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Abstract— We present a detailed analysis of Off-state Classical On-state HCD has historically beeroeiased
Time Dependent Dielectric Breakdown (TDDB) under  with broken=Si-H bonds at Si/Si@interface[8]. Recently
non-uniform field performed in MOSFET devices from Off-state HCD has been associated to brakeirO bonds at
28nm FDSOI, 65nm SOl to 130nm nodes. Oxide the interfacg5] with a bond dispersion model showing higher
breakdown in thin gate oxide is characterized undebC time exponent (n=0.7 — 0.8), extending the findingsa
stress with different gate-length Iz and as function of  universal modeling to On-state degradatj6h This led to
drain voltage Vpbs and temperature. We show that the  conclude that On-state HCD has no direct correfatiath
leakage current is a better monitor for TDDB dielectric BD[9-11]. HCD in On-state was carried out using
dependence under Off-mode stress whereas a new Pre-stress step following On-state TDDB tests shgwi
modeling is proposed. It is found that Weibull slops neither reduction nor acceleration ofpT[12]. However, we

are higher in PFET due large amount of injected hot observe_d recently that pre-stress HCD un_der maelfalrticle
electrons than in NFET when hot holes are involved. mechanism (MP) can lead to TBD reduction underritle

TDDB compared to fresh TDDR, 2].

Keywords— CMOS, off-state damage, aging, TDDB, gate Degradation in short-channel transistors caruoat Off
oxide breakdown, leakage current mode and under subthreshold conditions due to impac
ionization (Il) and non-conducting HC where thidelais
related to different leakage current componentswasace

TDDB remains a key reliability concern in ulshert ~ band-to-band tunneling (BTBT) and gate-induced rdrai
channel CMOS nodes with the guaranty of speedleakage (GIDL)[13-14] These operation regimes may be
performance and low consumption requirements. Qurin sensitive to HC degradation and its relation to&@nts with
AC RF signal operation “Off-state” occurs sequdiytiaith ~ gate-voltage from ¥sto Vemax Where hot-hole injections near
“On-state” mode from low (kHz) to very high frequgn  Vn limit the NMOS device lifetime and may trigger reor
range (GHz)[1-2]. Even if “Off-state” stress generally e€asily BD phenomenid4].
degrades device at smaller rate than “On-state%stit can (@) (b)
become a limiting factor for device operation in &kmnain oot yar T
and for mmW application at which supply voltagep\Ms 150 e
usually doubled with respect to the one used inclog =5/
application. Not only device parameter drift midgpgtcome
significant but also hard breakdown (BD) may bggered
into gate-drain region. It is thus critical to pisdy assess 1611
reliability for Off-state TDDB and deeply undersththe e

|. INTRODUCTION
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the P-channel side under On-state hot-carrier degian  © (d)
(HCD) on one hand, and on N-channel side unders Figure 1: Leakage current until breakdown in 28nm FDSOI N&B; =
HCD_ on the other hand, due t_O _the_ Iarger ‘?'af'_‘age@‘d 1pum with various ¥Ws and Ls as a function of cumulative stress tirte@.drain
sensitivity induced by hot-hole injections. Thispiied high and(b) gate initial currents increasing withdfor Le= 30nm. Initial leakage
energy HC that may trigger BD events in Off modeate- current is smaller for longer devices) drain current andd) gate current
drain regiorn{5-6] in relation to hot-hole efficiency]. monitors decreasing withglat the same biasgy= 2.9V.



After the description of experimental, devicesdiin this
work and the role of impact ionization in Sectionvize

We can observe iRig. 3different bias regions of injected hot-
electrons in PFET and hot-holes in NFET during @fide

present a TDDB study under Off mode in Section 3 byand subthreshold bias condition which are thenacsal at

studying voltage andd-dependence using DC stressing at
room temperature and high temperature (125 °C)nTihe
Section 4, we propose a first attempt of a TDDB salindj
under Off state stressing based on measurememitiaf i
leakage currents.

II. EXPERIMENTAL DESCRIPTION AND HOT -CARRIER
DAMAGE FROM ON TO OFF MODE

For Off-state TDDB study, we tested CMOS nodé$ w
NFET and PFET 28nm devices fabricated with HKMG
(EOT= 1.5nm), 65nm (EOT= 1.85nm) to 130nmoET
2.3nm) with SION dielectric that have been subrditte
Constant Stress Voltage (CSV) applied on drain gilige
the gate is biased at 0V, between 125°C and 25%@nH
stress we performed device |-V characterizationsl an

leakage current measurements. First, TDDB depemdenc
with Vps, Le and temperature is analyzed under DC stress

on several dies and plotted as min and max BD tvialges
(tsp). Then, the dielectric breakdown regardless softawd
is investigated as a function of non-uniform eleetrfield
component (Ray and the leakage currents induced by
stressing drain bias Q¢).

Due to high s applied between source and drain of
MOSFET, lateral electric field supplies high energy
channel carriers reaching non-equilibrium energy

distribution [8]. These accelerated carriers can generate

electron-hole pairs through Fig. 2) which may be injected
into gate oxide depending on vertical field magshéuThis

Il phenomenon can be evidenced Hig.3 through the
measurements of electron/hole gate current. Althod@
generation and its 84 dependence are significatively
distinct in PMOS and NMOS due to difference in Il
threshold energy and energy barrier height fortedes and
holes, hot-hole (HH) implication in hard BD occw@arlier

in Fig.2 than with hot-electron (HE) under subthreshold
regime (low \&s) and under Off mode (= 0).
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Figure 2: Ips measurements until breakdown as a function g With
variables \s in Wg / Lg = 1um / 28nm FDSOI during Off-state and
subthreshold conditions. Impact ionization curiisrttigher in NFET than in
PFET under same reverse bias and BD occurs arovm SFET with HH
injection while it seems to reach -4V with HE irjea before dielectric BD
in PFET.

larger s by direct hole (electron) gate tunneling current
components in P-channel (N-channel, respectively).

As dielectric BD has been shown to be indepentiehot-
carrier degradation in On mode, we extracteériogn 4 Idun
drift after 1¢ s stress between 25 °C and 125 °C in 28FDSOI
NFET Ls = 30 nm under DC HCD On-state (modeling shown
in lines) on one hand and DC HCD Off-state on tieohand,
for fixed Vb = 1.5t0 1.8V and ¥=-1 up to 1.8V.
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Figure 3: Consequence of Impact lonization shown in NFETRRET W

/ Lg= 1pm / 28nm FDSOI under HC mode seen by gate mu(tgate)
measurements in thin gate-oxide foss\and \is variables, showing the
distinct injection mechanisms between hot-electiams hot-holes at low
Vs which turns around to a single tunneling compometigh \&s.

This first shows thaAld,i» during On mode HCD aboveryY
continuously increases (negatively) witlkkvand \bs and
follows a time power law reported as to be duenterface
defects generationANr) [1-2] related to=Si-H bonds
breaking at Si/Si@interface[8, 15, 16] Whereas under Off
mode HCD stress and subthreshold condition we wbser
Fig.4 thatAld.in is positive and doesn’'t exceed 10%, which
might be related taSi-O bonds excitation, we observe the
opposite behaviorAld.in < 0) under On mode HCD stress
(Fig. 4) according to acceptor ty@deNr.

Time dynamics also differ between On and Offest&CD
since this follows under Off mode a logarithmic éim
dependence commonly reported as to be due to hes-ho
trapping (like under NBT[17]) in N-channel case device.
In our previous workl] we had performed relaxation phases
by alternating fresh Off-state sequence to recopbgse at
Vps = Ves = OV and that showed generation of permanent
defects (N) and recoverable one. This implies
trapped/detrapped charge in stressed interface layder
oxide on scaled device. NevertheleA#] in during HCD
Off mode in 65 and 130 nm CMOS nodes has knowroto n
recover on the removal of the stress condit[{&ihsprobably
due to the lack of ultra-thin gate-oxide defects.[1]
interaction between HCD On-state and HCD off-state
28FDSOI NFET has been evidenced by alternating DC
sequences as previously done[18] showing a history
effect when charges are captured in silicon dagdbonds
at interface during Off-state. This interactionvoetn HCD



On and Off modes and the defect generation pragsehis
been modeled if2].
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lll. DC OFF-STATE TDDB WITH VOLTAGE , GATE-LENGTH
AND TEMPERATURE DEPENDENCE
CVS are commonly used to monitgs dependences and
to build up the complete TDDB distribution funct®iy
using different stress voltages and devices ahedsis goal,
the recent investigations on Off-state TDDB arefqrened
under CVS in thin gate oxide (GO1) from different

technologies with different gate-lengthgjL Under On-state

region[23] but may extends towards the channel from the
deep depleted drain layer.
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Figure 6: Weibit distribution plots for GO1 WLg = 10um/60nm 65 SOI
NFET and PFET at various drain volta@ NFET at 25 °C(b) NFET at
125 °C,(c) PFET at 25 °C an@) PFET at 125 °C. Weibull distribution slopes
f are higher in PMOS than in NMOS an independemhiad&temperature.

The gate current {ld is plotted inFig. 3 below W and at
high Vps which evidences hole and electron injections into
the gate oxid@, 14]. Similar behavior was confirmed using
charge pumping measuremeft, 24] showing the net
increase in interface traps and the generatioruthf toraps.

tep is detected ifrigs.1a-d by current abrupt jumps at both

stressing8 generally depends on gate-oxide thickness as qrain and gate terminals confirming the creation aof

expected for Poisson area scaling law while itsiseatially
independent of stress conditions such as tempetatur
voltage and frequendt9-22].
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Figure 5: Cumulative distribution with same Weibull slopgaibed in GO1
We/Lg = 1pum/46nm 28FDSOI NFET at various stressing doé&s between
(a) 25 °C andb) 125 °C.

For fresh ls = 30nm 28FDSOI NFET £ t,), the Stress
Induced Leakage Current (SILC) component at drae s
(Fig. 18 and into volume gate-oxidd=ig. 1b) increases
with Vpswhile SILC is reduced in longeglat the same bias
(Figs. 1¢,d. Under these conditions, even without inversion
layer build-up, carriers can be injected from dradifye by
impact ionization, and with helps from GIDL and BTB
combination by the favoring vertical electric fieltteating
defects at the interface and into volume gate-oxidds
occurs not only in the small area of gate to d@mrlap

percolation path in the (high-k) gate stack loadiat the
drain edgd25, 26]

(b)
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Figure 7: Time to breakdown distribution plots for GO1 Mg
10um/500nm 130nm FET at 25 °C and various draiagel \bs (a) in
NMOS with lower and(b) in PMOS devices.

Fig. 5to Fig. 8 shows gp under Off-state in the case of
NFET and PFET from various CMOS nodes with thiregat
oxides, which are well characterized by Weibull
distributions. This gives a smallgrvalue in NFET[6, 26],
which suggests that hot-hole injection (E > 4.8&Vinore
damaging than hot-electron (E > 3.1eV) injectioPFETS,
as further confirmed by Monte Carlo based SMC satioih
[27]. Percolation phenomenon modeling based on
asymmetric paths could successfully explain thehdrig
Weibull slopes observed for N- and P-channel Cifest
breakdown time distributiof28] than the one expected from
standard percolation modgl9-30]. We see that the basic
degradation mechanisms remain similar for both NM@&
PMOS transistors Figs.6-7 with same geometries and



EOT. The lateral profiling of interface damage dgriOff- extraction of an apparent temperature activatioerggn (&)
state stres§s, 6] shows that the peak degradation occursfrom Figs.11a,bwhich gives similar values (0.1 to 0.4eV)
outside the gate edge where BD occurs in the spagam, than the one obtained in other technolod@&d under similar
co-located with peak interface damage. Nevertheldes  stressing condition. In contrastffcand VAF effects, thermal
dielectric BD time at stress bias under Off modd #me activation is found lower during Off mode TDDB thander
Weibull slope for PMOS transistors is found to bghler On mode TDDB (see Table 1).

compared to NMOS, due to the non-uniform bulk trap

generation and the longer percolation path for $idte

PMOS devicg6]. @)
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changing markedlg slope value for each  device type. 24 26 28 30 32 32 34 36 38 40
However, voltage acceleration factors (VAF) that ot#ain () Vdrain (V) IVerain| (V) ©

with (1) using a power law modeling@6] (Figs.9a-9 are

L . . Figure 9: tgp time to failure in GO1 28FD and 65FEM obtaine®3%o vs.
significantly higher than the one obtained under-State 9 o .

drain voltage with various channel length i order to extract acceleration

TDDB (see Table 1). factors VAF at 125°C (solid lines) and 25°C (daisies).(a) 28nm NFTEs,
. Y (b) 65nm NFETs andc) 65nm PFETs. A common VAF can be extracted
tgp = A.LMAF . v, VA LF ) oD (1) independently of gate channel length and temperalkF is found to be
w higher in Off-state than On-state (Table 1).
Experimental data for each technology can be cheriaed @ .
with the same VAF power law, independently of getrynand 10 3 vl
stress conditions. The BD voltage range is extrgntight 0l e Va-avT=asc
(Figs.6a-9 that it is susceptible to not detecting dielectri @ Vd=31vT=25°C
. A . . - W Vd=32VT=25°C
failure which can be masked by high avalanche ourighis & 10°f
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Table 1: lllustration of gp laws according to (1) with £ f, VAF and LAF ~ 10 = NMOS GO 10
parametersp and VAF are higher under Off-state TDDB in cortitasE, 10" Lol e ‘ RO LI Iy
related to the largeftextracted in PMOS device and VAF in NMOS device. 0.04 0.05 0.06 0.07 0.08 0.04 005 0.06 0.07 0.0]8
(b) Channel length Lg (um) Channel length Lg (um) (c)

occurring only into the gate-drain overlap regioout

_ : length Ls with various drain voltage (reverse cas€igf 8) in order to extract
Space charge zone (SCZ) towards the source aMmgM, S, acceleration factors LAF at 125°C (solid lines) &&tC (dash lines). (a)

6]. Moreover, we observe a strong Effect in Figs.10a-c  2gnm NFTEs, (b) 65nm NFETs and (c) 65nm PFETs. wmon LAF is
which suggests that gate-oxide damage is correlatddC extracted independently of drain bias and tempegatu

injections into the gate-oxide. We show that shrofiBDBs
are obtained at higher stressing temperature trettles the
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Figure 11: Temperature dependence @hT63%) under Off-state stressing

(a)in 28FD NFETSs an¢b) in 65SOI P- and N- FETs extracted from 125 °C
to 25 °C. The activation energy JEemains constant for different gate

channel length.

As shown inFigs. la-d,leakage currents vary initially
with stress voltage ps and gate-length 4, reflecting the
evolution of volumetric defect densit$1, 32] This showed
that created defects may be distributed over thtreen
surface of the dielectric and therefore can be aseal main
tool for BD characterization and a global modellofgime
to BD in Off-state mode. Indeed, only few investigas are
given on effective electric field with 3¢ only, and on the
Off-state current with gate-lengths [33-38]. Using the fact
that applied electric field responsible for thedmiBD is
strongly related to carrier energy and the amodnt©
induced by Il from the drain junction, we charaizer
roughly the impact of carrier energy by the peadceic
field dependencedzx= Vpd/Lg in thin gate-oxide structures,
with same W and variable gate-length.

IV.M ODELING FROM ELECTRICAL FIELD TO LEAKAGE
CURRENTS

To investigate the potential role of HC injeationder Off-
mode till breakdown event, we firstly modeled TD2B a
function of average lateral fieldwg O Vps/Lg giving the
peak value of electrical field at the drain edge fdund out
that it does not give a satisfactory modeling et¥nd Lg
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effects as we see iRig. 12a and Fig. 13athat different
slopes vs. kax are observed for devices with differen L
stressed at various or samgsVAs a matter of fact, under
On-state stressing, charge trapping, and scatteteay to
band diagram deformation and modifies the eledtfiel
profile which becomes non-uniform while the curgent
remain roughly constant. Under Off-state, electriiedd is
far less uniform. Therefore, we analyzed TDDB resab a
function of drain leakage -currentpdi (Ves = 0)
corresponding to the point bias gfd o We found with (2)
that various s and Lg stress configurations lie on same
dependence with gate currentrig. 12bandFig. 13b.

P oxp @
tBD63% = B 'Ig,Off .exp KT

@)

The same trend is shown for different technologieBig.
144 as a function of drain leakage currenFigs. 14.b As
observed irFig. 12bandFig. 13h thepower exponenp is
much smaller than VAF. We believe thabk and o are
relevant figure of merits for HC injection and non-
conducting HC under Off-state stressing mode.

(a)

TBD @T63% (s)

T63% E ) - L dependency PMOS GO1 65SOIFEM - 125 °C (b) T63% ligate @10) raw data PMOS GO1 65S0IFEM 25° C
&25°C [0.055um, 0.06um, 0.065um, ,0.09um] and 125°C
E+
106 £ 0.055um-25°C 1E+04
16405 | A 0.06um-25°C e125°C
B 0.065um-25°C 2 1k At
LE+04 0.07um-25°C E
(2]
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LEH03 o § 1E0
0.07um - 125°C o
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Figure 12: Lifetime plots asdgb at 63% for 65nm PFE{R) vs. electrical field

Emax = Vps / L enlightening g dependence between 25°C (dash lines) and

125°C (solid lines) an¢b) vs. gate oxide initial leakage current overcoming
L dependence between 25°C and 125°C.

Figure 13: Lifetime plots defined forgh at 63% in 65nm NFETa) vs.
electrical field Rax= Vps/ Lg pointing out the k dependence between 25°C
(dash lines) and 125°C (solid lines) affi} vs. gate-oxide initial leakage
current overcoming ¢ dependence between 25°C and 125°.

T63% (Idrain @t0) raw data GO1 28FDSOI &
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6550125°C to 125 °C

6550125° Cto 125°C

(b)

1.E+06

1E+06

130nm PFET 25°C 130nm PFET 25°C

LE05 W130nm NFET 25°C 3 LE05 B 130nm NFET 25°C

1E+04 ®28FD NFET125°C 3 1E+04 @ 28FD NFET 125°C

1.E+03 A 65501 NFET 125°C 1.6+03 A 65501 NFET

125°C
65501 NFET 25°C

TBD @T63% (s)
TBD @T63% (s)

65501 NFET 25°C ]
1402 LE+02
®6550I PFET 125°C @ 65501 PFET 125°C
1Es01 ] LE+01

A 65501 PFET 25°C A 65501 PFET 25°C

1.E+00
1.E-12

1.E+00
1.E-06

1E-09 1E-06 1.E-03 1E+00 1.E+03

1.E+02

1.E-04

1E-02
Idrain @ts = 0s.

1.E+00

Igate @ts = 0s

Figure 14: tsp at 63% lifetime model as a function of initia})(teakage
current in 28nm, 65nm and 130nm N- and P- Fi)gate current antb)
drain current monitors, between 25°C and 125°Cs Fhows better lifetime
monitoring using gate leakage and slightly morgelision in NFETSs.

The Off current characteristics are compose#ignl5 of
two components, the first one related to junctieakhge
currents and the second one to avalanche departaeell has
been involved. Thusp$ can be modeled with (3) similarly to
a diode-like framework39]. The voltage condition at which
avalanche appears is obtained with (4) and depmaddy on
Le with constant D and D parameters (Table 2), for each
CMOS node, that is exemplified in 2BFDSOI here.

(@(r). 225+ b(ry) (a(r), "2 Pavatance

Ipops = C. 1o(T) . (exp )(exp +1) .exp(%) (3)

whereexp(a(T). % + b(my)is related to junction component and
(exp (a(T) . 22— "Paancie 1 1) to the avalanche current.
G

Dy

14 [1422
Lg

(4)

VDavalanche -



28FDSOI

Table 2: Summary of (3) and (4) parameters useddek Empirical
modelling.

NMOS WG = 1pym

28FDSOI
1E-3 —_—
@ L=30nm 3
1E-4 @ L =34nm 3
1E-5F @ L=40nm 1
9 L =46nm ]

avalanche

junction

OFF CURRENT (A)

3

Vp=0to 3V

step 0.05V 7
Vg = ov
1 1 1 " 1 " 1 " 1 1 " 1 " 1 " 1
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Vps/ Lg (10% viem)

Figure 15: Ips and k measurements and modeling at T= 125°C under Off-
state (\b6s= 0 ) for Le= 30nm to 46nm NFETSs as a function of peak lateral
field approximated to &x = Vps / Le showing a junction leakage and
avalanche components in the diode currents. Thelimgds shown in lines
for Ips monitoring with relatively good agreements as racfion of gate-
length L.

In Fig.15 we observe thablor (Ves= 0) is composed by a
junction currents which becomes higher witk fleduction
while gate currenghe orand b,orf both increase withd.due

to tunneling contributions. This later is mainlypgadent on
surface band-to-band tunneling mechanism and drain
induced gate leakage that both may be involvedestinm
electric field magnitude (0.2 to 1 MV/cm kg.15) in ultra-
thin gate-oxide NFETs (FDSOI with EOT= 1.5nm).
Therefore, the dependence withok explains thegh(63%)
relationships with Fax proposed in (3)-(4) and shown in
Fig.12ain P-channel an&ig.13a in N-channel MOSFETs
in the range of &= 55nm to 90nm (SOI) at 25°C and 125°C.

V. CONCLUSION

The Off-state TDDB mechanisms involved in the
degradation of distinct CMOS nodes have been iigegsd
in detail for relevant conditions related to RF-mma
applications. A gp lifetime model based on power law
dependence has been developed as a function efthes

in Off-state mode and enables us to identify thatd and
sensitivity between Off-mode and hard breakdowmtsse
for ultra-short devices with ultra-thin gate-oxide.
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