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We study a new variant of mathematical prediction-correction model for crowd motion. The prediction phase is handled by a transport equation where the vector field is computed via an eikonal equation ∥∇φ∥ = f , with a positive continuous function f connected to the speed of the spontaneous travel. The correction phase is handled by a new version of the minimum flow problem. This model is flexible and can take into account different types of interactions between the agents, from gradient flow in Wassersetin space to granular type dynamics like in sandpile. Furthermore, different boundary conditions can be used, such as non-homogeneous Dirichlet (e.g., outings with different exit-cost penalty) and Neumann boundary conditions (e.g., entrances with different rates). Combining finite volume method for the transport equation and Chambolle-Pock's primal dual algorithm for the eikonal equation and minimum flow problem, we present numerical simulations to demonstrate the behavior in different scenarios.

Introduction

A Macroscopic model for a congested pedestrian flow involves treating the crowd as a whole and is applicable for large crowds. It was first introduced in [4] and developed in [24,[START_REF] Helbing | Computer simulations of pedestrian dynamics and trail formation[END_REF]. In these models, the crowd behaves similarly to a moving fluid in a spatio-temporal dynamic governed by a flow velocity vector field U . Thus the master equation of each macroscopic crowd flows model is the continuity equation:

∂ t ρ + div(ρ U ) = 0, (1.1) 
where ρ = ρ(t, x) the density of the individuals, at time t ≥ 0 and at the position x ∈ R N (N = 2), needs to accurate some admissible global distribution of the population. Although there is much speculation, discussion, and experience to define appropriate choice of flow velocity vector field U, there is no definitive universal choice to describe crowed motion in general.

The main difficulties lies in the fact that while maintaining a suitable dynamic esteeming the admissible global distribution ρ, U needs to manage both, the overall behavior of the crowd (for example of reaching an objective like an exit, point of interest, avoidance of danger, etc.) and certain local behavior of pedestrians (pedestrian in a hurry, pedestrian who adapts their speed, pedestrian who avoids the crowd, pedestrian attracted by the crowd, etc). Inspired by traffic flow models, many crowd motion models were developed essentially in onedimensional space (c.f. [START_REF] Colombo | Pedestrian flows and non-classical shocks[END_REF]24,[START_REF] Helbing | Computer simulations of pedestrian dynamics and trail formation[END_REF]). In higher dimensions, Bellomo et al., (c.f. [3]) and Dogbe (c.f. [16]) proposed coupling the continuity equation with

∂ t U + (U • ∇ x )U = F (ρ, U ),
where the motion is governed by F , which has two parts: a relaxation term towards a definite speed, and a repulsive term to take into account that pedestrians tend to avoid high-density areas. A barrier method was proposed by Degond (cf. [14]) wherein the motion F depends on a pressure that blows up when the density approaches a given congestion density. Piccoli and Tosin proposed another class of models in the framework of a time-evolving measure in [36,37]. In their model the pedestrian's velocity is composed of two terms: a desired velocity and an interaction velocity.

Roger Hughes proposed a completely different approach to describing pedestrian dynamics in [START_REF] Hughes | The flow of human crowds[END_REF], where a group of people wants to leave a domain with one or more exits/doors as quickly as possible. His main idea was to include some kind of saturation effects in the vector field. He considered U = U [ρ] driven by the gradient of a potential Φ and weighted by a nonlinear mobility f = f (ρ). More precisely

U = f (ρ) 2 ∇Φ and ∥∇Φ∥ = 1/f (ρ),
where mobility includes saturation effects, i.e., degenerate behavior when approaching a given maximum density ρ max (assumed to be known); for instance one can take f (ρ) = (ρ -ρ max ) 2 among others. See also [11] and [27] for further details.

To handle the local behaviors of pedestrians, we go here with second order PDE for crowed motion to perform congestion phenomena which may appear when considering a velocity field U looking out solely to the exists (doors). The main idea is to incorporate, within U , a vector field V with an overview looking out to the exit and some kind of patch W , a vector filed with a local view looking out to the allowable neighbor positions taking into account the local distribution of pedestrians. To come out with U through this perspective, we process by splitting the dynamic into two instantaneous phases: a first one, known as the prediction phase, where the pedestrians move along the given vector filed V, the so called spontaneous velocity field, and a second phase, the correction, which generates a patch W that enables the pedestrian to move along allowable local paths to avoid congestion and maintain admissible global distribution of the pedestrians. A typical example of this point of view is the constrained diffusion-transport equation as demonstrated in the pioneering work by B. Maury and al. (cf. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]) through a predicting-correcting algorithm using a gradient flow in the Wasserstein space of probability measures. In this paper, we use a new manner to handle this perspective. In contrast with [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] where the author straighten up the density using some kind of projection in W 2 -Wasserstein space in the correction phase, our approach is based on a new version of minimum flow problem. The approach is flexible and makes it possible to integrate several scenarios to deal with congestion. The reader can consult the paper [28] for a general introduction and overview of the approach. In particular it allows to retrieve and compute otherwise the typical model of B. Maury and al., where the patch W = W [ρ] is traced strictly in the so called congested/saturated regions as follow W [ρ] = -∇p, with p ≥ 0 and p(ρ -1) = 0. Here ρ ≡ 1 workouts the utmost distribution of the population in Ω. Therefore, via this approach, the proposed system reads

     ∂ρ ∂t + div(ρ (V -∇p)) = 0 p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ -1) = 0. (1.2)
Equation p(ρ-1) = 0 with the assumptions p ≥ 0 and 0 ≤ ρ ≤ 1, implies that in the uncongested area, i.e., the zone [0 ≤ ρ < 1], the parameter p = 0, and consequently the term -div(ρ ∇p) is inactive. In this case, the evolution of density is governed only by the continuity equation. However, in the saturated zone [ρ = 1], the condition p(ρ -1) = 0 implies that p is possibly strictly positive in such a way that congestion can be activated by operator -div(ρ ∇p). Furthermore, the approach enables to build a new model based on granular dynamic like in sandpile, presuming that individuals behave like grains in the congested zones. In some sense, at the microscopic level, the individuals travel by accruing randomly to the crowed, being placed either upon a heretofore unoccupied position in the direction of the exit or else upon the top of the stack of the crowd. Moreover, the local movement of the individuals may be weighted by a given function k connected to the speed of the spontaneous local movement. In this case, we prove that the patch is given by

W [ρ] = -m ∇p with unknowns m and p satisfying m ≥ 0, p ≥ 0, |∇p| ≤ k, p(ρ -1) and m (|∇p| -k) = 0.
Here m ≥ 0 is Lagrange multiplayer associated with the additional constraint |∇p| ≤ k. The approach enables also to handle and integrate different boundary conditions. Neumann boundary condition is connected to the crossing boundary amount, and Dirichlet is connected to the possibility of crossing some parts of the boundary with different charges.

After all, via this approach, we introduce the new model of granular type :

             ∂ρ ∂t + div(ρ (V -m∇p)) = 0 0 ≤ ρ ≤ 1, p ≥ 0, |∇p| ≤ k p(ρ -1) = 0, m(|∇p| -k) = 0, (1.3) 
subject to mixed boundary conditions (not necessary homogeneous), to describe a crowd motion where the movement of the agent is of granular type like in sandpile. In this paper, we propose its numerical study based on a new manner to handle the predicting-correcting algorithm to build the patch W . Over and above the transport equation (1.1), we proceed using as well a new version of minimum flow problem for optimal assignation as a step in the process to find the right assignment of the pedestrian. Roughly speaking, in the correction step we put together tow nested optimization procedures: a computation of a minimum flow with gainful assignment towards a specific part of the boundary (towards the exit) for arbitrary target, and then a coming up with the right target among all admissible ones. We show how one can retrieve and compute otherwise the typical model of B.Maury et al., (c.f. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]) that we call up above. Then, we focus on the new model based on granular dynamics-like for sandpile. The theoretical study of (1.3) is a challenging problem, especially existence and uniqueness questions, that we'll treat likely in forthcoming works. Recall that, the case where the PDE is of diffusive type like in (1.2), the model is very employed to describe the behavior of population subject to global behavior governed by a vector field V and a local one governed by the patch W [ρ] (c.f. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF][START_REF] Maury | Handling congestion in crowd motion modeling[END_REF]35] and the references therein). The uniqueness of a solution is a hard issue for these kind of problems that was treated recently by the second author in [START_REF] Igbida | L 1 -theory for hele-shaw flow with linear drift[END_REF] (see also [START_REF] David | On the incompressible limit for a tumour growth model incorporating convective effects[END_REF]15]).

Organization of the paper. This paper is organized as follows. In Section-2 we present our model, we give the details of each of its steps and we discuss two peculiar related PDEs to this model as well as some duality results on which our algorithm reposes. In Section-3, we show how to discretize the model. Since the approximation of the continuity equation is more or less classical, the novelty will be the use of a primal-dual method to solve the Beckmann-like problem. More particularly, this is given in Algorithm-3. In Section-4 we given several examples to illustrate our approach and we compare with some related works. Finally, we recall some tools and give some technical proofs in the Appendix.

The model

We consider an exit scenario, where Ω ⊂ R N (N = 2) is a bounded open set with regular boundary ∂Ω = Γ N ∪ Γ D . The set Ω represents the region where the crowd is moving, Γ N represents the (impenetrable) walls and Γ D the exits/doors.

Minimum flow problem.

The key idea concerning the minimum flow problem goes back to Beckmann [2]. It consists in finding the optimal traffic flow field Φ between the two distributions given by µ 1 and µ 2 . That is to find the vector field Φ which satisfies the divergence equation

-div(Φ) = µ 1 -µ 2 in Ω, (2.4) 
and minimize a total cost of the traffic F (x, Φ(x)) dx, where F : Ω × R N → R + is a given function assumed to be at least continuous and convex with respect to the second variable. The equation (2.4) needs to be understood in the sense of D ′ (Ω). In particular, the equation assigns a fixed normal trace to Φ on ∂Ω which is connected to the formal values of µ 1 -µ 2 on ∂Ω.

Here, we use a new variant to handle the pedestrian flow and carried out the patch W for the spontaneous velocity field when the pedestrian is hindered by the other one. Indeed, we work with a modified traffic cost which handles some kind of gainful assignment towards a specific part of the boundary Γ D . More precisely, we consider the following momentum cost of the traffic

M(Φ) := Ω F (x, Φ(x)) dx - Γ D g(x) Φ • ν dx,
where Φ • ν denotes the normal trace of Φ and g patterns a given gainful charge for the assignment towards Γ D . Of course, for the optimization problem we have in mind we need to keep unrestricted the normal trace of Φ on Γ D . Thus, the balance equation (2.4) turns into

-div(Φ) = µ 1 -µ 2 in D ′ (Ω \ Γ D ).
See here, that the normal trace of Φ is left free on Γ D and assigned to be equal to (µ 1 -µ 2 ) Γ N on Γ N . For instance, working with µ 1 and µ 2 supported in Ω, we keep unrestricted the normal trace of Φ on Γ D but assigned it to 0 on Γ N .

This being said, we consider the transportation cost associated with given densities µ 1 and µ 2 to be inf

Φ Ω F (x, Φ(x)) dx - Γ D g(x) Φ • ν dx : -div(Φ) = µ 1 -µ 2 in D ′ (Ω \ Γ D ) . (2.5)
Actually, for any arbitrary distributions µ 1 and µ 2 , the optimization problem (2.5) aims to minimize both the transportation between µ 1 and µ 2 , in Ω and towards Γ D , by means of the cost function F in Ω, and the transportation towards the boundary Γ D paying the gainful charge g(x) for each target position x ∈ Γ D . Moreover, the new formulation enables to handle as well a provided incoming (or outgoing) flux on the remaining part Γ N .

Notice here, that one needs to be careful with the notion of trace of Φ on the boundary since it is not well defined for all Φ. However, for the quadratic case; i.e., F (x, Φ) = 1 2 |Φ| 2 , one can work in

H div := Φ ∈ L 2 (Ω) : div(Φ) ∈ L 2 (Ω) ,
to define rigorously Φ • ν on Γ D . Indeed, let γ 0 : H 1 (Ω) → L 2 (Γ) be the linear and continuous mapping satisfying γ 0 (u) = u |Γ for all u ∈ C(Ω), where Γ = ∂Ω. Then, defining H 1/2 (Γ) = γ 0 (H 1 (Ω)) and H -1/2 (Γ) its dual, there exists a continuous trace operator γ ν : H div (Ω) → H -1/2 (Γ) such that γ ν (Φ) = Φ • ν for any Φ ∈ D(Ω) N . Thanks to Gauss's Theorem, we have

⟨γ ν (Φ), γ 0 (u)⟩ H -1/2 ,H 1/2 = Ω Φ • ∇u dx + Ω u div(Φ) dx for all u ∈ H 1 (Ω), Φ ∈ H div (Ω).
To simplify the presentation, we denote Φ • ν := γ ν (Φ), and moreover

Γ D g(x) Φ • ν dx := ⟨γ ν (Φ), g⟩ H -1/2 ,H 1/2 ,
for a given for g ∈ H 1/2 (Γ), such that g = gχ Γ D . Yet, one needs to assume that such g exists (see the assumptions in Section 2.3).

Before ending this section, let us recall that a similar problem to (2.5) appears in [START_REF] Ennaji | Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations[END_REF] in the study of Hamilton-Jacobi equation (see also [22] and [START_REF] Ennaji | Beckmann-type problem for degenerate Hamilton-Jacobi equations[END_REF]). It appears also on a different form in the study of some Sobolev regularity for degenerate elliptic PDEs in [START_REF] Santambrogio | Regularity via duality in calculus of variations and degenerate elliptic PDEs[END_REF]. The approach used in [START_REF] Santambrogio | Regularity via duality in calculus of variations and degenerate elliptic PDEs[END_REF] may be written here as follows inf

Φ,υ Ω F (x, Φ(x)) dx - Γ D g(x) υ(x) dx : -div(Φ) = µ 1 -µ 2 in D ′ (Ω \ Γ D ) and Φ • ν = υ on Γ D .
In this paper, we'll use directly formulation of the type (2.5). At last, we notice that in general, the infimum may be reached for singular Φ (like for homogeneous F which will be studied in the next section). This may be related to the question of regularity of the transport density in mass transportation (see for instance the recent paper [START_REF] Dweik | W 1,p regularity on the solution of the BV least gradient problem with Dirichlet condition on a part of the boundary[END_REF] and the references therein about this kind of questions).

2.2. The algorithm. The main idea of prediction-correction algorithm is to split the dynamic into instantaneous successive processes : prediction then correction. The prediction step aims beforehand to move the population through a spontaneous velocity field. For this to happen, we use simply the transport equation (1.1) with U = V, where V derives from a potential governed by fast exit access trajectories. Afterward, as though the output of the prediction may be not feasible, we propose to catch up the upright deployment by applying the minimum flow assignment process (2.5) to the output of the prediction step; that we denote for the moment by ρ and which should be a priori an L ∞ function. Moreover, assuming that the dynamic is subject to some supply of population through incoming issues included in Γ N , we propose to take

µ 1 = ρ Ω + η Γ N ,
where η precisely designates the incoming supply through Γ N . In this case, the constraint

-div(Φ) = µ 1 -ρ in D ′ (Ω \ Γ D ) is equivalent to say -div(Φ) = ρ -ρ in D ′ (Ω) and Φ • ν = η on Γ N .
The correction step we propose to construct ρ requires to solve precisely the following optimization problem inf

Φ,ρ Ω F (x, Φ(x)) dx - Γ D g(x) Φ • ν dx : 0 ≤ ρ ≤ 1, -div(Φ) = ρ -ρ in D ′ (Ω) and Φ • ν = η on Γ N .
(2.6)

The right space for each terms in (2.6) will be given in the following section. See that the output of the correction step provides as well the correction associated with ρ and the suitable flow for the adjustment of the dynamic. We will see in the following section how the optimal flux Φ enables to carry out the patch W for the spontaneous velocity field when this is necessary.

So, the algorithm may be written as follows : we consider T > 0 a given time horizon. For a given time step τ > 0, we consider a uniform partition of [0, T ] given by t k = kτ, k = 0, . . . , n-1. Supposing that we know the density of the population ρ k at a given step k, starting by ρ 0 . Then, we superimpose successively the following two steps :

• Prediction: In this predictive step, the density of population trends to grow up into

ρ k+ 1 2 = ρ(t k+ 1 2 ),
where ρ is the solution of the transport equation

∂ t ρ + div(ρ V ) = 0 in [t k , t k+ 1 2 [, (2.7) 
with ρ(t k ) = ρ k . Here, V is spontaneous velocity field given by the geodesics toward the exit. To buils its corresponding potential φ, we propose to solve the eikonal equation

   ∥∇φ∥ = f in Ω, φ = 0 on Γ D , (2.8) 
where f is a given positive continuous function. Then, the spontaneous velocity field V is given by V := -∇φ. One sees here that the solution of (2.8) (in the sense of viscosity) gives the speedy path to the exit Γ D . The potential φ corresponds to the expected travel time to maneuver towards an exit. In particular, φ is proportional to f which may template space movement of traffic . As we will see, we can upgrade the spontaneous velocity field by taking f depending on the density on real time (like in Hugue's model). • Correction: In general it is not expected that ρ k+ 1 2 to be an allowable density of pedestrian, since this value may evolve outside the interval [0, 1]. We propose then to proceed by the minimum flow process we introduced above to find the right apportionment of the pedestrian. That is to find ρ k+1 using the optimization problem (2.6). More precisely, we propose to consider ρ k+1 given by the following optimization problem arg min

ρ inf Φ Ω F (x, Φ(x)) dx - Γ D g(x) Φ • ν dx : ρ ∈ L ∞ (Ω), 0 ≤ ρ ≤ 1, Φ ∈ L s (Ω) N , -τ div(Φ) = ρ k+1/2 -ρ in D ′ (Ω) and Φ • ν = η on Γ N , (2.9) 
where 1 ≤ s < ∞ is chosen with respect to the assumptions on F and η. To simplify the presentation, we assume that the supply through ∂Ω is null ; i.e. η ≡ 0.

Related PDE. The application

F : Ω × R N → [0, ∞)
is assumed firstly to be continuous. As a primer practical case, one can consider the quadratic case, i.e.,

F (x, ξ) = 1 2 |ξ| 2 , for any x ∈ Ω and ξ ∈ R N .
More sophisticated situations arise by considering non-homogeneous F that weights the cost according to space variables; like for instance

F (x, ξ) = c(x) s |ξ| s , for any x ∈ Ω and ξ ∈ R N , (2.10) with 1 < s < ∞.
In particular, with the parameter c one can scale the cost by focusing on and/or avoiding certain regions in space. A formal computation using duality à la Fenchel-Rockafellar (see e.g., [19]) implies that the infimum in (2.6) should coincide with

inf p p + (x) dx + 1 s ′ c(x) 1-s ′ |∇p(x)| s ′ dx -p(x) ρ(x) dx : p ∈ W 1,s ′ (Ω), p = g on Γ D ,
where s ′ is the conjugate index of s, i.e., it satisfies 1 s + 1 s ′ = 1. Moreover, p and (ρ, Φ) are solutions of both problems respectively, if and only if (p, ρ, Φ) is a solution of the following PDE

                   ρ -τ div(Φ) = ρ ρ ∈ Sign + (p), Φ = c 1-s ′ |∇p| s ′ -2 ∇p    in Ω, Φ • ν = 0 on Γ N , p = g on Γ D ,
where Sign + is the maximal monotone graph given by

Sign + (r) =    1 for r > 0 [0, 1] for r = 0 0 for r < 0 for r ∈ R.
In other words, ρ ∈ Sign + (p) is equivalent to says that 0 ≤ ρ ≤ 1 and p(1 -ρ) = 0 in Ω. In this paper, we focus on the case where s = 1. For the treatment of the other cases, one can see [28] for more details. In particular, one sees that the quadratic case is closely connected to the system (1.2) which was proposed by B. Maury et al., [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] in the framework of gradient flows in the Wasserstein space of probability measures. As to the case (2.10), dynamical model which comes off following our approach is given by some kind of non linear s ′ -Laplace equation

     ∂ρ ∂t + div(ρ (V -W )) = 0, W = c 1-s ′ |∇p| s ′ -2 ∇p p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ -1) = 0      in (0, ∞) × Ω (2.11)
subject to non-homogeneous boundary conditions

   Φ • ν = 0 on (0, ∞) × Γ N , p = g on (0, ∞) × Γ D .
Notice that we use in (2.11), the fact that ∇p = ρ ∇p, which is connected to ρ ∈ Sign + (p).

As we said above, we focus here on the case where

F (x, ξ) = k(x) |ξ|, for any (x, ξ) ∈ Ω × R N ,
where 0 ≤ k ∈ C(Ω). This case is closely connected to granular dynamic like sandpile (see [17] and the references therein). In other words the individuals behaves like grains of sand (see [START_REF] Evans | A stochastic model for growing sandpiles and its continuum limit[END_REF] and also [START_REF] Igbida | Back on stochastic model for sandpile[END_REF] for a stochastic microscopic description of the granular dynamic) in the congestion zone and not like a fluid as follows from the quadratic case. A peculiar choice may be the same function f as in (2.8). In other words, we may assume that the correction is taken respect to the geodesic leading to Γ D .

Remark 2.1. Working with F (x, Φ) = |Φ| is closely connected to gradient flow in the Wasserstein space of probability measures equipped with W 1 . The link may be established at least formally by using the results of [START_REF] Agueh | On the minimizing movement with the 1-Wasserstein distance[END_REF].

To treat the problem (2.6), we assume that the boundary data g is such that (H1): the exists g ∈ W 1,∞ (Ω), such that γ 0 (g

) = 0 on Γ N ∇g(x) ∈ G(x) := ξ ∈ R N : |ξ| ≤ k(x) , a.e. in Ω. and g = g on Γ D ,
Then, for any µ ∈ L s (Ω), we define

F(µ) := Φ ∈ L s (Ω) N : -div(Φ) = µ in Ω and Φ • ν = 0 on Γ N .
Remind here, that -div(Φ) = µ in Ω and Φ • ν = 0 on Γ N needs to be understood in the sense that

Ω Φ • ∇ξ dx = Ω µ ξ dx, for any ξ ∈ W 1,s ′ Γ D (Ω),
where W 1,s Γ D (Ω) denote the set of W 1,s (Ω) functions with null trace on Γ D .

To come up with the right continuous (with respect to time) evolution problem associated with our algorithm, we are interested into the interpretation, in terms of PDE, of the solution of the problem

N (ρ) := inf Φ,ρ τ Ω k(x) |Φ(x)| dx -τ Γ D g Φ • ν dx : τ Φ ∈ F(ρ -ρ) and ρ ∈ K 1 ,
where 0 ≤ ρ ∈ L s (Ω) is fixed and K 1 is the set of admissible densities:

K 1 = {ρ ∈ L ∞ (Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}.
See that, all the terms in N (ρ) are well defined. Indeed, since Φ ∈ L s (Ω) N and ∇•Φ ∈ L s (Ω), the normal trace of Φ is well defined on Γ D and Γ N . Actually

Γ D g Φ • ν dx needs to be understood in the sense of Γ D g Φ • ν dx = ⟨Φ • ν, g⟩ W -1/s,s (Γ D ),W 1-1/s ′ ,s ′ (Γ D ) .
Our main result here is the following Theorem 2.2. For any 0 ≤ ρ ∈ L s (Ω) , we have

N (ρ) = max p∈G k Ω ρ p dx - Ω p + dx := D ∞ g (ρ), (2.12)
where

G k := z ∈ W 1,∞ (Ω) : z = g on Γ D and |∇z(x)| ≤ k(x) a.e. x ∈ Ω .
Moreover,

N (ρ) = min ρ∈K 1 inf τ Φ∈F (ρ-ρ) τ Ω k(x) |Φ(x)| dx -τ Γ D g(x) Φ • ν dx , (2.13)
and, if ρ and p are optimal solutions of both problems N (ρ) and

D ∞ g (ρ) respectively, then p ∈ G k , ρ ∈ K 1 , ρ ∈ Sign + (p), a.e. in Ω and Ω (ρ -ρ) (p -ξ) dx ≥ 0, for any ξ ∈ G k . (2.14)
Remark 2.3. The assumption (H1) gives a compatibility condition on g to ensure that the set G k is not empty. In particular, one sees that φ, the solution of (2.8), lives in G k .

To prove Theorem 2.2, we use Von Neumann-Fan minimax theorem that we remind below Theorem (Von Neumann-Fan minimax theorem, see for instance [START_REF] Borwein | On Fan's minimax theorem[END_REF]). Let X and Y be Banach spaces. Let C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact and convex. Let g : X × Y → R be convex with respect to x ∈ C and concave and uppersemicontinuous with respect to y ∈ D, and weakly continuous in y when restricted to D. Then

max y∈D inf x∈C g(x, y) = inf x∈C max y∈D g(x, y).
Proof of Theorem 2.2. Since ρ -ρ ∈ L s (Ω), we know that F(ρ -ρ) ̸ = ∅. Moreover, since

N (ρ) = inf ρ∈K 1 inf τ Φ∈F (ρ-ρ) τ Ω k(x) |Φ(x)| dx -τ Γ D g(x) Φ • ν dx ,
by [START_REF] Ennaji | Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations[END_REF]Theorem 3.3], we get

N (ρ) = inf ρ∈K 1 max p∈G k (ρ -ρ) p dx .
Using Von Neumann-Fan minimax theorem, by taking

X = L s (Ω), Y = W 1,∞ (Ω), g(ρ, p) = (ρ p -ρ) dx, for any (ρ, p) ∈ X × Y, C = K 1 and D = G k , we deduce that N (ρ) = max p∈G k inf ρ∈K 1 (ρ -ρ) p dx = max p∈G k ρ p dx -p + dx . Using L ∞ -weak * compactness of K 1 and L s -weak compactness of G k , it is not difficult to see that inf ρ∈K 1 max p∈G k (ρ -ρ) p dx = min ρ∈K 1 max p∈G k (ρ -ρ) p dx .
This gives (2.13). To prove the last part of the theorem, we see that a couple (ρ, p) ∈ K 1 × G k satisfies ρ ∈ Sign + (p) a.e. in Ω and (2.14) if and only if

Ω ρ p dx - Ω p + dx = (ρ -ρ) p dx = max ξ∈G k (ρ -ρ) ξ dx . (2.15)
For the first implication, we see that by taking

ρ = argmin ρ∈K 1 inf τ Φ∈F (ρ-ρ) τ Ω k(x) |Φ(x)| dx -τ Γ D g(x) Φ • ν dx and p = argmax p∈G k Ω ρ p dx - Ω p + dx ,
we have

D ∞ g (ρ) = Ω ρ p dx - Ω p + dx ≤ (ρ -ρ) p dx ≤ max p∈G k (ρ -ρ) p dx = N (ρ).
So, using (2.12), we deduce (2.15) and then (ρ, p) satisfies (2.14) and ρ ∈ Sign + (p) a.e. in Ω. At last, the converse is a simple combination between (2.13), (2.15) and the fact that

N (ρ) ≥ D ∞ g (ρ). □ Remark 2.4.
(1) It is known that the optimal flux in (2.13) is not reached for a Lebesgue vector valued function Φ, in general. Indeed, since the structure of F, one expects the optimal flux to be a Radon measure vector valued function Φ. However, one sees formally that, if (ρ, Φ) and p are solutions of both problems N (ρ) and D(ρ) respectively, then

ρ ∈ Sign + (p), a.e. in Ω, Φ • ∇p = k |Φ| in Ω and τ Ω Φ • ∇ξ dx = Ω (ρ -ρ) ξ dx, for any ξ ∈ W 1,s ′ Γ D (Ω).
Yet, one needs to be careful with the treatment of Φ • ∇p, since Φ is not regular in general. Here one needs, to use the notion of tangential gradient of p (see e.g., [START_REF] Bouchitte | Energies with respect to a measure and applications to low dimensional structures[END_REF]) to handle the related PDE.

(2) In connection with Evans-Gangbo formulation, the corresponding PDE may be written as

           ρ -τ div(W ) = ρ, W = m ∇p m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ -1) = 0 |∇p| ≤ k, m(|∇p| -k) = 0            in Ω, (2.16) subject to boundary condition    Φ • ν = 0 on (0, ∞) × Γ N , p = g on (0, ∞) × Γ D .
See also, that using the relation between ρ and p, the equation in (2.16) may be written as ρ -τ div(ρW ) = ρ. (3) As a formal consequence of Theorem 2.2, under the assumptions (H1)-(H2), the algorithm in Section 2.2 turns out in solving successively two PDEs, a transport equation and a nonlinear second order equation. This enables also to establish a continuous model in terms of nonlinear PDE. This is summarized in the following items.

(a) The sequence ρ 1/2 , ρ 1 , . . . , ρ k , ρ k+1/2 , ρ k+1 , . . . , ρ n given by the algorithm in Section 2.2 is characterized by: for each k = 0, . . . , n -1, we have

• Prediction: ρ k+ 1 2 = ρ(t k+ 1 2
), where ρ is the solution of the transport equation :

∂ t ρ + div(ρ V ) = 0 in [t k , t k+ 1 2 [, with ρ(t k ) = ρ k , V
is a given vector field. For instance V = -∇φ and φ is the solution of the eikonal equation (2.8).

• Correction: ρ k+1 is a solution of the PDE 

                           ρ k+1 -τ div(ρ k+1 W ) = ρ k+1/2 , W = m ∇p k+1 m ≥ 0, p k+1 ≥ 0, 0 ≤ ρ k+1 ≤ 1, p k+1 (ρ k+1 -1) = 0 |∇p k+1 | ≤ k, m(k -|∇p k+1 |) = 0            in Ω, Φ • ν = 0 on Γ N , p k+1 = g on Γ D . (b) Considering the application ρ τ : [0, T ) → L ∞ (Ω) and p τ : [0, T ) → W 1,∞ (Ω) given by ρ τ (t) =      ρ k+
             ∂ρ ∂t + div(ρ (V -W )) = 0, W = m ∇p m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ -1) = 0 |∇p| ≤ k, m(|∇p| -k) = 0              in (0, ∞) × Ω.
(2.17) subject to boundary condition

   Φ • ν = 0 on (0, ∞) × Γ N p = g on (0, ∞) × Γ D .
(4) See that the patch W is null outside the congestion zone [ρ = 1].

(5) It is important to remark here the faux gap in the Neumann boundary condition. Indeed, (V -W )•ν is the intrinsic normal flux on Γ N and not only W •ν. To resolve this apparent incompatibility, one needs to work with V such that V •ν = 0 on Γ N . Otherwise, one needs to change the boundary condition in the problem on Γ N in the optimization problem (2.9) to handle the normal flux coming from V (one can see for instance [28]). Any way, for numerical simulation, we work in the following section with V such V • ν = 0 on Γ N . (6) Remember here, that the main operator which governs the correction step in this case, given by

   -∇ • (m ∇p) = µ m ≥ 0, |∇p| ≤ k, m(|∇p| -k) = 0,
is well known in the study of sandpile (see [17] and the references therein). The dynamic here is connected to a granular one. In other words the individuals behaves like grains of sand (see [START_REF] Evans | A stochastic model for growing sandpiles and its continuum limit[END_REF] and also [START_REF] Igbida | Back on stochastic model for sandpile[END_REF] for a stochastic microscopic description of the granular dynamic), in the congestion zone and not like a standard fluid as follows from the quadratic case.

Remark 2.5. After all, the nonlinear PDE (2.17) is a new model we propose for the description of dynamical population where the movement of the agent is of granular type like in sandpile. In this paper, we are proposing its numerical study. The theoretical study is a challenging problem for existence and uniqueness. This is an open problem and will not be treated in this paper.

Recall that, the case where the PDE is of diffusive type the PDE is well used and studied. There is a huge literature on this case, one can see the recent paper [START_REF] Igbida | L 1 -theory for hele-shaw flow with linear drift[END_REF] and the references therein for more details.

Remark 2.6. Our approach enables also to consider vector field V depending on the congestion. Indeed, it is possible to computed it just before the k-th prediction step by taking the speedy path given the following eikonal equation

   ∥∇φ∥ = H(p k ) in Ω, φ = 0 on Γ D ,
where H is a given positive continuous function, the evolution problem (2.17) needs to be coupled with the system

       V = -∇φ in Ω ∥∇φ∥ = H(p)
in Ω,

φ = 0 on Γ D .
This is an interesting variant of Hugues model where the speedy path is computed by taking into account the congestion of the crowd. Indeed, taking H a continuous function such that H(p) takes instantaneously large value for positive p, enables to avoid congestion zones. From theoretical point of view, the eikonal equation turns out to be a well posed and stable problem since p and then H(p) are regular, rather than ρ as in Hugues model. To improve the algorithm, we take in some numerical computation f = f (p) in (2.8) to compute the spontaneous velocity field V . The theoretical study of the corresponding evolution problem will be treated in forthcoming works.

Remark 2.7 (Quadratic case). Before to end up this section let us summarize here some formal results concerning the quadratic case (rigorous proofs may be found in [28]). The quadratic case corresponds to

F (x, ξ) = 1 2 |ξ| 2 , for any (x, ξ) ∈ Ω × R N .
The infimum in (2.9) coincides with

max p p(x) ρ(x) dx -p + (x)dx - τ 2 |∇p(x)| 2 dx : p ∈ H 1 (Ω), p = g on Γ D .
Moreover, p and (ρ, Φ) are solutions of both problems respectively, if and only if (p, ρ, Φ) is a solution of the following PDE

                   ρ -τ div(Φ) = ρ, Φ = ∇p ρ ∈ Sign + (p)    in Ω, Φ • ν = 0 on Γ N , p = g on Γ D .
In some sense, this implies that the quadratic case is closely connected to the system (1.2) which was proposed by B. Maury et al., (c.f. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]) in the framework of gradient flows in the Wasserstein space of probability measures. And, moreover, the correction step corresponds simply to the time Euler-Implicit discretization for the diffusion process in (1.2).

Remark 2.8. Notice here that even though our approaches (based on minimum flow problem), provide the same continuous dynamics (at least in the quadratic case) with gradient flow in the Wasserstein space of probability measures, both approaches are not the same at discrete level. While, the correction with this approach is recovered by a projection with respect to W 2 on the set {ρ ∈ L ∞ (Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}, our approach provides the correction by solving an elliptic problem through a minimum flow problem. As far as we know, these are not the same even though one can be considered as an approximation of the other.

Numerical approximation

3.1. Formulation and discretization. As discussed in Section-2, the approximation of the density ρ is performed via a prediction-correction strategy. The first step (prediction) consists in the resolution of the continuity equation (2.7) which will be done using an Euler scheme for the time discretization, whereas the term div(V ρ) is discretized using finite volumes. The second step (correction or projection) relies on a minimum flow problem which will be solved using a primal dual algorithm (PD). To begin with, let us give details concerning the discretization of the problems (2.7)-(2.9). Domain discretization: In this section, we solve numerically (2.7) and (2.9) on the domain Ω shown on Figure 1. This domain represents a room surrounded by walls which we call Γ N and has an exit door Γ D . The domain is divided into a set of m × n control volumes of length h and width equal to h. We denote by C i,j the cell at the position (i, j) and by Ψ i,j is the average value of the quantity Ψ on C i,j . At the interface of

C i,j , ω i+ 1 2 ,j , ω i-1 2 ,j , ω i,j+ 1 2
and ω i,j-1 2 are the in/out flow quantities (see Figure -1). We define discrete divergence is defined by:

(div h Φ) i,j = Φ 1 i+ 1 2 ,j -Φ 1 i-1 2 ,j h + Φ 2 i,j+ 1 2 -Φ 2 i,j-1 2 h . (3.18)
To take into account the Neumann boundary condition Φ • ν = 0 on Γ N , we impose:

• Φ 1 1 2 ,j = 0, for 1 ≤ j ≤ n, • Φ 1 m+ 1 2 ,j = 0, if ((m + 1 2 )h, jh) ∈ Γ N , • Φ 2 i, 1 2 = 0, for 1 ≤ i ≤ m, • Φ 2 i,n+ 1 2 = 0, for 1 ≤ i ≤ m.
We can rewrite this in a more compact way

(div h Φ) 1 i,j = D 1 p Φ 1 i,j , if ((m + 1 2 )h, jh) ∈ Γ D , (div h Φ) 1 i,j = D 1 m Φ 1 i,j , if ((m + 1 2 )h, jh) ∈ Γ N , (div h Φ) 2 i,j = D 2 Φ 2 i,j
, where the matrices D 1 m , D 1 p , D 2 are recalled in Appendix-A. Then, we define the discrete gradient operator as follows: ] we solve the following continuity equation

(∇ h p) 1 i,j = -t D 1 p p(i, j), if ((m + 1 2 )h, jh) ∈ Γ D , (∇ h p) 1 i,j = -t D 1 m p(i, j), if ((m + 1 2 )h, jh) ∈ Γ N , (∇ h p) 2 i,j = -t D 2 p(i,
∂ t ρ + div(V ρ) = 0 ρ(t k ) = ρ k-1 , (3.19)
to obtain ρ k+ 1 2 , where V = (V x , V y ) is the velocity field given by V = -∇D, and D being the distance (not necessary euclidean) to the boundary Γ D given by the eikonal equation (2.8) whose resolution is recalled in Appendix-B. Solving (3.19) can be done by a finite difference method in the time variable combined with a 2D finite volume method in the space variable. We approximate the term div(V ρ) in the cell

C i,j = [x i-1 2 ,j , x i+ 1 2 ,j ] × [y i,j-1 2 , y i,j+ 1 2
] as follow:

(div(V ρ)) i,j = 1 ∆x A up (V x i+ 1 2 ,j , ρ k i+ 1 2 ,j , -ρ k i+ 1 2 ,j ) -A up (V x i-1 2 ,j , ρ k i-1 2 ,j , -ρ k i-1 2 ,j ) + 1 ∆y A up (V y i,j+ 1 2 , ρ k i,j+ 1 2 , -ρ k i,j+ 1 
2

) -A up (V y i,j-1 2 , ρ k i,j-1 2 , -ρ k i,j-1 2 ) ,
where (div(V ρ)) i,j the value of div(V ρ) in the cell C i,j , (∆x, ∆y) are the spatial discretization, and

A up (x, y, z) = xy if x ≥ 0 xz if x < 0.
For the time disctization, we use the Euler explicit method to approximate the time derivative of the density. The overall scheme can the be written as:

ρ k+ 1 2 i,j -ρ k i,j τ + 1 ∆x A up (V x i+ 1 2 ,j , ρ k i+ 1 2 ,j , -ρ k i+ 1 2 ,j ) -A up (V x i-1 2 ,j , ρ k i-1 2 ,j , -ρ k i-1 2 ,j ) + 1 ∆y A up (V y i,j+ 1 2 , ρ k i,j+ 1 2 , -ρ k i,j+ 1 2 ) -A up (V y i,j-1 2 , ρ k i,j-1 2 , -ρ k i,j-1 2 ) = 0, (3.20) 
where ρ

k+ 1 2 i,j
is the average value of ρ in the cell

C i,j = [x i-1 2 ,j , x i+ 1 2 ,j ] × [y i,j-1 2 , y i,j+ 1 2 ] at time (k + 1 2 )τ , and ρ k i+ 1 2 ,j , V x i+ 1
2 ,j are the values of ρ and V at the interface x i+ 1 2 ,j at time kτ respectively. Similarly, (ρ

k i-1 2 ,j V x i-1 2 ,j ), (ρ k i,j+ 1 2 , V y i,j+ 1 2 ) and (ρ k i,j-1 2 , V x i,j-1 2
) are the values, at time τ k, of (ρ, V ) at the interface x i-1 2 ,j , y i,j+ 1 2 and y i,j-1 2 respectively. Notice that in practice, we take ∆x = ∆y = h, where h is the mesh size introduced above.

Using the upwind scheme we have and substituting in (3.20), the density ρ k+ 1 2 i,j can be written as (see also [START_REF] Roudneff | Modelisation macroscopique de mouvements de foule[END_REF]):

ρ k+ 1 2 i,j = ρ k i,j - τ h A up (V x i+ 1 2 ,j , ρ k i,j , ρ k i+1,j ) -A up (V x i-1 2 ,j , ρ k i-1,j , ρ k i,j ) - τ h A up (V y i,j+ 1 2 , ρ k i,j , ρ k i,j+1 ) -A up (V y i,j-1 2 , ρ k i,j-1 , ρ k i,j ) . (3.21) 
We consider that no flux is entering the room from the walls at Γ N . This is equivalent to impose

ρ k i-1 2 ,j V x i-1 2 ,j = 0 and ρ k i,j-1 2 V y i,j-1 2 = 0 at i = 1 and j = 1 respectively. The scheme (3.21) is conservative, stable under the CFL condition ∥V ∥ ∞ τ h ≤ 1 2
. This condition can be obtained using von Neumann stability analysis [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF]12]. We summarize this in the following algorithm:

Algorithm 1 Prediction step 1st step. Initialization: Compute the velocity V = (V x , V y ). Choose ∆x = ∆y = h and τ such ∥V ∥ ∞ τ h ≤ 1 2
and take a initial density given by ρ k i,j at time kτ .

2nd step. Update the density at time (k + 1 2 )τ by

ρ k+ 1 2 i,j = ρ k i,j - τ h [A up (V x i+ 1 2 ,j , ρ k i,j , ρ k i+1,j ) -A up (V x i-1 2 ,j , ρ k i-1,j , ρ k i,j )] - τ h [A up (V y i,j+ 1 2 , ρ k i,j , ρ k i,j+1 ) -A up (V y i,j-1 2 , ρ k i,j-1 , ρ k i,j )].
Notice that in the case where V x > 0 and V y > 0, (3.21) reduces to

ρ k+ 1 2 i,j = ρ k i,j - τ h [ρ k i,j V x i+ 1 2 ,j -ρ k i-1,j V x i-1 2 ,j ] - τ h [ρ k i,j V y i,j+ 1 2 -ρ k i,j-1 V x i,j-1 2 ].
Since the obtained density ρ k+ 1 2 may violate the constraint ρ ≤ 1, the next step is to handle congestion by solving the following minimum flow problem inf

(ρ,Φ) Ω k(x)|Φ(x)|dx : -τ div(Φ) = ρ k+ 1 2 -ρ in Ω, Φ • ν = 0 on Γ N and 0 ≤ ρ ≤ 1 , (3.22) 
where k ≥ 0 is a continuous function and, for the simplicity of the presentation, we take vanishing g. 

A(ρ, Φ) + I C (Λ(ρ, Φ)),
where (we omit the variable τ to lighten the notation)

A(ρ, Φ) = Ω τ k(x)|Φ(x)|dx + I [0,1] (ρ), Λ(ρ, Φ) = ρ -τ div Φ and B = I ρ k+ 1 2 .
Here I C stands for the indicator function of C and is given by:

I C (a) = 0 if a ∈ C +∞ if a / ∈ C.
This problem can be efficiently solved by Chambolle-Pock's primal-dual algorithm (PD) (c.f. [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]).

Based on the discrete gradient and divergence operators, we propose a discrete version of (M) as follows (M) d : min

(ρ,Φ) h 2 m+1 i=1 n+1 j=1 τ k i,j ∥Φ i,j ∥ + I [0,1] (ρ) + I C (Λ h (ρ, Φ))
where C := (a i,j ) : a i,j = ρ

k+ 1 2 i,j , ∀(i, j) ∈ 1, m × 1, n , Λ h (ρ, Φ) = ρ -τ div h Φ and k i,j is the value of k in C i,j .
In other words, the discrete version (M) d can be written as min

(ρ,Φ) A h (ρ, Φ) + B h (Λ h (ρ, Φ)), (3.23) 
or in a primal-dual form as min

(ρ,Φ) max p A h (ρ, Φ) + ⟨u, Λ h (ρ, Φ)⟩ -B * h (p),
where

A h (ρ, Φ) = h 2 m+1 i=1 n+1 j=1 τ k i,j ∥Φ i,j ∥ + I [0,1] (ρ) and B h = I C .
Notice that in this case, (2.25) has a dual problem that reads

min ρ∈X 0≤ρ≤1 max p∈X p=0 on Γ D h 2    m i=1 n j=1 p i,j (ρ k+ 1 2 i,j -ρ i,j ) : ∥∇ h p i,j ∥ ≤ k i,j    .
Then (PD) algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] can be applied to (M) d as follows:

Algorithm 2 (PD) iterations 1st step. Initialization: choose α, β > 0, θ ∈ [0, 1], ρ 0 , Φ 0 and take u 0 = Λ h (ρ 0 , Φ 0 ), p0 = p 0 2nd step. For l ≤ Iter max do (ρ l+1 , Φ l+1 ) = Prox βA h (ρ l , Φ l ) -βΛ * h (p l ) ;

p l+1 = Prox αB * h p l + αΛ h (ρ l+1 , Φ l+1 ) ; pl+1 = p l+1 + θ(p l+1 -p l ).
Recall here that the proximal operator is defined through

Prox αE (p) = argmin q 1 2 ∥p -q∥ 2 + αE(q).
3.2. Computation of the proximal operators. See that for the functional A h and B * h can be computed explicitly. Indeed, the functional A h is separable in the variables ρ and Φ :

A h (ρ, Φ) = I [0,1] (ρ) + ∥Φ∥ 1 .
So, Prox ηA h is the some of a projection in the first component and the so-called soft-thresholding. Namely (Prox A h (ρ, Φ)) i,j = max(0, min(1, ρ i,j )), max(0, 1 - = p i,j -αProj C i,j (p i,j /α) .

1 |Φ i,j | )Φ i,j . ( 3 
Thus, the details of Algorithm 3 to solve (M) d are as follow :

Algorithm 3 (PD) iterations for (M) d

Initialization: Let l = 0, choose α, β > 0 such that αβ∥Λ h ∥ 2 < 1. Choose ρ 0 , Φ 0 and p 0 = p0 = p 0 . Primal step:

(ρ l+1 i,j , Φ l+1 i,j ) = max 0, min(1, ρ l i,j -β pl i,j ) , max 0, 1 -

1 |Φ l i,j -β∇ h pl i,j | Φ l i,j -β∇ h pl i,j
.

Dual step:

v l+1 = p l + αρ l+1 -α div h (Φ l+1 ). p l+1 i,j = v l+1 i,j -αProj C i,j (v l+1 i,j /α), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Extragradient: pl+1 = 2p l+1 -p l .
It was shown in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] that when θ = 1 and αβ∥Λ h ∥ 2 < 1, the sequence {(ρ l , Φ l )} converges to an optimal solution of (M) d . So in practice, we choose α > 0 and we take β = 1/(αK 2 ), where K is an upper bound of ∥Λ h ∥. More precisely, K = ∥∇ h ∥ 2 + ∥id X ∥ 2 ≡ ∥Λ h ∥. The algorithm was implemented in Matlab and all the numerical examples below were executed on a 2,6 GHz CPU running macOs High Sierra system. Remark 3.9 (Non-homogeneous Neuman boundary condition : non null η). In is not difficult to see that in the case of non null η, one can handle this case by considering η as a source term on the boundary on Γ N . To avoid numerical computation for the correction we propose to handle the condition

-τ div(Φ) = ρ k+1/2 -ρ in D ′ (Ω) and Φ • ν = η on Γ N . as -τ div(Φ) = ρ k+1/2 + τ η -ρ in D ′ (Ω \ Γ D ).
In other words, at each iteration we take ρ l + τ η instead of ρ l in the Algorithms 1-2.

Numerical simulations

In this section we present several examples to illustrate our approach1 . We first examine the scenario of evacuation of a population ρ 0 from a the domain Ω ⊂ R 2 via an exit Γ D with different velocities. In the last two examples we compare our approach to the one in [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF], the configuration in the first one is similar to the previous ones, i.e., the crowed is initially located in a part of the room Ω and try to escape through the doors, while in the second example the domain Ω is constituted by two rooms connected by a "bridge". In all these examples, the velocity field V derives from a potential φ that is considered as the distance function to the door Γ D and is computed by solving the eikonal equation ∥∇φ∥ = f (x) φ |Γ D = 0, using the primal-dual method proposed in [START_REF] Ennaji | Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations[END_REF] (see also [22]), where f ≥ 0 is a continuous function that will be precised for each example. All the tests of this section are performed with a mesh size h = 0.01 and a timestep τ = 0.004. We can easily check that this choice of parameters satisfies the CFL condition ∥V ∥ ∞ τ h ≤ 1 2 . Moreover, the corresponding velocities are displayed in red. 4.1. One room evacuation. In this first example (c.f. Figure -2), the initial density ρ 0 is given by ρ In this example one sees that the vector filed of spontaneous velocity has small values in successive (periodic) regions. This produce in turns successive congestion zones. Moreover, the system reaches its equilibrium after t = 2. One can notice that no variation in the density is observed as the number of persons leaving the room is equal to the number of person entering the room.

0 (x) = 1 S 1 (x) + 1 S 2 (x) with S 1 = [0, 1 2 ] × [0, 1 3 ] and S 2 = [0, 1 2 ] × [ 2 3 , 1 
4.2. Homogeneous case vs quadratic case. As we pointed out in Subsection-2.3, in the case where F (x, ξ) = |ξ|, our model is connected to the gradient flow in the Wasserstein space equipped with W 1 . Whereas the case F (x, ξ) = 1 2 |ξ| 2 can be related to the gradient flow in the Wasserstein space equipped with the W 2 distance (c.f. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF]), where decongestion is performed using the Laplace operator as we discussed in Remark-2.7. The solution of the continuity equation is computed first (prediction step), then it is projected onto the set of admissible densities with respect to W 2 -Wasserstein distance (correction step). Using our approach, this can be simply solved by changing the functional A h to A h (ρ, Φ) = I [0,1] (ρ) + 1/2∥Φ∥ 2 2 and modifying formula (3.24) using the fact that

Prox σ 2 ∥.∥ 2 2 (Φ) = 1 1 + σ Φ.
To observe differences between the two methods, we consider two examples. In the first one (c.f. Figure -5), the initial density is ρ 0 (x) = 1 S 1 (x) with

S 1 = [0, 1 2 
] × [0, 1] and Γ D = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) .

. Figures-5-7 provide a comparison between our method to and one using the Laplace operator in equivalent timesteps. Overall, both models behave similarly except that our model seems to perform faster evacuation. In most of the timesteps examples, it is difficult to visualize differences in of the evolution of the crowd only through the figures. Yet, we can observe this by measuring the L ∞ and L 2 norms of the obtained solutions as well as the variation of the average density over time for the two models at the exist doors. Thanks to Figures-6-8, one can clearly notice that our model is faster than the Laplacian model in achieving population evacuation, as the blue curve (our model) remains under the red curve (Laplacian model) over all the time period. 4.3. Evacuation with path obstacles. In this section, we analyse the evacuation process in the presence of in-domain obstacles. At the microscopic level, it was shown in [38] that pedestrians might be blocked from exiting the room in case where no obstacle is placed in front of the exist. The reason is that pedestrians start to push each other once near to the exist blocking the continuation of the evacuation process. The authors [38] have concluded that placing an obstacle just in front of the exist regulates the evacuation and avoids blocking of pedestrians. To observe the effect of placing an obstacle in front in the exist on the fluidity and speed of the evacuation in the macroscopic case, we consider the following example in Ω = [0, 1] 2 where the obstacle is placed at the region [0.8, 0.9] × [0.2, 0.8]. The initial density ρ 0 is located at the left room and is given by ρ 0 (x) = As shown in Figure -9, we can notice that after t = 1.4, the room is completely evacuated in absence of the obstacle in front of the exist. However, when considering obstacle we can notice that the evacuation is partial and some pedestrian are stuck in the room. In fact, placing an obstacle slowed down the evacuation.

In conclusion, this series of examples shows that the behavior of the crowd and the evacuation time can be influenced by several factors such as the velocity field, the position of the exits as well as the geometry and positions of possible obstacles. Typically, the presented in Figure -9, adding an obstacle in the macroscopic case just in front of the door for this type of velocity field and for the chosen initial condition increased the evacuation time.

A. On the discrete operators

In this section, we recall some details concerning the discrete divergence and gradient operators that were used in Section-3. First, let us recall that the space X = R m×n is equipped with a scalar product and an associated norm as follows:

⟨u, v⟩ = h 2 m i=1 n j=1 u i,j v i,j and ∥u∥ = ⟨u, u⟩, where h is a given mesh size. Following the definition of the discrete divergence operator given in (3.18), the discrete gradient ∇ h : X -→ Y = R (m+1)×n × R m×(n+1) is given by (∇ h u) i,j = (∇ h u) 1 i,j , (∇ h u) 2 i,j , where

(∇ h u) 1 i,j = -t D 1 p u(i, j), if ((m + 1 2 )h, jh) ∈ Γ D , (∇ h u) 1 i,j = -t D 1 m u(i, j), if ((m + 1 2 )h, jh) ∈ Γ N ,
(∇ h u) 2 i,j = -t D 2 u(i, j).

and the matrices D 1 P , D 2 m , D 2 are given by

D 1 p =      0 1/h 0 • • • 0 0 -1/h 1/h 0 • • • 0 0 0 -1/h 1/h 0 • • • 0 . . . . . . . . . . . . 0 0 • • • 0 -1/h 1/h      D 1 m =      0 1/h 0 • • • 0 0 -1/h 1/h 0 • • • 0 0 0 -1/h 1/h 0 • • • 0 . . . . . . . . . . . . 0 0 • • • 0 -1/h 0     
and

D 2 =      0 1/h 0 • • • 0 0 -1/h 1/h 0 • • • 0 0 0 -1/h 1/h 0 • • • 0 . . . . . . . . . . . . 0 0 • • • 0 -1/h 0      .
This being said, we check easily that -div h and ∇ h are in duality. Moreover, we recall the following Proposition 1.10. ( [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]) Under the above-mentioned definitions and notations, one has that • The adjoint operator of ∇ h is ∇ * h = -div h . • Its norm satisfies: ∥∇ h ∥ 2 = ∥ div h ∥ 2 ≤ 8/h 2 .

B. Discretization of the eikonal equation:

For a self-contained presentation, let us recall our main approach to compute the velocity field V by solving the eikonal equation (2.8). As pointed out in [22] (see also [START_REF] Ennaji | Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations[END_REF]), the solution D of (2.8) can be obtained by solving max where D d = {(i, j) : (ih, jh) ∈ Γ D } the indexes whose spatial positions belong to Γ D and B(0, f ) is the unit ball of radius f . Then we apply Algorithm-2 with the functionals A h and B h above.
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 1 Figure 1. Discretization of the domain Ω.

  Discretization of the minimum flow problem (3.22) : First, let us rewrite (3.22) in the form (M) : min (ρ,Φ)

  ]. The exit is given by Γ D = {1} × [0.4, 0.6] and f ≡ 1.

Figure 2 .

 2 Figure 2. The crowed density ρ computed at 6 different timesteps with T = 2 and f ≡ 1.

Figure 3 .

 3 Figure 3. The crowed density ρ computed at 6 different timesteps with T = 3 and f (x) = e -3×((x-1 2 ) 2 +(y-1 2 ) 2 ) .

Figure 4 .

 4 Figure 4. The crowed density ρ computed at 6 different timesteps with T = 3 and f (x) = | cos(3x + 5y)| + 0.2.
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 56 Figure 5. The distribution of crowd at equivalent timesteps with T = 2. Top row: result using our approach. Bottom row: result using the Laplacian.

Figure 7 .Figure 8 .

 78 Figure 7. The distribution of the crowd over the domain at equivalent timesteps. Top row: result using our approach. Bottom row: result using the Laplacian.

1 S

 1 (x) with S = [0, 0.5] × [0, 1] . The exit is given by Γ D = 1 × [0.4, 0.6].

Figure 9 .

 9 Figure 9. The distribution of the crowd over the domain at equivalent timesteps. Top: result in the presence of an obstacle. Bottom: result without the obstacle.

u∈W 1 ,

 1 ∞ (Ω) Ω udx : |∇u| ≤ f, u = 0 on Γ D which can be written, at a discrete level, asmin u∈X A h (u) + B h (∇ h u), j if u i,j = 0 ∀(i, j) ∈ D d+∞ otherwise, and B h = I B(0,f ) ,

  j). This being said, one can easily check that div h = -∇ * h .Discretization of the transport equation (2.7) : We use a splitting method as follows. Given a final time T > 0 and a timestep τ > 0, we decompose the interval [0, T ] into subintervals [t k , t k+ 1 , t k+1 ], with k = 0, . . . , n-1. On each interval [t k , t k+ 1 2

	2	] and [t k+ 1 2

  .24) As to B * h , in order to compute Prox αB * h , we make use of Moreau's identity p = Prox αB * h (p) + αProx α -1 B h (p/α), and the fact that Prox α -1 B h (a, b) is given simply by the projection onto C. Consequently,

	Prox αB * h (p)	i,j

Demonstration videos are available at https://github.com/enhamza/crowd-motion

) 2 +(y-1 2 ) 2 ) .
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