE multiplications are still around seven
orders of magnitude slower than native CPU integer multiplication
instructions. Therefore, practical FHE requires that applications be
specifically adapted and optimized.

A variety of efficient schemes [5, 6, 8, 12, 13, 21] target slightly
different settings. The majority of modern FHE schemes are based
on the Learningwith Errors (LWE) hardness assumption [49] and its
variants (e.g., Ring LWE) and rely on a small amount of noise added
during encryption to guarantee security. During homomorphic op-
erations, this noise grows negligibly for additions, and significantly
for multiplications. Should the noise grow too large, correct decryp-
tion would no longer be possible. Theoretically, a computationally
expensive technique known as bootstrapping can be used to ho-
momorphically reset the noise in a ciphertext. Instead, schemes
are often instantiated with parameters large enough to allow the
computation to complete without requiring bootstrapping.

We now introduce Cheon-Kim-Kim-Song (CKKS) [9] scheme,
foundational to our work, leaving out other schemes such as the
Brakerski/Fan-Vercauteren (BFV) [5, 21] or TFHE [12].

Scheme 1 CKKS(𝑛, 𝑞 = [𝑞0 ∗ 𝑞1 ∗ · · · ∗ 𝑞𝑑+1],𝑤, 𝜎, 𝐵)
CKKS.keygen( sk, w )→ (sk, pk):
Sample 𝑠 ← S[𝑅𝑞 ]
Sample 𝑝1 ←U(𝑅𝑞), and 𝑒 ← X[𝑅𝑞 ]
Set pk = (𝑝0, 𝑝1) = (−𝑠𝑝1 + 𝑒, 𝑝1)
Output (sk, pk)
CKKS.encr( pk,m )→ c𝑚 :
Let pk = (𝑝0, 𝑝1) a public key
Sample 𝑢 ← S[𝑅𝑞 ] ; 𝑒0 ← X[𝑅𝑞 ] ; 𝑒1 ← X[𝑅𝑞 ]
Output c𝑚 = (𝑐𝑚0 , 𝑐𝑚1 ) = (𝑞0𝑚 + 𝑢𝑝0 + 𝑒0, 𝑢𝑝1 + 𝑒1)
CKKS.add( c𝑎, c𝑏 )→ c𝑎𝑑𝑑 :
Let c𝑎 = (𝑐𝑎0 , 𝑐𝑎1 ), c𝑏 = (𝑐𝑏0 , 𝑐𝑏1 ) two ciphertexts.
Output c𝑎𝑑𝑑 = ( [𝑐𝑎0 + 𝑐𝑏0 ]𝑞, [𝑐𝑎1 + 𝑐𝑏1 ]𝑞)
CKKS.decr( 𝑠𝑘, c𝑡 )→ m𝑟𝑒𝑠 :
Let 𝑠𝑘 = 𝑠 a secret key, c𝑡 = (𝑐𝑡0 , 𝑐𝑡1 ) a ciphertext.
Output𝑚𝑟𝑒𝑠 =

⌊
1

𝑞𝑑+1
[𝑐𝑡0 + 𝑠𝑐𝑡1 ]𝑞𝑑+1

⌉
CKKS.encode( a )→𝑚:
Let a ∈ R𝑛/2 an input vector with 𝑛/𝑠 elements.
Output Polynomial𝑚 ∈ 𝑅 where𝑚 = InvNTT(a).

CKKS.decode(𝑚 )→ a𝑟𝑒𝑠 :
Let𝑚 ∈ 𝑍𝑁 the coefficients of an encoded polynomial of degree

𝑁 − 1 in 𝑅.
Compute a𝑑𝑒𝑐 = NTT(𝑚).
Output a𝑑𝑒𝑐

2.1.1 CKKS scheme. The Cheon-Kim-Kim-Song (CKKS) [9] is a
ring-learning-with-errors (RLWE) [44] homomorphic encryption



CAPTURE FEATURE EXTRACTION IDENTIFICATION

user

live face 

image
live face 

template

reference face 

template DB

MATCHING COMPARE  AGGR.

≥ 𝛿 ?

Match(≥ 1)

Reject (0)

…

…
…

AGGR.  COMPARE

…

Σ
max

max

𝐱 ∈ ℝ𝒍

𝐘 ∈ ℝ𝒍×𝑲

𝐳

Figure 1: Face identification system

scheme, offering SIMD additions and multiplications on a vector
of floating-point values. Contrary to BFV or TFHE, CKKS treats
the noise introduced during encryption as part of the numerical ap-
proximation of the underneath values, thus yielding approximative
results on its operations.

Messages are encoded in the plaintext space R = Z[𝑋 ]/(𝑋𝑁 +1)
of polynomials of degree up to 𝑛 − 1 using an isomorphism of R
with C𝑛/2 and an approximated mapping, and then encrypted into
the ciphertext space 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 + 1) with 𝑛 a power of 2 and
𝑞 the product of a set of carefully chosen primes.

The CKKS scheme samples secrets from two distributions: the
secret key distribution S[𝑅𝑞 ] with coefficients sampled from a
uniform distribution 𝑠 [ 𝑗] ∼ S ≜ U({−1, 0, 1}) so that S𝑅𝑞 =

Z{−1,0,1} [𝑋 ]/(𝑋𝑛 + 1), and the error distribution X[𝑅𝑞 ] with co-
efficients 𝑒 [ 𝑗] ∼ X ≜ N[−𝐵,𝐵 ] (0, 𝜎) sampled following a discrete
Gaussian with standard deviation 𝜎 truncated into [−𝐵, 𝐵] where
𝜎 and 𝐵 are two parameters of the scheme.

The security of CKKS is rooted in the hardness of the decisional-
RLWE problem, informally stated as: given a uniformly random
𝑎 ←U(𝑅𝑞) , a secret 𝑠 ← S[𝑅𝑞 ] , and an error term 𝑒 ← X[𝑅𝑞 ] , it
is computationally hard for an adversary that does not know 𝑠 and
𝑒 to distinguish between the distribution of (𝑠𝑎 + 𝑒, 𝑎) and that of
(𝑏, 𝑎) where 𝑏 ← U(𝑅𝑞). A more formal definition can be found
in Section 3.1 of [21].

While CKKS supports bootstrapping in theory [39], it is slow
and thus the scheme is commonly instantiated with parameters
large enough to handle the noise growth result of a limited number
of multiplications (the multiplicative depth). Even then, a public
relinearization should be used between multiplications to reshape
the ciphertext without changing the underlying message, lowering
noise growth and ciphertext size by employing a specific public key
named relinearization key (𝑟𝑙𝑘). A reasoning on how to select all
these parameters in practice can be followed in Section 3.4 of [45].

Scheme 1 outlines the subset of algorithms conforming the CKKS
scheme that are pertinent for this work.

2.2 Biometrics
Biometric systems are pattern recognition systems which establish
the authenticity of a specific physiological or behavioral user’s
characteristic, that is, rely on "who/what you are" to identify you.
These characteristics, broadly named biometric traits, are scanned
and compressed into succinct representations called biometric tem-
plates. Biometric recognition systems use these templates to per-
form comparisons and establish & verify the identity of its users.

In essence, biometric systems have two phases. The enrollment
phase involves registering users by collecting their biometric tem-
plates and storing them in a database. Subsequently, the match-
ing phase (illustrated in Fig. 1) captures a live biometric template
from a user seeking to authenticate/identify himself and compares
(matches) it with the previously stored reference templates. De-
pending on the number of comparisons performed in the matching
phase, we can have two scenarios:
• Verification (a.k.a. Authentication), a 1:1 similarity compari-
son between the live template and a single stored template.
Yields a positive result if the similarity score is higher than
a given threshold 𝛿 , negative otherwise. In a nutshell, it
answers "Are you who you claim to be?".
• Identification, a 1:K comparison between the live template
and a single stored template. Requiring K individual compar-
isons, it returns the ID of the stored template with highest
similarity score or a negative result if no score is above the
threshold 𝛿 . Hence, it provides the answer to "Who are you?".

Receiving its input image from a capture sensor (see Figure
1), the feature extractor component for face, iris and fingerprint
biometrics in charge of template extraction is nowadays based
on Deep Learning models applied to Vision [16, 17, 53]. Once ex-
tracted, the similarity/distance among templates is computed fol-
lowing a similaritymetric. Typical metrics are the hamming distance
(HD(x, y) = ∑

x𝑏 [𝑖] ⊕ y𝑏 [𝑖]), and the inner product (a.k.a. cosine
similarity) (IP(x, y) = x · y =

∑
x[𝑖] · y[𝑖], where x = x/∥x∥ is

the L2 normalized template vector). The highest score out of all
the matching scores is then compared with a threshold 𝛿 to yield



"match" or "rejection" as the system’s output. These thresholding
and max operations can alternatively be swapped. Given a nor-
malized input live template x ∈ R𝑙 and a database of normalized
reference template with 𝐾 identities Y ∈ R𝑙×𝐾 , we compute identi-
fication based on cosine similarity following Eq. 1 to obtain 𝑘∗, the
index of the identity yielding a positive matching:

z ≜ 𝑧 [𝑘] =
𝑙∑
𝑖=1

x[𝑖] · Y[𝑖, 𝑘]

Compare first: z𝛿 = (z ≥ 𝛿)? → 𝑘∗ = argmax
𝑘

{z𝛿 [𝑘]}

Max first: 𝑘∗z = argmax
𝑘

{z[𝑘]} → 𝑘∗ = 𝑘∗z (z[𝑘∗z ] ≥ 𝛿)?

(1)

In the face recognition domain, modern feature extractors such
as ArcFace-based Neural Networks[16] use the cosine similarity as
metric. Besides, these feature extractors generate large templates
(𝑙 ∈ 128, 256, 512) with a considerable floating point precision, often
a requirement to yield low error rates. Contrary to other secure
computation solutions, fixed-point encoding is not necessary to
adapt the floating point template elements.

2.2.1 Towards Secure Biometrics. Following prior work [52, 61], a
secure biometric system should address the following requirements:
• Irreversibility: Given a protected/secured template, an en-
tity holding said template should not be able to recover the
original biometric template unless it has access to the secret
material (in the case of CKKS, the secret key).
• Unlinkability: Given a protected/secured template, an en-
tity holding said template should not be able to link the
encrypted biometric template of a user to his/her identity.
• Cancellability: The biometric system should be able to re-
voke a user’s access to the system by deleting his/her bio-
metric template from the database.
• Accuracy preservation: The secure version of the biomet-
ric system should not substantially degrade the accuracy of
the original system.

3 OUR CONTRIBUTION
3.1 Grote: Group Testing for Biometrics

The notion of group testing emanates from the field of statistics[19],
and has been applied extensively across industries (e.g., in the
healthcare sector [25], or in fault detection [41]). The essence of
group testing consists of performing a check in a group of sam-
ples all at once, rather than checking on individual samples. For
example, in the biometric identification domain one must compare
each of the similarity scores resulting from 1 : 𝐾 matchings to a
defined threshold 𝛿 , or alternatively compute the max of the vector
of scores and test if this element is above the threshold. Figure 2
illustrates our proposal of a biometric matching algorithm based
on group testing, that we name Grote.

The main insight that drives our solution is that, as proposed in
[23], for a sufficiently large exponent 𝛼 we can approximate the
max operation of Eq. 1 (also expressed as the infinity norm ∥z∥∞)
by the 𝛼 norm:

Algorithm 2 Grote(z, ℎ,𝑤 , 𝛿𝑤 ,𝛿ℎ , 𝛼)→ 𝑘∗

Input: z, a vector of size 𝐾 holding the similarity scores of a live
template with each of the 𝐾 reference templates,

ℎ, number of rows (or size of columns) of the group testing
2D matrix,

𝑤 , number of columns (or size of rows) of the group testing
2D matrix,

𝛿𝑤 , a threshold for row-wise comparison,
𝛿ℎ , a threshold for column-wise comparison,
𝛼 , exponent for max approximation.

Output: Index 𝑘∗ of the single score above the thresholds in the
flattened score vector, set to zero if zero or several scores above
the thresholds.

Assumption:With overwhelming probability there are either zero
or one elements in z above 𝛿 .

1: z ∈ R𝐾 → Z ∈ Rℎ×𝑤 . Reshape vector z ∈ R𝐾 as matrix
Z ∈ Rℎ×𝑤 . Fill empty spaces with zeros.

2: Z→ Z𝛼 . Raise each element of Z to the 𝛼 power.
Cumulative Sum:
3: −→w : w[𝑖] = ∑𝑤

𝑗=1 Z
𝛼 [𝑖, 𝑗]. Compute −→w ∈ Rℎ , the row-wise sum

of Z𝛼 .
4:
−→
h : h[ 𝑗] = ∑ℎ

𝑖=1 Z
𝛼 [𝑖, 𝑗]. Compute

−→
h ∈ R𝑤 , the column-wise

sum of Z𝛼 .
Comparison:
5: −→w𝛿𝑤 : −→w𝛿𝑤 [𝑖] = (

−→w [𝑖] ≥ 𝛿𝑤)?. Compare elements of −→w to
threshold 𝛿𝑤 .

6:
−→
h 𝛿ℎ :

−→
h 𝛿ℎ [ 𝑗] = (

−→
h [ 𝑗] ≥ 𝛿ℎ)?. Compare elements of

−→
h to

threshold 𝛿ℎ .
Validation.
7: Compute sums 𝑣𝑤 = Σ−→w𝛿𝑤 and 𝑣ℎ = Σ

−→
h 𝛿ℎ .

8: Compute 𝑣𝐾 = (𝑣ℎ · 𝑣𝑤 ≤ 1)?, check if up to one non-zero
element in 2D matrix layout.

ArgMax.
9: 𝑖∗ = Σ𝑤

𝑖=1 (𝑖 · w𝛿𝑤 [𝑖]). Compute 𝑖∗, row index of the above-
threshold score.

10: 𝑗∗ = Σℎ
𝑗=1 ( 𝑗 · h𝛿ℎ [ 𝑗]). Compute 𝑗∗, column index of the above-

threshold score.
11: 𝑘∗ = (𝑤𝑖∗ + 𝑗∗). Compute the index of the above-threshold

score.
12: return either 𝑘∗ and 𝑣𝐾 separately or 𝑘∗ · 𝑣𝐾 .

max(z) = ∥z∥∞ ≈ ∥z∥𝛼 =
𝛼

√
Σ𝐾
𝑖=1 (z[𝑖]𝛼 ) (2)

Moreover, we can turn it into a linear operation by removing
the root and tweaking the threshold 𝛿 :

(∥z∥∞ ≥ 𝛿)? ≈ (Σ𝐾𝑖=1 (z[𝑖]
𝛼 ) ≥ 𝛿𝛼 )? (3)

This approximation is more precise the higher the exponent 𝛼 ,
and is rendered less precise the more elements there are in the
vector. To balance out, we resort to pooling (aggregating) parts of
the z vector inspired by group testing: we reshape z ∈ R𝐾 into a 2D
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matrix1Z ∈ Rℎ×𝑤 , obtaining ℎ rows and𝑤 columns, and use Eq. 4
to approximate the maximum value row-wise and column-wise:

®w ≜ ®w[𝑖] =
𝑤∑
𝑗=1
(Z[𝑖, 𝑗])𝛼 ∀𝑖

®h ≜ ®h[ 𝑗] =
ℎ∑
𝑖=1
(Z[𝑖, 𝑗])𝛼 ∀𝑗

(4)

We then resort to standard comparisons and ArgMax to pin-
point the element yielding a positive score, if any. The threshold
𝛿 , tied to the binary classification task arising from the biometrics
scenario, must be tweaked to account for the pooling operation
and the exponent 𝛼 . For that purpose, we define two new group-
wise thresholds 𝛿𝑤 and 𝛿ℎ that must be set with properly adapted
biometric-based experiments (see Section 4 for an example of such
setting), and we use them to compare the row-wise and column-
wise groupings ®w ≥ 𝛿𝑤 and ®h ≥ 𝛿ℎ respectively:

®w𝛿𝑤 ≜ ®w𝛿𝑤 [𝑖] = ( ®w[𝑖] ≥ 𝛿𝑤)? ∀𝑖
®h𝛿ℎ ≜ ®h𝛿ℎ [ 𝑗] = (®h[ 𝑗] ≥ 𝛿ℎ)? ∀𝑗
𝑖∗ ≜ argmax

𝑖

®w𝛿𝑤 [𝑖]

𝑗∗ ≜ argmax
𝑗

®h𝛿ℎ [ 𝑗]

(5)

If the two comparisons yield a positive result at some indices
𝑖∗ and 𝑗∗ respectively, we conclude that the element Z[𝑖∗, 𝑗∗] and
the element z[𝑤 (𝑖∗) + ( 𝑗∗)] in the unrolled score vector contain a
positive score, yielding the identity𝑤 (𝑖∗)+( 𝑗∗) as result. Otherwise,
we conclude that no positive score was found, and return a negative
result.
1Pooling with higher dimensionality is possible and straightforward to derive from our
construction. We employ 2D pooling in our solution to allow for descriptive visuals.

Since ℎ ·𝑤 ≈ 𝐾 , we achieve a reduction in the number of compar-
isons from 𝐾 (max of 𝐾 values) to ℎ +𝑤 (max on each dimension).
In the most balanced case where ℎ ≈ 𝑤 , we need 2

√
𝐾 comparisons,√

𝐾/2 times less comparisons than in the naïve solution.
The second insight we consider is that in the biometrics domain

there is a very low chance of two or more simultaneous hits in
a biometric database. This arises from the fact that the feature
extractors are designed to separate (with respect to the similarity
metric) templates belonging to different identities, and the reference
database can be designed to minimize the likelihood of this event 2.

Relying on this fact, we can obtain the index of the non-zero
value (argmax) that represents the positive identity 𝑘∗ (if any) by
multiplying the results of the elementwise comparison ®w𝛿 and ®h𝛿
with non-overlapping indexing vectors and summing up all the
elements:

(𝐻𝑊 ( ®w𝛿𝑤 ) ≤ 1) ∧ (𝐻𝑊 (®h𝛿ℎ ) ≤ 1) ⇒

𝑘∗ = 𝑤 · 𝑖∗ + 𝑗∗ =
ℎ∑
𝑖=1

𝑤 · 𝑖 · ®w𝛿𝑤 [𝑖] +
𝑤∑
𝑗=1

𝑗 · ®h𝛿ℎ [ 𝑗]
(6)

As an additional precaution, we add an optional validation check
to ensure that there is indeed up to a single non-zero element in
each of the results of the elementwise comparison ®w𝛿 and ®h𝛿 . Since
a positive hit requires to have a non-zero element in both ®h𝛿 and
®w𝛿 , we can reduce the check to:

valid( ®w𝛿𝑤 ,®h𝛿ℎ ) =

(𝐻𝑊 ( ®w𝛿𝑤 ) ≤ 1) ∧ (𝐻𝑊 (®h𝛿ℎ ) ≤ 1) =(∑
®w𝛿𝑤 [𝑖]

)
·
(∑
®h𝛿ℎ [ 𝑗]

)
≤ 1

(7)

2One could measure the distance among reference templates while building the data-
base, and reject/modify new reference templates that are too close to existing ones.



We detail this step-by-step group testing in Algorithm 2.

3.2 Applying Grote to CKKS
In this section, we detail the steps to instantiate our group testing

algorithm to CKKS. To this end, there are several aspects to take
into consideration:

• All encrypted operations (additions, multiplications, compar-
isons) happen in SIMD fashion, applied simultaneously to all
the elements of the underlying encoded vector. Given that
CKKS ciphertexts encoded in a ring of polynomial degree 𝑛
can hold 𝑛/2 floating-point values, there is room to encode
multiple reference templates of length 𝑙 per ciphertext (𝑛/2𝑙
templates per ciphertext to be precise, where 𝑙 < 𝑛/2). To
perform multiple scalar products at once during the match-
ing phase, we encrypt a 𝑛/2𝑙 times repetition of the live
template inside the input ciphertext and operate on all repe-
titions at once. Similarly, the comparison operation will be
applied elementwise to up to 𝑛/2 matching scores.
• A cumulative addition of 𝑠 slots inside a ciphertext can be
performed by iteratively rotating and adding a ciphertext
with himself log2 (𝑠) times.
• Ciphertext to ciphertext 𝑐 × 𝑐 encrypted multiplications are
the costliest linear operations in CKKS both in terms of
noise growth and in latency. Thus, optimizing the Grote al-
gorithm’s runtime in CKKS involves minimizing the number
of such operations. Some trade-offs to consider are:
– Use of either non-encrypted live templates (sacrificing live
template privacy) or non-encrypted reference templates
(sacrificing the privacy of the reference template database),
employing cheaper ciphertext-plaintext 𝑐 × 𝑝 multiplica-
tions for the scalar products of the matching step, also
saving up in relinearization.

– Keeping a low value of the exponent 𝛼 , thus incurring in
log2 (𝛼) multiplications, at the expense of a less precise
approximation of the max operation.

– Using a low number of multiplications (depth in [37]) in
the polynomial approximation of the 𝑠𝑔𝑛(𝑥) function, in
exchange for noisier results.

• Operating between ciphertexts requires them to have the
same scale. To rescale ciphertexts (by mod-switching or mul-
tiplying with a plaintext) we will rely on the low-error tech-
niques from [33].

3.2.1 Threat Model and Security Analysis. We consider a threat
model whereby both the users and the Identification Server behave
Semi-honestly, that is, they perform the computations faithfully
while trying to obtain as much information as possible. We assume
no collusion between the users, the IS and the BP.

The Biometric Provider must be trusted in the enrollment phase,
as he is in charge of building the reference DB. Therefore, we can
rely on the BP to perform the CKKS key generation, encrypt the
DB and hold the CKKS secret key, decrypting the results sent by
the Identification Server.

While the querying users seek to preserve the privacy of their
live templates from the IS and the BP, the BP seeks to preserve the

Protocol 3 CKKS.Grote(⟨x⟩,{⟨Y⟩}, h, w, 𝛿𝑤 , 𝛿ℎ , 𝛼)→ ⟨k∗⟩
Input: {⟨Y⟩} = {⟨Y[1 . . . 𝑛/2𝑙]⟩ , . . . , ⟨Y[. . . 𝐾]⟩ , }, an encrypted

database of 𝐾 reference templates of length 𝑙 split among
⌈2𝐾𝑙/𝑛⌉ ciphertexts.
⟨x⟩, the encrypted live template of length 𝑙 repeated 𝑛/2𝑙

times.
ℎ, number of rows (or size of columns) of the group testing

2D matrix.
𝑤 , number of columns (or size of rows) of the group testing

2D matrix.
𝛿𝑤 , a threshold for row-wise comparison.
𝛿ℎ , a threshold for column-wise comparison.
𝛼 , exponent for max approximation.

Output: Encrypted Index ⟨𝑘∗⟩ of the single score above the thresh-
olds in the flattened score vector, set to zero if no match in both
dimensions

Assumption:With overwhelming probability there are either zero
or one elements in z above 𝛿 .

Similarity:
1: for a in 1 . . . ⌈2𝐾𝑙/𝑛⌉ do
2: ⟨z′⟩ (𝑎) = ⟨Y⟩ (𝑎) · ⟨x⟩
3: for i in 1 . . . 𝑙 do
4: ⟨z′⟩ (𝑎) + = (⟨z′⟩ (𝑎) ≪ 𝑖)
5: end for
6: end for

Score Merge:
7: for t in 1 . . . ⌈2𝐾/𝑛⌉ (= 𝑇 ) do
8: for i in 1 . . . 𝑙 do
9: ⟨z⟩ (𝑡 ) = ⟨z′⟩ (𝑡 ·2𝐾𝑙/𝑛+𝑖) ·mask𝑛/2 (2𝑙/𝑛 + 𝑖)
10: end for
11: end for

Group Testing:
12: for t in 1 . . .𝑇 do
13: for _ in 1 . . . log2 𝛼 do
14: ⟨z⟩ (𝑡 ) = ⟨z⟩ (𝑡 ) · ⟨z⟩ (𝑡 )
15: end for
16: end for

〈−→w〉
= −𝛿𝑤 ;

〈−→
h
〉
= −𝛿ℎ

17: for t in 1 . . .𝑇 do
18:

〈−→w〉
+ = ∑𝑛/2𝑤

𝑖=1 ((⟨z⟩
(𝑡 ) ·mask𝑛/2 (𝑤𝑖)) ≪ 𝑤𝑖).

19:
〈−→
h
〉
+ = ∑𝑛/2ℎ

ℎ=1 ((⟨z⟩
(𝑡 ) ·mask𝑛/2 ( 𝑗)) ≪ 𝑗).

20: end for
21: ⟨z𝐺𝑟𝑜𝑡𝑒 ⟩ = 𝑐𝑜𝑛𝑐𝑎𝑡 (

〈−→w〉
,

〈−→
h
〉
)

Comparison:
22: ⟨z𝛿 ⟩ = OptMinimaxComp(⟨z𝐺𝑟𝑜𝑡𝑒 ⟩ , 0, [. . . ])
ArgMax.
23: ⟨𝑘∗⟩ = ∑

ℎ+𝑤 ⟨z𝛿 ⟩ · {𝑤, 2𝑤, . . . , ℎ𝑤, 1, 2, . . . ,𝑤 − 1}.
Validation (optional):
24: ⟨𝑣⟩ = ∑

𝑤 ⟨z𝛿 ⟩ · ((
∑
ℎ ⟨z𝛿 ⟩) ≪ 𝑤),

25: return either (⟨𝑘∗⟩ , ⟨𝑣⟩) or ⟨z𝛿 ⟩.



privacy of the reference DB from the IS and the querying users. Pri-
vacy of the inputs and intermediate computation results is assured
by the use of CKKS thanks to the hardness of the LWE problem.

However, the decrypted output does reveal some information
about both the live template and the reference template database.
This input leakage has been studied in the literature before for
inner product based privacy-preserving solutions [24, 28, 40]. To
reduce this leakage it is advisable to output the minimal possible
amount of information. In our case, the argmax would contain the
least information possible, worsened very slightly by outputting
also the validation result. Even if the full comparison results were
decrypted, performing encrypted comparison instead of outputting
the similarity scores does hinder input templates extraction attacks
considerably. In this line, we argue Grote to be inherently resilient
against input leakage.

All in all, our secure biometric solution directly inherits the
security guarantees of CKKS, guaranteeing unlinkability and ir-
reversibility out of the shelf based on the hardness of the LWE
problem: it ensures that encrypted templates cannot be decrypted
to reveal the original template without the secret key, nor do they
yield information about the identity of the user.

3.2.2 The end-to-end identification protocol. Building upon the
Grote algorithm, we design a protocol for privacy-preserving bio-
metric identification based on CKKS, depicted in Figure 3. As setup
for our scenario, the Biometric Provider (BP) acts as trusted entity
and collects the reference templates, generating a pair of public and
secret keys, and encrypting the reference template database with
SIMD for compression (with 𝑛/2𝑙 ref. templates per ciphertext).
This encrypted database is deployed to an Identification Server (IS),
in charge of the full encrypted computation, while the public key
is then distributed to the users.

A user wishing to identify himself extracts his live template,
encrypt it with 𝑛/2𝑙 repetitions into a single ciphertext ⟨x⟩, and
then queries the IS with it. The server performs the following steps:

(1) Similarity: Compute the scalar product between the live
template ciphertext ⟨x⟩ and every ciphertext in the encrypted
database of reference templates ⟨{Y[1], . . . ,Y[𝑛/2𝑙]}⟩ , . . . ,
⟨{. . . ,Y[𝐾]}⟩. Making use of SIMD multiplications followed
by cumulative additions (log2 (𝑙) rotations and additions per
DB ciphertext), the server obtains 𝐾 similarity scores (one
per record) distributed evenly among ⌈2𝐾𝑙/𝑛⌉ ciphertexts
⟨z′⟩1 , . . . , ⟨z′⟩ ⌈2𝐾𝑙/𝑛⌉ .

(2) Score merge: merge of the score ciphertexts by multiplying
with masking plaintexts (vectors with ones in the slots con-
taining scores, zeros elsewhere), and then adding all the
masked scores into 𝑇 = ⌈2𝐾/𝑛⌉ ciphertexts ⟨z⟩1 , . . . , ⟨z⟩𝑇 .

(3) Group testing: as described in Algorithm 2, to approximate
the𝑚𝑎𝑥 by a sum of 𝛼-powered values in a 2D matrix layout.
This involves, per each of the 𝑇 score ciphertexts, log2 (𝛼)
𝑐 × 𝑐 multiplications, two cumulative additions for the "row-
wise" and "column-wise" vectors (using log2 (ℎ) and log2 (𝑤)
rotations & additions respectively), the subtraction of their
respective thresholds 𝛿𝑤 and 𝛿ℎ and their merging (as in
step 2) into a single ciphertext.

(4) Comparison: with zero carried out following the procedure
described in [36]. This involves log2 (depth) multiplications
and additions.

(5) Argmax: by multiplying with constant index vectors and
a cumulative sum to obtain the identity (if any) of the live
template’s provider.

(6) Validation: Since comparisons are too expensive to justify
one for validation, we are left with two alternatives:
• Dropping the Argmax step entirely and decrypting the
comparison result directly.
• Performing the cumulative sum of all the elements result-
ing from the comparison in each vector (log2 (𝑚𝑎𝑥 (ℎ,𝑤))
rotations and additions), multiplying the two results to-
gether and outputting it alongside the Argmax result.

A naïve solution would require 𝐾 similarity computations and
𝐾 comparisons (plus the Argmax and validation steps), whereas
adding the group testing step reduces the number of comparisons
to ℎ +𝑤 in exchange for 𝑙𝑜𝑔2 (𝛼) multiplications and a cumulative
addition. As we discuss in Section 3.2.3, the approximated com-
parison from [37] requires far more multiplications (≥ 11) than
group testing (for 𝛼 ≤ 32). Crucially, due to the SIMD feature of
CKKS, the Grote save-up kicks in for 𝐾 > 𝑛/2, since otherwise
a single comparison would suffice for the identification and the
group testing step would be redundant.

We detail the full CKKS-based computation in Algorithm 3.

3.2.3 Choosing Parameters. TheGrote related parametersℎ and𝑤
will be set based on performance experiments in Section 4, whereas
𝛼 will be tested for values 𝛼 ∈ {2, 4, 8, 16, 32}.

The biometric template size 𝑙 is set by the architecture of bio-
metric feature extractors. In the face biometrics domain, they often
amount to 𝑙 ∈ {128, 256, 512} to speed up non-encrypted similarity
score calculations (e.g. using AVX instructions for the multiplica-
tion). We will use the smaller 𝑙 = 128 to maximize the number of
reference templates per ciphertext, and thus the number of com-
parisons per ciphertext.

The CKKS scheme parameters 𝑛 (polynomial ring degree) and 𝑞
(modulus of the polynomial coefficients) are tied to each other and
linked to the sought-out security parameter. To obtain an equiv-
alent security of 128 bits, and according to [1], 𝑛 = 16384 allows
log2 𝑞 ≤ 438 bits and 𝑛 = 32768 allows log2 𝑞 ≤ 881 bits3. Setting
𝑞 is directly related to the number of multiplications (depth) of
the full arithmetic circuit 𝑑 , and standard strategies to set it [3, 37–
39] consist of composing a chain of primes {𝑞𝑖 } ∀𝑖 ∈ {1, . . . , 𝑑}
such that 𝑞 =

∏𝑑+1
𝑖=1 𝑞𝑖 , with 𝑞1 = 𝑞𝑑+1 ≈ 260 to ensure high preci-

sion in encoding/decoding and 𝑞2, . . . , 𝑞𝑑 chosen to be close to the
CKKS encoding scale Δ to reduce rounding errors when performing
rescaling/mod-switching. Smaller values of Δ yield less precise ap-
proximations of the 𝑠𝑔𝑛(𝑥) function [37], but also reduce required
total size of 𝑞 to the point where it might permit the use of lower
𝑛 (reducing the ciphertext sizes and thus speeding up their opera-
tions). As such, we find a good trade-off in setting Δ = 230, which
drives us to set 𝑞 ≈ 2120 · 230𝑑 (permitting 𝑑 ≤ 10 for 𝑛 = 16384 and
𝑑 ≤ 25 for 𝑛 = 32768).

To define 𝑑 , we need to count the total amount of multiplications.
We require one multiplication for the similarity computation and
one for the merging, log2 (𝛼) multiplications for the group testing
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Figure 3: CKKS group testing

step plus one for the extra merging. Based on the accuracy of the
approximation of the 𝑠𝑔𝑛(𝑥) function in Table V of [37] we employ
depth = 11 to get a wide margin 𝜂 = 2−26, thus requiring 11
multiplications per comparison. One last multiplication is required
for the argmax operation (and optionally onemore for the validation
step). We thus set 𝑑 = 1 + 1 + log2 (𝛼) + 1 + 11 + 1 = 15 + log2 (𝛼),
leading us to confidently set 𝑛 = 32768 for 𝛼 ≤ 32.

3.2.4 On (not) applying Grote to BFV or TFHE. While other FHE
schemes could, on the surface, benefit from theGrote approach, we
argue that the CKKS scheme is the most suitable for this application.

The BGV/BFV schemes [6, 21] operate on integers, thus com-
puting a value 𝑧𝛼 requires a lot of space in the ciphertext to avoid
the modulo kicking in, forcing costly parameter selection in detri-
ment of speed. Besides, the state of the art encrypted comparison
techniques [30] are not suited for full SIMD computation as they
require multi-slot encoding, thus rendering the scalar product more
expensive and complex than in CKKS.

The TFHE scheme [12] deals with bit-level homomorphic opera-
tions, thus needing a lot of ciphertexts to encode elements with high
precision from the biometric templates, a requirement to maintain
high accuracy in the system. This makes big integer operations very
costly, thus rendering a 𝑧𝛼 raising operation prohibitively expensive.
Besides, the TFHE scheme is not optimized for SIMD computation,
thus a TFHE-based biometric identification solution would require
a sizeable horizontal scaling in the hardware to achieve the same
performance as CKKS.

3For a secret key ternary distribution, with coefficients sampled from {−1, 0, 1}. Other
distributions offer similar limitations.

3.2.5 On cancellability of Grote-CKKS. In order to provide can-
cellability, that is, the ability to invalidate compromised records
from the reference DB, the keys used for protecting these records
should be easily changed. We can achieve this in our current solu-
tion by employing CKKS key-switching: the trusted setup may also
generate a set of key-switching keys that correspond to different
pairs of public-secret keys. In the event of a leaked secret key, the
reference DB can be key-switched to a new key, thus invalidating
the compromised records. In the case of a compromised record,
the trusted setup can deliver a new freshly-encrypted (with a new
key pair) reference DB without the compromised record to the BP,
with the guarantee that the two DBs are unlinkable (as per the
hardness of the LWE problem) and thus the BP cannot tell which
record was removed. Note that public keys, used to encrypt fresh
templates, can be publicly without compromising the system as per
the standard CKKS security model.

An alternative worth studying in future work is the use of multi-
key FHE [42], where each user is assigned its own public key, and
thus a change on his key pair would only invalidate his records.
This would require a more complex key management system, but
would allow for a more fine-grained cancellability.

4 EXPERIMENTS
4.1 Setup
We implement our solution using the Pyfhel [29] Python library,
with the SEAL [55] C++ library acting as backend. We use an Ar-
cFace based[16] feature extractor4with templates of size 𝑙 = 128.
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Figure 4: Face identification precision (False Rejection Rate at a fixed False Acceptance Rate) of 1D group testing based on the
group/pool size and the exponent 𝛼 .

The experiments were run in an Intel(R) Core(TM) i7-7800X CPU
and averaged over at least 10 runs.

We measure the biometric precision with face identification
benchmarks using the Labeled Faces in the Wild (LFW) dataset[27]
consisting of 13233 112x112𝑝𝑥 real face images of famous people.
We employ the widespread False Acceptance Rate (FAR) and False
Rejection Rate (FRR) as metrics[31]. Typically, robust identification
systems enforce 𝐹𝐴𝑅 ≤ 10−3, obtaining a corresponding higher
FRR.

Following the same procedure as for the threshold 𝛿 in standard
biometric solutions, we set the thresholds 𝛿𝑤 and 𝛿ℎ by calibrating
a binary classifier with the outputs of the aggregated groups/pools
used to identify random samplings of the LFW dataset, as well as
their corresponding ground truth values. We train it with 8M nega-
tive samples (a live template with no hit in the DB) and 500k positive
samples (a live template with a single hit in the DB). To benefit from
convenient data alignment, and given the fact that both 𝑛/ (the
number of slots) and 𝑙 (the number of elements per template) are
powers of 2, we test pools of the form𝑤,ℎ ∈ 2𝛽 ∀𝛽 ∈ {1, . . . , 11}.
The biometric precision for a given pool size is applicable both
vertically and horizontally. To estimate the combined error rate it
suffices to combine the errors for selected𝑤 and ℎ.

Parameter selection. Following the analysis from 3.2.3, we pick
𝑛 = 215 to allow for a high enough number of multiplications. We
set the modulus chain 𝑞 ≈ 260 ∗ 230∗𝑑 ∗ 260 with the maximum num-
ber of multiplications 𝑑 required for the entire face identification
algorithm, yielding smaller 𝑞 and thus faster operations for lower
circuit depth. We use templates with 𝑙 = 128 coming out of the
unmodified feature extractor.

4ArcFace-based[16] feature extractors with comparable latency and precision can be
obtained from https://github.com/deepinsight/insightface/wiki/Model-Zoo

To select 𝐾 we highlight that, in order to make the Grote-based
face identification solutionmore performant than the naïve solution,
we need a reference database size 𝐾 ≥ 𝑛/2 + 1 so that a naïve
face identification algorithm requires at least 𝑇 = ⌈2𝐾/𝑛⌉ ≥ 2
ciphertexts to hold all the score results. By employing a synthetic
augmentation of the LFW dataset 5we are able to set 𝑇 = 2.

4.2 Results
We first analyze the impact of group testing in the biometric pre-
cision of the system by first analyzing the 1D layout case, setting
𝑤 = 1 and playing with ℎ or vice-versa. We run face identification
experiments employing Algorithm 2 and record the 𝐹𝑅𝑅 (probabil-
ity of a registered user to not match with the database) for a fixed
𝐹𝐴𝑅 = 10−3 (probability of a non-registered user to match with
the DB). Figure 4 displays our results, with the baseline without
group testing represented in the group size= 1 intercept. As seen in
this figure, and in line with our expectations, higher 𝛼 yields a bet-
ter max approximation, and with it lower errors. We observe that
𝛼 ≥ 16 yields 𝐹𝑅𝑅 < 5% for group sizes of up to 512, a small impact
in the error that allows us to conclude that the Grote approach
has a small impact in the system performance in that range.

We extend the biometric precision analysis to the full 2D layout
with the same approach in Figure 5. The use of a 2D layout can be
seen as a composition of two independent 1D layouts (one per axis)
and thus the 2D layout accuracy is symmetric with respect to𝑤 = ℎ.
E.g., the error for (𝑤 = 128, ℎ = 512) amounts to the accumulated
error in two independent 1D layouts with group sizes of 128 and 512,
the same error that a (𝑤 = 512, ℎ = 128) yields. Once again, higher
5We generate 3 randomly perturbed templates per identity that are statistically close
to the original reference templates of such identity, and ensure they follow the same
distribution of matching probabilities from the original LFW. This bumps the number
of identities from 5749 to 𝐾 = 22996, yielding𝑇 = 2.

https://github.com/deepinsight/insightface/wiki/Model-Zoo
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Figure 5: Face identification precision of Grote based on 2D score matrix dimensions ℎ and𝑤 , as well as the exponent 𝛼 .

𝛼 values (center and right figure) yield lower errors than lower 𝛼
(left figure) for the same group sizes. In this figure we can spot
balanced configurations where𝑤 ≈ ℎ that preserve the biometric
accuracy of the system with 𝐹𝑅𝑅 < 5% (e.g., 𝑤 = 128, ℎ = 256,
allowing us to test at once 𝐾 = 32768 identities), and this allows us
to confirm that the Grote preserves the biometric accuracy of the
system.

To assess the latency gains of Grote, we also record the time
required to compute each operation in the encrypted domain, as
well as the runtime of the entire system, comparing the runtime
of the naïve solution with that of a Grote-based solution. The
results are shown in Table 1. We observe first-hand how the lower
multiplication depth 𝑑 requirements of Grote allow for noticeably
faster CKKS operations. This, linked to the drop in latency thanks
to the reduction in the number of comparisons (from 𝑇 = 2 to
⌈2(ℎ +𝑤)/𝑛⌉ = 1), yields a significant speedup in the entire system
while yielding low error rates for selected 𝑤 = 128, ℎ = 256 and
𝛼 = 16 (𝐹𝑅𝑅 ≤ 5% as per Figure 5, center). We also observe that
the latency of the argmax & validation is more than a third of the
latency of the entire system, thus a performant solution should
sacrifice it at the expense of some loss of practical privacy (due to
the increased input leakage). Overall, Grote is able to reduce the
latency of the face identification system by at least 33% (a factor
of 1.5), a reduction that would only become more significant for
𝑇 > 2, from 𝐾 to 2

√
𝐾 elementwise comparisons.

5 PREVIOUS WORKS
The core idea of secure face biometrics has been extensively studied
before with security guarantees stemming from various privacy-
preserving techniques.

Sadeghi et. al. [54] combined homomorphic encryption with
garbled circuits for a 2PC privacy-preserving face identification
solution using eigenfaces[60]. SCiFI[46] employed additively ho-
momorphic encryption and Oblivious Transfer to protect a semi-
deterministic region-based face identification system.More recently,

Osorio et. al. [47] employed a two-stage face identification consist-
ing of a product quantization-based hashing stage to shortlist some
candidates and a reduced homomorphic matching stage based on
BFV. Face authentication/verification has also been extensively
studied, yielding results fast enough to be used in practice based
on the BFV scheme [4] and on other homomorphic encryption
schemes[35]. Secure biometric identification has also been pro-
posed for other types of biometric data such as iris recognition
[34].

In other line of works, FHE has been widely studied as a tech-
nique for privacy-preserving biometrics, from the HE-based bio-
metric access control system of [43], to the packing technique of
[63], or [58] showing a clever encoding using packing to perform
a biometric matching with one single homomorphic multiplica-
tion. [2] used Homomorphic Encryption for fingerprint biometrics,
whereas [18] employed both CKKS and BFV for face identification,
and [26] proposed the protection of a multi-biometric system. There
are other previous works studying secure biometrics, covered in
the MPC-based survey from [20] and a collection of FHE-based
solutions surveyed in [52].

With the goal of providing security guarantees specifically tai-
lored to biometrics, a wide range of works cover cancellable biomet-
rics [32, 59, 61], where they apply user-specific geometric transfor-
mations to the template space instead of relying on cryptographic
primitives.

Finally, the idea of group testing has touched the field of cryp-
tography before, from pure combinatoric studies [14] to digital
fingerprinting and key distribution patterns [57].

6 CONCLUSIONS
This paper proposed a new algorithm to perform privacy-preserving
face identification based on the notion of group testing, and applied
it to a solution using the Cheon-Kim-Kim-Song (CKKS) homomor-
phic encryption scheme. Securely computing the closest reference
template to a given live template requires 𝐾 comparisons, as many
as there are identities in a biometric database. Our solution, named



Table 1: Latency for single-core execution of the listed algorithms.We set𝐾 = 𝑛 = 16384 so that the naïve face identif. algorithm
requires𝑇 = ⌈2𝐾/𝑛⌉ = 2 comparisons, with template elements of 𝑙 = 128 bits, group testing with dimensions𝑤 = 256 and ℎ = 128
(𝐹𝑅𝑅 ≤ 5% as per Figure 5, center) and exponent 𝛼 = 16, and depth = 11 for the comparison polynomial approximation.

Algorithm Composed of Grote Latency
(ms)

Naïve Latency
(ms)

Total
#multiplications
(𝑑)

CKKS.encrypt - 99 122 -
CKKS.add - 1.6 2 -
CKKS.add_plain - 0.7 0.9 -
CKKS.mult - 12.4 23 1
CKKS.mult_plain - 5.7 15.5 1
CKKS.rotate - 290 438 -
CKKS.relinearize - 288 443 -
CKKS.mod_switch 9 11 -
Matching (𝑙 = 128) (𝑚𝑢𝑙𝑡 + 𝑟𝑒𝑙𝑖𝑛 +𝑚𝑜𝑑𝑠𝑤𝑖𝑡𝑐ℎ) + log2 (𝑙) ∗ (𝑟𝑜𝑡𝑎𝑡𝑒 + 𝑎𝑑𝑑) 2351 3557 1
Grote (𝛼 =16,𝑤 =128, ℎ=256) log2 (𝛼) ∗ (𝑚𝑢𝑙𝑡 + 𝑟𝑒𝑙𝑖𝑛 +𝑚𝑜𝑑𝑠𝑤𝑖𝑡𝑐ℎ) + log2 (max(𝑤,ℎ)) ∗

(𝑟𝑜𝑡𝑎𝑡𝑒 + 𝑎𝑑𝑑)
3570 - 4

optMinimaxComp (depth = 11) depth ∗ (𝑚𝑢𝑙𝑡 + 𝑟𝑒𝑙𝑖𝑛 +𝑚𝑜𝑑𝑠𝑤𝑖𝑡𝑐ℎ + 𝑎𝑑𝑑_𝑝𝑙𝑎𝑖𝑛) 3433 5202 11
ArgMax (𝑚𝑢𝑙𝑡_𝑝𝑙𝑎𝑖𝑛 + 𝑟𝑒𝑙𝑖𝑛 + 𝑚𝑜𝑑𝑠𝑤𝑖𝑡𝑐ℎ) + log2 (max(𝑤,ℎ)) ∗

(𝑟𝑜𝑡𝑎𝑡𝑒 + 𝑎𝑑𝑑)
2636 3990 1

Validation log2 (max(𝑤,ℎ))∗(𝑟𝑜𝑡𝑎𝑡𝑒+𝑎𝑑𝑑)+(𝑚𝑢𝑙𝑡+𝑟𝑒𝑙𝑖𝑛+𝑚𝑜𝑑𝑠𝑤𝑖𝑡𝑐ℎ) 2642 3997 1
Face Identif. (no Argmax) matching + grote? + optMinimaxComp∗𝑇? 9354 13961 naïve: 23; Grote: 16
Face Identif. (Argmax & valid.) Face Identif. + argmax + valid 14632 21948 naïve: 25; Grote: 18

Grote, replaces element-wise testing for the 𝐾 elements of a data-
base by group testing to notably reduce the number of non-linear
operations in the encrypted domain from 𝐾 to up to 2

√
𝐾 . More

specifically, we approximate the max of the coordinates of a large
vector by its 𝛼-norm (raising to the 𝛼-th power and cumulative
sum) in a 2D layout, incurring a small impact in the accuracy of the
system while greatly speeding up its execution. We implemented
Grote and showed it to be at least 30% more performant than its
naïve equivalent for sufficiently large databases 𝐾 > 8192.

For future works, we will study the performance of Grote em-
ploying alternative feature extractors to vary both the elementwise
template size and the number of elements per template. We will
also extend Grote to larger datasets to evaluate its scalability.
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