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 22 
Abstract 23 
The transition from the Marine Isotope Stage (MIS) 12 glacial (ca. 478–424 ka BP) to the MIS 24 
11 interglacial (ca. 424–365 ka BP) is one of the most remarkable climatic shifts of the Middle 25 
Pleistocene and is regarded as a phase of major behavioural innovation for hominins. 26 
However, many of the available pollen records for this period are of low resolution or 27 
fragmented, limiting our understanding of millennial-scale climatic variability. We present a 28 
high-temporal resolution pollen record that encompasses the period between MIS 12 and 29 
MIS 10 (434–356 ka BP), recovered from the Ocean Drilling Program (ODP) Site 976 in the 30 
Alboran Sea. This study aims to provide new insights into the response of vegetation during 31 
the transition and to highlight patterns of climatic variability during MIS 11.  32 

The ODP Site 976 pollen record shows the shift from glacial to interglacial at 426 ka BP, 33 
highlighted by the transition from Pinus, herbaceous and steppic taxa to temperate and 34 
Mediterranean taxa. A climatic optimum for temperate and Mediterranean taxa is identified 35 
around 426–400 ka BP, equivalent to substage MIS 11c and synchronous with the maxima in 36 
SSTs, greenhouse gas concentrations and insolation. A phase with increased Pinus and Cedrus 37 
indicates the return to colder and more arid conditions during substage MIS 11b (400–390 ka 38 
BP). Substage MIS 11a (390–367 ka BP) is marked by a period of short-term warming followed 39 
by gradual cooling, until the return of glacial conditions during MIS 10. Forest contractions 40 
have been linked with high- and moderate-intensity climate events also observed in other 41 
pollen records and proxies from the Mediterranean and North Atlantic. 42 

Our results confirm the intense shift during the MIS 12/11 transition and show that this 43 
region is sensitive to millennial-scale climatic variation during MIS 11. The forest contractions 44 
observed in our record during events of millennial-scale variability appear to be less intense 45 
than in the central and eastern Mediterranean. This suggests that the southwestern 46 
Mediterranean may have been less variable during periods of climatic deterioration, thereby 47 
representing a possible ecological niche for vegetation. This may have provided a source of 48 
subsistence for hominins during harsher conditions, thus contributing to their demographic 49 
expansion and technological innovations.  50 
 51 
Keywords: Southwestern Mediterranean; Middle Pleistocene; Marine record; Pollen; 52 
Vegetation dynamics; Long-term vegetation change; Climate change; Millennial-scale climate 53 
variability 54 
 55 
1. Introduction 56 
The transition from the extensive glaciation of MIS (Marine Isotope Stage) 12 to the 57 

remarkably long and warm MIS 11 interglacial is regarded as one of the most extreme climatic 58 

shifts over the last 900 ka (Chaisson et al., 2002; Tzedakis et al., 2009; Sánchez Goñi et al., 59 

2016; Marino et al., 2018). This shift, occurring during Termination V (TV), stands out in the 60 



Middle Pleistocene due to the exceptional increase in sea levels and greenhouse gas 61 

concentrations from MIS 12 to MIS 11 despite minimal astronomical forcing—what Berger 62 

and Wefer (2003) defined as the “Stage-11 Paradox”. In marine and terrestrial records, the 63 

MIS 12 glacial (ca. 478–424 ka BP) is often deemed as one of the most severe glacial periods 64 

of the Pleistocene, during which the global ice volume exceeded that of the Last Glacial 65 

Maximum (LGM) and the European ice sheet reached its maximum of the last 1.2 Ma (Olson 66 

and Hearty, 2009; Toucanne et al., 2009; Koutsodendris et al., 2019). Pollen records 67 

from Tenaghi Philippon (e.g. Tzedakis et al., 2006; Pross et al., 2015) and Lake Ohrid (Sadori 68 

et al., 2016; Kousis et al., 2018) show that this period was characterised by severe reductions 69 

in tree populations associated with a prevalence of cold conditions. In contrast, especially 70 

warm and humid conditions prevailed during MIS 11 (ca. 424–365 ka BP) even in the higher 71 

latitudes of the Northern Hemisphere (Kousis et al., 2018) over a period longer than any other 72 

interglacial of the Mid- to Late Pleistocene (Marino et al., 2018). The climatic optimum during 73 

substage MIS 11c has been widely recognised as a long, warm and relatively stable period of 74 

the interglacial in both marine and terrestrial records across the Mediterranean, showing that 75 

these conditions prevailed across the wider region (e.g. Oliveira et al; 2016; Kousis et al., 2018; 76 

Azibeiro et al., 2021). Such a long-lasting interglacial period after the harsh glacial conditions 77 

of MIS 12 favoured the development of temperate vegetation across Europe and in turn led 78 

to the demographic expansion of hominin populations (Berger and Loutre, 2003; Raymo et 79 

al., 2012; Oliveira et al., 2016; Moncel et al., 2018).  80 

Indeed, from a hominin evolution point of view, the MIS 12/11 transition represents a 81 

significant threshold period. Genetic data and anthropological analyses have recently shown 82 

that European Neanderthal features emerged in the population between 600 and 400 ka 83 

(Hublin, 2009) and that climatic amelioration after the MIS 12 glaciation led to a phase of 84 

major innovation for hominins. Archaeological records for this period show evidence of 85 

increased occupations, new subsistence behaviours and technical innovations (e.g. core 86 

technologies, increase in light-duty tools), and an early regionalization of traditions (Moncel 87 

et al., 2016; Blain et al., 2021). Investigating vegetation changes during this period is key to 88 

improving our understanding of the impacts of climate on biomass availability for large 89 

herbivores, the mobility of human groups and demographic changes. 90 

Furthermore, in recent years MIS 11 has received a noticeable amount of attention as it 91 

is regarded as one of the best analogues to the Holocene (MIS 1) (Loutre and Berger, 2003; 92 

Candy et al., 2014). Both interglacials, MIS 11 and MIS 1, are characterised by high sea levels, 93 

intense warmth, low astronomical forcing—in particular low precession—and elevated 94 

atmospheric CO2 concentrations (McManus et al., 2003; Desprat et al., 2005; Hes et al., 2022). 95 

This makes MIS 11 an important period for investigating climatic variability and its impacts on 96 

vegetation and hominin populations during conditions similar to those of the current 97 

interglacial. 98 

Although the MIS 12/11 transition has been previously studied across the Mediterranean 99 

(Fig. 1, Tab. 1) through the use of terrestrial (pollen) and marine climatic indicators (planktic 100 

foraminifera and oxygen isotopes), many of the available records are of relatively low-101 

temporal resolution and/or fragmented (e.g. Desprat et al., 2005; Tzedakis et al., 2009). Thus, 102 

our understanding of short-term vegetation change and millennial-scale climatic variability is 103 

still limited. Important advances have been recently made with records from the Iberian 104 

margin (Desprat et al., 2005, 2007; Oliveira et al., 2016, Hes et al., 2022) and new studies have 105 

attempted to increase the resolution of existing records, such as Lake Ohrid (Kousis et al., 106 

2018) and Tenaghi Philippon (Ardenghi et al., 2019). These studies have shown the 107 



importance of long records with a high-temporal resolution to better understand the 108 

amplitude of centennial-scale changes in temperature, precipitation, and the length of cold 109 

episodes. However, more research is required to understand the responses of vegetation to 110 

climate and the changes in temperature and precipitation during this transition across the 111 

Mediterranean region, especially in the southwestern area where only few and fragmentary 112 

terrestrial records are available (e.g. Atapuerca; Rodríguez et al., 2011).  113 

In this study, we present a high-temporal resolution pollen record recovered from the 114 

ODP Site 976 in the Alboran Sea that encompasses a long timeframe from MIS 12 to MIS 10 115 

(434–356 ka BP). The continuous, high-resolution pollen data generated in this study allowed 116 

the study of millennial-scale vegetation changes and comparisons with other high-resolution 117 

pollen and climatic records in the Mediterranean. This study aims to: (1) provide a new high-118 

resolution pollen record encompassing the MIS 12/11 transition; (2) reconstruct regional 119 

landscape-scale changes in vegetation; (3) highlight patterns of climate variability in the 120 

Mediterranean region; and (4) discuss hominin subsistence in this context.  121 

 122 

 123 
Table 1 – Terrestrial and marine records from the Mediterranean covering MIS 12 and 11. 

Site name Site type Lat (ᵒN) Long (ᵒW) Elevation 
(m) 

Period 
(ka BP) 

MIS 
stages 

Record type References 

Figure 1 – Map showing the modern vegetation distribution (modified from Sánchez Goñi, 2022). The location of ODP Site 
976 is indicated with a red star along with other marine (red dots) and terrestrial (black dots) proxy records covering MIS 12 
and 11 discussed in the text. For more information about the sites and proxies used see Table 1.  



Ioannina Terrestrial 39.4 20.51 470 asl 500-0 13–1 Pollen Tzedakis, 1993, 1994; 
Tzedakis et al., 1997, 
2001 

IODP 
U1385 

Marine 37.57 -10,12 2578 bsl 440–365 12a–10c Pollen, 
alkenones 

Oliveira et al., 2016 

IODP 
U1386 

Marine 36.83 -7,76 561 bsl 433–404 12a–11d Pollen Hes et al., 2022 

KC01B Marine 36.15 17.44 3643 bls 1200–0 36–1 Foraminifera, 
δ18O 

Lourens, 2004 

     
464–419 12c–11c Foraminifera, 

δ18O 
 Azibeiro et al., 2021 

Kopais Terrestrial 38.37 23.13 95 asl 500–0 13–1 Pollen Okuda et al., 2001 

Lac du 
Bouchet 

Terrestrial 44.55 3.47 1200 asl 450–0 12–0 Pollen Reille and De 
Beaulieu, 1995 

Lac du 
Praclaux 

Terrestrial 44.49 3.5 1100 asl 450–1 12–1 Pollen Reille and de Beaulieu, 
1990 ; Reille and de 
Beaulieu, 1995 ; Reille 
et al., 1998 

Lake Ohrid Terrestrial 41.02 20.42 1514 asl 500–0 13–1 Pollen, 
foraminifera, 
δ18O 

Sadori et al., 2016; 
Wagner et al., 2019 

     
465–430 12a–10c Pollen, tephra Kousis et al., 2018 

MD01-2444 Marine 37.33 10.08 2637 bsl 430–0 12–0 Foraminifera, 
δ18O, 
alkenone 

Martrat et al., 2007 

MD01-2446 Marine 39.03 12.37 3570 bsl 545–300 14–9 Foraminifera, 
δ18O 

Voelker et al., 2010 

     
550–290 14–8 Foraminifera, 

calcareous 
nanofossil, 
δ18O 

Marino et al., 2014 

MD01-2447 Marine 42.15 -9.67 2080 bsl 426–394 12–11 Pollen, 
foraminifera, 
δ18O 

Desprat et al., 2005, 
2007 

MD03-2699 Marine 39.02 10.39 1865 bsl 580–300 15–9 Alkenones Rodrigues et al., 2011 

ODP975 Marine 38.53 4.3 2415 bsl 1200–0 36–0 Foraminifera, 
δ18O 

Pierre et al., 1999; 
Lourens, 2004      

650–250 16–8 Foraminifera, 
δ18O 

Girone et al., 2013 

ODP976 Marine 36.12 4.18 1108 bsl 434–357 12a–10c Pollen This study 

ODP977 Marine 36.01 1.57 1984 bsl 540–300 13c–9a Foraminifera, 
calcareous 
nanofossil, 
δ18O 

Marino et al., 2018; 
Azibeiro et al., 2021 

Sulmona 
basin 

Terrestrial - - 360–2000 
asl 

500–410 13–11 Speleothems, 
lithology, 
XRF, CaCO3 
content, 
carbonate 
δ18O and δ13C 

Regattieri et al., 2016 

Tenaghi 
Philippon 

Terrestrial 41.10 24.2 40 asl 440–330 12–10 Pollen, 
alkenone, 
brGDGTs, leaf 
wax, 
levoglucosan  

Ardenghi et al., 2019 

     
1400–0 42–1 Pollen Tzedakis et al., 2006      
460–335 12–10 Cryptotephra Vakhrameeva et al., 

2018 

 124 

 125 

2. Regional setting 126 

This study used sections of the long marine sequence recovered during Leg 161 of the Ocean 127 

Drilling Program (ODP) (Shipboard Scientific Party, 1996) from ODP Site 976 in the Western 128 

Alboran Sea (Fig. 2; 36ᵒ12.3’N 4ᵒ18.8’W), located about 110 km from the Strait of Gibraltar at 129 

1108 m water depth (Combourieu-Nebout et al., 1999, 2009; Gonzalez-Donoso et al., 2000).  130 



The Alboran Sea, a narrow extensional basin measuring 150 km wide and 350 km in 131 

length (Alonso et al., 1999) is a transitional area between the Mediterranean Sea and the 132 

Atlantic Ocean (Bulian et al., 2022), and represents the westernmost side of the 133 

Mediterranean, bordered by Spain to the north and Morocco to the south.  134 

Circulation in the Alboran Sea is strong, mainly due to the water exchange at the Strait of 135 

Gibraltar between the inflow of low-salinity waters from the Atlantic and the outflow of high-136 

salinity Mediterranean waters, which results in two anti-cyclonic gyres known as the Western 137 

and Eastern Alboran Gyres (WAG and EAG, respectively) (Bulian et al., 2022). ODP976 is 138 

located near the centre of the WAG (Fig. 2).  139 

The climate in this region is Mediterranean and strongly influenced by the Southern 140 

Azores cyclone in summer which results in long, dry summers and mild, rainy winters 141 

(Combourieu-Nebout et al., 1999, 2009). Mean temperatures of the coldest months range 142 

between 10ᵒC near the coast and -7ᵒC at altitudes above 2000 m, while mean temperatures 143 

of the warmest months usually exceed 25ᵒC (Garcia-Gorriz and Garcia-Sanchez, 2007; Parada 144 

and Canton, 1998); annual precipitation ranges between 400 and 1400 mm (Combourieu-145 

Nebout et al., 2009). 146 

The landscape is enclosed by the mountains of the Moroccan Rif and Betic Cordillera, 147 

leading to an altitudinal range of vegetation (Quézel and Medail, 2003). Steppe vegetation 148 

with Lygeum, Artemisia and a Mediterranean group of taxa including Olea, Phillyrea, Pistacia, 149 

and Quercus ilex dominates the coast. This assemblage is replaced by a humid-temperate oak 150 

forest with Quercus deciduous and Ericaceae at mid-altitudes, and finally by cold-temperate 151 

coniferous forests with Pinus and Abies at higher elevations. Currently, Cedrus is typically 152 

found in the higher elevations of Morocco (Ozenda, 1975; Rivas Martínez, 1982; Barbero et 153 

al., 1981; Benabid, 1982). 154 

Figure 2 – Map showing the location of ODP Site 976 and the present-day surface and water circulation in the Alboran 
Sea (modified from Combourieu-Nebout et al., 1999). Other ODP sites are marked with black dots. 



The location of ODP976 was chosen because previous studies have shown that the 155 

Western Alboran Sea is particularly sensitive to centennial and millennial climate change due 156 

to its unique exposure to polar tropical and Atlantic influences (Alonso et al., 1999; 157 

Combourieu-Nebout et al., 1999, 2002, 2009; Bulian et al., 2022). It has also been recently 158 

the focus of studies on planktonic foraminifera to investigate MIS 12 and 11 by Marino et al. 159 

(2018) and Azibeiro et al. (2021), showing the ability of this location to record climatic 160 

variability during this particular period.  161 

 162 

3. Material and Methods 163 

 164 

3.1 Chronology 165 

3.1.1 Age model 166 

The chronology for this study has been adopted 167 

from von Grafenstein et al. (1999), who 168 

correlated the biostratigraphic marker events in 169 

the study by de Kaenel et al. (1999) on ODP976 170 

(i.e. changes in the planktonic foraminifera 171 

Globigerina bulloides) with the benthic oxygen 172 

isotope record of Site 659. The ages presented 173 

here are in calendar ka (cal ka), consistent with 174 

the model developed by von Grafenstein (Fig. 3) 175 

and other studies that have adopted this 176 

chronology for the ODP976 core (e.g. 177 

Combourieu-Nebout et al., 2009). Age 178 

interpolation of the record has a maximum age of 179 

433.868 ka BP at 118.8 m and a minimum age of 180 

356.456 ka BP at 98.85 m. Interpolation was achieved with the interpol function of tidypalaeo 181 

on R. 182 

 183 

3.1.2 MIS subdivision 184 

MIS 11 is traditionally divided into three substages: a, b and c (Hrynowiecka et al., 2019). This 185 
subdivision has been adopted by most palynological studies in the Mediterranean (e.g. 186 
Oliveira et al., 2016; Kousis et al., 2018; Ardenghi et al., 2019). Recent palaeoclimatic studies 187 
on MIS 11 in the Northern Hemisphere have introduced two additional substages at the base 188 
of MIS 11 (11d and 11e) based on minor changes in isotopic data (Railsback et al., 2015; 189 
Hrynowiecka et al., 2019). This distinction seems to be highly dependent on the geographical 190 
location of the records, their temporal resolution and the proxies used, and so far only few 191 
records have applied a five-substage subdivision—among pollen studies, this partition has 192 
been used in the North Atlantic off the coast of Iberia, but not in the Mediterranean. 193 
Therefore, we followed the more widely applied nomenclature for MIS 11, defining the base 194 
of the interglacial as MIS 11c. 195 
 196 

3.2 Pollen analysis 197 

A total of 141 samples were selected from Holes 976 B13, B12 and C12 of the ODP Site 976 198 

marine core (representing the depths 98–119 m, dated between MIS 12 and MIS 10), at an 199 

average resolution of 10 cm with occasional higher resolution in specific areas of interest. 200 

Samples were dried and 5 g of sediments were treated following standard methods (Faegri 201 

Figure 3 – Age model by von Grafenstein et al. (1999). 
Black dots within the red dotted square highlight the 
chronological interval adopted for this study. 



and Iversen, 1989) under 10% HCL, 40% HF and 20% HCL and sieved with a 10 μm sieve 202 

(Combourieu-Nebout et al., 2009). Acetolysis was avoided to preserve dinoflagellates. Two 203 

Lycopodium tablets (batch number: 1031) were added to calculate absolute pollen 204 

concentrations (pollen grains per unit of sediment volume).  205 

A minimum of 150 grains of total land pollen (TLP) were counted for each sample, 206 

excluding Pinus because of their natural overrepresentation in European biomes and marine 207 

records (Fletcher and Sánchez Goñi, 2008; Sánchez Goñi et al., 2009; Sadori et al., 2016), as 208 

well as aquatics (e.g. Cyperaceae and Typha/Sparganium) and fungal/algal spores (e.g. 209 

Pteridophyta). Ecological groups were based on modern climate-vegetation associations and 210 

follow the main groups defined by Suc (1984). Despite having subtropical and temperate 211 

affinities respectively, pollen grains of Carya and Euonymus were found at very low levels 212 

(<1.3%) and therefore these taxa were included within the Ubiquist group. A target of 20 213 

morphotypes was chosen to ensure an appropriate representation of vegetation 214 

composition.  215 

The percentage pollen diagrams were developed using the Rioja package in the software 216 

R (Juggins, 2020). Taxa were divided into ecological groups representative of specific climatic 217 

conditions (Tab. 2). 218 

 219 
Table 2 – Taxa included in each ecological group 

Ecological group Taxa 

Riparian Betula, Alnus, Pterocarya, Fraxinus, Ilex, Salix 
Montane Abies, Picea, Cedrus, Tsuga 
Temperate Acer, Hedera, Carpinus betulus, Corylus, Quercus deciduous, Fagus, Castanea, Juglans, Tilia, Ulmus, 

Fraxinus ornus type 
Mediterranean Pistacia, Buxus, Quercus ilex, Quercus suber, Olea, Phillyrea, Ostrya carpinifolia, Cistus, Arbutus 

unedo 
Herbaceous Apiaceae undiff., Asteroidae, Cichorioideae, Helianthemum, Convolvulaceae undiff., Ericaceae 

undiff., Erica arborea type, Lamiaceae undiff., Liliaceae undiff., Asphodelus, Plantaginaceae undiff., 
Plantago, Plantago lanceolata, Celastraceae undiff. 

Pioneer Cupressaceae undiff., Juniperus, Centaurea, Centaurea scabiosa, Centaurea cyanus 
Steppic Artemisia, Chenopodiaceae undiff., Ephedra distachya, Ephedra fragilis, Poaceae undiff., 

Paronychia/Herniaria, Lygeum 
Ubiquists Brassicaceae undiff., Gentianaceae, Campanulaceae undiff., Caryophyllaceae undiff., Cistaceae 

undiff., Dipsacaceae undiff., Scabiosa, Knautia, Euphorbiaceae undiff., Fabaceae undiff., 
Geraniaceae undiff., Carya, Euonymus, Ranunculaceae undiff., Rosaceae undiff., Rubiaceae undiff., 
Saxifragaceae undiff., Solanaceae undiff., Urticaceae undiff. 

Aquatics Typha/Sparganium, Isoetes type, Cyperaceae undiff., Thalictrum, Nymphaea 

type = plausible taxonomic attribution based on morphology 
undiff. = undifferentiated 

 220 

3.3. Statistical methods 221 

Zonation in the pollen diagram was achieved by using the Constrained Incremental Sum-of-222 

Squares (CONISS) cluster analysis method, based on the TLP. Zone 976-VIII-10 was added 223 

manually, based on visual observation of the CONISS results and changes in the pollen 224 

assemblage which needed highlighting. To help visualise the results from the pollen analysis, 225 

Principal Component Analysis (PCA) was implemented using PAST (Paleontological Statistic) 226 

(Hammer et al., 2001). PCA plots show the distribution of samples and the loadings of the 227 

ecological groups, achieved by summing the percentages of the taxa in each group (table 2).  228 

 229 

4. Results 230 

4.1 Pollen analysis 231 



Pollen analysis on the marine sequence ODP976 produced a high-resolution continuous 232 

record spanning the timeframe between 434 and 356 ka BP (MIS 12 to MIS 10), with an 233 

average temporal resolution of 480 years. A higher average temporal resolution of 128 years 234 

between samples was achieved in the portion representative of the transition MIS 12/11, 235 

while the depths representative of the end of MIS 11 and initiation of MIS 10 have a lower 236 

resolution of 400 years.  237 

The average TLP count for each sample was 160.8, and only in 6 samples the target of 238 

150 pollen grains was not reached (75–142 grains). The total sum of counted pollen grains for 239 

all the samples was 22,680 (not including Pinus). The average number of taxa included in the 240 

TLP for each sample was 21. In total, 89 pollen taxa were identified. Pinus was found to be 241 

overrepresented as in many other studies in the region, with a total sum of 42,061 pollen 242 

grains for all the samples. Absolute concentrations of land pollen (excluding Pinus) have a 243 

range of 2,964–76,473 grains/g, with the highest values occurring in two intervals at 116.55–244 

117.08 m and 107.3–110.1 m. Pollen preservation was good throughout the core considering 245 

its marine origin, with 0.5–9% of pollen considered indeterminable. 246 

Pollen zonation through CONISS revealed eight palynologically distinctive zones, 247 

summarised in Table 3. The percentage pollen diagram in Figure 4 shows taxa with 248 

abundances over 5%. 249 

Pollen assemblages show a clear shift from a high abundance of Pinus, pioneer and 250 

steppic taxa in zone 976-I-12 to an assemblage comprised of temperate and Mediterranean 251 

taxa in zone 976-II-11. In zone 976-III-11, Quercus deciduous replaces Pinus as the dominant 252 

taxon and temperate and Mediterranean taxa reach their maximum levels. In zone 976-IV-11, 253 

temperate and Mediterranean taxa still represent the dominant proportion of the pollen 254 

assemblage, but towards the top of the zone Q. deciduous and Q. ilex slowly decline while 255 

Artemisia, Cedrus and Pinus increase. In zone 976-V-11 there is a shift from temperate and 256 

Mediterranean taxa to a higher abundance of Pinus, Cedrus and steppic taxa. There is a 257 

renewed increase in temperate taxa in zone 976-VI-11, but Mediterranean taxa remain low 258 

and high abundances of Pinus and Cedrus persist. From zone 976-VII-11 to 976-VIII-10, there 259 

is a continuous decrease in temperate and Mediterranean taxa and an increase in Pinus, 260 

montane and steppic taxa. 261 

 262 
Table 3 – Description of pollen assemblage zones. 

Zone Depth 
(m) 

Age (ka 
BP) 

Pollen description 

976-VIII-10 98.85–
100.85 
 
 

356.456–
365.343 
 

Pinus reaches abundances up to 77%. Cedrus is very abundant 22–
36%. Decrease in temperate taxa (Q. deciduous 4–20%) and 
Mediterranean taxa appear only sporadically (Q. ilex <2%). 
Herbaceous and pioneer taxa are present at <10%. Isoetes spores 
decrease and disappear at the end of the zone.  

976-VII-11 100.85–
105.5 
 
 

365.343–
386.005 
 

Increase in Pinus (>60%), montane (Cedrus >20%) and steppic taxa 
(Artemisia >10%). Decrease in temperate and Mediterranean taxa. 
Q. deciduous declines (<20%). Q. ilex decreases to <4% and other 
Mediterranean taxa (Olea, Cistus) decline to <2%. Herbaceous taxa 
are consistently present, and pioneer taxa (Cupressaceae and 
Centaurea) are present at low rates. Isoetes spores decrease to less 
than 10%.  

976-VI-11 105.5–
108.95 
 
 

386.005–
399.435 
 

Slight increase in temperate (Q. deciduous) and herbaceous taxa 
(Cichorioideae). Mediterranean taxa remain at very low rates (Q. 
ilex, Cistus and Phillyrea occur at abundances <5%). Olea appears 
sporadically at abundances <3%. Pinus (20–40%), Cedrus (15–20%) 



and steppic taxa (Artemisia, Chenopodiaceae and Ephedra) 
undergo a slight decline but remain dominant. Cupressaceae occur 
at rates around 3%. Isoetes spores increase, reaching levels around 
15%.  

976-V-11 108.95–
110.03 
 
 

399.435–
403.140 
 

Temperate and Mediterranean taxa decline to half their previous 
abundance (Q. deciduous 10%, Q. ilex 2%). All other Mediterranean 
and temperate taxa decrease to near zero values except for Cistus 
which persists at an abundance of 3-5%. Pinus rises to over 60%. 
Increase in abundance of montane (Cedrus 30–40%) and steppic 
taxa (Artemisia 20%). Chenopodiaceae and Ephedra also increase. 
Poaceae remains constantly abundant (10–15%). Herbaceous taxa 
decrease (Cichorioideae and c.f. Erica arborea). Isoetes spores 
decline (<2%).  

976-IV-11 110.03–
112.11 
 
 

403.140–
410.277 

Q. deciduous is the most dominant taxon, although it undergoes a 
steady decline with two significant drops at 111.74m (27%) and 
110.28m (23%). Q. ilex decreases in this zone (5-11%). Olea 
decreases to an average of 4%. Cistus becomes more consistently 
present (2–6%). Pinus abundances remain low (5–15%) but 
increase slightly towards the top of the zone (23%). Herbaceous 
taxa become increasingly prevalent (Asteroideae up to 10%, 
Cichorioideae average 24%). Steppic taxa (Poaceae) are abundant 
at the beginning of the zone (up to 14%) before decreasing to <10 
5% at the top. Isoetes spores reach their maximum abundance (17–
26%).  

976-III-11 112.11–
115.89 
 
 

410.277–
423.227 
 

Q. deciduous is the most abundant taxon (up to 51%), peaking 
above 45% at 113.02 m, 112.74 m, 112.26 m and 112.16m. Q. ilex 
also reaches its maximum abundance (peaks >15% at 113.94 m, 
113.34 m and 113.02 m). Olea abundance is low but continuous (5–
8%). Other Mediterranean taxa including Phillyrea and Cistus occur 
intermittently. Pinus declines to 15–20%. Abundances of riparian 
taxa are low, with Salix representing the most continuous taxon. 
Pioneer and steppic taxa are low (<10%). Cedrus appears 
intermittently below 2%. Cichorioideae remain abundant (up to 
19%). Pioneer taxa abundances are only present sporadically at low 
abundances, while steppic taxa show continuous abundances. 
Isoetes spores increase (15–20%).  

976-II-11 115.89–
116.93 
 
 
 

423.227–
426.648 

Temperate and Mediterranean taxa increase rapidly, while the 
abundances of montane, pioneer and steppic taxa decrease 
drastically. Pinus declines from 52% to 24%, Cedrus declines to less 
than 5%. Quercus deciduous increases to 30%. Riparian taxa (Salix 
and Betula) are present at low abundances. Quercus ilex (4–8%) 
and Olea (6–17%) make up the majority of Mediterranean taxa. 
Herbaceous taxa are abundant (Cichorioideae 15% and c.f. Erica 
arborea 8%). Cupressaceae decrease to 1–2%, while steppic taxa 
decline to <10%. Isoetes spores increase slightly. 

976-I-12 116.93–
118.8 
 
 

426.688–
433.868 
 

Pinus is abundant (46–86%) with a peak at 118.14 m. Cedrus is 
abundant (up to 17%). Picea and Abies are present. Quercus 
deciduous is low (< 10%). Mediterranean taxa are mostly absent, 
except for individual grains of Phillyrea and Cistus. Herbaceous taxa 
are prevalent throughout, predominantly Cichorioideae (up to 
28%). Pioneer (Cupressaceae 10%) and steppic taxa (Artemisia up 
to 29%, Poaceae 10–30%, Ephedra distachya and Ephedra fragilis 
up to 10%) are abundant. 
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4.2 PCA analysis 264 

PCA of the ecological groups, excluding Pinus, aquatics and spores (Fig. 5A), found that PC1 265 

represents 64% of the total variance while PC2 represents 20%. Samples appear to be broadly 266 

clustered according to the zonation produced through CONISS. Zones 976-I-12, 976-VI-11, 267 

976-VII-11 and 976-VIII-10 are primarily found on the left of the biplot with negative values in 268 

PC1, and their variance is also represented in PC2 with scores ranging from -30 to 30. These 269 

samples appear to be influenced mainly by montane (Cedrus, Picea), steppic (Juniperus, 270 

Poaceae, Cupressaceae) and pioneer groups (Artemisia). Zone 976-II-11 is clustered close to 271 

the centre of the PCA plot, and seems to be influenced primarily by the riparian and pioneer 272 

taxa (mainly Ephedra distachya, Chenopodiaceae and Cupressaceae). Zones 976-III-11, 976-273 

IV-11 and 976-V-11 are mostly clustered to the left of the diagram with primarily negative 274 

scores in PC1 and are limited within a range of -7.5–7.5 in PC2. These zones appear to be 275 

primarily influenced by temperate and Mediterranean groups (Q. deciduous, Q. ilex, Cistus 276 

and Olea). 277 

A more focused PCA was also run on the samples from zones 976-II-11 to 976-VII-11 278 

assumed to represent the MIS 11 interglacial (Fig. 5B), achieved by removing zones 279 

significantly influenced by montane and steppic taxa (976-I-12 and 976-VIII-10). In this plot, 280 

PC1 represents 59% of the total variance while PC2 represents 18%. The clustering of the 281 

samples reveals significant differences between these zones. Zone 976-II-11 remains 282 

distributed around the middle of the biplot, with predominantly negative scores in PC2 and 283 

influenced by pioneer, riparian and steppic taxa. Zone 976-V-11 also is distributed closer to 284 

the centre of the plot, but appears to be more influenced by herbaceous taxa and has more 285 

positive scores in PC2. Zones 976-III-11 and 976-IV-11 are clustered on the right, although 286 

zone 976-III-11 is predominantly influenced by temperate and Mediterranean taxa while zone 287 

976-IV-11 is more influenced by ubiquist taxa. Meanwhile, zones 976-VI-11 and VII are 288 

distributed to the left and are similarly influenced by herbaceous and montane groups, 289 

although zone 976-VII-11 has overall more negative scores in PC1.  290 

Figure 5 – Principal Component Analyses (PCA) of samples from (A) the entire record and (B) samples only from zones 976-II-11 
to 976-VII-11, showing their distribution in relation to ecological groups. Pinus, aquatics and spores have been omitted from the 
analysis. Loadings of the ecological groups for PC1 and PC2 are presented in the bottom right of each plot. 



5. Discussion 291 
5.1 Palaeoenvironmental interpretations 292 
Pollen results in the lowermost zone of this record (976-I-12), representing the period 293 
between 434 and 427 ka BP, show that the assemblage is dominated by Pinus, high 294 
abundances of steppic and pioneer taxa such as Poaceae, Cupressaceae, Artemisia, E. 295 
distachya and E. fragilis, suggesting that a cold climate prevailed in the region consistent with 296 
the MIS 12 glacial period. These conditions would have limited the establishment of 297 
temperate trees leaving a semi-desertic landscape characterised mainly by shrubs at the 298 
lower altitudes of the Mediterranean (Hes et al., 2022). At mid- and higher altitudes, Pinus 299 
and other montane taxa (mainly conifers, i.e. Cedrus and Picea) would have prevailed. 300 

An abrupt climatic shift is observed between zones 976-I-12 and 976-II-11, in which Pinus, 301 
montane, pioneer and steppic decrease drastically and are replaced by arboreal associations 302 
composed of riparian, temperate and Mediterranean taxa (Fig. 6A). This is a clear indication 303 
of the transition between MIS 12 and 11, observed specifically around 426 ka BP. The onset 304 
of assemblages comprised of Salix, Quercus deciduous, Q. ilex and Olea suggests a rapid 305 
climatic amelioration towards a warmer and more humid setting. Particularly, the marked rise 306 
in Olea at this time, a genus typical of the thermo-Mediterranean belt and commonly 307 
associated with warm interglacials of the Pleistocene and Holocene (Punt and Blackmore, 308 
1991; Quézel and Medail, 2003), is indicative of a significant rise in temperatures. 309 
Furthermore, the gradual increase in Isoetes, a taxon which is related to marshlands and 310 
freshwater, is suggestive of higher precipitation associated with the transition from glacial to 311 
interglacial (Sánchez Goñi et al., 1999). The amplitude of the transition observed in this record 312 
is in line with the overall consensus that Termination V represents an extreme climatic shift 313 
(Droxler et al., 2003). 314 

The expansion of the temperate and Mediterranean forest in zones 976-III-11 and IV, and 315 
the consistently low percentages of Pinus, pioneer and steppic taxa, correspond to the period 316 
between 423 and 403 ka BP which can be correlated with the long and warm climatic 317 
optimum MIS 11c. The results are consistent with intense warmth and elevated humidity also 318 
recognised in other terrestrial and marine Mediterranean records (Oliveira et al., 2016; Kousis 319 
et al., 2018; Azibeiro et al., 2021). Specifically, the period represented by zone 976-III-11 (423–320 
410 ka BP) exhibits the highest abundance of temperate and Mediterranean taxa in the entire 321 
record, an assemblage made up mostly of Q. deciduous, Q. ilex, Olea, Phillyrea and Cistus 322 
occurring along a continuous high abundance of Isoetes. This period represents the warmest 323 
phase recorded, consistent with the MIS 11c climatic optimum. This is followed by a gradual 324 
decline in temperate and Mediterranean taxa throughout zone 976-IV-11, representing the 325 
latter part of MIS 11c (410–403 ka BP). Although in decline, the temperate forest still 326 
represents the dominant proportion of the assemblage and the rates of Q. ilex are still 327 
relatively high compared to the previous zone. Combined with the high abundances of Isoetes 328 
and the low rates of pioneer and steppic taxa, this indicates that the climate was 329 
predominantly warm and wet.  330 

The slowly decreasing trends of Q. deciduous and Mediterranean taxa and the increase 331 
in Pinus and Cedrus towards the upper part of zone 976-IV-11, around ca. 400 ka BP, may 332 
indicate the onset of a cooler phase recognised in other studies as MIS 11b (Desprat et al., 333 
2006; Oliveira et al., 2016; Kousis et al., 2018; Ardenghi et al., 2019). In zone 976-V-11, the 334 
shift observed from temperate and Mediterranean taxa to an assemblage comprising Pinus, 335 
Cedrus, and steppic taxa (Artemisia, Chenopodiaceae, E. distachya and E. fragilis) is indicative 336 
of a decline in temperature and an increase in aridity. The persistence of Q. deciduous and 337 



some Mediterranean taxa (e.g. Q. ilex, Olea, Cistus, although at abundances <3%) suggest that 338 
the climate was still viable for the presence of humid forests, but not warm or moist enough 339 
to support the high forest cover seen during the optimum, leading to a significant forest 340 
contraction. The expansion of Cedrus at mid-altitude, the increase of Artemisia and the 341 
decline of Isoetes are particularly indicative of a drier climate which would have been too 342 
harsh for temperate and Mediterranean trees, leading to colonisation by conifers and shrubs 343 
typical of a cool period.  344 

This cooler phase is followed by a renewed increase in temperate taxa and a minimal rise 345 
in Mediterranean taxa, observed in zone 976-VII-11, indicating a new period of forest 346 
expansion. Together with the increase in Isoetes, this may be interpreted as a return of warm 347 
and humid conditions suitable for the expansion of a temperate forest, albeit reduced 348 
compared to the climatic optimum as suggested by the persistently higher abundances of 349 
Pinus, Cedrus and Artemisia. This phase is consistent with the conditions of MIS 11a, which is 350 
often recognised as a period of transition from temperate deciduous to cold mixed forests 351 
(Kousis et al., 2018) indicative of high climatic variability (Candy et al., 2014).  352 

The uppermost zones, 976-VII-11 and VIII-10 (386–356 ka BP), encompass the transition 353 
from MIS 11 to the glacial MIS 10. The end of MIS 11a is characterised by large fluctuations in 354 
the temperate and montane forests, with a particular phase of contraction in Q. deciduous 355 
and an expansion of Pinus and Cedrus around 380 ka BP. This particular event occurs without 356 
an increase of steppic and pioneer taxa suggesting that a semi-arid shrubland did not develop 357 
and therefore this was a predominantly cold event not subject to a change in humidity. Such 358 
an increase in conifers, especially Cedrus, without a particular increase in semi-desert taxa, 359 
may also signify a probably enhanced wind input from the south of the Alboran Sea associated 360 
with the settling of montane forests in the high-altitudes of the Betic and Rif Arc mountains 361 
(Magri and Parra, 2002; Bout-Roumazeille et al., 2007; Combourieu-Nebout et al., 2009). This 362 
period is followed in zone 976-VIII-10 by a steady decline in Q. deciduous and a very sporadic 363 
appearance of Mediterranean taxa, consistent with the long-term cooling trend towards MIS 364 
10 (McManus et al., 2003; Oliveira et al., 2016). Pinus and Cedrus become the dominant taxa, 365 
accompanied by a rise in Cupressaceae, Chenopodiaceae and E. distachya, which is 366 
interpreted as the return of glacial conditions at the onset of MIS 10 around 367 ka BP, 367 
characterised by a predominantly montane forest and herbaceous/steppic assemblages. 368 
 369 

5.2 MIS 12/11 transition  370 
The shift in vegetation recorded in ODP976 between 430 and 425 ka BP, characterised by the 371 
sharp transition from Pinus, montane and steppic taxa to temperate and Mediterranean 372 
assemblages, represents the period of climatic change from the cold and arid conditions of 373 
MIS 12 to the warm and humid conditions of MIS 11. This transition has been documented in 374 
several palaeoenvironmental and palaeoclimatic records from the Mediterranean (Tzedakis 375 
et al., 2001; Girone et al., 2013; Kousis et al., 2018; Ardenghi et al., 2019; Azibeiro et al., 2021), 376 
the North Atlantic off the Iberian coast (Desprat et al., 2005; Oliveira et al., 2016) and 377 
continental Europe (Reille and de Beaulieu, 1995). The timing of the transition is largely 378 
synchronous across the records in the Mediterranean and North Atlantic and has been 379 
identified between 428 and 424 ka BP (Figs. 6 and 7).  380 

 381 
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The changes observed in our pollen record coincide with independent Sea Surface 383 
Temperature (SST) reconstructions and planktonic δ18OGlobigerina bulloides records derived from 384 
ODP976 (Fig. 6B and C) by Brice (2007), which show an overall increase from around 9 to 17ᵒC 385 
between 432 and 427 ka BP, and a drop in δ18O values from 1 to nearly 0‰ around 430 ka BP 386 
(Brice, 2007). This decrease in δ18OG. bulloides and the associated rise in SSTs were also detected 387 
in several other marine records from the North Atlantic and Iberian Margin (e.g. Jouzel et al., 388 
2007; Voelker et al., 2010; Vázquez Riveiros et al., 2013; Oliveira et al., 2016) as well as in the 389 
Mediterranean at sites ODP 975 (Girone et al., 2013) and ODP 977 (Azibeiro et al., 2021), 390 
showing a coeval response of these regions to global climatic change. Specifically, this trend 391 
is indicative of the inflow of meltwater from the North Atlantic into the Strait of Gibraltar as 392 
a result of the decrease in ice volume caused by increasing insolation (Hes et al., 2022; Candy 393 

Figure 7 – Comparison of the AP curves and the Mediterranean and temperate ecological groups of high-resolution pollen records 
from the Mediterranean which encompass MIS 12 and 11: (A) Marine site MD01-2447 (Desprat et al., 2005); (B) Marine site IDOP 
U1385 (Oliveira et al., 2016); (C) Marine site IODP U1386 (Hes et al., 2022); (D) Marine site ODP 976 (this study); (E) 
Bouchet/Praclaux (drawn after Reille and de Beaulieu, 1995); (F) Lake Ohrid (Kousis et al., 2018); (G) Tenaghi Philippon (Ardenghi 
et al., 2019). Coloured bands indicate the millennial-scale forest contraction events identified in Figure 6, and the tentative 
correlations made with the other records. Dotted line indicates a correlation where no analogue was identified. All records are 
plotted within their original chronological framework. 



et al., 2014), as corroborated by the SPECMAP isotopic stack record (Fig. 6E) (Bassinot et al., 394 
1994; Imbrie et al., 1984). 395 

This trend of climatic amelioration is interrupted by an abrupt return to colder and drier 396 
conditions around 428–426 ka BP as evidenced by the sudden decrease SSTs and an episode 397 
of rapid increase in δ18OG. bulloides (Brice, 2007), which corresponds with a coeval and short-398 
lived increase in Pinus, montane taxa and herbaceous taxa (Cichorioideae) at the expense of 399 
temperate taxa at 427 ka BP, at the interface between MIS 12 and 11 (Fig. 6). Brice (2007) 400 
defines this interval as a Younger Dryas-like event (YD-l), given its resemblance to the event 401 
following the last deglaciation between 12.9 and 11.5 ka BP. Other studies have identified a 402 
prominent cold phase during the transition, and have sometimes referred to as Heinrich-type 403 
event Ht4 (Hodell et al., 2008; Rodrigues et al., 2011; Girone et al., 2013; Marino et al., 2018). 404 
Vázquez Riveiros et al. (2013) observed a pulse of enhanced Ice Rafted Debris (IRD) in their 405 
record from ODP980 between 430 and 425 ka BP, synchronous with a sharp reduction in 406 
North Atlantic SSTs, suggesting a substantial ice-rafting event accompanied by a large 407 
production of brine waters during this time. This phase was also recorded by Rodrigues et al. 408 
(2011) in their alkenone-derived SST record from core MD03-2699 (Fig. 6G) and by Regattieri 409 
et al. (2016) in their δ18O record from the Sulmona basin in central Italy, showing similar 410 
responses in marine and terrestrial records. These events are common in many North Atlantic 411 
records (e.g. McManus et al., 1999; Voelker et al., 2010) and are related to major ice-sheet 412 
instability during periods of climate reorganisation (Regattieri et al., 2016). This phase is also 413 
corroborated by the pollen-based reconstructions by Kousis et al. (2018) for Lake Ohrid which 414 
show a decrease in mean annual atmospheric temperatures (MAAT; Fig. 6K) and mean annual 415 
precipitation (MAP; Fig. 6L), and a phase of reduced forest cover in their pollen record at this 416 
site between 430 and 427 ka BP (Fig. 7). However, while the Ht4 stadial recognised in other 417 
records is generally understood as a cold and dry event, the peak of Cichorioideae in our 418 
record leads to the interpretation of a cold but rather humid event in this part of the 419 
Mediterranean. As suggested by several authors (e.g. Vázquez Riveiros et al., 2013; Tzedakis 420 
et al., 2022), the influx of freshwater caused by the deglaciation led to a weakening of the 421 
Atlantic Meridional Overturning Circulation (AMOC), which may have been caused by the 422 
activation of a bipolar see-saw pattern in precipitation between the western and eastern 423 
Mediterranean. 424 

The YD-l/Ht4 event decreased the cooling effect of cold water upwelling as a result of the 425 
weakened AMOC, in turn leading to the further warming of Antarctica (Tzedakis et al., 2022). 426 
This is visible in panels H, I and J in Figure 6, which show the steady increase in the CO2, air 427 
temperature and methane (CH4) records from the Antarctic EPICA Dome C ice cores (Jouzel 428 
et al., 2007; Loulergue et al., 2008; Nehrbass-Ahles et al., 2020). This exceptional warming 429 
and increase in greenhouse gas concentrations may explain the high biosphere productivity 430 
and the major increase in global forest biomass during Termination V (Brandon et al., 2020). 431 
Among the pollen records from the Mediterranean and continental Europe, the onset of MIS 432 
11c is represented by a pronounced phase of forest expansion (Fig. 7). Though the specific 433 
timing of this increase in forest cover is slightly different, possibly due to discrepancies 434 
between chronologies, this response is likely to have been caused by a large uptake of 435 
atmospheric CO2 during the degassing period (Tzedakis et al., 2022). The peak in CO2 at 426 436 
ka BP—also known as the first ‘Carbon Dioxide Jump’ (CDJ) (Tzedakis et al., 2022)—and the 437 
concomitant peak in Antarctic air temperatures, are particularly important as they correlate 438 
with the dramatic rise in Olea and Q. ilex at this time in the ODP976 record. This interpretation 439 
is in agreement with pollen-based climatic reconstructions from Lake Ohrid, which suggest a 440 



transition towards wetter and warmer conditions at the onset of MIS 11c, evidenced by a rise 441 
in MAAT by 7ᵒC and in MAP by 150 mm at Lake Ohrid (Kousis et al., 2018). The development 442 
of more Mediterranean conditions around the lower latitudes of the Alboran Sea during this 443 
time would have been necessary for the expansion of evergreen forests (Okuda et al., 2001).  444 

Regionally, our results are in agreement with palynological records from Lake Ohrid 445 
(Kousis et al., 2018), Tenaghi Philippon (Wijmstra and Smit, 1976; Tzedakis et al., 2006; 446 
Ardenghi et al., 2019) and Bouchet/Praclaux (Reille and de Beaulieu, 1995), which show a 447 
synchronous expansion of forest biomass throughout Termination V. This overall trend is 448 
corroborated by palaeoclimatic data from the North Atlantic and Mediterranean which record 449 
increasing SSTs, CO2, CH4 and a significant drop in δ18O. These patterns are significant because 450 
they demonstrate analogous changes in vegetation in terrestrial and marine records during 451 
this period. Nevertheless, a close comparison with the high-resolution pollen record of Lake 452 
Ohrid reveals that the amplitude of change in Mediterranean vegetation at ODP976 during 453 
the MIS 12/11 transition is significantly greater. This could suggest that the ODP976 record 454 
reflects a warmer and drier climate at the onset of MIS 11c in the southwestern 455 
Mediterranean compared to the Balkan Peninsula where Lake Ohrid is located. Due to the 456 
higher altitude of Lake Ohrid (1514 m asl) and its geomorphological context, however, this 457 
site may be recording a more local signal from a subdued Mediterranean forest, while the 458 
ODP976 marine record is likely to represent a wider regional signal of the vegetation changes 459 
occurring around the Alboran sea.  460 
 461 
5. 3 MIS 11 vegetation and climatic variability 462 
5.3.1 Long-term vegetation and climate change  463 
Evaluation of the pollen data indicates that MIS 11c was the warmest substage, characterised 464 
by the maximum forest extent consistent with a climatic optimum between 426–400 ka BP, 465 
observed ubiquitously across palaeoenvironmental and palaeoclimatic records. This substage 466 
is often characterised by the largest expansion of mixed oak forest and Mediterranean taxa 467 
(Fig. 6), concurrent with the results from ODP976. This forest expansion, also referred to as 468 
the ‘Sines’ forest phase in marine records from the Iberian margin (Oliveira et al., 2016; Hes 469 
et al., 2022), reflects the highest degree of warming and seasonal rainfall in the south-western 470 
Mediterranean, and is associated with the light isotopic event MIS 11.3 (see Fig. 6C) as well 471 
as the strongest Northern Hemisphere summer insolation of the interglacial (Fig. 6M) 472 
(Oliveira et al., 2016). The occurrence of warm conditions is particularly supported by the 473 
presence of thermophilous taxa such as Q. ilex, Phillyrea and Olea, which require warm and 474 
dry summers and mild winters (San-Miguel-Ayanz et al., 2016). Similar findings were reported 475 
by Kousis et al. (2018) at Lake Ohrid for this period, who showed that annual temperatures 476 
for their site reached up to 9.5ᵒC between 415 and 412 ka BP, with mean temperatures for 477 
the coldest month (MTCO) around 1.5ᵒC, signifying frost-free winters. Our 478 
palaeoenvironmental interpretations correlate well with the highest foraminifera- and 479 
alkenone-based SSTs, maximum concentrations of CO2 and CH4 from the EPICA ice cores 480 
(Jouzel et al., 2007; Nehrbass-Ahles et al., 2020), and diminished δ18O (e.g. Voelker et al., 481 
2010; Oliveira et al., 2016). However, the ODP976 record appears to be subject to a temporal 482 
offset from the end of MIS 11c onwards, most possibly caused by differences in dating 483 
methods and the development of more precise chronologies in recent years compared to 484 
what we have adopted from von Grafenstein et al. (1999). Thus, the climatic optimum 485 
observed at OPD976 appears shorter than in tuned records where it is usually observed 486 
between ∼426 and 396 ka BP (Tzedakis et al., 2022). Nevertheless, our record is in agreement 487 



with most proxies which show that the duration of MIS 11c averaged around 30 ka (McManus 488 
et al., 2003; Tzedakis et al., 2022), and the vegetation signatures are comparable with other 489 
pollen records from the region.  490 

The exceptional amplitude of response by the temperate and Mediterranean forests to 491 
climatic amelioration observed at ODP976 perpetuates the ongoing debate regarding the 492 
‘Stage-11 problem’ or the ‘MIS 11 Paradox’ (Imbrie et al., 1984; McManus et al., 2003) which 493 
refers to the disparity between the strong environmental and climatic response to the weak 494 
insolation forcing during this interglacial (Berger and Wefer, 2003). According to Tzedakis et 495 
al. (2022), the deglaciation during Termination V was significantly prolonged in comparison 496 
to other interglacials, as a result of the weak eccentricity-precession forcing and antiphasing 497 
between precession (Fig. 6N) and obliquity (Fig. 6O)—i.e. the occurrence of two precession 498 
(and insolation) peaks over the course of one obliquity cycle (Tzedakis et al., 2022). This would 499 
have protracted the conditions of the interglacial for a period significantly longer than any 500 
subsequent interglacial, leading to a rise in summer insolation at both polar regions thereby 501 
enhancing the melting of sea ice and allowing more CO2 outgassing from the North and South 502 
Atlantic (Vázquez Riveiros et al., 2013; Tzedakis et al., 2022).  503 

The abundances of temperate and Mediterranean taxa reach a maximum between 420 504 
and 415 ka BP and remain elevated, in our record, until 410 ka BP, after which they begin to 505 
decrease. The long-term forest decline at the end of MIS 11c has also been recorded in other 506 
pollen records (Fig. 7) and has been connected to a decrease in summer insolation, showing 507 
a regional response of vegetation to solar forcing. These trends also resemble the decline in 508 
atmospheric CO2 and CH4 records from Antarctica (Jouzel et al., 2007; Loulergue et al., 2008) 509 
and the decline in alkenone-based SSTs from the North Atlantic between 415 and 390 ka BP 510 
(Fig. 6).  511 

The pollen data in the record ODP976 suggests an overall cooling during substage MIS 512 
11b (400–390 ka BP) and a return of relatively warmer conditions during MIS 11a (390–367 513 
ka BP), though reduced compared to MIS 11c, inferred from the large fluctuations between 514 
temperate and montane forests which suggest significant variability in aridity and 515 
temperature. These changes are in agreement with the patterns observed in many other 516 
palaeoclimatic and palynological records from the North Atlantic and Mediterranean (Candy 517 
et al., 2014) and appear to closely follow changes in summer insolation and can be correlated 518 
with light isotopic events recognised in δ18O records (Fig. 6D, E and F), namely 11.24, 11.23 519 
and 11.22 (Desprat et al., 2005; Oliveira et al., 2016). Despite the chronological offset with 520 
other records, the pollen data from ODP976 seems to follow insolation and precession cycles 521 
more closely than other proxies at other sites. For instance, the increase in Pinus and montane 522 
taxa during MIS 11b at the expense of temperate and Mediterranean taxa coincides with the 523 
insolation and precession minima at 400 ka BP. This supports the idea that, owing to its 524 
position in the WAG (see section 2), site ODP976 is sensitive to changes in polar tropical and 525 
Atlantic influences caused by climatic variability, and is also a great candidate to observe the 526 
influence of the moderate solar forcing of MIS 11 on vegetation. 527 
 528 
5.3.2 Millennial-scale vegetation and climatic variability 529 
Following the prolonged and exceptionally stable climatic optimum of MIS 11c, the late part 530 
of MIS 11 is characterised by significant millennial-scale oscillations. Previous studies have 531 
connected these events with changes in the position of the polar front and the distribution of 532 
pressure systems over the North Atlantic during MIS 11 (e.g. Desprat et al., 2007; Oliveira et 533 
al., 2018, 2016; Sánchez Goñi et al., 2018; Kousis et al., 2018). Two types of such oscillations 534 



have been identified: 1) moderate events characterised by distinct declines in forest cover 535 
with no counterpart in the SST profiles, and (2) high-intensity events marked by contractions 536 
in the temperate and Mediterranean forest synchronous with drops in SSTs and annual 537 
atmospheric temperatures (Oliveira et al., 2016; Kousis et al., 2018). Our pollen data 538 
documented seven of such pronounced forest contractions (marked by the numbered bands 539 
in Figs. 6 and 7), and an attempt has been made to tentatively correlate them with the 540 
changes observed in other records from the Mediterranean and North Atlantic (Fig. 7). 541 

Four of such moderate-intensity fluctuations in temperate and Mediterranean forest 542 
abundance have been identified in our record (grey bands) at ca. 408, 404, 400 and 385 ka BP 543 
(events 1, 2, 3 and 6, respectively). The most notable of these oscillations is the first forest 544 
contraction, which marks the end of the MIS 11c climatic optimum and has been identified in 545 
other pollen records from the region at IODP Site U1385 at 408 ka BP (event U1385-11-fe1; 546 
Oliveira et al., 2016), Site MD01-2443 at 406 ka BP (Tzedakis et al., 2009), and at Lake Ohrid 547 
between 406.2–404.5 ka BP (event LO-11-1; Kousis et al., 2018). Although it is difficult to 548 
locate an equivalent event at the lower-resolution pollen records from Bouchet/Praclaux 549 
(Reille and de Beaulieu, 1995) and Tenaghi Philippon (Tzedakis et al. 2009) they can be roughly 550 
correlated with drops in arboreal pollen around 408 and 402 ka BP, respectively.  551 

Oliveira et al. (2016) and Kousis et al. (2018) have correlated this first forest contraction 552 
with the “Older Holstenian Oscillation” (OHO) detected in records from Germany, Denmark, 553 
Poland and Britain (West, 1956; Kelly, 1964; Turner, 1970; Kukla, 2003; Koutsodendris et al., 554 
2011, 2012; Tye et al 2016). During the OHO, vegetation in western and northern Europe 555 
underwent similar changes observed at ODP976, characterised by a strong decline in Quercus 556 
and Alnus. These taxa can tolerate cold conditions but require warm summer and spring 557 
(Dahl, 1998), thus indicating in the record a reduction in the temperatures of the warmest 558 
months. It is thought that the triggering mechanisms of the OHO were similar to the 8.2 ka 559 
event during the Holocene, which was driven by a slowdown of the North Atlantic Deep Water 560 
(NADW) formation as a result of increased discharges of meltwater from the Laurentide lakes 561 
into the North Atlantic (Barber et al., 1999; Ellison et al., 2006). Climate reconstructions from 562 
Lake Ohrid estimate a decrease in MAAT from 8 to 4ᵒC and in MAP from 960 to 550 mm 563 
(Kousis et al., 2018). Suggestions regarding the duration of a colder and drier climate during 564 
the OHO range between 300 and 780 years (Mangili et al., 2007; Tzedakis et al., 2009). 565 
Although its timing is debated (Koutsodendris et al., 2010, 2011, 2012), the detection of a 566 
similar contraction in temperate forests in other records at a similar time despite 567 
chronological discrepancies points towards a synchronous supraregional response to the OHO 568 
and therefore we propose an equivalent interpretation for the changes observed in the 569 
ODP976 pollen data. 570 

The high-intensity cooling events identified in our record (events 4, 5, 7) are denoted by 571 
very pronounced contractions in the temperate and Mediterranean groups and marked 572 
increases in Pinus, Cedrus and steppic taxa. These major cooling events are recognised during 573 
MIS 11b and 11a around ca. 397, 390 and 378 ka BP and are synchronous with the three light-574 
isotopic events (11.24, 11.23 and 11.22, respectively) documented by Brice (2007) for ODP976 575 
(Fig. 6C). Despite chronological incongruities, equivalent vegetation responses correlated 576 
with abrupt changes in isotopic signatures have been reported by Oliveira et al. (2016) at IODP 577 
Site U1385 (Fig. 6F and 7B) at ca. 390 (U1385-11-fe5), 383 (U1385-11-fe6) and 371.5 ka BP 578 
(U1385-11-fe10), interpreted as indicative of the coolest and driest atmospheric conditions 579 
of MIS 11. Similar high-intensity forest contractions have also been documented at MD01-580 
2447 around ca. 392, 383 and 375 ka BP (Desprat et al., 2005, 2007), at Lake Ohrid around 581 



390 (LO-11-4), 382 (LO-11-5) and 377 ka BP (LO-11-7; Kousis et al., 2018), and at Tenaghi 582 
Philippon at 384, 378 and 376 ka BP (Ardenghi et al., 2019). Across all records, the strongest 583 
forest contraction appears to be related to the first light-isotopic event 11.24 (event 4 in 584 
ODP976 at 397 ka BP) which, as indicated by the marked rise in steppic taxa in our record, 585 
appears to be the driest and coolest episode of MIS 11. The other two major forest 586 
contractions, synchronous with events 11.23 and 11.22, do not occur alongside a substantial 587 
rise in steppic assemblages, indicating that they were predominantly cold events not subject 588 
to changes in aridity but still caused a significant strain on temperate oak forests.  589 

These high-intensity events have been linked to changes in the AMOC caused by iceberg 590 
discharges into the North Atlantic which amplified the cooling process at the end of MIS 11 591 
(Oppo et al., 1998; Martrat et al., 2007; Voelker et al., 2010). Concurrent with the three light-592 
isotopic events, Rodrigues et al. (2011) show distinctive reductions to ~10ᵒC in their alkenone-593 
based SST record from MD03-2699 (fig. 6E). Similarly, climatic reconstructions from Lake 594 
Ohrid show significant drops in MAAT from 8 to 2ᵒC, and reductions in MAP from around 1000 595 
to 600mm, demonstrating coeval cooling on land as well as the sea-surface during these 596 
events which match the changes in assemblages in our ODP976 record. A parallelism can also 597 
be made with the sudden drops in atmospheric CO2 and CH4 concentrations and air 598 
temperature anomalies from the Antarctic EPICA records (Figs. 6I, J and K) which demonstrate 599 
the response of vegetation in the Mediterranean to global-scale climate change.  600 

Some authors (Kandiano et al., 2012; Kousis et al., 2018) proposed that drier conditions 601 
prevailed in the western Mediterranean and north-western Africa during the millennial-scale 602 
climatic events of MIS 11, while wetter conditions occurred in the Balkans, due to the 603 
development of a see-saw pattern in precipitation between the western and eastern 604 
Mediterranean. While latitudinal and altitudinal differences between sites must be taken into 605 
consideration with regard to the climatic reconstructions, abundances of Mediterranean taxa 606 
and representation of local/regional pollen signals, this hypothesis may explain the 607 
differences in the amplitude of change in vegetation to climate variability observed across the 608 
available high-resolution records shown in Figure 7. The changes in forest cover documented 609 
in the marine records from ODP976 and U1385, for instance, remain relatively more subdued 610 
during both moderate- and high-intensity events compared to Lake Ohrid, where 611 
Mediterranean taxa suffer an almost complete disappearance and temperate humid forests 612 
undergo much more severe diebacks. At Tenaghi Philippon, high-intensity events seem to 613 
impact vegetation at a similar rate to Lake Ohrid, although moderate events do not appear to 614 
be as impactful which could be due to the lower altitude of this site (see Tab 1). If the 615 
hypothesis that the Balkans were wetter during MIS 11 was correct, this may suggest that 616 
vegetation in this region may have reacted more intensely to the impact of cool and especially 617 
arid events, while the generally drier conditions in the western Mediterranean and around 618 
the Alboran Sea could have benefitted thermophilous vegetation even during harsher 619 
climates. 620 
 621 
5.4 Implications for hominin populations 622 
Our record from site ODP 976 provides evidence for the strong climatic transition from MIS 623 
12 to MIS 11, which undoubtedly influenced hominin populations across Europe. From 624 
around 426 ka BP, after the MIS 12 glaciation, modelled population distributions show 625 
demographic expansion across Europe (e.g. Blain et al. 2021; Rodríguez et al., 2022). The 626 
model by Rodríguez et al. (2022), for instance, estimates an increase in total population across 627 
Western Europe from a range of ~10,000–90,000 individuals during MIS 12a to ~25,000–628 



170,000 individuals during the climatic optimum MIS 11c (Fig. 8). During the transition, 629 
archaeological sites show the emergence of new subsistence behaviours and technical 630 
innovations (core technologies, increase in light-duty tools), and evidence of an early 631 
regionalization of traditions (Moncel et al., 2016, 2020, 2021a,b; García-Medrano et al., 632 
2022a,b). These behavioural changes suggest increased cognition with new skills and social 633 
interactions (Moncel et al., 2015; Peretto et al., 2016). The correspondence of such a 634 
behavioural threshold with the long and stable climatic amelioration observed during the 635 
interglacial MIS 11, especially after the harsh glacial event of MIS 12, leads to the supposition 636 
that climatic amelioration may have led to such social and technological innovations. Such a 637 
long-lasting interglacial period could have encouraged the expansion of favourable territories 638 
for long term occupations of hominins vegetation, fauna and hominin occupation in European 639 
temperate and Mediterranean ecosystems (Berger et al., 2003; Raymo and Mitrovica, 2012; 640 
Oliveira et al., 2016; Moncel et al., 2018; Blain et al., 2021). In particular, the long and stable 641 
climatic optimum of MIS 11c means that hominins would have had a longer time to develop 642 
a deeper level of social networks, better understanding of their direct environment and 643 
potential uses of raw materials, and possibly the spread of the early use of fire (the burning 644 
of fuel in Spain may have only begun after 230 ka BP (Fernández Peris et al. 2012), but there 645 
is evidence of charcoal dated to MIS 11 found in fireplaces at Terra Amata in France (Lumley, 646 
2016) and Guado San Nicola in Italy (Lebreton et al., 2019)).  647 

The climatic inferences made on the basis of the arboreal expansion in our pollen data 648 
coincide with archaeological finds from Caune de L’Arago in the French Pyrenees, where the 649 
faunal spectrum for MIS 11 was characterised by an assemblage indicative of temperate 650 
conditions, composed of large herbivorous mammals (reindeer, bison, horse and rhinoceros), 651 
carnivores (bears, foxes) and rodents (Barsky et al., 2019). Climatic amelioration during 652 
Termination V would have increased the availability of large herbivores and facilitated the 653 
demographic expansion and mobility of hominins, favouring the diffusion of behavioural 654 
innovations observed during this period.  655 

As Szymanek and Julien (2018) and Blain et al. (2021) point out, the most favourable 656 
conditions for early hominid settlements comprise a moderately warm and humid climate, 657 
usually during the early or late parts of an interglacial but not during the thermal maximum. 658 
This might suggest that aridity at higher temperatures could have been a limiting factor for 659 
early hominin populations. If, as shown by the comparisons of our pollen data with other 660 
records in the region, the southwestern Mediterranean was generally more arid than central 661 
and eastern Europe, hominins may have preferred to seek areas with greater moisture 662 
availability. This may explain why, in the models by Rodríguez et al. (2022) (Fig. 8), 663 

Figure 8 - Density of hominin populations across Western Europe during substages MIS 12a, MIS 11c and MIS 11a-b 
(adapted from Rodríguez et al., 2022). 



southwestern Iberia is less densely populated than other parts of Europe. However, the 664 
authors point out that their model is likely to be influenced by the lack of sites with suitable 665 
chronologies in this region, limiting our visualisation of the area actually inhabitable by 666 
humans (see Santonja and Pérez-González et al., 2010; Yravedra et al., 2010; Carrión et al., 667 
2011; Finlayson et al., 2011; Santonja et al., 2014, 2016; Altolaguirre et al 2020; Rubio-Jara et 668 
al., 2016; López-García et al., 2021; Moncel et al., 2021a, b; García-Medrano et al., 2022a; 669 
Lockey et al., 2022).  670 

Moncel et al. (2018) highlight that the Mediterranean has acted as a refugial area for 671 
thermophilous and subtropical taxa throughout the Quaternary. As observed in the ODP976 672 
record, vegetation changes in the southwestern Mediterranean were less intense during 673 
periods of millennial-scale climatic variability at the end of the MIS 11c optimum and during 674 
MIS 11b and 11a. Therefore, it is possible that the persistence of temperate and 675 
Mediterranean vegetation in an ‘ecological niche’ around the Alboran Sea may have 676 
facilitated the cultural and technological transition during MIS 11 by providing a reliable 677 
source of subsistence. In contrast, during periods of high climatic variability in NW and Central 678 
Europe, hominids would have been affected by the contractions of favourable habitats and 679 
thereby limited the spread of technological innovations (Kretzoi and Dobosi 1990; Ashton et 680 
al 2011; Ashton and Davis 2021; Rawlinson et al 2022; Hosfield, 2022).  681 

The lack of archaeological sites in this region severely limits our ability to test the validity 682 
of this hypothesis, and therefore more work must be undertaken in the southwestern 683 
Mediterranean to build a better picture of the spatial distribution of hominins in the 684 
southwestern Mediterranean during the MIS 12/11 transition. Improving the coverage of 685 
archaeological sites in this region will enable a better understanding of the probability of 686 
interactions and interbreeding with other European populations, in turn shedding a light on 687 
the role of this region in the development of cultural/technological innovations and the 688 
evolution of the Neanderthal lineage. 689 
 690 
6. Conclusions 691 
This study presented a new high-temporal resolution palynological record from ODP Site 976 692 
in the Alboran Sea, which encompasses the MIS 12/11 transition and covers the entirety of 693 
MIS 11 until the beginning of MIS 10. Our palynological results provide evidence for the strong 694 
climatic shift from glacial to interglacial. The transition from Pinus, montane and steppic taxa, 695 
to an assemblage comprised of forested temperate and Mediterranean taxa, is coeval with 696 
major fluctuations in planktonic records (SST and δ18O), a sharp increase in Antarctic CO2 and 697 
CH4 records. The timing of this shift, observed between 430 and 425 ka BP, was correlated 698 
with other pollen and marine proxy records from the Mediterranean and North Atlantic, 699 
showing a largely synchronous response across the region to global climatic change.  700 

A climatic optimum for temperate and Mediterranean taxa is documented between 426 701 
and 400 ka BP, which corresponds with the warm substage MIS 11c identified in previous 702 
palaeoenvironmental and palaeoclimatic records. The data from ODP976 supports the idea 703 
that MIS 11c was an exceptionally prolonged phase, synchronous with maxima in 704 
temperature and precipitation, and consistently high greenhouse gas concentrations, likely 705 
perpetuated by the unique antiphasing between precession and obliquity that characterised 706 
the MIS 11 interglacial.  707 

Following the climatic optimum, a slow cooling trend is marked by millennial-scale 708 
climatic variability. These events were recognised as moderate-intensity (no counterpart in 709 
marine proxies) and high-intensity (signature in marine and terrestrial records). Of the 710 



moderate climatic oscillations observed in our record, the most notable was linked to the 711 
“Older Holstenian Oscillation” during which a minor forest contraction in temperate forests 712 
is observed almost ubiquitously around 408 ka BP across European pollen records. Three high-713 
intensity events were identified at ca. 397, 390 and 378 ka BP and were correlated, keeping 714 
chronological uncertainties in consideration, with the light-isotopic events (11.24, 11.23 and 715 
11.22) recorded in δ18O curves from the Mediterranean and North Atlantic, related to changes 716 
in the AMOC. Out of these, possibly the strongest contraction occurred during the insolation 717 
minimum at the onset of MIS 11b, which corresponds to the light isotopic event 11.24. The 718 
amplitude of the vegetation changes observed at ODP976 during the millennial-scale events 719 
may be less intense than what has been previously found in the Balkan Peninsula. This may 720 
be due to the overall aridity of the western Mediterranean compared to the east, which could 721 
have ensured a prolonged resilience of Mediterranean vegetation during colder conditions.  722 

The abrupt shift in vegetation during the MIS12/11 transition and the millennial-scale 723 
climatic fluctuations of MIS 11 may be used to infer that hominin populations would have had 724 
to adapt to these climatic changes. Climatic amelioration after the harsh glacial of MIS 12 may 725 
explain the behavioural threshold observed during the course of the long interglacial MIS 11 726 
and internal variations (MIS 11c vs. MIS 11b and 11a). A warmer and wetter climate may have 727 
helped the ancestors of the Neanderthal to develop new strategies (subsistence and 728 
technological), explaining the population increase and the diffusion of these innovations all 729 
over Europe. In the context of the Mediterranean, a generally drier climate during MIS 11 730 
compared to central or eastern Europe could have led to a less variable vegetation cover, 731 
thereby providing a more reliable source of sustenance during periods of climatic oscillation 732 
and thus further facilitating hominin innovations in this period.  733 
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