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Abstract

In the whole paper K will be a formally real field, which means that −1 is
not a finite sum of squares of elements of K, hence K has characteristic 0. As
often in the literature, we shall write real field instead of formally real field.
It is well known from Artin-Schreier theory that such fields are exactly those
admitting at least one total order compatible with the field structure.

After some background in Real Algebra on orderings and valuations, we
recall the notions of fans and valuation fans.

Thereafter, we introduce and study the space of valuation fans and its rela-
tions with the real spectrum of the real holomorphy ring.

Finally we provide some steps towards an abstract theory of the space of
valuation fans and revisit Marshal’s problem of realizability of abstract spaces
of orderings.

1 Background in Real Algebra.

1.1 Preorderings, orderings.

Basic references for classical theory of real fields are [AS], [BCR], [R].

Definition 1 A preordering T of K is a subset T ⊆ K, satisfying:

T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, − 1 /∈ T
and T ∗ = T\{0} is a subgroup of K∗ = K\{0}.
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Definition 2 A preordering T is called a quadratic preordering if K2 ⊆ T. If
K2n ⊆ T , T is said to be of level n. Preorderings with no level do exist.

Zorn’s lemma shows the existence of maximal quadratic preorderings; these
are just the usual orderings, and are characterized by:

Definition 3 A subset P of K is an ordering if:

P + P ⊆ P, P · P ⊆ P, P ∪ −P = K, − 1 /∈ P.

From these properties one can deduce that 0, 1 ∈ P, P ∩ −P = {0} and∑
K2 ⊆ P. Here, and throughout the paper,

∑
K2n denotes the set of all finite

sums of 2n-th powers.
We can also call P a positive cone: to any such ordering P one can associate

a binary relation ≤P . This is a total order relation compatible with the field
structure, defined as follows:

b− a ∈ P ⇔ a ≤P b.

Then P is the set of elements positive for the order relation ≤P .
The set of orderings of a field K will be denoted by χ(K); it might also have

been denoted by SperK so as to coincide with the usual notation for rings.
A very nice well-known theorem from Artin-Schreier [AS] is:

Theorem 4 Let K be a real field,
∑
K2 = ∩

Pi∈χ(K)
Pi.

Example 5 The field R admits only one ordering, and its set of positive ele-
ments is R2.

Example 6 The field Q( 2
√

2) :=
{
a+ b 2

√
2 | a, b ∈ Q

}
admits two orderings,

one making 2
√

2 positive and the other making 2
√

2 negative.

Example 7 R((X)), the power series field, admits also two orderings making
X infinitesimal positive or negative.

Example 8 R(X) admits infinitely many orderings. For any a ∈ R one can
define orderings Pa,+ and Pa,− making X − a infinitesimal positive or negative
respectively. R(X) admits also the orderings P+ and P− making 1

X infinitesimal
positive or negative respectively.

1.2 Real Valuations.

The main classic references on valuations are [K], [E], [R2]; see [EP] for a more
modern treatment.

Definition 9 A Krull valuation v on a field K is a surjective map

v : K∗ � Γ

where Γ is a totally ordered abelian group (called the value group), such that
(1) v(xy) = v(x) + v(y) for any x, y in K∗;
(2) v(x+ y) ≥ min {v(x), v(y)} , for any x, y in K∗, with x+ y in K∗.
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The valuation ring of v is

Av := {x ∈ K | x = 0 or v(x) ≥ 0}

and its maximal ideal is

Iv := {x ∈ K | x = 0 or v(x) > 0} .

kv := Av/Iv is called the residue field of the valuation.
Uv := Av \ Iv denotes the group of units.

Definition 10 A valuation v on a field K is said to be real if and only if the
residue field kv is real (meaning −1 /∈

∑
k2v).

A field admits real valuations if and only if it is real. Of course a real field
admits real valuations, at least the trivial one.

The converse implication follows from the Baer-Krull theorem which ensures
that if kv admits an ordering, then K admits also at least one ordering.

We now recall the definition of a valuation ring and how one can associate
a valuation to a given valuation ring.

Definition 11 A subring A of a field K is a valuation ring if for any x ∈ K,
either x or x−1belongs to A.

Definition 12 The valuation associated to a valuation ring A of K, with max-
imal ideal I, is given by the canonical quotient map v : K∗ → Γ, where
Γ := K∗/(A\I) is ordered by v(x) ≤ v(y)⇔ yx−1 ∈ A.

Example 13 Given an ordering P in a field K, the convex hull of Q in K is:

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P} .

A(P ) is a valuation ring in K with unique maximal ideal:

I(P ) :=
{
x ∈ K | ∀r ∈ Q+∗ r ± x ∈ P

}
.

where Q+∗ = {r ∈ Q |r > 0} .

A(P ) is clearly a subring of K; it is a valuation ring because b /∈ A(P )
implies b−1 ∈ A(P ): let b /∈ A(P ), assume b > 0, since b /∈ A(P ) we have in
particular 1 < b, therefore 0 < b−1 < 1 which implies that b−1 ∈ A(P ) because
A(P ) is convex in K with respect to P.

3



1.3 Compatibility of an ordering with a valuation.

For this part we can refer to [Be2] and [L]. There is also a more recent book
[EP].

Definition 14 A quadratic preordering T in a field K is said to be fully com-
patible with a valuation v if and only if 1 + Iv ⊂ T.

In this case T induces on the residue field kv a quadratic preordering T . This
pushdown preordering T is defined to be the image of T ∩Av under the natural
map from the valuation ring Av to the residue field kv.

In the case of an ordering P, we just say that P is compatible with v; then
P , induced by P on the residue field kv, is an ordering of kv. Clearly P is
closed under addition and multiplication and P ∪ −P = kv. If −1 was in P
we would have −1 = a for some a ∈ P ∩ A(P ). Then 1 + a ∈ I(P ), hence
−a ∈ 1 + I(P ) ⊂ P, so we would get a = 0 which is impossible.

Example 15 The trivial valuation, sending every non-zero element of K to 0,
is compatible with any ordering of K.

Proposition 16 The valuation v associated to an ordering P of K with valu-
ation ring

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P}

is compatible with P and pushes down on the residue field an (archimedean)
ordering, hence this valuation v is real.

Proof. I(P ) := {x ∈ K | ∀r ∈ Q+∗ r ± x ∈ P} being the maximal ideal of
A(P ) we have 1 + I(P ) ⊂ P . Hence the valuation is compatible with P. Then
P induced by P on the residue field kv is an archimedean ordering; we already
know that P is an ordering, this ordering P is archimedean: for any x ∈ A(P )
there exists some r ∈ Z such that −r <P x <P r, hence in the residue field we
have −r <P x <P r, and therefore P is an archimedean ordering of kv.

Theorem 17 Let P be an ordering of K, and v be a valuation on K; the
following are equivalent:

(1) v is compatible with P (i.e. 1 + Iv ⊂ P ).
(2) 0 <P a ≤P b⇒ v(a) ≥ v(b) in Γ (the value group of v).
(3) The valuation ring Av is convex in K with respect to P .
(4) The maximal ideal Iv of Av is convex in K with respect to P

Proof. (2)⇒ (3) Av convex in K means that if x <P y <P z, with x, z ∈ Av
then y ∈ Av, or equivalently 0 <P a <P b with b ∈ Av implies a ∈ Av.

From (2) we deduce that v(a) ≥ v(b) ≥ 0 in Γ hence a ∈ Av.
(3) ⇒ (4) Assume 0 <P a <P b with b ∈ Iv then 0 <P b−1 <P a−1. Since

b−1 /∈ Av using (3) we deduce a−1 /∈ Av, hence a ∈ Iv, Iv being the ideal of non
invertible elements of Av.
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(4)⇒ (1) Let m ∈ Iv, if 1 +m /∈ P then 1 +m ∈ −P, so 1 +m <P 0 hence
0 <P 1 <P −m. Using the convexity of Iv in K for P, since −m ∈ Iv too, this
yields 1 ∈ Iv which is impossible.

(1) ⇒ (2) Assume 0 <P a ≤P b and v(a) < v(b) in Γ; then we deduce
0 < v(b) − v(a) = v( ba ), hence b

a ∈ Iv, and also − b
a ∈ Iv and a 6= b. From (1)

we get 1 + (− b
a ) ∈ P , so a−b

a >P 0, hence a >P b which is impossible.

Theorem 18 Let F be the family of all valuation rings of K compatible with
a given ordering P , then:

(1) the valuation rings in F form a chain under inclusion;
(2) the smallest element of F is A(P ).

Proof. (1) Suppose A,B ∈ F and A " B, let a ∈ A\B and a > 0. We
prove that B ⊂ A. Consider 0 < b ∈ B, by the convexity of B in K we cannot
have 0 < a ≤ b, so we must have 0 < b ≤ a. From the convexity of A in K, we
deduce b ∈ A.

(2) Let A ∈ F , A is convex in K and contains Z, hence A contains A(P ) the
convex hull of Q in K.

Note that any subring of K containing a valuation ring must itself be a
valuation ring, hence F consists of all subrings of K containing A(P ). Remark
also that A ⊂ A′ implies I ′ ⊂ I.

Definition 19 The place λv, associated to a valuation v of K, is the map λv :
K → kv ∪ {∞} defined by λv(a) = a = a + Iv if a ∈ Av, and λv(a) = ∞ if
a /∈ Av.

2 Fans and valuation fans.

In this section we mainly follow the notations and proofs of [L].

2.1 Quadratic preorderings.

The compatibility of a quadratic preordering with a valuation can be of two
types. Given T a quadratic preordering in a real field K, v a valuation on K
is compatible with T if it is compatible with some ordering P containing T .
v is called fully compatible with T if it is compatible with every ordering P
containing T . Below we give alternative characterizations.

Definition 20 Given T a quadratic preordering in a real field K, and v a val-
uation on K with unique maximal ideal Iv in the associated valuation ring Av:

(1) v is fully compatible with T if and only if 1 + Iv ⊂ T .
(2) v is compatible with T if and only if (1 + Iv) ∩ −T = ∅.
(3) v is compatible with T if and only if T is a preordering in the residue

field kv.
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We denote χ/T := {P ordering | P ⊃ T}.
A way of building fully compatible preorderings is to use the ”wedge product”

introduced in 1978 by Becker in [Be1] and Brocker in [BeBr].

Definition 21 Let K be a real field, let A be a valuation ring in K, and π :
A −→ kv be the projection map. Let T be a preordering of K and let S be a
preordering of kv such that S ⊃ T . The wedge product is defined by T ∧ S :=
T · π−1(S\{0}).

We refer the reader to Lam’s book ([L], p.21) to verify that T ∧ S is a
preordering in K, fully compatible with v, and such that residually T ∧ S = S.

Again refering to [L] (3.3 p.22), remark that the wedge product T∧S can also
be defined for S a preordering of kv and T = T ∗∪{0} where T ∗is a subgroup of
K∗. Then T ∧S is a preordering in K, and if K2 ⊆ T then T ∧S is a quadratic
preordering.

There is also an alternative definition for the wedge product:
T ∧ S = ∩

{
orderings P | P ⊃ T and P ∈ χ/S

}
2.2 Fans of level 1.

In the context of preorderings fans were first presented by Becker and Köpping
in [BK].

Definition 22 Let K be a real field and let T be a quadratic preordering in
K. T is a fan if and only if for any S ⊃ T, such that −1 /∈ S and such that
S∗ = S\{0} is a subgroup of K∗ satisfying [K∗ : S∗] = 2, S is an ordering in
K.

Note that if T is a fan any preordering containing T is again a fan.
There is an alternative useful characterization of a fan given in [L] (p.40),

with proof of equivalence:

Proposition 23 A preordering T is a fan if and only if for any a ∈ K∗\ − T
we have T + aT ⊂ T ∪ aT. Such an element a is said to be T -rigid.

First examples of fans are the trivial fans : these are orderings P and inter-
section of two orderings P1 ∩ P2.

Another example is the pullback Ŝ of a trivial fan S in kv. Namely Ŝ =
K2∧S = K2 ·π−1(S\ {0}) is a fan in K. In fact Bröcker’s trivialization theorem
given later says that all fans arise in this way.

Fans are well behaved for compatibility with real valuations.

Theorem 24 Let K be a real field, v a valuation on K, and T a preordering
in K. Then the followings hold:

(a) If v is compatible with T , T is a fan implies that T is a fan in kv;
(b) If v is fully compatible with T , T is a fan if and only if T is a fan.
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Proof.
(a) We use proposition 23 characterizing a fan. Let b ∈ A\I such that

b /∈ −T we shall show that b is T -rigid . T being a fan let t1+t2b ∈ T+bT ⊂ T∪bT
hence there exist t3 or t4 such that t1 + t2b = t3 or t1 + t2b = t4b. Going down
to kv we get t1 + t2b = t3 or t1 + t2b = t4b hence t1 + t2b ∈ T ∪ bT , and T is a
fan.

(b) We use the definition 22 of a fan. Assume v is fully compatible with
T and T is a fan we have to prove that T is a fan. Let W ⊃ T be such that
−1 /∈W, W ∗ = W\{0} is a subgroup of K∗ and [K∗ : W ∗] = 2, we have to prove
that W is an ordering. We first show that W is an ordering. If −1 = w for some
w ∈W ∩A, then −1 = w+m for some m ∈ I, so −w = 1+m ∈ 1+ I ⊂ T ⊂W
hence −1 ∈ W which is impossible. Since T is a fan and W ∗ a subgroup
of k∗v such that

[
k∗v : W ∗

]
= 2, W is an ordering. Form the wedge product

W ∧W = W · π−1(W\{0}) = W · (1 + I) ⊂ W · T ⊂ W , since from [L] (p.22)
W · π−1(W\{0}) = W · (1 + I) ); then W ∧W ⊂W holds, hence W = W ∧W
is an ordering.

2.3 Trivialization of fans.

A remarkable result is Bröcker’s theorem on trivialization of fans ([Brö]).

Theorem 25 Let K be a real field and T ⊂ K be a fan. Then there exists a
valuation v, fully compatible with T, such that the pushdown T in the residue
field kv is a trivial fan.

The theorem follows from propositions 26 and 27 below. We use the proof
given by Lam ([L], p. 94).

Proposition 26 Let T be a non-trivial fan in the field K. Then there exists a
non-trivial valuation v on K, fully compatible with T.

The proof of proposition 26 requires three lemmas.

Lemma 1. Let G be an ordered group (written additively), and H be a
subgroup of G. If H does not contain a non-trivial convex subgroup of G, then
for any positive element h ∈ H there exists g ∈ G\H such that 0 < g < h.

Proof of lemma 1. Let C := {g ∈ G | ∃n ∈ N − nh ≤ g ≤ nh}. C is the
convex hull of the subgroup of G generated by h, hence a convex subgroup.
Assume there does not exist an element g as in the statement, then for any
g ∈ G, 0 ≤ g ≤ h implies g ∈ H. By easy induction on n it follows that for any
n ∈ N, −nh ≤ g ≤ nh implies g ∈ H. Hence {0} 6= C ⊆ H, contradicting the
assumption that H does not contain a non-trivial convex subgroup of G.

Lemma 2. Let T be a fan in the field K. Let v1 be a valuation on K with
value group Γ1; if v1(T ∗) does not contain a non-trivial convex subgroup of Γ1,
then v1 is fully compatible with T.

Proof of lemma 2. We claim that the condition:
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”for every m in the unique maximal ideal M1, and for every t ∈ U1 ∩ T ,
a unit belonging to T, t+m ∈ T implies that 1 +M1 ⊂ T”
entails that v1 is fully compatible with T.

We distinguish two cases:
Case 1. Assume v1(m) /∈ v1(T ∗).
In this case (T · m) ∩ U1 = ∅; so in particular m /∈ −T, since v1(m) > 0.

Since T is a fan, t+m ∈ T +T ·m = T ∪T ·m. We have to show that t+m ∈ T.
Clearly t+m ∈ U1 because v1(t+m) = 0 since v1(t) = 0 and v1(m) > 0. Since
(T ·m) ∩ U1 = ∅ we get t+m /∈ T ·m hence t+m ∈ T.

Case 2. Assume v1(m) ∈ v1(T ∗).
Apply lemma 1 to H := v1(T ∗). Since v1(m) is a positive element of H there

exists x such that v1(x) /∈ H and 0 < v1(x) < v1(m). Now let t + m = t′ + m′

where t′ := t + x and m′ = m − x. From x ∈ M1 we get t′ ∈ U1, and
since v1(m′) /∈ v1(T ∗), case 1 gives t′ ∈ T. Finally from v1(x) < v1(m) we get
v1(m′) = v1(m − x) = min {v1(m), v1(x)} = v1(x) /∈ v1(T ∗). Thus using again
case 1, we get t′ +m′ ∈ T, and hence t+m ∈ T.

Lemma 3. Let T ⊂ K be a non trivial fan and P ∈ χ/T . Let vP : K∗ −→ Γ
be the canonical valuation associated with P ; then vP (T ∗) 6= Γ. In particular
vP is not the trivial valuation so every ordering in χ/T is non archimedean.

For the proof of this last lemma we refer to Lam [L], corollary 12-11 of lemma
12-10 p. 95.

Proof of proposition 26. Given a non trivial fan T ⊂ K, fix v0 : K∗ � Γ0

such that v0(T ∗) 6= Γ0 (for instance, take P ∈ χ/T and let v0 be the valuation
vP associated with A(P )). Now consider the convex subgroups of Γ0 contained
in v0(T ∗); they form a chain under inclusion. The union of them ∆ is the
largest convex subgroup contained in v0(T ∗). By quotienting we can coarsen
the valuation v0 into a valuation v1 : K∗ � Γ1 := Γ0/∆. Then v1(T ∗) cannot
contain a non-trivial convex subgroup of Γ1. Hence, by lemma 2, v1 is fully
compatible with T. Since [Γ1 : v1(T ∗)] = [Γ0 : v0(T ∗)] > 1, v1 is a non trivial
valuation.

Proposition 27 For any preordering T in a field K, the followings are equiv-
alent:

(1) T is a fan in K.
(2) There exists a valuation v1 on K, fully compatible with T , such that,

with respect to v1, T pushes down to a trivial fan in the residue field, hence[
K
∗

: T
∗] ≤ 4.

Proof of proposition 27.
(2)⇒(1) Trivially if v1 exists, is fully compatible with T, and pushes down

to a trivial fan T , then T is a fan.
(1)⇒ (2) From the previous proposition we know that there exists a valuation

v fully compatible with T, hence T is a fan in the residue field kv.
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If
[
k∗v : T

∗] ≥ 8, then T would be a non-trivial fan, and applying lemma 3 to

T in kv we would get a non-trivial valuation on kv fully compatible with T . But
from proposition 12-3 in [L], kv has no non-trivial valuation fully compatible
with T . Then just take v1 = v.

For the geometric point of view on fans we refer to [AR] and [ABR].

2.4 Valuation fans (any level) and examples.

From now on preorderings are NOT supposed to be quadratic.
Let us recall the definition of a general preordering. A preordering T in a

field K is a subset T ⊆ K, satifying:
T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, −1 /∈ T, T ∗ = T\{0} is a subgroup of K∗.

The notion of fans of higher level is analogous, and the trivialization theorem
applies to fans of higher level (Becker LNM959)

Definition 28 (Jacob, [J2]). A preordering T in a field K is a valuation fan
if and only if for any x /∈ ±T we have either 1± x ∈ T or 1± x−1 ∈ T.

More precisely, a preordering T in K is a valuation fan if and only if A(T ) =
{x ∈ K | ∃r ∈ Q r±x ∈ T} is a valuation ring with associated valuation v fully
compatible with T, and T in kv is an (archimedean) ordering.

There is an alternative characterization for valuation fans:

Proposition 29 (Jacob, [J1]). Let K be a field; a valuation fan in K is a
preordering T such that there exists v a real valuation on K, v fully compatible
with T (meaning 1 + Iv ⊂ T ), and T induces an archimedean ordering on the
residue field kv.

Example 30 Usual orderings P are valuation fans (of level 1, i.e.
∑
K2 ⊂ P ).

Example 31 Valuation fans with no level do exist ; an example is obtained by
adding 0 to the set of positive units of A(P )

2.5 Orderings of higher level.

Further examples of valuation fans are provided by Becker’s orderings of higher
level.

Definition 32 (Becker, [Be1]). Let K be a commutative real field, P ⊂ K is
an ordering of level n if:

∑
K2n ⊂ P, P + P ⊂ P, P.P ⊂ P,−1 /∈ P, P ∗ is a

subgroup of K∗ and K∗/P ∗is cyclic.
When K∗/P ∗ ' Z/2nZ, then the ordering is said to be of exact level n.

The orderings of level 1 are the usual total orderings.
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Example 33 If K = R((X)), there exist two usual orderings:

P+ = K2 ∪XK2 and P− = K2 ∪ −XK2

And for every integer n ≥ 1 there exist two orderings of exact level n:

Pn,+ = K2n ∪XnK2n and Pn,− = K2n ∪ −XnK2n.

All these orderings are associated to the unique R-place of R((X)), and for
the associated valuation they all induce the same archimedean ordering in the
residue field.

These higher level orderings have important links with sums of powers; we
refer the reader to [Be4] and just mention the following important theorems:

Theorem 34 (Becker, [Be1]). Let K be a real field, then:∑
K2n = ∩Pi where Pi is an ordering of level dividing n.

Theorem 35 (Becker, [Be1]). Let K be a field, and let p be a prime. The
followings are equivalent:

(1)
∑
K2 6=

∑
K2p.

(2) K admits an ordering of exact level p.

In the case where the level is a power of 2, Becker’s results yields ([Be1]):

Theorem 36 In a field K the followings are equivalent:
(1) ∀a ∈ K a2 ∈

∑
K4 ;

(2) Every real valuation on K has a 2-divisible value group.
(3) K does not admit any ordering of exact level 2.

There exist nother approach of higher level orderings with signatures
Usual orderings can be recast in terms of signatures. A signature is a group

morphism, σ : K∗ −→ {±1}, with additivily closed kernel; then P = kerσ∪{0}
is an ordering of K.

The notion of a signature has a higher level analog:

Definition 37 (Becker, [Be3]). A signature of level n on a field K is a mor-
phism of abelian groups:

σ : K∗ → µ2n

such that the kernel is additively closed, where µ2n denotes the group of 2n-th
roots of 1.

Clearly if σ is a signature of level n, then P = kerσ ∪ {0} is an ordering of
higher level with exact level dividing n.

There even exists a much more general notion of signature involving valua-
tion fans:

Definition 38 ( Schwartz, [S2]). A generalized signature in a field K is a
morphism of abelian groups, σ : K∗ → G, such that the kernel is a valuation
fan.
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3 The space of valuation fans and the real spec-
trum of the real holomorphy ring

3.1 R-place associated to an ordering.

For a complete presentation of these notions one can refer to [L], or in a more
geometrical setting to [Schü1], [Schü2] and [Schü3].

Let K be a real field and P be an ordering on K. Let v denote the valuation
associated to the valuation ring A(P ). From previous results we know that
(kv,P ) can be uniquely embedded in (R,R2) since P is archimedean. Denote
this embedding by i and let π be the canonical mapping from K into kv ∪ {∞}
(where if a /∈ A(P ), then π(a) =∞).

Definition 39 The R-place associated to P is λP : K → R ∪ {∞} defined by
the following commutative diagram:

K
λP−→ R ∪ {∞}

π ↘ ↗ i

kv ∪ {∞}

Explicitly λP (a) = ∞ when a /∈ A(P ), and λP (a) = inf{r ∈ Q | a ≤P r} =
sup{r ∈ Q | r ≤P a} if a ∈ A(P ). In fact it is known that any R-place arises in
this way from some ordering P (see [L], 9.1).

3.2 The space of R-places.
The space of R-places of a field K is the set M(K) = {λP | P ∈ χ(K)}, where
χ(K) denotes the space of orderings of K. M(K) is equipped with the coarsest
topology making continuous the evaluation mappings defined for every a ∈ K:

ea : M(K) −→ R ∪ {∞}

λP 7→ λP (a)

Recall that the usual topology on χ(K) is the Harrison topology generated
by the open-closed Harrison sets:

H(a) = {P ∈ χ(K) | a ∈ P}.

With this topology χ(K) is a compact totally disconnected space. Craven
has shown in [C] that every compact totally disconnected space is homeomorphic
to the space of orderings χ(K) of some field K.

Now consider the mapping:
Λ : χ(K) −→M(K)
P 7→ λP

11



With the previous topologies on χ(K) and M(K) the mapping Λ is a con-
tinuous, surjective and closed mapping.

M(K) equipped with the above topology is a compact Hausdorff space.
Remark that this topology on M(K) is also the quotient topology inherited
from the above topology on χ(K).

On the side of R-places we know that λP = λQ if and only if P and Q are
two usual orderings beginning a 2-primary chain of higher level orderings. Such
a chain has been defined by Harman in [H].

Hence the mapping Λ : χ(K) −→M(K) is a bijection if and only if K does
not admit any ordering of exact level 2.

3.3 R-places and the Real Holomorphy Ring.

We now provide some facts on the real holomorphy ring which has heavy links
with orderings and R-places.

Definition 40 The real holomorphy ring, denoted H(K), is the intersection of
all real valuation rings of K.

From the results in part 1 we obtain H(K) = ∩
P∈χ(K)

A(P ).

We also have:

H(K) = A(
∑

K2) = {a ∈ K | ∃n ∈ N, n ≥ 1, n± a ∈
∑

K2}.

H(K) is a Prüfer ring with quotient field K (see [L]). Recall that a Prüfer
ring is a ring R ⊂ K such that, for any prime ideal p in R, the localization Rp

is a valuation ring in K.

In the sequel we denote the real spectrum of the real holomorphy ring of K:

Sper(H(K)) = {α = (p,α), p ∈ Spec(H(K)), α ordering of quot(H(K)/p)}.

Relations between χ(K), M(K) and H(K) are given by the next theorem.

Theorem 41 (Becker-Gondard, [BG2]). The following diagram is commuta-
tive:

χ(K)
sper i−→ MinSperH(K)

↓ Λ ↓ sp
M(K)

res→ Hom(H(K),R)
j→MaxSperH(K)

where the horizontal mappings are homeomorphisms, and the vertical ones
continuous surjective mappings (see definitions below).

Hence χ(K) the space of orderings of K is homeomorphic to MinSperH(K),
and the space M(K) of R-places on K is homeomorphic to MaxSperH(K).

12



The mappings in the above diagram are defined as follows:

Λ : χ(K) −→M(K) is given by P 7→ λP .

sper i : χ(K) −→MinSperH(K) is given by P 7→ P ∩H(K).

sp : MinSperH(K) −→MaxSperH(K) is given by α 7−→ αmax ,
where αmax is the unique maximal specialization of α.

res : M(K) −→ Hom(H(K),R) is given by λ 7→ λ|H(K).

j : Hom(H(K),R) −→MaxSperH(K) is given by ϕ 7→ αϕ,
where αϕ = ϕ−1( R2) or, using the notation for the real spectrum,
αϕ = (kerϕ, α) with α = R2 ∩ quot(ϕ(H(K)).

All the spaces in the diagram are compact and the topologies of M(K) and
MaxSperH(K) are the quotient topologies inherited through Λ and sp.

3.4 The space of level 1 valuation fans

From what is said before it is interesting to study in the field case the space of
level 1 valuation fans V alFan(K), and its relation with SperH(K).

The motivation is that χ(K) homeomorphic to minSperH(K), consists of
valuation fans Pi, and that to a R-place λ in M(K), which is homeomorphic to
maxSperH(K), can be associated a valuation fan of level 1: Tλ = ∩Pi where
Pi ∈ Λ−1(λ) and Λ−1(λ) = {Pi | λPi

= λ}. We could also work on the same

question dealing with signatures.

It is important for real algebraic geometry to understand minimal valuation
fans of level 1. They are defined as valuation fans not properly containing any
valuation fan which is a quadratic preordering.

Of course such a minimal valuation fan T0 pushes down an archimedean
ordering in the residue field of K for the valuation associated to the valuation
ring given by: A(T0) = {x ∈ K | ∃r ∈ Q r ± x ∈ T0} .

But a better way to understand these minimal valuation fans, in relation
with R-places, is:

Example 42 Let λ be a R − place on a field K, let Λ−1(λ) = {Pi | λPi = λ},
then T = ∩Pi, where Pi belongs to Λ−1(λ), is a valuation fan and it is a minimal
valuation fan of level 1.

13



As noticed by Eberhard Becker these valuation fans with no level are also
minimal valuation fans.

Given a R-place λ they can be seen as λ−1(R∗+) Note that λ−1(R∗+) is also
the set E+ of positive units of A(λ) the valuation ring associated to λ. We have
A(λ)∗ = E+ ∪ −E+ .

To recover the valuation ring associated to the place λ one could try:
Vλ = λ−1(R∗+) ∪ −λ−1(R∗+) ∪ {x ∈ K | ∀r ∈ Q r ± x ∈ λ−1(R+)}

Conjecture 43 (Becker, oral communication) λ−1(R∗+) = µ−1(R∗+) implies
λ = µ

For level 1 valuation fans
If T0 is a level 1 valuation fan contained in P and λ = λP then T0 contains

K2λ−1(R+) which is a minimal level 1 valuation fans and we get that
Vλ = A(T0) = A(P ).
Similarly for higher level we can consider K2nλ−1(R+)

OPEN PROBLEMS ON V alFan(K) TO BE STUDIED:

1 - Describe the topology on the space V alFan(K) (Harrison or ...).
Note that if K is a totally archimedean field χ(K) coincides with V alFan(K)

hence the topology on V alFan(K) must coincides with the Harrison topology
in such cases.

2 - Study, reminding, theorem 41 the relation between V alFan(K) and
SperH(K) (recall H(K) is a Prufer ring)

3 - We could perhaps better use the complete real spectrum of H(K) (which
is a spectral space), see [GM].

Points in the complete real spectrum are triples (p, v, P ) where p is a real
prime of H(K), v a real valuation on the residue field k(p) = qf(H(K)/p), and
P an ordering of the residue field B/m where B is the valuation ring of v and
m its maximal ideal.

4 - Finally is there any relation between the space of valuation fans V alFan(K)
and the theory of lattices ?

3.5 More on the space of R-places M(K). and its connected
components

Ii is known that: M(K) connected iff M(K(X)) connected iff M(K((X))) con-
nected cf. Schülting

Higher level orderings provide a tool to separate connected components in
the space of R-places M(K).
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Theorem 44 (Becker-Gondard, [BG2]). Let K be a real field. Two R-places
λP and λQ, associated to usual orderings P and Q, are in two distinct connected
components of M(K) if and only if:

∃b ∈ K∗ (b ∈ P ∩ −Q and b2 ∈
∑

K4).

Proof. This criterion is obtained using higher level orderings, more precisely
orderings of exact level 2.

Recall H(a) = {P ∈ χ(K) | a ∈ P}, χ(K) = H(a) ∪ H(−a) and for a 6= 0
H(a) ∩H(−a) = ∅, but Λ(H(a)) ∩ Λ(H(−a)) may be non empty.

Nevertherless, if there exist b /∈
∑
K2 with b2 ∈

∑
K4, then there does not

exist P ∈ H(b) and Q ∈ H(−b) such that λP = λQ.
Otherwise b /∈ (P ∩Q) ∪ −(P ∩Q) and λP = λQ imply, as said before, that

there exists an ordering of level 2, P2, such that:

P2 ∪ −P2 = (P ∩Q) ∪ −(P ∩Q)

with b /∈ P2 ∪ −P2, hence b2 /∈ P2 , so b2 /∈
∑
K4 = ∩P2,i , where the P2,i run

over the set of all orderings with level dividing 2.

Assume that λP et λQ (with P 6= Q) are in the same connected component
C of M(K), and that there exists b ∈ K∗ such that b ∈ P ∩−Q with b2 ∈

∑
K4.

Λ being closed C ∩ Λ(H(b)), and C ∩ Λ(H(−b)) form a partition of C into two
non empty closed sets, impossible.

Conversely:
If λP et λQ are in C and C ′, two distinct connected components of M(K),

M(K) being a compact Hausdorff space there exists an open-closed set U such
that U ⊃ C and U c = (M(K)\U) ⊃ C ′.

Let X = Λ−1(U) and Y = Λ−1(U c). X and Y form a partition of χ(K). Λ
being surjective we get : Λ−1(Λ(Λ−1(U))) = Λ−1(U) so Λ−1(Λ(X)) = X, and
similarly Λ−1(Λ(Y )) = Y.

The following lemma from Harman ensures then the existence of b such that
X = H(b) and Y = H(−b) with b2 ∈

∑
K4, hence we have b ∈ P ∩ −Q with

b2 ∈
∑
K4.

Harman’s Lemma ([H]). If χ(K) = χ1 ∪ χ2, where χ1 and χ2 are disjoint
open-closed sets such that Λ−1(Λ(χ1)) = χ1 and Λ−1(Λ(χ2)) = χ2, then there
exist a such that χ1 = H(a) and χ2 = H(−a).

When it is finite, we know the number of connected components of M(K)

Lemma 45 For any real field K:

| π0(M(K)) |= 1 + log2[(K∗2 ∩
∑

K4) : (
∑

K∗2)2].
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Note that we know from [Be2] page 157 that:∑
(K2)2 ⊂

∑
K4

Sketch of proof of lemma 45:
It is known from [B2] that | π0(M(K)) |= log2[E : E+], where E is the

group of units of the real holomorphy ring H(K), and E+ = E ∩
∑
K2.

Then we prove that the quotient group (K∗2 ∩
∑
K4)/(

∑
K∗2)2 is isomor-

phic to E/(E+ ∪ −E+).

OPEN QUESTIONS ON THE SPACE OF R-places (field case)

1 - It would be useful to study for a field K the space of connected com-
ponents of the space of R-places of K: π0(M(K)). This must be some kind of
space of orderings. It is known from Schulting (see [L] p.79) that π0(M(K)) is
a compact Hausdorff and totally disconnected space, hence from Craven (Trans
AMS 209, 1975) π0(M(K)) is a space of orderings.

The question is: which field realizes π0(M(K)) as a space of orderings ?

2 - Another question in this area is: in which cases are the connected com-
ponents of M(K) homeomorphic?

3 - Characterize the topological spaces which are realizable as spaces of R-
places. Partial results in that direction have been recently obtained in [EO],
[KK], [KMO] and [MMO].

4 Towards abstract spaces of valuation fans.

The space of orderings of a field, studied in relation with quadratic forms and
real valuations, have been the origin of the theory of abstract spaces of orderings
(1979-80) and of Marshall’s problem:

”Is every abstract space of orderings the space of orderings of some field ?”
In [M] it is proved that one can always associate to an abstract space of

orderings a “P -structure“ (partition of the space of orderings into subspaces
which are fans, and such that any fan intersects only one or two classes). Such
a P -structure is a candidate to be analogous to the space of R-places in the field
case. But it appeared that not every P -structure is a Hausdorff space, hence we
have to improve this notion to fit with the space of R-places in the field case.

We need to construct a finer theory for abstract spaces of orderings taking
into account the R-places. For example, Q(2

1
2 ) and R((X)) have isomorphic

spaces of orderings, but the first one has two R-places and no ordering of level
2, and the second one has only one R-place but has a 2-primary chain of higher
level orderings.

We might try to define a notion of abstract space of valuation fans, and
deduce a theory of abstract R-places. Both are linked because of the minimal
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valuation fans of level 1 defined from a R-place λ by Tλ = ∩Pi with Pi ∈ Λ−1(λ),
where Λ−1(λ) = {Pi | λPi = λ}

In the abstract setting we use the signatures approach for orderings and fans.
On the side of fans, seen as sets of signatures on a field, a four elements fan

of level 1 is characterized by: σ0σ1σ2σ3 = 1 and it corresponds to the fan seen

as a preordering: T =
3
∩
i=0

kerσi ∪ {0}.

4.1 Abstract valuation fans in level 1 spaces of orderings

Abstract space of orderings have been introduced using signatures by Marshall
in [M]:

Definition 46 An abstract space of orderings is (X,G), where G is a group of
exponent 2 (hence abelian), -1 a distinguished element of G, and X a subset of
Hom(G, {1,−1}) such that:

(1) X is a closed subset of Hom(G, {1,−1});
(2) ∀σ ∈ X σ(−1) = −1;
(3) ∩

σ∈X
kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});

(4) For any f and g quadratic forms over G:

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In the above definition DX(f) denotes the set {a ∈ G represented by f}, i.e.
there exists g such that f ≡X 〈a〉 ⊕ g where f ≡X h if and only if f and h have
same dimension, and have for any σ ∈ X same signature.

In the abstract case abstract fans have been defined by Marshall.

Definition 47 An abstract fan is an abstract space of orderings (X,G) such
that X = {σ ∈ Hom(G, {1,−1}) | σ(−1) = −1}.

It is also characterized by: if σ0, σ1, σ2 ∈ X then the product σ0σ1σ2 ∈ X.

What was expected to correspond to the space of R-places of the field case
in the context of abstract spaces of orderings is called a P -structure and has
been defined as follows by Marshall in [M3].

Definition 48 A P -structure is an equivalence relation on a space of orderings
(X,G) such that the canonical mapping Λ : X → M , where M is the set of
equivalence classes, satisfies:

(1) Each fiber is a fan;
(2) If σ0σ1σ2σ3 = 1 then {σ0, σ1, σ2, σ3} has a non empty intersection with

at most two fibers.
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Marshall has proved that every abstract space of orderings has a P -structure,
generally not unique. But unlike the case of the space of R-places in a field, this
P -structure M equipped with the quotient topology, is not always Hausdorff.

We know from Craven that SAP abstract spaces of orderings are realizable
(see the list of known cases after). Hence we can consider only the non SAP
case of abstract spaces of orderings having non trivial fans (ie stability index
bigger or equal to 2)

We introduce a new definition :

Definition 49 An admissible P -structure is a P -structure such that if {σ0, σ1, σ2, σ3}
is a non trivial 4-elements fan, hence σ0σ1σ2σ3 = 1, then any two signatures
are in the same fiber of the P -structure, i.e. any two signatures of the fan
{σ0, σ1, σ2, σ3} are in relation through the equivalence relation used to define
the P -structure.

Equivalently to get a definition of admissible P -structure one could just re-
place in definition 48 the xiom (2) by:

(2’) If σ0σ1σ2σ3 = 1 then {σ0, σ1, σ2, σ3} has a non empty intersection with
a single fiber

The first question to answer is: does an admissible P -structure always have
an Hausdorff topology ?

Another option, suggested by Eberhard Becker, is that since Marshall’s P -
structures are not rich enough to reflect the field case one possible improve-
ment to Marshall’s P -structure could be: add one axiom to his definition of
P -structure:

(3) M is Hausdorff

Definition 50 An abstract valuation fan is a fan included in a fiber of an ad-
missible P -structure.

The idea is that there does not exists a valuation fan in the field case attached
to two different R-places, hence in the abstract case an abstract valuation fan
cannot have a non empty intersection with two distinct fibers of the P -structure.

Is there also some relation with lattices ? If two valuation fans have a non
empty intersection, then there exist a valuation fan containing both (seen as
sets of signatures).

Note that single orderings are valuation fans.
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4.2 Abstract spaces of signatures (higher level)

In the higher level case, one can also define abstract spaces of signatures.

Definition 51 An abstract space of signatures of level 2n is (X,G), G abelian
group of exponent 2n, X ⊂ Hom(G,µ2n) such that:

(0) ∀σ ∈ X, ∀k ∈ N with k odd, σk ∈ X;
(1) X is a closed subset of Hom(G,µ2n);
(2) ∀σ ∈ X σ(−1) = −1 (−1 distinguished element of µ2n);
(3) ∩

σ∈X
kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});

(4) For any f and g forms over G

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In fields, the space of R-places is known as soon as one knows the usual
orderings and the orderings of level 2. Using this idea in the abstract situation
we have been able to obtain a theorem which can be seen as the first case of a
P -structure which looks like an abstract space of R-places.

Theorem 52 (Gondard-Marshall, [GM]). Let (X,G) be a subspace of a space
of signatures (X ′, G′) with 2-power exponent.

For σ0, σ1 ∈ X, define σ0 ∼ σ1 if σ0σ1 = τ2 ∈ X ′2.
Then the followings are equivalent:

(1) If σ0σ1σ2σ3 = 1, then either σ0 is in relation by ∼ with exactly one of
the σ1, σ2, σ3, or σ0 is in relation by ∼ with everyone of the σ1, σ2, σ3.

(2) ∼ defines a P -structure on X.

Moreover in this case the induced P -structure defined on X by ∼ has a
Hausdorff topology.

The key idea for proving the theorem is that in the field case, studied by
Harman in [H], for any P2, ordering of level 2, holds for some orderings P0, P1:

a2 ∈ P2 ⇐⇒ a ∈ P2 ∪ −P2 = (P0 ∩ P1) ∪ (−(P0 ∩ P1)).
Hence on the side of abstract signatures we get τ(a2) = τ(a)2 = σ0(a)σ1(a).
A definition weaker than definition 49 following from the previous example

could be :

Definition 53 A pseudo-admissible P -structure is a P -structure such that if
σ0σ1σ2σ3 = 1, then either σ0 is in relation by ∼ with exactly one of the σ1, σ2, σ3,
or σ0 is in relation by ∼ with everyone of the σ1, σ2, σ3.

Note that abstract spaces of orderings can have several P -structure. We
only ask that one of these P-structure is admissible. Remind for example that
even in the plain case of Q(2

1
2 ) and R((X)), they have isomorphic spaces of

orderings but this space admits two different P-structures.
Hence once you have a pseudo-admissible P -structure you can probably con-

struct an admissible P -structure.

With this new definition we keep the definition of abstract valuation fans as
fans included in a single fiber of a pseudo-admissible P -structure.
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5 Marshall’s problem revisited

Definition 54 The space of signatures (X,G) is realizable as the space of or-
derings of a field when (X,G) is isomophic to (X∑

K2 ,K∗/
∑
K∗2).

A more general notion of realizability is as preordered field (K,T ) asking
(X,G) isomophic to (XT ,K

∗/T ∗).

Conjecture 55 An abstract space of orderings is realizable as the space of or-
derings of a field if (or if and only if?) it is SAP or it admits an admissible
P-Structure.

LIST OF KNOWN CASES FOR MARSHALL’S PROBLEM

There are already spaces of orderings known to be realizable as the space of
orderings of a field. So we could first verify that in some of these known cases
the (non SAP) space of orderings admits an admissible P -structure.

- SAP spaces of orderings or spaces with stability index less or equal to 1 i.e.
there exist only trivial fans - are realizable; these are even realizable as space of
orderings of a Pythagorean field (T. Craven, 1975).

- Finite abstract spaces of orderings are realizable (L. Bröcker 1977 and T.
Craven 1978).

M. Marshall proved that these spaces of orderings can be realized as the
spaces of orderings of Pythagorean fields (1979).

- Spaces of orderings with P -structure M finite (M. Marshall) These are also
spaces of orderings with finite chain length (see below *): if M is a P−structure
of a space of orderings (X,G) then cl(X,G) < ∞ ⇔ |M | < ∞. Moreover if
|M | <∞, then |M | ≤ cl(X,G) ≤ 2 |M | .

- Spaces of orderings with P -structure M with a finite number of realizable
connected components (M. Marshall).

- Direct sums and group extension of realizable spaces of orderings (T.
Craven for level 1, and V. Powers for higher level).

The direct sum of spaces of signatures (X1, G1) and (X2, G2) is the space of
signatures (X,G) where G = G1 ×G2 and X = (X1 × 1) ∪ (1×X2).

A space of signatures (X,G) is a group extension of a space of signatures
(X ′, G′) if G′ embeds in G and X =

{
σ ∈ χ (G) | σ pG′∈ X ′

}
.

- Direct limits of finite spaces of orderings are realizable (V. Astier et H.
Mariano 2011).

- Inverse limit of finite spaces of orderings are realizable (P. Gladki, 2010).

20



Another question, partially open for some realizable spaces is: : when a
space of orderings is realizable is it always realizable as the space of orderings
of a pythagorean field ?

(*) Some details on chain length
The chain length of a space of orderings (X,G), denoted by cl(X,G), is

the maximum integer d such that there exists elements a0, a1,..., ad ∈ G which
satisfy U(a0) $...$ U(ad), or ∞ if such finite d does not exist, where U(a) :=
{x ∈ X | x(a) = 1} , a ∈ G.

- The singleton has chain length 1, and conversely.
- Spaces of orderings which are fans F have chain length cl(F ) ≤ 2.
- Any subspace (Y,G|Y ) of a space of orderings (X,G) satisfies cl(Y,G|Y ) ≤

cl(X,G).
- The chain length of the direct sum X1⊕X2 satisfies cl(X1⊕X2) = cl(X1)+

cl(X2).
- The chain length of (X,G), a group extension of (X ′, G′), is equal to the

chain length of (X ′, G′).

OTHER UNVISITED APPROACHES FOR ”Marshall’s problem”

- First write an axiomatization for spaces valuation fans (instead of spaces
of orderings). Then conjecture : ”Is any abstract space of valuation fans the
space of valuation fans of some field?”

- Do we consider only level 1 valuation fans ? Or do we consider any level ?

- We could also consider some space corresponding to SperH(K) or possi-
bly some spectral space corresponding to the complete real spectrum of H(K)
denoted SpercH(K) and already considered in G-M ?

REFERENCES

21
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