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Abstract

Machine learning is often cited as a new paradigm in control theory, but is also often viewed

as empirical and less intuitive for students than classical model-based methods. This is par-

ticularly the case for reinforcement learning, an approach that does not require any mathe-

matical model to drive a system inside an unknown environment. This lack of intuition can

be an obstacle to design experiments and implement this approach. Reversely there is a

need to gain experience and intuition from experiments. In this article, we propose a general

framework to reproduce successful experiments and simulations based on the inverted pen-

dulum, a classic problem often used as a benchmark to evaluate control strategies. Two

algorithms (basic Q-Learning and Deep Q-Networks (DQN)) are introduced, both in experi-

ments and in simulation with a virtual environment, to give a comprehensive understanding

of the approach and discuss its implementation on real systems. In experiments, we show

that learning over a few hours is enough to control the pendulum with high accuracy. Simula-

tions provide insights about the effect of each physical parameter and tests the feasibility

and robustness of the approach.

Introduction

Inverted pendulums—also known as “cart-pole” apparatuses—belong to simple type of sys-

tem that have a long history in the field of mechanics and dynamical systems [1, 2]. Their

dynamics is described by a set of mathematical equations that are simple to derive, while still

featuring interesting properties such as nonlinearity and under-actuation. This makes an

inverted pendulum a perfect candidate to benchmark and showcase new control algorithms

before deploying them on more complex systems such as quadrotors or humanoid robots

[3]. In addition, given the simplicity required to build an experimental prototype, cart-pole

systems are very well-suited for teaching a wide variety of topics, ranging from Lagrangian

mechanics to control theory. Indeed, the literature includes numerous examples of low-cost
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pendulums designed and built with the purpose of teaching one or more subjects to under-

graduates [4–6].

In this article, we aim at controlling an inverted pendulum in its unstable position, by rein-

forcement learning (RL). This machine learning method has shown great interest in many

applications such as playing games [7, 8] and system controlling [9–11], and focuses on how

agents perform actions in an environment so as to maximize some notion of cumulative

reward [12]. The advantage of RL is that it avoids modeling the dynamics involved, unlike in

model-based approaches [13, 14].

Many numerical studies have implemented an inverted pendulum virtual environment as a

benchmark to test RL algorithms [15–22], but to our knowledge, there is no study that pro-

vides successful RL implementations in experiments. First, except for a few studies that have

discussed non ideal systems [16, 17], most of these numerical implementations discard the

effects associated to realistic (and thus more complex) control methods: in experiments, the

control of the cart is subject to delay, hysteresis, biases and noise that can significantly alter the

learning process. Second, most of the existing virtual environments consider only motion of

the pendulum in a small angle range around the upward and unstable position and do not

treat the whole control from the downward and stable position as expected in experiments.

This ambition makes the control task significantly more difficult.

The goal of the article is twofold. First, we expose the basic ingredients to build an intuition

about RL approaches. We focus here on Q-learning and Deep Q-Network approaches to give

insights about the implementation and the conditions of successful controls. Simulations with

a virtual environment are provided to test the feasibility of the two approaches as well as to

probe the effect of physical parameters that can not be easily tuned in experiments. Second, we

provide all the material to perform experiments. This paper is accompanied by an open-source

code repository which allows to replicate all the approaches presented here [23]. It includes

detailed instructions to build the prototype used in this work, configure its software interface

and implement several controllers.

Modelling the inverted pendulum and the controller

We assume a mass m located at the end of a massless rigid rod of length ℓ and subjected to

gravity g. Its other extremity is free to rotate on a motorized cart located at abscissa x(t). The

angle θ(t) separating the rod to the downward vertical direction, as shown in Fig 1, follows

the dynamics of a damped oscillator in the absence of cart motion. If the cart is actuated, the

dynamics is driven by the equation:

€y þ kv _y þ o2 sin yþ
€x
‘
cos y ¼ 0; ð1Þ

with o ¼
ffiffiffiffiffiffiffi
g=‘

p
the natural frequency of the pendulum and kv a viscous friction coefficient

[1].

The purpose is to stabilize the pendulum in its unstable equilibrium position θ = π by con-

trolling the motion of the cart only, which is itself driven by a target velocity provided by a con-

troller. Unlike ideal systems implemented in virtual environments, experimental systems need

to account for delay, hysteresis and biases between the target and measured values. For the

present setup, the cart velocity _x and the control velocity _xc are linked through the equation:

€x ¼
1

t
_xc � _xð Þ � fc sign ð _xÞ � fd: ð2Þ
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The first term on the right-hand side models the motorized cart with τ, a relaxation time

scale to account for the linear dynamics. fc and fd are two coefficients to account for the asym-

metric dry friction acting on the motorized base. In experiments, the cart target velocity _xc is

proportional to the applied voltage U:

_xc ¼ kUU; ð3Þ

where kU is a constant. The cart is constrained to move on a track of length 2xmax.

Controlling the pendulum using reinforcement learning

RL exploits the framework of Markov Decision Process (MDP), which is an extension of the

Markov process. There are four components in MDP: a set of states, a set of actions, a reward

and a policy. We refer to the internal decision maker who uses a RL algorithm as an agent, and

the whole physical system as the environment. During the learning process, the agent evolves

in an environment and tries to maximize its cumulative reward. At each time step, the state of

the agent is assessed and an action is performed. After the actuation, the environment provides

a new state and a reward. The choice of the action follows the policy π(a|s) which is the proba-

bility of taking action a while in state s. The objective in RL is to determine the best policy

π�(a|s) for the agent, that maximizes the cumulative reward.

For the cart-pole problem, at each time step ti = iΔt, the state si is given by the pendulum’s

orientation θ(ti) and its angular velocity _yðtiÞ, as well as the cart’s position x(ti) and velocity

_xðtiÞ, i.e.:

si ¼ ðyðtiÞ; _yðtiÞ; xðtiÞ; _xðtiÞÞ: ð4Þ

Here i is the time step number and Δt is the time interval between two successive state

observations (or between two successive actions). According to the policy π(a|s), the agent

chooses and executes an action ai which controls the cart movement for a given state si. This

action changes the agent’s state si to si+1, and the environment provides a reward ri+1 related to

the proximity of the pendulum to its unstable position. This process is then iterated at stage

i+1: the loop is depicted in Fig 2. In order to construct the policy π(a|s), it is essential to

Fig 1. Sketch of the inverted pendulum.

https://doi.org/10.1371/journal.pone.0280071.g001
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estimate a return function Ri, designed as the discounted cumulative reward:

Ri ¼ ri þ griþ1 þ g
2riþ2 þ g

3riþ3 þ :::; ð5Þ

where 0< γ< 1 is the discount factor which measures the importance of the future unitary

reward in computing the expected cumulative reward. Since the cumulative reward depends

on the states si, si+1, si+2, . . . and the actions ai, ai+1, an+2, . . ., one can define an action-value

function Q(si, ai) (Q refers to Quality) which computes the expected cumulative reward at the

state si when performing the action ai:

Qðsi; aiÞ ¼ E½Rijðsi; aiÞ�: ð6Þ

This function could be the basis for constructing an optimal policy. For example a greedy

policy will always select the best action a� = argmaxaQ(si, a) for an agent in state si.
The learning process consists in visiting a large number of states and taking various actions,

and to compute the reward expectation (6). However, it is usually time consuming and very

difficult, if not impossible, to travel through all the states and actions to accurately determine

the action-value function Q(s, a), as it is necessary to sample the state and the action spaces to

accumulate statistics for the rewards. In addition, a control task could be infinitely long so it is

not practical to wait to the end of the experiment and measure the cumulative reward, and

update the function Q. In the MDP framework, one can rewrite Eq 6 as [12]:

Qðsi; aiÞ � ri þ gQðsiþ1; aiþ1Þ: ð7Þ

Fig 2. RL learning process. The state of environment s is measured and given to the agent. The agent updates it policy

and accordingly choose the action a for the next step among −U, 0 or U. After sampling time, the state s evolves and

the cycle continues. In our case, s ¼ ðy; _y; x; _xÞ. The policy is updated by updating the action-value function for

Q-Learning and DQN, using a so-called Q-table and artificial neural networks, respectively.

https://doi.org/10.1371/journal.pone.0280071.g002

PLOS ONE Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes

PLOS ONE | https://doi.org/10.1371/journal.pone.0280071 February 13, 2023 4 / 15

https://doi.org/10.1371/journal.pone.0280071.g002
https://doi.org/10.1371/journal.pone.0280071


Here we use the reward ri after a sampled action ai to represent the expected immediate

reward, and γQ(si+1, ai+1) to represent the cumulative discounted future reward. In order to

determine the action-value function, the agent interacts constantly with the environment dur-

ing the learning phase and update its Q function. This function can be updated through an

iterative procedure:

Qðsi; aiÞ  Qðsi; aiÞ þ aDQ; ð8Þ

which is similar to the Euler scheme for numerically integrating differential equation _Q ¼ DQ,

where α plays the role of a time step. This is the idea of what is called the temporal differencing

(TD) approach [12]. By defining ΔQ = Q� − Q, we know that the differential equation will

drive Q to the target Q�. The idea of the Q-Learning algorithm is to hypothesize that:

Q� � ri þ gmax
a0

Qðsiþ1; a
0Þ; ð9Þ

with a0 being the accessible actions at state si+1, which is consistent to the definition (7). It

models that an approximation of the cumulative expected reward is the reward ri plus the dis-

counted cumulative reward at step i + 1 by taking the best action a�iþ1
¼ argmaxðQðsiþ1; a0ÞÞ.

To summarize, the Q-learning iterative procedure writes [24, 25]:

Qðsi; aiÞ  Qðsi; aiÞ þ aðri þ gmax
a0

Qðsiþ1; a
0Þ � Qðsi; aiÞÞ; ð10Þ

where the parameter α measures the learning rate. The effect of the discount factor γ becomes

even clearer: as it tends to zero, the learning agent only takes into account the immediate

reward, while as γ is nonzero, the agent integrates future rewards in the learning phase. With

this iterative approach, the agent learns while it evolves in the environment.

Q-learning employs an �-greedy policy during the learning process. It chooses the best

action most of the time, and slightly explore the consequences of randomly taken actions: at

each time step, a random number NR is drawn, if NR< � < 1, a random action will be chosen,

otherwise the greedy policy will be applied.

To store the expectation of the cumulative reward, the Q-Learning algorithm uses a Q-table

that covers the whole state space and action space. This object takes the form of a huge matrix

of dimension Ns × Na, where Ns is the number of discretized states, and Na is the number of

possible actions (Na = 3 here). This representation already underlines the limitation of this

approach, because of the finite size of memory of modern computers.

To overcome this obstacle, it appears necessary to exploit a more efficient function approxi-

mator. Deep Q-Network (DQN) [7] is a reinforcement learning algorithm based on the Q-

learning approach that takes advantage of neural networks in place of the matrix “Q-table” to

approximate the true “action-value” function. Neural networks provide an effective way to

approximate Q(s, a), because they can incorporate non-linearity and aggregate among the

states due to the interconnection between the neighboring layers of the neural net. This leads

to a more efficient action-value approximations. In addition, to stabilize the learning process

and obtain more reliable results, DQN also employs a number of additional techniques that we

summarize in S1 File.

In the next section, we perform the control task on a real system and we demonstrate the

capacity of both Q-learning and DQN algorithms for the full control including swing-up and

stabilization of the inverted pendulum. We first present in details our RL environment; then

we discuss the limitations of the basic Q-Learning for this system; the more advanced DQN

approach is then exploited and we show that it successfully maintains the pendulum at the
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target position in both experiments and simulations. Finally, we explore in the virtual environ-

ment the influence of different system’s physical parameters on the control quality.

RL environment

Our objective is to maintain the pendulum at the target position θ = π while centering the cart

(x = 0) at the same time. We perform both experiments and simulations. The system state s has

been defined with Eq (4). To avoid an angle discontinuity, sin(θ) and cos(θ) are given to the

learning agent instead of only θ. The inverted pendulum system is driven by a motor on the

cart and it has direct control on the meant cart’s velocity _x via an applied voltage on the motor.

Three actions are offered to the agent at each time step, i.e., ai = (−U, 0, + U), with U 2 (0,

12V) a fixed voltage. At each time step, the cart can translate in both directions or to keep its

current position, according to its dynamics.

Another crucial component for RL is the reward function. The reward is maximum as the

objective is reached, i.e., the pendulum in its unstable position (θ = π). In addition, we add the

requirement for the cart to be centered around the middle of the track (x = 0). For this pur-

pose, there are many options to design the reward function [12], and for simplicity, we have

chosen:

rðy; xÞ ¼ ð1=2Þð1 � cos ðyÞÞ � ðx=x0Þ
2
; ð11Þ

where x0 < xmax. This additional discard———constraint does not prevent the agent to reach the

control objective on the angle. The maximum of this function is equal to one, as θ = π and

x = 0.

The normalized return of an episode is computed as the cumulative reward of the entire

episode divided by the maximum episode length, i.e. 800. Such a definition gives an evaluation

of the policy: the closer to 1 the normalized return, the better the episode. An episode is inter-

rupted when the state si meets at least one of the following conditions:

1. the dimensionless cart’s position exceeds the physical boundaries, i.e., |x|>xmax; In this

case, the agent is strongly penalized and the cumulative reward of the episode is reduced by

-400.

2. the angular speed exceed 14 rad/s, since in practice, we would like to avoid the pendulum

spinning too rapidly. This value has been chosen according to the mechanical limit of our

experimental system.

3. the maximum duration Tep = 800Δt is attained, where Δt = 0.05 s. This choice has been set

to diversify the experience and avoid being stuck in local minimums, which corresponds to

roughly 2 or 3 times optimal swing-up time. These values are indeed adapted for an accept-

able control quality. In the real experiment, one episode takes approximately 40 s.

At the beginning of every episode, we initialize the system with the cart and the pendulum

at rest, i.e., θ = 0 and x = 0. Between two episodes, the system waits 120 s to ensure that the con-

dition y ¼ _y ¼ 0 is satisfied. The learning process consists in accumulating statistics during

successive episodes. Plotting the normalized return as a function of the episode number can be

noisy and we smooth the data by performing a moving average in Q-learning and DQN over

300 and 30 episodes, respectively, as the former is less stable. Finally, we prefer to represent

the learning curve by plotting the normalized return as a function of the total number of time

steps to give insights about the true time of the learning process, because some episodes might

not run to the end.
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Experimental setup and methods. The experimental realization of the pendulum is

shown in Fig 3. It features a DC motor (model: MFA 970D 12V) which can apply a horizontal

force to the sliding base thanks to a transmission belt. An incremental encoder measures the

position x of the base on a linear track, assuming that x = 0 m corresponds to the centered

position. The finite length of the track gives the constraint |x|<xmax, with xmax = 0.35 m. A sec-

ond encoder mounted on the moving base assesses the angle θ. Both are incremental encoders

(model: LD3806–600BM-G5–24C) with two phases in quadrature, for a total of 2400 steps per

revolution. A Raspberry Pi 4 is used to handle the electronic devices and control the system. It

runs a C++ executable, namely the low-level interface (LLI), which is responsible of handling

the different hardware components and expose the current state of the pendulum to client

control applications (see S1 File). The algorithm running on the Raspberry Pi then commands

the motor, within the three possible actions. All the code to control the pendulum is open

source and available, as well as a reference manual [23].

The exact procedures to measure the physical parameters that appear in Eqs (1) to (3) are

described in S2. Their values are summarized in S1 File.

Simulations. In the experimental setup, the state information is gathered directly from

the physical world, and the agent interacts with the environment via the LLI. In the virtual

setup, the agent’s state is updated through Eqs (1) to (3). Details can be found in our code [23].

The effects of the voltage U, the dry friction acting on the motorized base fc and the viscous

friction kv of the pendulum were investigated systematically in simulation. The same holds for

the influence of the noise amplitude σθ and s _y on the control quality: we have introduced a

Gaussian noise to the measurement of the pendulum angle θ, i.e., at each instant t = iΔt,
yi � N ðymi ; s

2
y
Þ, where N refers to the normal distribution, y

m
i ¼ yi� 1 þ

_yDt is updated from

the previous state. Naturally, a noise of amplitude s _y ¼ sy=Dt was then introduced to the _y

measurement.

Q-learning

In Q-learning, the observation space ðsinðyÞ; cosðyÞ; _y; x; _xÞ is discretized into different num-

ber of bins, whose sizes is matter of compromise. A Q-table with low resolution results in

relatively fast simulations and limits the use of computer memory. On the other hand, the res-

olution needs to be high enough to ensure the success of the learning process. As an example

we start with a sparse and homogeneous discretization with nBins = (10, 10, 10, 10, 10). In

this case we expect the Q-table to contain 3 � 105 elements, given that there are three possible

actions.

Fig 3. The experimental setup.

https://doi.org/10.1371/journal.pone.0280071.g003
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The Q-table size gives a minimal estimate of the total number of time steps to learn assum-

ing that the agent needs to visit each element of the table. This number is 10–100 times higher

in practice given that the basic Q-learning algorithm usually suffers a low sample-efficiency

[12]: some elements are never evaluated while some others can be updated regularly.

We have tested the Q-learning approach in simulation with different total number of epi-

sodes NT from 104 to 107. We recall that one episode contains 800 time steps at maximum; the

average number of time steps per episode is lower in practice due to numerous interrupted epi-

sodes at the beginning of the learning process. The technical details such as the value of the

hyperparameters are found in S4. Given the expression of the reward function and of the pen-

alty, the cumulative reward spans from -0.5 (the cart goes quickly out of the track) to 1 (suc-

cessful learning). Below 106 time steps, the normalized return remains close to its minimum.

The system requires at least 107 time steps (105 episodes) to observe an increase of the normal-

ized return above 0 (Fig 4a). Even in this case, the cumulative reward remains low, around 0.3,

and reaches 0.55 at most as the number of time steps is increased to 1010. For such an episode,

the pendulum can be maintained at its vertical position only in a short amount of time, other-

wise the pendulum oscillates (Fig 4b). Transposed to experiments with a physical time interval

Δt = 0.05s, 107 time steps correspond to 6 days of experiments!

We can nevertheless discuss the effect of the discretization of the Q-table, which is too

low in the former example to reach a cumulative reward close to 1 even after a very large

number of time steps. In the following, we estimate the typical value nθ for the bin in θ: the

Fig 4. Learning results using the basic tabular Q-learning implementation. Left: Normalized return as a function of

the number of time steps for different total number of episodes NT. Right: Temporal evolution of cos θ in the best

episode of the longest learning process (NT = 107). The observation space ðsinðyÞ; cosðyÞ; _y; x; _xÞ is discretized

homogeneously into different number of bins: a) and b) nBins = (10, 10, 10, 10, 10), c) and d) nBins = (50, 50, 50, 10,

10).

https://doi.org/10.1371/journal.pone.0280071.g004
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discretization interval is Δθ = 2π/nθ. In order to ensure the learning objective, the time interval

separating two actions must not be too large with respect to this discretization. We expect that

Δt should be smaller than the typical time the agent lasts in one interval: we can assess this

duration in the limit of small damping. By assuming that the pendulum is weekly damped, we

approximate the Eq (1) with €y þ o2 sin y ¼ 0. Consequently we write the energy conservation

1

2
_y2ðtÞ ¼ o2 cos y tð Þ � cos y 0ð Þð Þ, where _yð0Þ ¼ 0. Between two iterations the angle varies

within an increment Δθ and we write θ(t) = θ(0) + Δθ, Δθ� 1:

cos yðtÞ ¼ cosðyð0ÞÞ � Dy sin yð0Þ þ oðDyÞ2 ð12Þ

_y ¼
Dy

Dt
; ð13Þ

such that we deduce that:

ny ¼
p

o2Dt2

1

sin yð0Þ
: ð14Þ

This gives the order of magnitude nθ� 50. The presence of a divergence near the unstable

equilibrium shows that the discretization must be refined at least near cos(θ) = −1.

Consequently, we tested a finer resolution nBins = (50, 50, 50, 10, 10) with sin(θ), cos(θ)

and _y discretized into 50 bins. The computation memory increases exponentially with the size

of the Q-table and any finer resolution would be unpractical. As observed in Fig 4c, it takes

at least 108 time steps to see a normalized return above 0. After about 5.6 × 109 time steps

(7 × 106 episodes), the system has finally learned reasonably well and obtain a normalized

return of�0.8: the pendulum can stay in the goal position for a finite period, but quickly falls

over to be quickly swung back up again (Fig 4d).

The inefficiency of the learning is rationalized by the fact that the matrix representation of

Q-Table is not adapted to solve the swing-up problem. To update the action-value function

more efficiently, a better function approximation is needed. In that regard, artificial neural net-

works show very promising capabilities and is data efficient [10].

Deep Q learning

In this section, we implement the Deep Q Learning technique. In this approach, the

Q-Table for approximating the Q-function is replaced by an Artificial Neural Network

(ANN), which is named Deep Q Network (DQN). We have shortly introduced ANN in S3.

For our purposes, we use for the ANN a dense neural network architecture with 2 hidden lay-

ers having 256 nodes each. Five nodes receive the values of the state s, and three terminal

nodes give the Q-value for each of the 3 actions. Similar to any other deep learning algorithm,

the training of DQN depends on the hyperparameters, which determine the network policy

structure, the learning strategy and the learning speed. We offer a set of fixed hyperparameters

(see S1 File), which is robust for our system.

In parallel to experiments, we performed simulations of the model. For both approaches,

the features and quality of the learning process are evaluated.

Note that the maximal number of time steps (150000) for the complete training is chosen

so that the steady state average value is reached in both real and virtual experiments.

We evaluate the policy performance every 5000 time steps with an inference. It consists

in testing a greedy policy during one complete episode, with the initial condition

ðy; _y; x; _xÞ ¼ ð0; 0; q0; 0Þ. This protocol is applied directly in experiments, while in
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simulations, the inference curve consists in computing the evolution of the average normalized

return of 10 episodes (instead of only one in experiments) with equidistant initial conditions:

(θ0 2 (−10˚, 10˚) and ð _y; x; _xÞ ¼ ð0; 0; 0Þ). This allows to test the robustness of the policy in

simulation, i.e., the capacity to generalize and achieve a high normalized return from different

initial states, other than the particular initial state of the learning process. This protocol how-

ever is not viable in experiments since in practice it is difficult to control precisely the initial

angle of the pendulum other than its equilibrium position. Finally, the best learned policy in

the sequel corresponds to the DQN model that obtained the highest normalized return among

all inferences.

Experimental results. We first discuss the results of the outlined DQN algorithm

obtained with the experimental setup. The only control parameter is the applied voltage U,

which is directly proportional to the target cart’s velocity value _xc Eq (3). Fig 5 displays the

temporal evolutions (a) of the cart’s position and (b) of the pendulum’s angle during a single

episode for the best learned policies. Two distinct voltages were tested: U = 2.4 V and U = 7.1

V: we illustrate the corresponding learning processes in a movie (See S1 Video).

The voltage U = 2.4 V is not sufficient to swing up the pendulum, and the best policy yields

an oscillation of the pendulum around 0. This means that the energy provided with this voltage

is not high enough to swing up the pendulum or that the total duration of one episode, 800

time steps, is not large enough to increase the maximal angle, period after period. Given that

the maximum angle is reached after 300 times steps already, the first assumption is probably

the good one.

For the other voltage U = 7.1 V, the cart initially oscillates with a large amplitude and the

pendulum swings up after about the equivalent of almost 3 periods. As soon as the unstable

equilibrium is reached, the cart turns into a vibration regime with smaller amplitude to main-

tain the pendulum balanced upward around θ = π. The learning and the inference curves (see

Fig 6, thick solid lines) reveal exactly the same results that for U = 7.1 V, the normalized return

in both learning and inference reaches a high plateau value of�0.8 − 0.9, indicating a success-

ful control, while for U = 2.4 V, the normalized return stays very low around 0.1.

Simulation results. In this section, we perform simulations and test different important

physical parameters which could influence the control quality. All the parameters are kept con-

stant and defined with the Table 1 and 2 of the SI except the one investigated. The voltage is set

to U = 12 V and the noise sy ¼ s
_y ¼ 0 if not specified.

Effect of action amplitude—Applied voltage on the DC motor. We have shown with

our experimental setup that the action amplitude plays a crucial role in the task: a low voltage

applied on the DC motor results in a failure of control. Here we test a range of U from 2.4 to

12 V in the virtual environment and the results are presented in Fig 6. First, we note that the

simulation results are consistent with those found in experiments (thick curves), i.e., both nor-

mal and thick curves of (U = 7.1 V) as well as (U = 2.4 V) show similar trend. Fig 6a displays

the learning curves. The normalized return increases and then reaches a plateau for all the

applied voltages. However, up to U = 4.7 V, the plateau value is smaller than 0.4, close to that

observed using Q-learning algorithm, referring to an oscillation around the stable position.

Above 4.7 V, DQN algorithm gives satisfying performance during the learning process.

To assess the performance of the optimal policy obtained for each applied voltage, we plot

the inference results in Fig 6b. Because there is no exploration and the optimal action is chosen

at each time step, the plateau value of each inference curve is expected to be greater than the

corresponding learning curve. Nevertheless, some inferences exhibit negative peaks associated

to the fact that among the 10 episodes that are averaged to measure the normalized return of

an inference, some of them are terminated by the cart reaching xmax and are strongly penalized
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consequently. These negative peaks disappear as the number of time steps increases and the

learning process continues. A normalized return between 0.8–0.9 is a good value as it is calcu-

lated from the averaging on one episode, and this includes the initial stage before swing up.

This can be seen in Fig 6c where the learning process is probed by plotting the time evolution

of the reward for an episode initiated at θ0 = 0 following the best learned policy obtained after

the 150000 time steps. From U = 5.9 V, the plateau of the reward is around 1 and the system

reaches the objective. This figure also reveals that the higher the applied voltage is, the quicker

the swing-up is achieved. To probe the robustness of the best learned policy for each applied

voltage, we have measured the average of the plateau reward for 10 episodes initiated with

Fig 5. Experimental results with the best policies in inference for two different applied voltages U = 2.4 V (blue) and 7.1 V (green): a)

Temporal evolution of the cart’s position x during one episode b) trajectory of the cart in the ðx; _xÞ space c) Temporal evolution of the

pendulum’s angle θ during one episode d) Trajectory of the pendulum in the ðy; _yÞ space e) Temporal evolution of the applied voltage

during the first 200 time steps.

https://doi.org/10.1371/journal.pone.0280071.g005
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equidistant initial values of θ0 between −10˚ and 10˚. Statistics over these 10 episodes are rep-

resented by a box-plot of the reward as a function of U (Fig 6d). It shows that the pendulum

can operate and maintain a swing up for some values of θ0 even for U = 4.7V, but that this

behavior becomes robust only for U� 5.9V.

Effect of the physical parameters. In what follows, we numerically investigate the robust-

ness of the learning process with respect to the two frictions coefficients and to the two sources

of noise.

In Fig 7a, the static friction is varied from 0 to 11.7 N.kg−1, keeping the other parameters

constant. We observe that the value 1.17 N.kg−1 measured with the real system does not per-

turb the learning process in comparison to a system without friction. However, increasing ten-

fold this parameter value prevents the system from learning correctly. In Fig 7b, the viscous

friction is varied from 0 to 0.70 N.kg−1. Again the experimental value 0.07 N.s.rad−1 exhibits a

good learning performance but multiplying this value by 10 would prevent the agent to drive

the pendulum to the target.

As mentioned in the experimental setup description, the real system has uncertainties asso-

ciated to the measurement of the angle θ. In the virtual environment, this is accounted for by

Gaussian noises of standard deviations σθ and σθ/Δt for the measurements of θ and _y respec-

tively. From the real system, we have evaluated σθ� 2.6 mrad. Here we probe values ranging

between 0 and 175 mrad in simulation (Fig 7c). Clearly, low measurement noises, i.e., σθ< 8.7

Fig 6. Influence of the applied voltage on the learning process. Thin curves correspond to different simulations, while thick curves refer to

the experimental observations. a) Learning curve. b) Inference curve built from inferences performed every 5000 time steps. c) Temporal

evolution of the reward for the episode initiated at θ0 = 0 following the best learned policy. d) Statistics over 10 episodes initiated with θ0

between −10˚ and 10˚ of the plateau reward following the best learned policy.

https://doi.org/10.1371/journal.pone.0280071.g006
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mrad, result in a perfect control quality as observed with high plateau values of the inference

curves. A noise amplitude of 17.5 mrad is still acceptable. Beyond this value, the pendulum

can’t be driven to its unstable position.

Finally, we examine the effect of an associated degree of uncertainty on the command sent

to the motor, thus a Gaussian noise of standard deviation σU is added to the voltage U in simu-

lation. We show in Fig 7d that, up to a noise level of σU/U’ 0.1, a good control is achieved.

This condition is not restrictive and is easily obtained with classical systems. A moderate noise

does not seem to impact the quality of the learning process.

Conclusion

In this article, we have revisited in a pedagogical context, the stabilization of an inverted pen-

dulum, a classical problem in dynamics and control theory. We first recalled the physical

model of such a system and the control objective. Two model-free Reinforcement Learning

algorithms were investigated both in experiments and in simulations, which offers an accurate

description of real experiments. In terms of the control quality, the basic Q-Learning method

is found not efficient while the more advanced algorithm DQN successfully accomplishes the

stabilization of the pendulum in its unstable position, independently of the initial condition.

Finally, we studied the influence of some extensive physical parameters on the control quality

in simulation with the virtual environment. The robustness of the DQN approach has been

therefore validated, both in terms of parameter range, but also in terms of initial conditions:

the RL always drives the pendulum in its unstable position, independently of the initial state.

Fig 7. Influence of the physical parameters on the control: Inference curves of a) static friction, b) viscous friction, c) measurement noise and d)

action noise.

https://doi.org/10.1371/journal.pone.0280071.g007
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An admissible range of physical parameters were determined, which can be used to guide the

elaboration of experimental setups.

Meanwhile, we deliberately chose to use discrete actions for simplicity, but there exists

many other RL algorithms which can work with continuous action spaces, for instance the

Soft Actor-Critic (SAC) algorithm [26]. Using continuous action space unquestionably enables

a finer control, but it would take more resources and time to train the RL model due to addi-

tional complexity, and is less suitable for the scope of this article.

For public outreach, we provide all the details in an open-source code repository.
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