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PREDICTION-CORRECTION PEDESTRIAN FLOW BY MEANS OF

MINIMUM FLOW PROBLEM

HAMZA ENNAJI †, NOUREDDINE IGBIDA‡, AND GHADIR JRADI‡

Abstract. We study a new variant of mathematical prediction-correction model for crowd
motion. The prediction phase is handled by a transport equation where the vector field is
computed via an eikonal equation ‖∇ϕ‖ = f , with a positive continuous function f connected
to the speed of the spontaneous travel. The correction phase is handled by a new version of
the minimum flow problem. This model is flexible and can take into account different types
of interactions between the agents, from gradient flow in Wassersetin space to granular type
dynamics like in sandpile. Furthermore, different boundary conditions can be used, such as
non-homogeneous Dirichlet (e.g., outings with different exit-cost penalty) and Neumann bound-
ary conditions (e.g., entrances with different rates). Combining finite volume method for the
transport equation and Chambolle-Pock’s primal dual algorithm for the eikonal equation and
minimum flow problem, we present numerical simulations to demonstrate the behavior in dif-
ferent scenarios.

1. Introduction

Macroscopic model for a congested pedestrian flow involves treating the crowd as a whole and
is applicable for large crowds. It was first introduced in [4] and developed in [23, 24]. In these
models, the crowd behave similarly to a moving fluid in a spatio-temporal dynamic governed by
a flow velocity vector field U . Thus the master equation of each macroscopic crowd flows model
is the continuity equation:

∂tρ+ div(ρ U) = 0, (1.1)

where ρ = ρ(t, x) the density of the individuals, at time t ≥ 0 and at the position x ∈ RN
(N = 2), needs to accurate some admissible global distribution of the population. Though there
is much speculation, discussion and experience to define appropriate choice of flow velocity vector
field U, there is no definitive universal choice to describe crowed motion in general. The main
difficulties lies in the fact that while maintaining a suitable dynamic esteeming the admissible
global distribution ρ, U needs to manage both, the overall behavior of the crowd (for example
of reaching an objective like exit, point of interest, avoidance of danger, etc.) and certain local
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behavior of pedestrians (pedestrian in a hurry, pedestrian who adapts their speed, pedestrian
who avoids the crowd, pedestrian attracted by the crowd, etc).

Inspired by traffic flow models, many crowd motion models were performed essentially in
one-dimensional space (c.f. [10, 23, 24]). In higher dimensions, Bellomo and Dogbe (c.f. [3, 15])
proposed coupling the continuity equation with

∂tU + (U · ∇x)U = F (ρ, U),

where the motion is governed by F , which has two parts: a relaxation term towards a definite
speed, and a repulsive term to take into account that pedestrians tend to avoid high-density
areas. A barrier method was proposed by Degond (cf. [13]) wherein the motion F depends on
a pressure that blows up when the density approaches a given congestion density. Piccoli and
Tosin proposed another class of models in the framework of a time-evolving measure in [35, 36].
In their model the velocity of the pedestrian is composed by two terms: a desired velocity and
an interaction velocity.

Roger Hughes proposed a completely different approach to describing pedestrian dynamics in
[25], where a group of people wants to leave a domain with one or more exits/doors as quickly
as possible. His main idea was to include some kind of saturation effects in the vector field.
He considered U = U [ρ] driven by the gradient of a potential Φ and weighted by a nonlinear
mobility f = f(ρ). More precisely

U = f(ρ)2∇Φ and ‖∇Φ‖ = 1/f(ρ),

where mobility includes saturation effects, i.e., degenerate behavior when approaching a given
maximum density ρmax (assumed to be known); for instance one can take f(ρ) = (ρ − ρmax)2

among others. See also [11] and [26] for further details.
To handle local behaviors of pedestrian, we go here with second order PDE for crowed motion

to perform congestion phenomena which may appear if one consider velocity field U looking
out solely to the exists (doors). The main idea is to get in U together a vector field V with
an overview looking out to the exit and some kind of patch W , a vector filed with a local view
looking out to the allowable neighbor positions taking into account the local distribution of the
pedestrian. To come out with U through this perspective, we process by splitting the dynamic
into two instantaneous phases: a first one, the so-called prediction phase, where the pedestrians
move along the given vector filed V, the so called spontaneous velocity field, and a second phase,
the correction, which generates a patch W that enables the pedestrian to move along allowable
local paths to avoid congestion and maintain admissible global distribution of the pedestrian. A
typical example of this point of view remains to be the constrained diffusion-transport equation
which was performed in the pioneering work by B. Maury and al. (cf. [31]) through a predicting-
correcting algorithm using a gradient flow in the Wasserstein space of probability measures. In
this paper, we use a new manner to handle this perspective. In contrast with [31] where the
author straighten up the density using some kind of projection in W2−Wasserstein space in
the correction phase, our approach is based on a new version of minimum flow problem. The
approach is flexible and makes it possible to integrate several scenarios to deal with congestion.
One can see also [27] where the approach is used to study similar dynamic in the case of two
populations. In particular it allows to retrieve and compute otherwise the typical model of B.
Maury, where the patch W = W [ρ] is traced strictly in the so called congested/saturated regions
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as follow
W [ρ] = −∇p, with p ≥ 0 and p(ρ− 1) = 0.

Here ρ ≡ 1 workouts the utmost distribution of the population in Ω. Therefore, via this approach,
the proposed system reads 

∂ρ

∂t
+ div(ρ (V −∇p)) = 0

p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0.

(1.2)

Furthermore, the approach enables to built a new model based on granular dynamic like in
sandpile, presuming that individuals behave like grains in the congested zones. In some sense,
at the microscopic level, the individuals travel by accruing randomly to the crowed, being placed
either upon a heretofore unoccupied position in the direction of the exit or else upon the top of
the stack of the crowd. Moreover, the local movement of the individuals may be weighted by
a given function k connected to the speed of the spontaneous local movement. In this case, we
prove that the patch is given by

W [ρ] = −m∇p
with unknown m and p satisfying

m ≥ 0, p ≥ 0, |∇p| ≤ k, p(ρ− 1) and m (|∇p| − k) = 0.

Here m ≥ 0 is Lagrange multiplayer associated with the additional constraint |∇p| ≤ k. The
approach enables also to handle and integrate different boundary conditions. Neumann bound-
ary condition is connected to the crossing boundary amount, and Dirichlet is connected to the
possibility of crossing some parts of the boundary with different charges.

After all, via this approach, we introduce a new model of granular type :

∂ρ

∂t
+ div(ρ (V −m∇p)) = 0

0 ≤ ρ ≤ 1, p ≥ 0, |∇p| ≤ k

p(ρ− 1) = 0, m(|∇p| − k) = 0,

(1.3)

subject to mixed boundary conditions (not necessary homogeneous), to describe a crowd motion
where the movement of the agent is of granular type like in sandpile. In this paper, we propose
its numerical study based on a new manner to handle the predicting-correcting algorithm to
build the patch W . Over and above the transport equation (1.1), we proceed using as well a
new version of minimum flow problem for optimal assignation as a step in the process to find the
right assignment of the pedestrian. Roughly speaking, in the correction step we put together
tow nested optimization procedures: a computation of a minimum flow with gainful assignment
towards a specific part of the boundary (towards the exit) for arbitrary target, and then a coming
up with the right target among all admissible ones. We show how one can retrieve and compute
otherwise the typical model of B.Maury et al., (c.f. [31]) that we call up above. Then, we focus
on the new model based on granular dynamics-like for sandpile.

The theoretical study of (1.3) is a challenging problem, especially existence and uniqueness
questions, that we’ll treat likely in forthcoming works. Recall that, the case where the PDE is
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of diffusive type like in (1.2), the model is very employed to describe the behavior of population
subject to global behavior governed by a vector field V and a local one governed by the patch
W [ρ] (c.f. [31, 32, 33, 34] and the references therein). The uniqueness of a solution is a hard
issue for these kind of problems that was treated recently by the second author in [28] (see also
[12, 14]).

Organization of the paper. This paper is organized as follows. In Section-2 we present our
model, we give the details of each of its steps and we discuss two peculiar related PDEs to this
model as well as some duality results on which our algorithm reposes. In Section-3, we show
how to discretize the model. Since the approximation of the continuity equation is more or
less classical, the novelty will be the use of a primal-dual method to solve the Beckmann-like
problem. More particularly, this is given in Algorithm-3. In Section-4 we given several examples
to illustrate our approach and we compare with some related works. Finally, we recall some
tools and give some technical proofs in the Appendix.

2. The model

We consider an exit scenario, where Ω ⊂ RN (N = 2) is a bounded open set with regular
boundary ∂Ω = ΓN ∪ ΓD. The set Ω represents the region where the crowd is moving, ΓN
represents the (impenetrable) walls and ΓD the exits/doors.

2.1. Minimum flow problem. The key idea concerning the minimum flow problem goes back
to Beckmann [2]. It consists in finding the optimal traffic flow field Φ between the two distri-
butions given by µ1 and µ2. That is to find the vector field Φ which satisfies the divergence
equation

−div(Φ) = µ1 − µ2 in Ω, (2.4)

and minimize a total cost of the traffic

∫
F (x,Φ(x)) dx, where F : Ω × RN → R+ is a given

function assumed to be at least continuous and convex with respect to the second variable. The
equation (2.4) needs to be understood in the sense of D′(Ω). In particular, the equation assigns
a fixed normal trace to Φ on ∂Ω which is connected to the formal values of µ1 − µ2 on ∂Ω.

Here, we use a new variant to handle the pedestrian flow and carried out the patch W for the
spontaneous velocity field when the pedestrian is hindered by the other one. Indeed, we work
with a modified traffic cost which handles some kind of gainful assignment towards a specific
part of the boundary ΓD. More precisely, we consider the following momentum cost of the traffic

M(Φ) :=

∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx,

where Φ · ν denotes the normal trace of Φ and g patterns a given gainful charge for the assign-
ment towards ΓD. Of course, for the optimization problem we have in mind we need to keep
unrestricted the normal trace of Φ on ΓD. Thus, the balance equation (2.4) turns into

−div(Φ) = µ1 − µ2 in D′(Ω \ ΓD).

See here, that the normal trace of Φ on the odd part ΓN remains to be given by µ1−µ2 on ΓN .
For instance, working with µ1 and µ2 supported in Ω, we keep unrestricted the normal trace of
Φ on ΓD but assigned it to 0 on ΓN .
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This being said, we consider the transportation cost associated with given densities µ1 and
µ2 to be

inf
Φ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : −div(Φ) = µ1 − µ2 in D′(Ω \ ΓD)
}
. (2.5)

Actually, for any arbitrary distributions µ1 and µ2, the optimization problem (2.5) aims to
minimize both the transportation between µ1 and µ2, in Ω and towards ΓD, by means of the
cost function F in Ω, as well as the transportation towards the boundary ΓD paying the gainful
charge g(x) for each target position x ∈ ΓD, respectively. Moreover, the new formulation enables
to handle as well a provided incoming (or outgoing) flux on the remaining part ΓN .

Notice here, that one needs to be careful with the notion of trace of Φ on the boundary since
it is not well defined for all Φ. One needs to be careful here with the notion of trace of Φ on the
boundary since it is not well defined for all Φ. However, working in

Hdiv :=
{

Φ ∈ L2(Ω) : div(Φ) ∈ L2(Ω)
}
,

enables us to define Φ · ν on ΓD in the right sense. Indeed, let γ0 : H1(Ω) → L2(Γ) be the
linear and continuous mapping satisfying γ0(u) = u|Γ for all u ∈ C(Ω), where Γ = ∂Ω. Then,

defining H1/2(Γ) = γ0(H1(Ω)) and H−1/2(Γ) its dual, there exists a continuous trace operator

γn : Hdiv(Ω) → H−1/2(Γ) such that γν(Φ) = Φ · ν for any Φ ∈ D(Ω)N . Thanks to Gauss’s
Theorem, we have

〈γν(Φ), γ0(u)〉H−1/2,H1/2 =

∫
Ω

Φ · ∇u dx+

∫
Ω
u div(Φ) dx for all u ∈ H1(Ω),Φ ∈ Hdiv(Ω).

To simplify the presentation, we denote Φ · ν := γν(Φ), and moreover∫
ΓD

g(x) Φ · ν dx := 〈γν(Φ), g̃〉H−1/2,H1/2 ,

where g̃χΓD = g for g̃ ∈ H1/2. Yet, one needs to assume that such g̃ exists (see the assumptions
in Section 2.3).

Before ending this section, let us recall that a similar problem to (2.5) appears in [19] in the
study of Hamilton-Jacobi equation (see also [21] and [20]). It appears also on a different form
in the study of some Sobolev regularity for degenerate elliptic PDEs in [38]. Indeed, to avoid
technicalities related to the normal trace of the flux on the boundary, it is possible to rewrite
(2.5) as follows

inf
Φ,υ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) υ(x) dx : −div(Φ) = µ1 − µ2 in D′(Ω \ ΓD)

and Φ · ν = υ on ΓD

}
.

(2.6)

Remark 2.1. Taking non-homogeneous boundary data g and η enables the treatment of conges-
tion crowd motion in an urban area with many issues : incoming issues included in ΓN with
supply rate given by η and outgoing issues in ΓD with some kind of rate of return pictured by
g.
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In [38], the author studied some particular cases of (2.6) (like for instance the case where
ΓD = ∅ and also ΓD = ∂Ω). We notice also that in (2.5), the infimum in Φ is not reached in
general and one looks in some situations (like for homogeneous F ) for measure flow fields instead.
This is related to the question of regularity of the transport density in mass transportation (see
for instance the recent paper [17] and the references therein).

2.2. The algorithm. The main idea of prediction-correction algorithm is to split the dynamic
into instantaneous successive processes : prediction then correction. The prediction step aims
beforehand to move the population through a spontaneous velocity field. For this to happen,
we use simply the transport equation (1.1) with U = V, where V derives from a potential
governed by fast exit access trajectories. Afterward, as though the output of the prediction may
be not feasible, we propose to catch up the upright deployment by applying the minimum flow
assignment process (2.5) to the output of the prediction step; that we denote for the moment by
ρ̃ and which should be a priori an L∞ function. Moreover, assuming that the dynamic is subject
to some supply of population through incoming issues included in ΓN , we propose to take

µ1 = ρ̃ Ω + η ΓN ,

where η precisely designates the incoming supply through ΓN . In this case, the constraint
−div(Φ) = µ1 − ρ in D′(Ω \ ΓD) is equivalent to say

−div(Φ) = ρ̃− ρ in D′(Ω) and Φ · ν = η on ΓN .

The correction step we propose to construct ρ requires to solve precisely the following optimiza-
tion problem

inf
(Φ,ρ)

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : 0 ≤ ρ ≤ 1, −div(Φ) = ρ̃− ρ in D′(Ω)

and Φ · ν = η on ΓN

}
.

(2.7)

The right space for each terms in (2.7) will be given in the following section. See that the output
of the correction step provides as well the correction associated with ρ̃ and the suitable flow for
the adjustment of the dynamic. We will see in the following section how the optimal flux Φ
enables to carry out the patch W for the spontaneous velocity field when this is necessary.

So, the algorithm may be written as follows : we consider T > 0 a given time horizon. For a
given time step τ > 0, we consider a uniform partition of [0, T ] given by tk = kτ, k = 0, . . . , n−1.
Supposing that we know the density of the population ρk at a given step k, starting by ρ0. Then,
we superimpose successively the following two steps :

• Prediction: In this predictive step, the density of population trends to grow up into

ρk+ 1
2

= ρ(tk+ 1
2
),

where ρ is the solution of the transport equation

∂tρ+ div(ρ V ) = 0 in [tk, tk+ 1
2
[, (2.8)
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with ρ(tk) = ρk. Here, V is spontaneous velocity field given by the geodesics toward the
exit. To built its corresponding potential ϕ, we propose to solve the eikonal equation ‖∇ϕ‖ = f in Ω,

ϕ = 0 on ΓD,
(2.9)

where f is a given positive continuous function. Then, the spontaneous velocity field
V is given by V := −∇ϕ/‖∇ϕ‖. One sees here that the solution of (2.9) (in the sense
of viscosity) gives the speedy path to the exit ΓD. The potential ϕ corresponds to the
expected travel time to maneuver towards an exit. In particular, ϕ is proportional to
f which may template space movement of traffic . As we will see, we can upgrade the
spontaneous velocity field by taking f depending on the density on real time (like in
Hugue’s model).
• Correction: In general it is not expected that ρk+ 1

2
to be an allowable density of pedes-

trian, since this value may evolve outside the interval [0, 1]. We propose then to proceed
by the Beckmann-like process we introduced above to find the right apportionment of the
pedestrian. That is to find ρk+1 using the optimization problem (2.7). More precisely,
we propose to consider ρk+1 given by the following optimization problem

arg min
ρ

inf
Φ

{∫
Ω
F (x,Φ(x)) dx−

∫
ΓD

g(x) Φ · ν dx : ρ ∈ L∞(Ω), 0 ≤ ρ ≤ 1,

Φ ∈ L2(Ω)N , −τ div(Φ) = ρk+1/2 − ρ in D′(Ω) and Φ · ν = η on ΓN

}
.

(2.10)

2.3. Related PDE. The application F : Ω×RN → [0,∞) is assumed firstly to be continuous.
As a primer practical case, one can consider the quadratic case, i.e.,

F (x, ξ) =
1

2
|ξ|2, for any x ∈ Ω and ξ ∈ RN .

More sophisticated situations arise by considering non-homogeneous F that weights the cost
according to space variables; like for instance

F (x, ξ) =
c(x)

s
|ξ|s, for any x ∈ Ω and ξ ∈ RN , (2.11)

with 1 < s <∞. In particular, with the parameter c one can scale the cost by focusing on and/or
avoiding certain regions in space. A formal computation using duality à la Fenchel-Rockafellar
(see e.g., [18]) implies that the infimum in (2.7) should coincide with

inf
p

{∫
p+(x) dx+

1

s′

∫
c(x)s

′−1 |∇p(x)|s′ dx−
∫
p(x) ρ̃(x) dx : p ∈W 1,s′(Ω), p = g on ΓD

}
,
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where s′ is the conjugate index of s, i.e., it satisfies
1

s
+

1

s′
= 1. Moreover, p and (ρ,Φ) are

solutions of both problems respectively, if and only if (p, ρ,Φ) is a solution of the following PDE

ρ− div(Φ) = ρ̃

ρ ∈ Sign+(p), k Φ = cs
′ |∇p|s′−2∇p

 in Ω,

Φ · ν = η on ΓN ,

p = g on ΓD,

(2.12)

where Sign+ is the maximal monotone graph given by

Sign+(r) =

 1 for r > 0
[0, 1] for r = 0
0 for r < 0

for r ∈ R.

In other words, ρ ∈ Sign+(p) is equivalent to says that 0 ≤ ρ ≤ 1 and p(1 − ρ) = 0 in Ω. In
this paper, we focus on the case where s = 1. For the treatment of the other cases, one can see
[27] for more details. In particular, one sees that the quadratic case is closely connected to the
system (1.2) which was proposed by B. Maury et al., [31] in the framework of gradient flows in
the Wasserstein space of probability measures. As to the case (2.11), dynamical model which
comes off following our approach is given by some kind of non linear s′−Laplace equation

∂ρ

∂t
+ div(ρ (V −W )) = 0, k W = cs

′ |∇p|s′−2∇p

p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

 in (0,∞)× Ω (2.13)

subject to boundary conditions Φ · ν = η on (0,∞)× ΓN ,

p = g on (0,∞)× ΓD.

Notice that we use in (2.13), the fact that ∇p = ρ∇p, which is connected to ρ ∈ Sign+(p).
As we said above, we focus here on the case where

F (x, ξ) = k(x) |ξ|, for any (x, ξ) ∈ Ω× RN , (2.14)

where 0 ≤ k ∈ C(Ω). This case is closely connected to granular dynamic like sandpile (see [16]
and the references therein). In other words the individuals behaves like grains of sand (see [22]
and also [29] for a stochastic microscopic description of the granular dynamic), in the congestion
zone and not like a fluid as follows from the quadratic case. A peculiar choice may be the same
function f

Moreover, in connection with gradient flow in the Wasserstein space, it is possible to connect
our approach (in the case (2.14)) to the gradient flow in the Wasserstein space of probability
measures equipped with W1. Indeed, in the case where V ≡ 0, the link is well established at
least in some particular case of nonlinearity connecting ρ to p (cf. [1]).
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To treat the problem (2.7), we assume that the boundary data g and η are such that

(H1): the exists g̃ ∈W 1,∞(Ω), such that

∇g̃(x) ∈ G(x) :=
{
ξ ∈ RN : |ξ| ≤ k(x)

}
, a.e. in Ω.

and
g̃ = g χΓD on ∂Ω, (2.15)

(H2): there exists 1 < s <∞ such that

η ∈W−
1
s
,s(ΓN ).

Then, for any µ ∈ Ls(Ω), we define

F(µ) :=
{

Φ ∈ Ls(Ω)N : −div(Φ) = µ in Ω and Φ · ν = η on ΓN

}
.

Remind here, that −div(Φ) = µ in Ω and Φ · ν = η on ΓN needs to be understood in the sense
that ∫

Ω
Φ · ∇ξ dx =

∫
Ω
µ ξ dx+

∫
ΓN

η ξ dx, for any ξ ∈W 1,s′

ΓD
(Ω).

We are interested into the interpretation in terms of PDE of the solution of the problem

N (ρ̃) := inf
Φ,ρ

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g Φ · ν dx : τ Φ ∈ F(ρ̃− ρ) and ρ ∈ K1

}
,

where 0 ≤ ρ̃ ∈ Ls(Ω) is fixed and K1 is the set of admissible densities:

K1 = {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}.
See that, all the terms in N (ρ̃) are well defined. Indeed, since Φ ∈ Ls(Ω)N and ∇ · Φ ∈ Ls(Ω),

the normal trace of Φ is well defined on ΓD and ΓN . Actually

∫
ΓD

gΦ ·ν dx and Φ ·ν = η on ΓN

need to be understood, respectively, in the sense of

〈Φ · ν, g̃〉W−1/s,s(ΓD),W 1−1/s′,s′ (Γ)

and ∫
Ω

Φ · ∇ξ dx+

∫
Ω
ξ ∇ · Φ dx = 〈η, ξ〉W−1/s,s(Γ),W 1−1/s′,s′ (Γ), for any ξ ∈W 1,s

ΓD
(Ω).

Our main result here is the following

Theorem 2.2. For any 0 ≤ ρ̃ ∈ Ls(Ω) , we have

N (ρ̃) = max
p∈Gk

{∫
Ω
ρ̃ p dx+ τ

∫
ΓN

η p dx−
∫

Ω
p+ dx

}
:= D∞g (ρ̃),

where

Gk :=
{
z ∈W 1,∞(Ω) : z = g on ΓD and |∇z(x)| ≤ k(x) a.e. x ∈ Ω

}
.

Moreover,

N (ρ̃) = min
ρ∈K1

inf
τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}
, (2.16)
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and, if ρ and p are optimal solutions of both problems N (ρ̃) and D∞g (ρ̃) respectively, then p ∈ Gk,

ρ ∈ K1, ρ ∈ Sign+(p), a.e. in Ω and∫
Ω

(ρ̃− ρ) (p− ξ) dx− τ
∫

ΓN

η (p− ξ) dx ≥ 0, for any ξ ∈ Gk.

Remark 2.3. Thanks to Theorem 2.2, one sees that the condition (2.15) is a sufficient and
necessary condition. It is more or less well known by now that this condition is equivalent to
the fact that (see for instance [19])

g(x)− (y) ≤ min

{∫ 1

0
k(ϕ(t)) |ϕ̇(t)| dt : ϕ ∈ Lip([0, 1],Ω), ϕ(0) = x, ϕ(1) = y

}
.

To prove Theorem 2.2, we use Von Neumann-Fan minimax theorem that we remind below

Theorem (Von Neumann-Fan minimax theorem, see for instance [5]). Let X and Y be Banach
spaces. Let C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact
and convex. Let g : X × Y → R be convex with respect to x ∈ C and concave and upper-
semicontinuous with respect to y ∈ D, and weakly continuous in y when restricted to D. Then

max
y∈D

inf
x∈C

g(x, y) = inf
x∈C

max
y∈D

g(x, y).

To this aim, we use the following result which goes back to [19] in the case where η ≡ 0. For
completeness, a proof is given in Appendix-C.

Lemma 2.4. We have

inf
τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}

= max
p∈Gk

{∫
(ρ̃− ρ) p dx− τ

∫
ΓN

p η dx

}
.

(2.17)

Proof of Theorem 2.2. Since ρ̃ − ρ ∈ Ls(Ω) and η ∈ W−
1
s
,s(ΓN ), we know that F(ρ̃ − ρ) 6= ∅.

Moreover, since

N (ρ̃) = inf
ρ∈K1

inf
τΦ∈F(ρ̃−ρ)

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}
,

by Lemma 2.4, we get

N (ρ̃) = inf
ρ∈K1

max
p∈Gk

{∫
(ρ̃− ρ) p dx− τ

∫
ΓN

p η dx

}
.

Using Von Neumann-Fan minimax theorem as in [5], we deduce that

N (ρ̃) = max
p∈Gk

inf
ρ∈K1

{∫
(ρ̃− ρ) p dx− τ

∫
ΓN

p η dx

}



PREDICTION-CORRECTION PEDESTRIAN FLOW BY MEANS OF MINIMUM FLOW PROBLEM 11

= max
p∈Gk

{∫
ρ̃ p dx−

∫
p+ dx− τ

∫
ΓN

p η dx

}
.

Taking

p = arg max
p∈W 1,∞(Ω), p|ΓD=g

{∫
ρ̃ p dx−

∫
p+ dx+ τ

∫
ΓN

p η dx

}
and ρ = Sign+

0 (p) and using Lemma 2.4, we deduce the equivalence between the solutions of
(2.17) and (2.12). Thus the result of the theorem.

�

Remark 2.5. (1) It is known that the optimal flux in (2.16) is not reached for a Lebesgue
vector valued function Φ. Indeed, since the structure of F, one expects the optimal flux
to be a Radon measure vector valued function Φ. However, if this is true and if (ρ,Φ)
and p are solutions of both problems N (ρ̃) and D(ρ̃) respectively, then ρ ∈ Sign+(p),
a.e. in Ω, Φ · ∇p = k |Φ| in Ω and

τ

∫
Ω

Φ · ∇ξ dx =

∫
Ω

(ρ̃− ρ) ξ dx+ τ

∫
ΓN

η ξ dx, for any ξ ∈W 1,s′

ΓD
(Ω).

In general, one needs to be careful with the treatment of Φ · ∇p, since Φ is not regular
in general. Here one needs, to use the notion of tangential gradient of p (see e.g., [6]) to
handle the related PDE.

(2) In connection with Evans-Gangbo formulation, the corresponding PDE may be written
as 

ρ̃− τ div(ρ W ) = 0, W = m∇p

m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

|∇p| ≤ k, m(|∇p| − k) = 0

 in Ω,

subject to boundary condition Φ · ν = η on (0,∞)× ΓN ,

p = g on (0,∞)× ΓD.

(3) As a formal consequence of Theorem 2.2, under the assumptions (H1)-(H2), the algo-
rithm in Section 2.2 turns out in solving successively two PDEs, a transport equation
and a nonlinear second order equation. This enables also to establish a continuous model
in terms of nonlinear PDE. This is summarized in the following items.
(a) The sequence ρ1/2, ρ1, . . . , ρk, ρk+1/2, ρk+1, . . . , ρn given by the algorithm in Section

2.2 is characterized by: for each k = 0, . . . , n− 1, we have
• Prediction: ρk+ 1

2
= ρ(tk+ 1

2
), where ρ is the solution of the transport equa-

tion :

∂tρ+ div(ρ V ) = 0 in [tk, tk+ 1
2
[,

with ρ(tk) = ρk, V is a given vector field. For instance V = −∇ϕ/‖∇ϕ‖ and
ϕ is the solution of the eikonal equation (2.9).
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• Correction: ρk+1 is a solution of the PDE

ρk+1 − τ div(ρk+1 W ) = ρk+1/2, W = m∇pk+1

m ≥ 0, pk+1 ≥ 0, 0 ≤ ρk+1 ≤ 1, pk+1(ρk+1 − 1) = 0

|∇pk+1| ≤ k, m(k− |∇pk+1|) = 0

 in Ω,

Φ · ν = η on ΓN ,

pk+1 = g on ΓD.

(b) Considering the application ρτ : [0, T )→ L∞(Ω) and pτ : [0, T )→W 1,∞(Ω) given
by

ρτ (t) =


ρk+ 1

2
for any t ∈ [tk, tk+ 1

2
[

ρk+1 for any t ∈ [tk+ 1
2
, tk+1[

for k = 0, 1, . . . , n− 1,

and

pτ (t) =


0 for any t ∈ [tk, tk+ 1

2
[

pk+1 for any t ∈ [tk+ 1
2
, tk+1[

for k = 0, 1, . . . , n− 1,

one expects that
• ρτ → ρ and pτ → p as τ → 0,
• the couple (ρ, p) satisfies the following evolution PDE

∂ρ

∂t
+ div(ρ (V −W )) = 0, W = m∇p

m ≥ 0, p ≥ 0, 0 ≤ ρ ≤ 1, p(ρ− 1) = 0

|∇p| ≤ k, m(|∇p| − k) = 0


in (0,∞)× Ω. (2.21)

subject to boundary condition Φ · ν = η on (0,∞)× ΓN

p = g on (0,∞)× ΓD.

(4) See that the patch W is null outside the congestion zone [ρ = 1].
(5) Remember here, that the main operator which governs the correction step in this case,

given by  −∇ · (m∇p) = µ

m ≥ 0, |∇p| ≤ k, m(|∇p| − k) = 0,
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is well known in the study of sandpile (see [16] and the references therein). The dynamic
here is connected to a granular one. In other words the individuals behaves like grains
of sand (see [22] and also [29] for a stochastic microscopic description of the granular
dynamic), in the congestion zone and not like a fluid as follows from the quadratic case.

Remark 2.6. After all, the nonlinear PDE (2.21) is a new model we propose for the description
of dynamical population where the movement of the agent is of granular type like in sandpile. In
this paper, we are proposing its numerical study. The theoretical study is a challenging problem
for existence and uniqueness. This is an open problem and will not be treated in this paper.
Recall that, the case where the PDE is of diffusive type the PDE is well used and studied. There
is a huge literature on this case, one can see the recent paper [28] and the references therein for
more details.

Remark 2.7. In the case where V is computed just before the k−th prediction step by taking
the speedy path given the following eikonal equation ‖∇ϕ‖ = H(pk) in Ω,

ϕ = 0 on ΓD,

where H is a given positive continuous function, the evolution problem (2.21) needs to be coupled
with the system 

V = −∇ϕ/‖∇ϕ‖ in Ω
‖∇ϕ‖ = H(p) in Ω,

ϕ = 0 on ΓD.

This is an interesting variant of Hugues model where the speedy path is computed by taking
into account the congestion of the crowd. Indeed, taking H a continuous function such that
H(p) is take instantaneously large value for positive p, enables to avoid congestion zones. From
theoretical point of view, the eikonal equation turns out to be a well posed and stable problem
since p and then H(p) are regular, rather than ρ as in Hugues model. To improve the algo-
rithm, we take in some numerical computation f = f(p) in (2.9) to compute the spontaneous
velocity field V . The theoretical study of the corresponding evolution problem will be treated
in forthcoming works.

Remark 2.8 (Quadratic case). Before to end up this section let summarize here some formal
results concerning the quadratic case. The proofs may be found in [27] where the second author
study some connected dynamic in the case of two populations. The quadratic case corresponds
to

F (x, ξ) =
1

2
|ξ|2, for any (x, ξ) ∈ Ω× RN .

The infimum in (2.10) coincides with

inf
p

{∫
p+(x)dx+

1

2

∫
|∇p(x)|2 dx−

∫
p(x) ρ̃(x) dx : p ∈ H1(Ω), p = g on ΓD

}
.
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Moreover, p and (ρ,Φ) are solutions of both problems respectively, if and only if (p, ρ,Φ) is a
solution of the following PDE

ρ− div(Φ) = ρ̃, Φ = ∇p

ρ ∈ Sign+(p)

 in Ω,

Φ · ν = η on ΓN ,

p = g on ΓD.

In some sense, this implies that the quadratic case is closely connected to the system (1.2) which
was proposed by B. Maury et al., (c.f. [31]) in the framework of gradient flows in the Wasserstein
space of probability measures. And, moreover, the correction step corresponds simply to the
time Euler-Implicit discretization for the diffusion process in (1.2).

Remark 2.9. (1) Notice here that even though our approaches (based on minimum flow
problem), provide the same continuous dynamics (at least in the quadratic case) with
gradient flow in the Wasserstein space of probability measures, both approaches are not
the same at discrete level. While, the correction with this approach is recovered by a
projection with respect to W2 on the set {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}, our
approach provides the correction by solving an elliptic problem through a minimum flow
problem. As far as we know, these are not the same even though one can be considered
as an approximation of the other.

(2) In contrast of the quadratic case, in the homogeneous case we do believe here that
recovering the correction by a projection with respect to W1 on the set {ρ ∈ L∞(Ω) :
0 ≤ ρ ≤ 1 a.e. in Ω}, or by using our approach are the same in the homogeneous case.
This issue would be treated in forthcoming works.

3. Numerical approximation

3.1. Formulation and discretization. As discussed in Section-2, the approximation of the
density ρ is performed via a prediction-correction strategy. The first step (prediction) consists in
the resolution of the continuity equation (2.8) which will be done using an Euler scheme for the
time discretization, whereas the term div(V ρ) is discretized using finite volumes. The second
step (correction or projection) relies on a minimum flow problem which will be solved using a
primal dual algorithm (PD). To begin with, let us give details concerning the discretization of
the problems (2.8)-(2.10).

Domain discretization: In this section, we solve numerically (2.8) and (2.10) on the domain
Ω shown on Figure 1. This domain represents a room surrounded by walls which we call ΓN
and has an exit door ΓD. The domain is divided into a set of m×n control volumes of length h
and width equal to h. We denote by Ci,j the cell at the position (i, j) and by Ψi,j is the average
value of the quantity Ψ on Ci,j . At the interface of Ci,j , ωi+ 1

2
,j , ωi− 1

2
,j , ωi,j+ 1

2
and ωi,j− 1

2
are

the in/out flow quantities (see Figure-1).
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Exit Door

Figure 1. Discretization of the domain Ω.

We define discrete divergence is defined by:

(divh Φ)i,j =
Φ1
i+ 1

2
,j
− Φ1

i− 1
2
,j

h
+

Φ2
i,j+ 1

2

− Φ2
i,j− 1

2

h
. (3.22)

To take into account the Neumann boundary condition Φ · ν = 0 on ΓN , we impose:

• Φ1
1
2
,j

= 0, for 1 ≤ j ≤ n,

• Φ1
m+ 1

2
,j

= 0, if ((m+
1

2
)h, jh) ∈ ΓN ,

• Φ2
i, 1

2

= 0, for 1 ≤ i ≤ m,

• Φ2
i,n+ 1

2

= 0, for 1 ≤ i ≤ m.

We can rewrite this in a more compact way

(divh Φ)1
i,j = D1

pΦ
1
i,j , if ((m+

1

2
)h, jh) ∈ ΓD,

(divh Φ)1
i,j = D1

mΦ1
i,j , if ((m+

1

2
)h, jh) ∈ ΓN ,

(divh Φ)2
i,j = D2Φ2

i,j ,

where the matrices D1
m, D

1
p, D

2 are recalled in Appendix-A. Then, we define the discrete gradient
operator as follows:

(∇hp)1
i,j = −tD1

pp(i, j), if ((m+
1

2
)h, jh) ∈ ΓD,

(∇hp)1
i,j = −tD1

mp(i, j), if ((m+
1

2
)h, jh) ∈ ΓN ,

(∇hp)2
i,j = −tD2p(i, j).

This being said, one can easily check that divh = −∇∗h.

Discretization of the transport equation (2.8) : We use a splitting method as follows.
Given a final time T > 0 and a timestep τ > 0, we decompose the interval [0, T ] into subintervals
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[tk, tk+ 1
2
] and [tk+ 1

2
, tk+1], with k = 0, . . . , n−1. On each interval [tk, tk+ 1

2
] we solve the following

continuity equation {
∂tρ+ div(V ρ) = 0

ρ(tk) = ρk−1,
(3.23)

to obtain ρk+ 1
2 , where V = (V x, V y) is the velocity field given by V = −∇D/‖∇D‖, and D being

the distance (not necessary euclidean) to the boundary ΓD given by the eikonal equation (2.9)
whose resolution is recalled in Appendix-B. Solving (3.23) can be done by combining a finite
difference method in the time variable combined with a 2D finite volume method in the space
variable. We approximate the term div(V ρ) in the cell Ci,j = [xi− 1

2
,j , xi+ 1

2
,j ]× [yi,j− 1

2
, yi,j+ 1

2
] as

follow:

(div(V ρ))i,j =
1

∆x
[ρi+ 1

2
,jV

x
i+ 1

2
,j
− ρi− 1

2
,jV

x
i,j ] +

1

∆y
[ρi,j+ 1

2
V y

i,j+ 1
2

− ρi,j− 1
2
V x
i,j− 1

2

],

where (div(V ρ))i,j the value of div(V ρ) in the cell Ci,j and (∆x,∆y) are the spatial discretization.
Notice that in practice, we take ∆x = ∆y = h, where h is the mesh size introduced above.

For the time disctization, we use the Euler explicit method to approximate the time derivative
of the density. The overall scheme can the be written as:

ρ
k+ 1

2
i,j − ρki,j

τ
+

1

∆x
[ρk
i+ 1

2
,j
V x
i+ 1

2
,j
− ρk

i− 1
2
,j
V x
i− 1

2
,j

] +
1

∆y
[ρk
i,j+ 1

2

V y

i,j+ 1
2

− ρk
i,j− 1

2

V x
i,j− 1

2

] = 0 (3.24)

where ρ
k+ 1

2
i,j is the average value of ρ in the cell Ci,j = [xi− 1

2
,j , xi+ 1

2
,j ] × [yi,j− 1

2
, yi,j+ 1

2
] at time

(k +
1

2
)τ , and ρk

i+ 1
2
,j

, V x
i+ 1

2
,j

are the values of ρ and V at the interface xi+ 1
2
,j at time kτ respec-

tively. Similarly, (ρk
i− 1

2
,j
V x
i− 1

2
,j

), (ρk
i,j+ 1

2

, V y

i,j+ 1
2

) and (ρk
i,j− 1

2

, V x
i,j− 1

2

) are the values, at time τk,

of (ρ, V ) at the interface xi− 1
2
,j , yi,j+ 1

2
and yi,j− 1

2
respectively.

Using the upwind scheme we have ρk
i+ 1

2
,j

= ρki,j and ρk
i,j+ 1

2

= ρki,j . Substituting in (3.24), the

density ρ
k+ 1

2
i,j can be written as:

ρ
k+ 1

2
i,j = ρki,j −

τ

∆x
[ρki,jV

x
i+ 1

2
,j
− ρki−1,jV

x
i− 1

2
,j

]− τ

∆y
[ρki,jV

y

i,j+ 1
2

− ρki,j−1V
x
i,j− 1

2

]

We consider that no flux is entering the room from the walls at ΓN . This is equivalent to
impose ρk

i− 1
2
,j
V x
i− 1

2
,j

= 0 and ρk
i,j− 1

2

V y

i,j− 1
2

= 0 at i = 1 and j = 1 respectively.

Finally, let us recall that the values of h and τ are chosen to satisfy a CFL-type constraint

max(‖Vi,j‖)
τ

h
<

1

2
in order to guarantee the stability of the numerical scheme (3.24). We

summarize this in the following algorithm:
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Algorithm 1 Prediction step

1st step. Initialization: Compute the velocity V = (V x, V y). Choose ∆x = ∆y = h and τ

such max(‖Vi,j‖)
τ

h
<

1

2
and take a initial density given by ρki,j at time kτ .

2nd step. Update the density at time (k +
1

2
)τ by

ρ
k+ 1

2
i,j = ρki,j −

τ

∆x
[ρki,jV

x
i+ 1

2
,j
− ρki−1,jV

x
i− 1

2
,j

]− τ

∆y
[ρki,jV

y

i,j+ 1
2

− ρki,j−1V
x
i,j− 1

2

].

Remark 3.10. The discretization of div(V ρ) assumes a positive direction for the speed i.e.,V x > 0
and V y > 0. However, the scheme can be easily adapted to other cases. For example, if V x > 0
and V y < 0 for some (i, j), the discretization of div(ρV ) becomes:

(div(V ρ))i,j =
1

∆x
[ρi+ 1

2
,jV

x
i+ 1

2
,j
− ρi− 1

2
,jV

x
i− 1

2
,j

] +
1

∆y
[ρi,j− 1

2
V y

i,j− 1
2

− ρi,j+ 1
2
V x
i,j+ 1

2

],

Since the obtained density ρk+ 1
2 may violate the constraint ρ ≤ 1, the next step is to handle

congestion by solving the following minimum flow problem

inf
(ρ,Φ)

{∫
Ω
k(x)|Φ(x)|dx : −τ div(Φ) = ρk+ 1

2 − ρ in Ω, Φ · ν = 0 on ΓN and 0 < ρ ≤ 1

}
,

(3.25)
where where k ≥ 0 is a continuous function and, for the simplicity of the presentation, we take
vanishing g and η (see Remark 3.11).

Discretization of the minimum flow problem (3.25) : First, let us rewrite (3.25) in the
form

(M) : min
(ρ,Φ)
A(ρ,Φ) + IC(Λ(ρ,Φ)),

where (we omit the variable τ to lighten the notation)

A(ρ,Φ) =

∫
Ω
τk(x)|Φ(x)|dx+ I[0,1](ρ), Λ(ρ,Φ) = ρ− τ div Φ and B = I{

ρk+ 1
2

}.
This problem can be efficiently solved by Chambolle-Pock’s primal-dual algorithm (PD) (c.f. [7]).

Based on the discrete gradient and divergence operators, we propose a discrete version of (M)
as follows

(M)d : min
(ρ,Φ)

{
h2

m+1∑
i=1

n+1∑
j=1

τki,j‖Φi,j‖+ I[0,1](ρ) + IC(Λh(ρ,Φ))
}

where C :=

{
(ai,j) : ai,j = ρ

k+ 1
2

i,j , ∀(i, j) ∈ J1,mK× J1, nK
}
, Λh(ρ,Φ) = ρ− τ divh Φ and ki,j is

the value of k in Ci,j . In other words, the discrete version (M)d can be written as

min
(ρ,Φ)
Ah(ρ,Φ) + Bh(Λh(ρ,Φ)), (3.26)
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or in a primal-dual form as

min
(ρ,Φ)

max
p
Ah(ρ,Φ) + 〈u,Λh(ρ,Φ)〉 − B∗h(p),

where

Ah(ρ,Φ) = h2
m+1∑
i=1

n+1∑
j=1

τki,j‖Φi,j‖+ I[0,1](ρ) and Bh = IC .

Notice that in this case, (2.28) has a dual problem that reads

min
ρ∈X

0≤ρ≤1

max
p∈X

p=0 on ΓD

h2


m∑
i=1

n∑
j=1

pi,j(ρ
k+ 1

2
i,j − ρi,j) : ‖∇hpi,j‖ ≤ ki,j

 .

Then (PD) algorithm [8] can be applied to (M)d as follows:

Algorithm 2 (PD) iterations

1st step. Initialization: choose α, β > 0, θ ∈ [0, 1], ρ0,Φ
0 and take u0 = Λh(ρ0,Φ0), p̄0 = p0

2nd step. For l ≤ Itermax do

(ρl+1,Φl+1) = ProxβAh

(
(ρl,Φl)− βΛ∗h(p̄l)

)
;

pl+1 = ProxαB∗h

(
pl + αΛh(ρl+1,Φl+1)

)
;

p̄l+1 = pl+1 + θ(pl+1 − pl).

Recall here that the proximal operator is defined through

ProxαE(p) = argmin
q

1

2
‖p− q‖2 + ηE(q).

3.2. Computation of the proximal operators. See that for the functional Ah and B∗h can
be computed explicitly. Indeed, the functional Ah is separable in the variables ρ and Φ :

Ah(ρ,Φ) = I[0,1](ρ) + ‖Φ‖1.
So, ProxηAh is the some of a projection in the first component and the so-called soft-thresholding.
Namely

(ProxAh(ρ,Φ))i,j =

(
max(0,min(1, ρi,j)),max(0, 1− 1

|Φi,j |
)Φi,j

)
. (3.27)

As to B∗h, in order to compute ProxαB∗h , we make use of Moreau’s identity

p = ProxαB∗h(p) + αProxα−1Bh(p/η),

and the fact that Proxα−1Bh(a, b) is given simply by the projection onto C. Consequently,(
ProxαB∗h(p)

)
i,j

=
(
pi,j − αProjCi,j (pi,j/α)

)
.

Thus, the details of Algorithm 3 to solve (M)d are as follow :
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Algorithm 3 (PD) iterations for (M)d

Initialization: Let k = 0, choose α, β > 0 such that αβ‖Λh‖2 < 1. Choose ρ0,Φ0 and
p0 = p̄0 = p0.
Primal step:

(ρl+1
i,j ,Φ

l+1
i,j ) =

(
max

(
0,min(1, ρli,j − βp̄li,j)

)
,max

(
0, 1− 1

|Φl
i,j − β∇hp̄li,j |

)(
Φl
i,j − β∇hp̄li,j

))
.

Dual step:
vl+1 = pl + αρl+1 − α divh(Φl+1).

pl+1
i,j = vl+1

i,j − αProjCi,j (v
l+1
i,j /α), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Extragradient:
p̄l+1 = 2pl+1 − pl.

It was shown in [8] that when θ = 1 and αβ‖Λh‖2 < 1, the sequence {(ρl,Φl)} converges to
an optimal solution of (M)d. So in practice, we choose α > 0 and we take β = 1/(ηK2), where

K is an upper bound of ‖Λh‖. More precisely, K =
√
‖∇h‖2 + ‖idX‖2 ≡ ‖Λh‖. The algorithm

was implemented in Matlab and all the numerical examples below were executed on a 2,6 GHz
CPU running macOs High Sierra system.

Remark 3.11 (Non-homogeneous Neuman boundary condition : non null η). In is not difficult to
see that in the case of non null η, one can handle this case by considering η as a source term on
the boundary on ΓN . To avoid numerical computation for the correction we propose to handle
the condition

−τ div(Φ) = ρk+1/2 − ρ in D′(Ω) and Φ · ν = η on ΓN .

as
−τ div(Φ) = ρk+1/2 + τ η − ρ in D′(Ω \ ΓD).

In other words, at each iteration we take ρl + τ η instead of ρl in the Algorithms 1-2.

4. Numerical simulations

In this section we present several examples to illustrate our approach 1. We first examine
the scenario of evacuation of a population ρ0 from a the domain Ω ⊂ R2 via an exit ΓD with
different velocities. In the last two examples we compare our approach to the one in [31, 32], the
configuration in the first one is similar to the previous ones, i.e., the crowed is initially located
in a part of the room Ω and try to escape through the doors, while in the second example the
domain Ω is constituted by two rooms connected by a ”bridge”. In all these examples, the
velocity field V derives from a potential ϕ that is considered as the distance function to the door
ΓD and is computed by solving the eikonal equation{‖∇ϕ‖ = f(x)

ϕ|ΓD = 0,

1Demonstration videos are available at https://github.com/enhamza/crowd-motion

https://github.com/enhamza/crowd-motion
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using the primal-dual method proposed in [19] (see also [21]), where f ≥ 0 is a continuous
function that will be precised for each example. All the tests of this section are performed with
a mesh size h = 0.01 and a timestep τ = 0.004. Moreover, the corresponding velocities are
displayed in red.

4.1. One room evacuation. In this first example (c.f. Figure-2), the initial density ρ0 is given

by ρ0(x) = 1S1(x) + 1S2(x) with S1 = [0,
1

2
] × [0,

1

3
] and S2 = [0,

1

2
] × [

2

3
, 1]. The exit is given

by ΓD = {1} × [0.4, 0.6] and f ≡ 1.

Figure 2. The crowed density ρ computed at 6 different timesteps with T = 2
and f ≡ 1.

In the second example (c.f. Figure-3), the initial density is ρ0(x) = 1S1(x) with S1 = [0,
1

2
]×

[0, 1] and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) and f(x) = e−3×((x− 1
2

)2+(y− 1
2

)2).



PREDICTION-CORRECTION PEDESTRIAN FLOW BY MEANS OF MINIMUM FLOW PROBLEM 21

Figure 3. The crowed density ρ computed at 6 different timesteps with T = 3

and f(x) = e−3×((x− 1
2

)2+(y− 1
2

)2).

In this example, the function f has a bump in the middle of the domain, and we can observe
in Figure-3 that the population is avoiding this region while heading the doors.

Figure 4. The crowed density ρ computed at 6 different timesteps with T = 3
and f(x) = | cos(3x+ 5y)|+ 0.2.
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In the third example (c.f. Figure-4),, the initial condition for the density is ρ0(x) = 1S1(x) with

S1 = [0,
1

2
]× [0, 1] and ΓD = ({1} × [0.2, 0.3])∪ ({1} × [0.7, 0.8]) and f(x) = | cos(3x+5y)|+0.2.

The source term is located on the entry of the domain at ΓS = {0} × [0.3, 0.6].
In this example one sees that the vector filed of spontaneous velocity has small values in succes-
sive (periodic) regions. This produce in turns successive congestion zones. Moreover, the system
reaches its equilibrium after t = 2. One can notice that no variation in the density is observed
as the number of persons leaving the room is equal to the number of person entering the room.

4.2. Homogeneous case vs quadratic case. As we pointed out in Subsection-2.3, in the
case where F (x, ξ) = |ξ|, our model is connected to the gradient flow in the Wasserstein space

equipped with W1. Whereas the case F (x, ξ) =
1

2
|ξ|2 can be related to the gradient flow in the

Wasserstein space equipped with theW2 distance (c.f. [31, 32]), where decongestion is performed
using the Laplace operator as we discussed in Remark-2.8. The solution of the continuity
equation is computed first (prediction step), then it is projected onto the set of admissible
densities with respect to W2-Wasserstein distance (correction step). Using our approach, this
can be simply solved by changing the functional Ah to Ah(ρ,Φ) = I[0,1](ρ) + 1/2‖Φ‖22 and
modifying formula (3.27) using the fact that

Proxσ
2
‖.‖22(Φ) =

1

1 + σ
Φ.

To observe differences between the two methods, we consider two examples. In the first one
(c.f. Figure-5), the initial density is ρ0(x) = 1S1(x) with

S1 = [0,
1

2
]× [0, 1] and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) .

.

Figure 5. The distribution of crowd at equivalent timesteps with T = 2. Top
row: result using our approach. Bottom row: result using the Laplacian.
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Figure 6. Top: Variation of the average density over time for the two models
at the exist doors. Bottom: Variation of ||ρ1 − ρ2||L∞(Ω) and ||ρ1 − ρ2||L2(Ω) as
a function of time for the two rooms case. ρ1 is the solution obtained by our
approach and ρ2 the solution obtained by the Laplacian model.

Now, we consider a domain Ω = [0, 1]2 = Ωl ∪ Ωr composed of two rooms linked by a bridge
in the spirit of [30], where Ωl = [0, 0.4] × [0, 1] and Ωr = [0.6, 1] × [0, 1]. The initial density ρ0

is located at the left room and is given by ρ0(x) = 1S(x) with S = [0, 0.4]× [0, 1] . The exit is
given by the two end points (1, 0) and (1, 1), that is ΓD = {(1, 0), (1, 1)}.

Figure 7. The distribution of the crowd over the domain at equivalent
timesteps. Top row: result using our approach. Bottom row: result using the
Laplacian.
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Figure 8. Top: Variation of the average density over time for the two models
at the exist doors. Bottom: Variation of ||ρ1 − ρ2||L∞(Ω) and ||ρ1 − ρ2||L2(Ω) as
a function of time for the two rooms case. ρ1 is the solution obtained by our
approach and ρ2 the solution obtained by the Laplacian model.

Figures-5-7 provide a comparison between our method to and one using the Laplace operator
in equivalent timesteps. Overall, both models behave similarly except that our model seems
to perform faster evacuation. In most of the timesteps examples, it is difficult to visualize
differences in of the evolution of the crowd only through the figures. Yet, we can observe this by
measuring the L∞ and L2 norms of the obtained solutions as well as the variation of the average
density over time for the two models at the exist doors. Thanks to Figures-6-8, one can clearly
notice that our model is faster than the Laplacian model in achieving population evacuation,
as the blue curve (our model) remains under the red curve (Laplacian model) over all the time
period.

4.3. Evacuation with path obstacles. In this section, we analyse the evacuation process
in the presence of in-domain obstacles. At the microscopic level, it was shown in [37] that
pedestrians might be blocked from exiting the room in case where no obstacle is placed in
front of the exist. The reason is that pedestrians start to push each other once near to the
exist blocking the continuation of the evacuation process. The authors [37] have concluded that
placing an obstacle just in front of the exist regulates the evacuation and avoids blocking of
pedestrians. To observe the effect of placing an obstacle in front in the exist on the fluidity and
speed of the evacuation in the macroscopic case, we consider the following example in Ω = [0, 1]2

where the obstacle is placed at the region [0.8, 0.9]× [0.2, 0.7]. The initial density ρ0 is located
at the left room and is given by ρ0(x) = 1S(x) with S = [0, 0.5] × [0, 1] . The exit is given by
ΓD = 1× [0.4, 0.6].
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Figure 9. The distribution of the crowd over the domain at equivalent timesteps.

As shown in Figure-9, we can notice that after t = 1.4, the room is completely evacuated in
absence of the obstacle in front of the exist. However, when considering obstacle we can notice
that the evacuation is partial and some pedestrian are stuck in the room. In fact, placing an
obstacle slowed down the evacuation.
Unlike the microscopic case, adding an obstacle in the macroscopic case have had negative effects
on the evacuation process due to the continum model of the density.
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A. On the discrete operators

In this section, we recall some details concerning the discrete divergence and gradient operators
that were used in Section-3. First, let us recall that the space X = Rm×n is equipped with a
scalar product and an associated norm as follows:

〈u, v〉 = h2
m∑
i=1

n∑
j=1

ui,jvi,j and ‖u‖ =
√
〈u, u〉,

where h is a given mesh size. Following the definition of the discrete divergence operator given
in (3.22), the discrete gradient ∇h : X −→ Y = R(m+1)×n × Rm×(n+1) is given by (∇hu)i,j =(

(∇hu)1
i,j , (∇hu)2

i,j

)
, where

(∇hu)1
i,j = −tD1

pu(i, j), if ((m+
1

2
)h, jh) ∈ ΓD,

(∇hu)1
i,j = −tD1

mu(i, j), if ((m+
1

2
)h, jh) ∈ ΓN ,

(∇hu)2
i,j = −tD2u(i, j).
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and the matrices D1
P , D

2
m, D2 are given by

D1
p =


0 1/h 0 · · · 0
0 −1/h 1/h 0 · · · 0

0 0 −1/h 1/h 0 · · · 0
...

...
. . .

...

0 0 · · · 0 −1/h 1/h



D1
m =


0 1/h 0 · · · 0
0 −1/h 1/h 0 · · · 0

0 0 −1/h 1/h 0 · · · 0
...

...
. . .

...

0 0 · · · 0 −1/h 0


and

D2 =


0 1/h 0 · · · 0

0 −1/h 1/h 0 · · · 0

0 0 −1/h 1/h 0 · · · 0
.
..

.

..
. . .

...
0 0 · · · 0 −1/h 0

.
This being said, we check easily that −divh and ∇h are in duality. Moreover, we recall the

following

Proposition 1.12. ([7, 8]) Under the above-mentioned definitions and notations, one has that

• The adjoint operator of ∇h is ∇∗h = −divh .
• Its norm satisfies: ‖∇h‖2 = ‖ divh ‖2 ≤ 8/h2.

B. Discretization of the eikonal equation:

For a self-contained presentation, let us recall our main approach to compute the velocity field
V by solving the eikonal equation (2.9). As pointed out in [21] (see also [19]), the solution D of
(2.9) can be obtained by solving

max
u∈W 1,∞(Ω)

{∫
Ω
udx : |∇u| ≤ f, u = 0 on ΓD

}
which can be written, at a discrete level, as

min
u∈X
Ah(u) + Bh(∇hu), (2.28)

where

Ah(u) =

−h
2
m∑
i=1

n∑
j=1

ui,j if ui,j = 0 ∀(i, j) ∈ Dd

+∞ otherwise

, and Bh = IB(0,f),

where Dd = {(i, j) : (ih, jh) ∈ ΓD} the indexes whose spatial positions belong to ΓD and B(0, f)
is the unit ball of radius f . Then we apply Algorithm-2 with the functionals Ah and Bh above.
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C. Duality results

The idea for the proof of Lemma 2.4 goes back to [19, Theorem 3.10]. The aim is to define a
convex and l.s.c functional H : Mb(Ω) 7→]−∞,∞] such that

H(0) = inf
τΦ∈Fq(ρ̃−ρ)

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}
and

sup
p∈C(Ω)

−H∗(p) = max
p∈Gk

{∫
(ρ̃− ρ) p dx− τ

∫
ΓN

p η dx

}
.

Then conclude by classical duality results

H(0) = H∗∗(0) = sup
p∈C(Ω)

−H∗(p). (3.29)

One sees that in order to built H, we need to use vector fields whose divergences are Radon
measures (c.f. [9]). Thanks to [9], we know that for any Φ ∈ L1(Ω)N such that div Φ =: µΦ ∈
Mb(Ω), in the sense of D′(Ω), the normal trace of Φ is well defined on the boundary of Ω.
Indeed, for such Φ, we have Φ · ν : Lip(∂Ω)→ R is continuous linear functional and satisfies

〈Φ · ν, ξ|∂Ω〉 =

∫
Ω
ξ dµΦ +

∫
Ω

Φ · ∇ξ dx, for any ξ ∈ C1(Ω).

We will denote again 〈Φ ·ν, ξ|∂Ω〉 =:

∫
∂Ω

Φ ·ν ξ dx. As for Hdiv vector valued field, it is possible

to define the restriction of the normal trace of Φ on ΓD by working with Lipschitz continuous
test functions which vanishes on ΓN . For any g ∈ Lip(ΓD) such that there exists g̃ ∈ C1(Ω),
satisfying

g̃ = g on ΓD and g̃ = 0 on ΓN .

For such g, we’ll define

∫
ΓD

Φ · ν g dx := 〈Φ · ν, g̃|∂Ω〉, for any Φ ∈ L1(Ω)N ; i.e.,

∫
ΓD

Φ · ν g dx =

∫
Ω
g̃ dµΦ +

∫
Ω
∇g̃ · Φ dx. (3.30)

So, for any µ ∈Mb(Ω), we can define

F(µ) :=
{

Φ ∈ L1(Ω)N : −div(Φ) = µ Ω in Ω and Φ · ν = η + µ ΓN on ΓN

}
.

Here, the condition −div(Φ) = µ Ω in Ω and Φ ·ν = η+µ ΓN on ΓN , needs to be understood
in the sense∫

Ω
Φ · ∇ξ dx =

∫
Ω
ξ dµ+

∫
ΓN

η ξ dx, for any ξ ∈ Lip(Ω) s.t. ξ|ΓD = 0.
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Proposition 3.13. For any µ ∈Mb(Ω), we have

inf
τΦ∈F(µ)

{
τ

∫
Ω
k(x) |Φ(x)| dx− τ

∫
ΓD

g(x) Φ · ν dx

}

= max
p∈Gk

{∫
Ω
p dµ− τ

∫
ΓN

p η dx

}
.

Proof. We consider on Mb(Ω) the following functional H : Mb(Ω) 7→]−∞,∞] defined by

H(h) = inf
τφ∈F(µ+h)

{
τ

∫
Ω
k(x) |Φ(x)|dx+

∫
ΓD

g dh− τ
∫

ΓD

Φ · ν g dx

}
,

for any h ∈Mb(Ω). Then H is convex and l.s.c.
Convexity. Indeed, take h1, h2 ∈ Mb(Ω) and set h := th1 + (1 − t)h2 for t ∈ [0, 1]. Let

Φ1,n,Φ2,n ∈ L1(Ω)N be two minimizing sequences of fluxes corresponding to h1 and h2 respec-
tively, i.e., τΦ1,n ∈ F(µ+ h1) and τΦ2,n ∈ F(µ+ h2) such that

H(hi) = τ lim
n

∫
Ω
k(x)|Φi,n(x)|dx+

∫
ΓD

g dhi − τ
∫

ΓD

Φi,n · ν g dx for i = 1, 2.

Set Φn = tΦ1,n + (1− t)Φ2,n. We clearly see that φn are admissible for h and

H(h) ≤ τ lim
n

∫
Ω
k(x)|Φn(x)|dx+

∫
ΓD

g dh− τ
∫

ΓD

Φn · ν g dx

= τ lim
n

∫
Ω
k(x)|tΦ1,n + (1− t)Φ2,n|dx+

∫
ΓD

g dh− τ
∫

ΓD

(tΦ1,n + (1− t)Φ2,n) · ν g dx

≤ lim
n
t
(
τ

∫
Ω
k(x)|Φ1,n|dx+

∫
ΓD

g dh− τ
∫

ΓD

Φ1,n · ν g dx
)

+ (1− t)
(
τ

∫
Ω
k(x)|Φ2,n|dx+

∫
ΓD

g dh− τ
∫

ΓD

Φ · ν g dx
)

≤ tH(h1) + (1− t)H(h2)

and this proves convexity.
Lower semicontinuity. Take a sequence hn ⇀ h in Mb(Ω). For every n ∈ N, we consider a

sequence τ(Φk
n)k∈N of F(µ+ hn) such that

H(hn) = τ lim
k→∞

∫
Ω
k(x)|Φk

n(x)|dx+

∫
ΓD

g dhn − τ
∫

ΓD

Φk
n · ν g dx.

We may find some ψn ∈ L1(Ω)N satisfying

τ

∫
Ω
ψn · ∇ξ dx =

∫
Ω

(h− hn) ξ dx, for any ξ ∈ Lip(Ω) ∩W 1,2
ΓD

(Ω). (3.31)
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and such that ‖ψn‖L1 → 0 and 〈ψn · ν, g〉 → 0. In fact, since W 1,s
ΓD

(Ω) ↪→ C(Ω), for s > N, one
sees that the optimization problem

min
z∈W 1,s

ΓD
(Ω)

{
1

s

∫
Ω
|∇z|s dx−

∫
Ω
zd(h− hn)

}
has a unique solution that we denote un. We consider ψn := |∇un|s−2∇un. It is clear that

ψn ∈ Ls
′
(Ω), and then in L1(Ω). Moreover, using standard techniques of calculus of variation,

we see that ψn satisfies (3.31). Clearly un is bounded in W 1,s
ΓD

(Ω), so that by taking a subsequence

if necessary, we have un ⇀ u in W 1,s(Ω) and uniformly in Ω. This implies that

τ

∫
Ω
|ψn|s

′
dx = τ

∫
Ω
|∇un|sdx =

∫
Ω
un d(h− hn) −→

n→∞
0

and then |ψn| −→
n→∞

0 in L1(Ω). In addition, thanks to (3.30), we have

τ〈ψn · ν, g〉 = τ

∫
Ω
ψn · ∇g̃ dx−

∫
Ω
g̃ d(h− hn) −→

n→∞
0.

This being said, we clearly have −div(Φk
n +ψn) = µ+h Ω in Ω and (Φk

n +ψn) ·ν = η+h ΓN
on ΓN ; i.e., τ(Φk

n + ψn) ∈ F(µ+ h). By semicontinuity of the integral, we have

H(h) ≤ τ
∫

Ω
k(x)|(Φk

n + ψn)(x)|dx+

∫
ΓD

g dh− τ
∫

ΓD

(Φk
n + ψn) · ν g dx

≤ τ
∫

Ω
k(x)|Φk

n(x)|dx+

∫
ΓD

g dhn − τ
∫

ΓD

Φk
n · ν g dx

+ τ

∫
Ω
k(x)|ψn(x)|dx+

∫
ΓD

g d(h− hn)− τ
∫

ΓD

ψn · ν g dx.

Letting k →∞ we get

H(h) ≤ H(hn) + τ

∫
Ω
k(x)|ψn(x)|dx+

∫
ΓD

g d(h− hn)− τ
∫

ΓD

ψn · ν g dx.

Now, letting n → ∞, and using the fact that ψn → 0 in L1(Ω)N , and hn ⇀ h in Mb(Ω), as
n→∞, we obtain the lower semicontinuity, i.e.,

H(h) ≤ lim inf
n
H(hn).

Next let us compute H∗. For any p ∈ C(Ω), we have

H∗(p) = sup
h∈Mb(Ω)

{∫
Ω
pdh−H(h)

}
= sup

h∈Mb(Ω), τΦ∈F(µ+h)

{∫
Ω
pdh− τ

∫
Ω
k(x)|Φ(x)|dx−

∫
ΓD

g dh+ τ

∫
ΓD

Φ · ν g dx

}
= I1(p) + I2(p),
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where I1(p) := −
∫

Ω\ΓD
p dµ and I2(p) is given by

sup
h∈Mb(Ω), τΦ∈F(µ+h)

{∫
Ω\ΓD

pd(µ+ h)− τ
∫

Ω
k(x) |Φ(x)|dx+

∫
ΓD

(p− g) dh+ τ

∫
ΓD

Φ · ν g dx

}
.

Using Lemma 3.14 below, we deduce that, for any u ∈ Lip(Ω), we have

H∗(p) =


−
∫

Ω\ΓD
p dµ if u ∈ Gk

∞ otherwise.

Finally, using (3.29) we deduce the result. �

Lemma 3.14. Let p ∈ Lip(Ω), we have

sup
h∈Mb(Ω)
τΦ∈F(µ+h)

{∫
Ω\ΓD

pd(µ+ h)− τ
∫

Ω
k(x)|Φ(x)|dx+

∫
ΓD

(p− g) dh+ τ

∫
ΓD

Φ · ν g dx

}
=

 0 if p ∈ Gk

∞ otherwise.

Proof. Take p as a test function in the divergence constraint −τdiv(Φ) = µ+ h in D′(Ω \ ΓD),
we get

I(h,Φ) :=

∫
Ω\ΓD

p d(µ+ h)− τ
∫

Ω
k(x)|Φ(x)| dx+

∫
ΓD

(p− g) dh+ τ

∫
ΓD

Φ · ν g dx

= τ

∫
Ω
∇p · Φ dx− τ

∫
Ω
k(x)|Φ(x)| dx+

∫
ΓD

(p− g) dh+ τ

∫
ΓD

Φ · ν (g − p) dx.

It is clear that for any p ∈ Gk, we have I(h,Φ) ≤ 0, and by taking h ≡ −µ and Φ ≡ 0 we obtain
sup I(h,Φ) = 0. For the case where p 6≡ g on ΓD; i.e., p(x0) 6= g(x0) for some x0 ∈ ΓD, one can
work with hn = n Sign(p(x0)− g(x0))δx0 for n ∈ N, where δx0 is Dirac mass at x0, and fix any
Φ0 ∈ F(µ+h) such that −div Φ0 = µ in F(µ+h), to see that I(hn,Φ) −→∞, as n→∞. Now,
for the remaining case, i.e., p = g on ΓD and |∇p| > k on a subset A ⊂ Ω such that |A| 6= 0, we
consider Φnε = n (∇p χA) ∗ ηε, where ηε is a sequence of mollifiers. It is clear that there exists
h ∈Mb(Ω), such that −div Φnε = µ+ h in D′(Ω \ ΓD). Moreover, for any n, we have

sup I(h, φ) ≥ τ
∫

Ω
Φnε · ∇u− τ

∫
Ω
k(x)|∇p(x)| dx.

Letting ε→ 0, we get

sup I(h,Φ) ≥ nτ
∫
A

(
|∇p(x)|2 − k(x) |∇p(x)|

)
dx︸ ︷︷ ︸

>0

−→∞, as n→∞.

This concludes the proof. �

Proof of Lemma 2.4. Now, the proof is a simple consequence of Proposition 3.13. �



PREDICTION-CORRECTION PEDESTRIAN FLOW BY MEANS OF MINIMUM FLOW PROBLEM 31

References

[1] M. Agueh, G. Carlier, and N. Igbida. On the minimizing movement with the 1-Wasserstein
distance. ESAIM Control Optim. Calc. Var., 24(4):1415–1427, 2018. 8

[2] M. Beckmann. A continuous model of transportation. Econometrica, 20:643–660, 1952. 4
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[14] S. Di Marino and A. R. Mészáros. Uniqueness issues for evolution equations with density
constraints. Math. Models Methods Appl. Sci., 26(9):1761–1783, 2016. 4
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