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On Universal D-Semifaithful Coding for
Memoryless Sources with Infinite Alphabets

Jorge F. Silva, Senior Member, IEEE and Pablo Piantanida, Senior Member, IEEE

Abstract— The problem of variable length and fixed-distortion
universal source coding (or D-semifaithful source coding) for
stationary and memoryless sources on countably infinite al-
phabets (∞-alphabets) is addressed in this paper. The main
results of this work offer a set of sufficient conditions (from
weaker to stronger) to obtain weak minimax universality, strong
minimax universality, and corresponding achievable rates of
convergences for the worst-case redundancy for the family of
stationary memoryless sources whose densities are dominated by
an envelope function (or the envelope family) on ∞-alphabets.
An important implication of these results is that universal
D-semifaithful source coding is not feasible for the complete
family of stationary and memoryless sources on ∞-alphabets.
To demonstrate this infeasibility, a sufficient condition for the
impossibility is presented for the envelope family. Interestingly, it
matches the well-known impossibility condition in the context of
lossless (variable-length) universal source coding. More generally,
this work offers a simple description of what is needed to achieve
universal D-semifaithful coding for a family of distributions Λ.
This reduces to finding a collection of quantizations of the product
space at different block-lengths — reflecting the fixed distortion
restriction — that satisfy two asymptotic requirements: the first
is a universal quantization condition with respect to Λ, and the
second is a vanishing information radius (I-radius) condition for
Λ reminiscent of the condition known for lossless universal source
coding.

Index Terms— Lossy compression, variable length source cod-
ing, D-semifaithful code, universal source coding, infinite alpha-
bets, strong minimax universality, information radius, universal
quantization, envelope families.

I. INTRODUCTION

Universal Source Coding (USC) has a long history [2]–[11].
This research topic started with a series of important papers on
the late sixties and early seventies by Fitingof [7], [12], Lynch
[8], Davisson [13], Shtarkov and Babkin [9], Babkin [10], and
Cover [11]. The main focus was proposing constructive coding
methods for variable-length lossless coding under different
finite-alphabet assumptions for discrete-time sources. On this
early stage, the seminal work by Davisson [5] is the first
that introduced an information-theoretic viewpoint for USC,
formalizing different forms of redundancies and universal
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coding with respect to those redundancies.1

In lossless variable-length source coding, it is well-known
that if we know the statistics of a stationary and memoryless
source, the Shannon entropy of the 1D marginal of the process
characterizes the minimum achievable rate [3]. However, when
the statistics of the source are not known but the source
belongs to a family of stationary and memoryless distributions
Λ, the problem reduces to characterizing the worst-case ex-
pected overhead (or worst-case redundancy) that an encoder-
decoder pair exhibit due to the lack of knowledge about true
distribution [2], [14]. In fact, a seminal information-theoretic
result states that the least worst-case overhead (or minimax
redundancy of Λ) is fully characterized by the information
radius of Λ [2].

The information radius (I-radius) has been richly studied by
the community, and there are numerous contributions [15]–
[19]. In particular, it is well-known that the I-radius grows
sub-linearly for the family of finite alphabet stationary and
memoryless sources [2], which implies the existence of a
universal source code that achieves Shannon entropy for every
distribution in this family provided that the block length
tends to infinity. Unfortunately, this positive result does not
extend to the case of stationary and memoryless sources
on countably infinite alphabets (∞-alphabets) [4], [6], [15].
From an information complexity perspective, this infeasibility
result means that the I-radius of this family is unbounded for
any finite block-length; consequently, lossless universal source
coding for ∞-alphabet stationary and memoryless sources is
an intractable problem.

There has been renewed interest in USC with infinite alpha-
bets in recent year [15], [16], [20]–[22]. Restricting the study
to the case of memoryless sources with marginal densities
dominated by an envelope function f (or the envelope family
Λf ), a series of new results have been presented in [15], [16],
[20], [22]. Remarkably, [15, Theorems 3 and 4] show that f
being summable (over the infinite alphabet) is a necessary and
sufficient condition to guarantee strong minimax universality
for the envelope family Λf . Consequently, universality can be
achieved for a non-trivial (infinite dimensional) collection of
distributions with infinite support. Furthermore, the specific
rate of convergence for the worse-case redundancy (i.e., the
information radius of Λf ) has been derived for exponential
and power law (envelope) families in ∞-alphabets as well the
construction of coding schemes that achieve optimal worst-
case redundancies (information limits) [16], [20], among other
interesting results.

1A nice presentation of the early history of universal coding can be found
in [5, Section II] and reference therein.
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Complementing the previous results on infinity alphabet
sources and using ideas from weak source coding by Han [23],
almost lossless universal source coding was introduced in [22],
[24]. The general idea of this approach is to relax the lossless
assumption by introducing a non-zero distortion that tends
to zero with the block-length (asymptotic zero distortion),
with the intention of achieving weak universality over the
entire collection of memoryless sources on ∞-alphabets [21],
[22]. Results in this weak setting demonstrate that almost
lossless USC is feasible for the entire family of stationary
and memoryless distributions [22, Th. 4] on∞-alphabets, and
the sensitive role that the vanishing distortion plays on the
analysis of the problem when moving from a point-wise to a
uniform convergence to zero [22, Th. 5].

A. Contributions
In this paper, we investigate the problem introduced by

Ornstein and Shields in [25] of fixed-distortion and variable
length universal source coding—or universal D-semifaithful
coding—for ∞-alphabet sources. Following the line of work
of the seminal paper by Boucheron et al. [15], among
others [16], [20], [22], we study the family of stationary
and memoryless sources whose probability mass functions
are dominated by an envelope function f by adopting the
criterion of strong minimax universality [2]. The redundancy
in this case should be measured with respect to the rate-
distortion function lower bound [3], [26], [27]. Our main
results (cf. Theorems 2 and 3) parallel the results presented in
the lossless problem [15, Theorems 3 and 4] and offer a set
of conditions on the envelope function to obtain weak min-
imax universality, strong minimax universality as well as an
achievable rate of convergence for the worse-case redundancy.
Conversely, Theorem 2 shows that if the envelope function
is not summable, then strong minimax universality is not
feasible, i.e., an impossible result. Indeed, this result matches
the infeasibility condition known for the case of lossless
USC [15]. More generally, we present a simple result that
captures what is needed (necessary and sufficient conditions)
to achieve universal D-semifaithful source coding in terms
of some asymptotic properties imposed on a collection of
partitions of the source alphabet (Lemma 1).

A central technical contribution of this paper relies on the
derivation of a lower bound for the minimax redundancy of
a D-semifaithful code, operating at a given distortion level,
which is obtained using a redefined expression of the I-radius
for the family of sources. The resulting I-radius expression is
based on the information divergence restricted to quantization
cells (or bins) induced by the D-semifaithful code. This
lower bound represents the central ingredient to derive the
impossibility argument over envelope families. On the other
hand, achievable results are obtained for summable envelope
functions, similarly to the case of lossless source coding [15],
[16]. For this, a two-stage constructive coding scheme is
employed (operating at a fixed distortion) for which results
are adopted from universal D-semifaithful coding on finite
alphabets (Lemma 5) and universal lossless source coding on
∞-alphabets [15], [16]. To the best of our knowledge, our re-
sults are the first that explore universal D-semifaithful coding

for stationary and memoryless sources on ∞-alphabets using
the criterion of strong minimax universality. A preliminary
version of this paper was presented in [1] where some of the
results were introduced without a complete presentation of
their proofs.

B. Related Work on Universal D-semifaithful for Finite Al-
phabet Sources

Relevant results on universal D-semifaithful coding have
been presented for finite alphabet sources [25], [28], [29].
Ornstein and Shields [25] proposed a universal D-semifaithful
code for finite alphabet ergodic sources deriving almost-sure
convergence of the rate of the code to the rate-distortion
function (a sample-wise analysis). Complementing this anal-
ysis, Yu and Speed [28] proposed a two-stage universal D-
semifaithful code for the family of finite alphabet stationary
and memoryless sources with some added regularity condi-
tions. They showed that the average rate of this D-semifaithful
code achieves (uniformly over this family) the rate-distortion
function at a rate of convergence that is O(n−1 log n). On the
optimality of this last constructive result, it is showed in [30]
that the rate O(n−1 log n) is optimal for the Hamming distor-
tion measure. This optimality was showed more generally in
[31], [32] and they also presented new schemes that achieve
the optimal rate of convergence of O(n−1(log n+ o(log n)))
for finite alphabet stationary and memoryless sources. Results
of the same nature were obtained in [33].

Revisiting the sample-wise redundancy analysis of lossy
source coding operating at a fixed distortion, Kontoyiannis
[29] showed that the best (sample-wise) redundancy rate (in
bits per sample) of a code that knows the model is O(1/

√
n) (a

converse result). The analysis was then extended to a universal
setting, where for finite alphabet memoryless sources the
same redundancy rate (sample-wise) of O(1/

√
n) is shown.

Surprisingly in terms of sample wise redundancy, this work
showed that no penalization is observed when moving from
an optimal code that knows the model to a universal setting for
finite alphabet memoryless sources. This matching condition
on the sample-wise redundancy is non-observed when the
analysis is based on the average redundancy of a code [2].

Finally, adopting a refined angle for the sample-wise redun-
dancy analysis, Kontoyiannis and Zhang [34] proposed a lossy
version of the Kraft inequality to connect D-semifaithful codes
(operating at a fixed distortion) with probability measures
(in the reproduction alphabet) [34, Theorem 1]. This novel
connection (codes-measures correspondence in lossy compres-
sion) leads to an alternative non-asymptotic formulation of
the rate-distortion question in the form of an optimization
problem. More precisely, they introduced the optimal code
length valid for any finite block length [34, Eq.(2)], which
can be interpreted as the best code length (probability on
the reproduction alphabet) for the D-semifaithful coding task,
see [29, Corollary 1]. Using this optimal code-length repre-
sentation (non-asymptotic and sample-wise), the problem of
universal D-semifaithful coding is addressed by looking at
the redundancy of a universal D-semifaithful code with respect
to the best code length (a sample-wise redundancy analysis).
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Following ideas used in lossless compression [18], the authors
explored the performance of a mixture codebook (generated
by a mixture of i.i.d. distributions using a prior probability
over the simplex). Sufficient conditions on the prior were
developed to show that the proposed mixture codebook scheme
is universal over the class of finite alphabet memoryless
sources [34, Th.6]. Furthermore, some regularities on the
prior were established in [34, Th.7] guaranteeing that the
mixture codebook offers a universal D-semifaithful code with
a sample-wise redundancy, relative to the mentioned optimal
code length, that does not exceed (d− 1)/2 log(n)/n bits per
sample. This last result is obatined almost surely when the
block length tends to infinity where d denotes the cardinality of
the reproduction alphabet. The achieved 1/2·log(n)/n sample-
wise redundancy per degrees of freedom and per sample
agrees with results known for lossless universal source coding:
the minimax average redundancy is O((d − 1) log(n)/n) for
the class of finite alphabet memoryless sources [2], [14]. In
addition, known converse results for D-semifaithful coding in
[30]–[32] might indicate that this mixture codebook scheme
has an optimal (sample-wise) redundancy per dimension.

C. Paper Organization

The rest of the paper is organized as follows. Section II
introduces some definitions and basic elements for the formal-
ization of the problem. Section III presents the universal D-
Semifaithful source coding problem and introduces a general
result (Lemma 1). Section IV presents results for the family
of envelope distributions (Theorems 2 and 3). Final remarks
and directions for future work are presented in Section V. The
arguments used to prove the main results, Theorems 2 and 3
are presented in Section VII. Finally, supporting results and
technical derivations are relegated to the Appendix sections.

II. MAIN DEFINITIONS AND PRELIMINARIES

Let us denote by X a countably infinite alphabet: the integers
without loss of generality. The space is equipped with a
distortion function ρ : X × X −→ R+, and the non-trivial
scenario is assumed where ρ(x, x̄) > 0 if, and only if,
x̄ 6= x. For any n ≥ 1, we have ρn : Xn × Xn −→ R+

of block length n to be the standard single letter construction
obtained from ρ [26], [27], where for any xn = (x1, .., xn)
and x̄n = (x̄1, .., x̄n) in Xn

ρn(xn, x̄n) ≡ 1

n

n∑
i=1

ρ(xi, x̄i). (1)

A D-semifaithful code of length n operating at a distortion
d > 0 is a variable length coding scheme operating at a fixed
distortion [25], [29]. More precisely, we consider the following
definition:

Definition 1: A D-semifaithful code of length n operating
at distortion d > 0 is defined/denoted by a triplet ξn =
(φn, Cn,Dn), where
• φn : Xn −→ Bn ⊂ Xn is a quantizer,
• Cn : Bn −→ {0, 1}∗ ≡ ∪k≥1 {0, 1}k is a lossless binary

(variable length) encoder, and

• Dn : {0, 1}∗ −→ Bn is a binary decoder,
satisfying that for any xn ∈ Xn

ρn(xn, φn(xn)) ≤ d. (2)

The set Bn = {φn(xn), xn ∈ Xn} contains the prototypes of
ξn in Xn. In this construction, the binary encoder Cn, which
is variable length, is prefix-free [3] implying that it satisfies
the Kraft-MacMillan inequality:∑

i∈Bn
2−L(Cn(i)) ≤ 1, (3)

where L : {0, 1}∗ −→ N \ {0} is the function that returns the
length (number of bits) of a vector in {0, 1}∗.

Importantly for the analysis presented in this paper, the code
ξn = (φn, Cn,Dn) induces a partition in Xn given/denoted by

πφn ≡
{
An,yn ≡ φ−1

n ({yn}), yn ∈ Bn
}
⊂ 2Xn . (4)

A. The Source Coding Problem

Let us consider an information source (a random sequence)
X = (Xn)n≥1 with values in X and process distribution
denoted by µ = {µn ∈ P(Xn), n ≥ 1}, where for any n ≥ 1
Xn = (X1, .., Xn) ∼ µn, and P(Xn) denotes the collection
of probabilities in Xn. Then, the rate (in bits per sample)
for encoding Xn with a D-semifaithful code ξn of length n
operating at distortion d > 0 is given by

R(ξn, µn) ≡ 1

n
EXn∼µn {L(Cn(φn(Xn)))} . (5)

Using the source model µ, the variable length fixed dis-
tortion lossy source coding problem reduces to minimizing
R(ξ, µn) in (5) over the family of D-semifaithful codes
(operating at distortion d) for any n ≥ 1 [6], [35]. It is well-
known that for any D-semifaithful code ξn [2], [3]

nR(ξ, µn) ≥ H(vµn), (6)

where vµn denotes the probability induced by µn and φn in
the reproducible alphabet Bn, i.e., vµn(yn) = µn(φ−1

n ({yn}))
for any yn ∈ Bn, and

H(vµn) ≡ −
∑
yn∈Bn

vµn(yn) log(vµn(yn)) (7)

is the Shannon entropy of vµn ∈ P(Bn) [3], [27] and the
log function is base 2. Furthermore, fixing φn (the quantizer)
and optimizing over the encoder-decoder pairs (Cn,Dn) (the
prefix-free mappings from Bn to {0, 1}∗), we have that [3],
[27]

H(vµn) + 1

n
≥ min
Cn

R((φn, Cn,Dn), µn) ≥ H(vµn)

n
, (8)

considering in this last optimization that Dn is a deterministic
function of Cn.

A convenient way to write the entropy of the induced
distribution vmn in (8) is as the entropy of µn but projected
over quantization (or a sub-sigma field of the measurable space
(Xn, 2Xn)). Given a partition π = {Ai, i ∈ I} (countable or
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finite) of Xn and a probability µ ∈ P(Xn), we introduce the
entropy of µ restricted over the sub-sigma field σ(π) by

Hσ(π)(µ) ≡ −
∑
i∈I

µ(Ai) logµ(Ai) ≤ H(µ)

= −
∑
xn∈Xn

µ(xn) logµ(xn), (9)

where the last inequality follows from basic information
inequalities [3]. Then, H(vµn) is equal to Hσ(πφn )(µn) and
(8) can be re-written by
Hσ(πφn )(µn) + 1

n
≥ min
Cn

R((φn, Cn,Dn), µn) ≥
Hσ(πφn )(µn)

n
.

(10)
From (10), the source coding (operational) problem is

Rn(d, µn) ≡ min
ξn

R(ξn, µn), (11)

where ξn is running over the family of D-semifaithful codes
of length n operating at distortion d (Def.1). This operational
problem can be considered equivalent to solve2

Rn(d, µn) ≡ min
π∈Qn(d)

Hσ(π)(µn)

n
, (12)

where Qn(d) denotes the collection of partitions of Xn where
any π in Qn(d) satisfies that ∀A ∈ π, ∃yn ∈ A such that

sup
xn∈A

ρn(xn, yn) ≤ d,

i.e., any π ∈ Qn(d) offers a d-covering of Xn with respect to
ρn.

For stationary and memoryless sources, it is well known that
Rn(d, µn) converges (as n tends to infinity) to the celebrated
rate-distortion function [3], [27], which is a function of µ1 ∈
P(X) [6], [35]. For completeness, we briefly revisit this result
here.

B. The Source Coding Theorem
Let us consider (Xn)n≥1 to be a stationary and memoryless

source characterized by µ1 ∈ P(X). The rate distortion
function of µ = {µn, n ≥ 1} relative to ρ is given by [6]:

inf
n≥1
R∗(d, µn) = lim

n→∞
R∗(d, µn), (13)

where
R∗(d, µn) ≡ 1

n
inf
U,V

I(U;V). (14)

The infimum in (14) is taken with respect to the collection of
joint random vectors (U,V) in Xn × Xn satisfying that U ∼
µn and P(ρn(U,V) ≤ d) = 1 [6]. By the definitions of these
objects, it is simple to verify that Rn(d, µn) ≥ Rn(d, µn) ≥
R∗(d, µn) for any n ≥ 1. Importantly, Kieffer showed that

THEOREM 1: (Kieffer [6, Th. 4]) For a D-semifaithful
coding problem operating at distortion d > 0,

lim
n→∞

Rn(d, µn) = lim
n→∞

R∗(d, µn) = R∗(d, µ1). (15)
The last expression in (15) is the single letter information
theoretic limit of this problem [6]. The expression in (15) is
equal to the standard rate distortion function of the source that
uses the expected distortion criterion [3], [26].

2Up to a discrepancy of at most 1/n in bits per sample: Rn(d, µn) ≤
Rn(d, µn) ≤ Rn(d, µn) + 1

n
.

III. A SOFT RESULT ON UNIVERSAL D-SEMIFAITHFUL
CODING

In universal source coding, the objective is to find a coding
scheme that achieves the performance limit in (15) without
knowledge of the underlying source distribution [2], [14]. To
formalize this problem in the context of D-semifaithful coding,
let (Xn)n≥1 be a stationary and memoryless source with
values in X, where we impose that µ1 belongs to Λ ⊂ P(X).
Let {ξn = (φn, Cn,Dn), n ≥ 1} be a D-semifaithful coding
scheme operating at distortion d > 0 with respect to the single
letter distortions {ρn, n ≥ 1}. Following the definitions used
in universal lossless source coding [5], we say that

Definition 2: A coding scheme {ξn, n ≥ 1} (operating at
distortion d > 0) is strongly minimax universal for Λ at
distortion d if

lim
n→∞

sup
µn∈Λn

[R(ξn, µ
n)−Rn(d, µn)]︸ ︷︷ ︸

worst-case redundancy over Λn of ξn

= 0, (16)

where Λn ≡ {µn, µ ∈ Λ} ⊂ P(Xn), and µn is the product
(i.i.d.) distribution induced by µ ∈ P(X).

By definition of Rn(d, µn) in (12), we have that
R(ξn, µ

n) − Rn(d, µn) ≥ 0 and, consequently, this last
expression can be interpreted as the redundancy (in bits per
sample) we have to accept for not knowing the distribution
of Xn and using a distribution independent lossy encoder.
Therefore, if {ξn, n ≥ 1} is strongly minimax universal, it
means that as the block length tends to infinity (and uniformly
over the family of hypotheses in Λ), the scheme achieves
the best performance obtained by a scheme that knows the
distribution of the source previous to encoding. Similarly, we
can use the following definition:

Definition 3: A scheme {ξn, n ≥ 1} (operating at distor-
tion d > 0) is weakly minimax universal for Λ at distortion d
if [5],

lim
n→∞

[R(ξn, µ
n)−Rn(d, µn)] = 0, ∀µ ∈ Λ. (17)

In contrast to Definition 2, being weakly minimax universal
imposes a point-wise convergence of the redundancy over the
collection of hypotheses in Λ.

In this redundancy analysis, we use Rn(d, µn) instead of
the asymptotic limit R∗(d, µ1) stated in Theorem 1. Indeed,
Rn(d, µn) is a tighter finite-length lower bound (a non-
asymptotic performance limit) of the optimal rate (in bits per
sample) that can be achieved in the operational problem in
(11) when the distribution of the source is available3. For the
lossless case (i.e., d = 0), Rn(d, µn) reduces to the entropy of
µ and, consequently, R(ξn, µ

n)−Rn(d, µn) can be seen also
as an extension of the redundancy term used for the analysis of
universal variable length lossless source coding [3], [5], [14].

Before we move to the presentation of the main context
of study of this work, we present a general analysis for the
worst-case redundancy in (16).

3Rn(d, µn) ≥ R∗(d, µn) ≥ infn≥1R∗(d, µn) = R∗(d, µ1), the last
equality from Theorem 1.
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A. Minimax Redundancy Analysis

Let ξn = (φn, Cn,Dn) be a D-semifaithful code of length
n operating at distortion d > 0, and µ be a distribution in
Λ ⊂ P(X). Then, the average redundancy of ξn (in bits per
sample) can be expressed by

R(ξn, µ
n)−Rn(d, µn) =[

R(ξn, µ
n)−

Hσ(πφn )(µ
n)

n

]
+

[
Hσ(πφn )(µ

n)

n
−Rn(d, µn)

]
,

(18)

where πφn is the partition of Xn induced by φn (see Eq.(4))
for the n-fold distribution induced by µ. In particular, the first
term on the right-hand side (RHS) of (18) is non-negative from
(10) and the second term is non-negative from the definition
in (12).

1) The Projected Information Radius of Λn with Respect
to ππn : For the moment, let us concentrate on the analysis
of
[
R(ξn, µ

n)−Hσ(πφn )(µ
n)/n

]
in (18). From a well-known

correspondence between distributions and prefix-free codes
[3], the encoder Cn can be associated with a distribution
vCn ∈ P(Bn)4 and R(ξn, µ

n) − Hσ(πφn )(µ
n)/n is lower

bounded by

1

n
D(vµn‖vCn) =

1

n

∑
yn∈Bn

vµn(yn) log
vµn(yn)

vCn(yn)
≥ 0,

where vµn ∈ P(Bn) is a short-hand for the distribution
induced by µn and φn in the reproducible space Bn. Then,
we can adopt a lower bound of the worst-case (over Λ)
discrepancy by the expression

R+
n (Λ, ξn) ≡ 1

n
sup
µ∈Λ

D(vµn‖vCn) ≥ 0, (19)

where ξn = (φn, Cn,Dn). For the rest of the analysis, we fix
the quantization φn (i.e., Bn and its associated partition πφn ),
and we optimize the prefix-free mapping (denoted by Cn) from
Bn to {0, 1}∗ with respect to the lower bound divergence
term in (19)5. The solution of this problem introduces the
information radius of the family Λn projected over the sigma
field induced by the partition πφn [2]. More precisely, we
obtain the following:

min
Cn

sup
µ∈Λ

[
R(ξn = (φn, Cn,Dn), µn)−

Hσ(πφn )(µ
n)

n

]
≥ min
Cn

R+
n (Λ, ξn = (φn, Cn,Dn)) (20)

≥ 1

n
R+(Λn, σ(πφn)), (21)

where

R+(Λn, σ(πφn)) ≡ min
v∈P(Bn)

sup
µn∈Λn

D(vµn‖v)

= min
v∈P(Xn)

sup
µn∈Λn

Dσ(πφ)(µ
n‖v). (22)

4vCn (yn) = 2−L(Cn(y
n))/C for all yn ∈ B, where C =∑

yn∈Bn 2−L(Cn(y
n)) ≤ 1 [3].

5Dn is a deterministic function of Cn and, therefore, it is omitted in the
optimization in (20).

The inequality in (21) follows from the observation that
{vCn ; Cn is prefix-free mapping} ⊂ P(Bn). The expression in
(22) is the information radius of Λn projected on πφn that is
written in terms of the divergence between distributions on the
original sample space Xn but restricted over the cells of πφn
using that

Dσ(π)(µ‖v) ≡
∑
A∈π

µ(A) log
µ(A)

v(A)
≤ D(µ‖v), (23)

for any π partition of Xn and µ, v ∈ P(Xn). Finally, the lower
bound in (21) is tight (up to a discrepancy of 1/n). More
precisely, we have that6

min
Cn

sup
µ∈Λ

[
R((φn, Cn,Dn), µn)−

Hσ(πφn )(µ
n)

n

]
≤

1

n
(R+(Λn, σ(πφn)) + 1). (24)

In summary for a fixed quantizer φn, optimizing the second-
stage (over the collection of prefix-free encoder-decoder pairs)
reduces to the information radius problem in (22). This prob-
lem finds the distribution that is closest to the entire family Λn

(or the centroid of the family) using the divergence restricted
over the sub-sigma field σ(πφn) in (23). Naturally, this is
the same information radius characterization used in universal
(variable length) lossless source coding [2].

2) Universal Quantization over Λn: Let us now concentrate
on the analysis of the other term in (18)[

Hσ(πφn )(µ
n)/n−Rn(d, µn)

]
,

which depends exclusively on the quantizer φn (or equiv-
alently on πφn ∈ Qn(d), see (12)). Then considering the
universal setting, we can optimize πφn ∈ Qn(d) in the
following worst-case sense:

min
π̄∈Qn(d)

sup
µn∈Λn

[
Hσ(π̄)(µ

n)− min
π∈Qn(d)

Hσ(π)(µ
n)

]
. (25)

This problem can be interpreted as the universal minimax
counterpart of the problem presented in (12).

B. Strong-Minimax Universality

From the analysis made on the two terms in (18), it is
observed that everything reduces to the selection of the first-
stage of the encoding process (the quantization). The following
result formalizes this observation:

LEMMA 1: A necessary and sufficient condition for the
existence of a strongly universal D-semifaithful code operating
at distortion d > 0 for Λ (Def. 2) is that there is a sequence
of partitions {πn, n ≥ 1} satisfying the following:

i) πn ∈ Qn(d) for all n ≥ 1, (the fixed distortion
requirement)

ii) limn→∞ 1
nR

+(Λn, σ(πn)) = 0, and
iii) limn→∞ 1

n supµn∈Λn
[
Hσ(πn)(µ

n)−minπ∈Qn(d)Hσ(π)(µ
n)
]

=
0.

From this result achieving strong minimax universality
for Λ at distortion d requires meeting two conditions: on

6 For completeness, the argument to derive (24) is presented in Appendix
VI-F.
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the one hand, that a universal quantizer can be found that
approximates the best performance stated in (12) as the block-
length tends to infinity (the approximation criterion in iii), and,
on the other hand, that the resulting information radius of the
projected family grows sub-linearly with the block-length (the
complexity criterion in ii). This result captures the information
radius condition known in the lossless universal source coding
problem but adds another component making the problem
conceptually more difficult to address, which is the existence
of a universal quantization for the family {Λn, n ≥ 1} in the
sense of condition iii).

In this fixed-distortion setting, we could move to the ex-
treme of asking for a zero distortion (d = 0), where for any
reasonable distortion, the quantizer φn needs to be the identity
to meet the distortion criterion in i). In this context, condi-
tion iii) is trivially met and minimax universality reduces to
verifying the information radius condition of the un-projected
family, i.e., R+(Λn) = minv∈P(Xn) supµn∈Λn Dσ(πφ)(µ

n‖v).
Then, in the zero distortion regime, Theorem 1 recovers the
necessary and sufficient condition known for lossless minimax
universal source coding [2], [14], [15].

In the next section, we will use these conditions implicitly
and explicitly to study strong minimax universality for the
family of envelope distributions on infinite alphabets.

C. Proof of Lemma 1

Proof: For the direct part, for any n ≥ 1 and d > 0, let us
consider a lossy code ξ∗n = (φ∗n, C∗n,D∗n) of length n such that
φ∗n is determined from πn, i.e. πφ∗

n
= πn. From this, ξn is a D-

semifaithful code operating at distortion d from the assumption
that πn ∈ Qn(d).7 For the second stage (the variable length
encoder-decoder of Bn), let us consider the pairs (C∗n,D∗n) as
a solution of the minimax operational problem presented in
the LHS of (20), i.e.,

min
Cn

sup
µ∈Λ

[
R((φ∗n, Cn,Dn), µn)−

Hσ(πφ∗n )(µ
n)

n

]
.

Then we know from (24) that

sup
µ∈Λ

[
R(ξ∗n, µ

n)−
Hσ(πφ∗n )(µ

n)

n

]
≤ 1

n
R+(Λn, σ(πφ∗

n
)) +

1

n

=
1

n
R+(Λn, σ(πn)) +

1

n
.

(26)

7To achieve this, it is sufficient to have that yn ∈ φ∗n−1({yn}) for any
yn ∈ Bn.

Finally using (18), it follows that

sup
µ∈Λ

[R(ξ∗n, µ
n)−Rn(d, µn)]

≤ sup
µ∈Λ

[
R(ξ∗n, µ

n)−
Hσ(πφ∗n )(µ

n)

n

]

+ sup
µ∈Λ

[
Hσ(πφ∗n )(µ

n)

n
−Rn(d, µn)

]
≤ 1

n

(
R+(Λn, σ(πn)) + 1

)
+

1

n
sup
µn∈Λn

[
Hσ(πn)(µ

n)− min
π∈Qn(d)

Hσ(π)(µ
n)

]
, (27)

which concludes the proof from the assumptions on
{πn, n ≥ 1} in ii) and iii).

For the other implication (i.e., the necessary condition),
let us assume that there is a D-semifaithful coding scheme
{ξ∗n = (φ∗n, C∗n,D∗n), n ≥ 1} operating at distortion d > 0 such
that

lim
n→∞

sup
µn∈Λn

[R(ξ∗n, µ
n)−Rn(d, µn)] = 0. (28)

From (2), we have that πφ∗
n
∈ Qn(d) for all n ≥ 1 (condition

i). Concerning the information radius, using (21) it follows
that

sup
µn∈Λn

[
R((φ∗n, C∗n,D∗n), µn)−

Hσ(πφ∗n )(µ
n)

n

]

≥ min
Cn

sup
µn∈Λn

[
R((φ∗n, Cn,Dn), µn)−

Hσ(πφ∗n )(µ
n)

n

]
≥ 1

n
R+(Λn, σ(πφ∗

n
)). (29)

Then using the decomposition of the average redundancy in
(18), it follows that

sup
µn∈Λn

(R(ξ∗n, µ
n)−Rn(d, µn))

≥ sup
µn∈Λn

[
R(ξ∗n, µ

n)−
Hσ(πφ∗n )(µ

n)

n

]
≥ 1

n
R+(Λnf , σ(πφ∗

n
)), (30)

which proves that condition ii) is satisfied from (28). Using
again (18), it follows that ∀µn ∈ Λn

R(ξ∗n, µ
n)−Rn(d, µn) ≥

Hσ(πφ∗n )(µ
n)

n
−Rn(d, µn). (31)

Verifying condition iii) follows from (28) and the definition
of Rn(d, µn) in (12).

IV. RESULTS FOR ENVELOPE FAMILIES

The results for envelope distributions on ∞-alphabets are
presented in this section. Let us first introduce some definitions
that will be needed for the statement of results. We begin
introducing the family of models:

Definition 4: Let f : X −→ R+ be a function. We define
the envelope family induced by f as

Λf ≡ {µ ∈ P(X) : µ(x) ≤ f(x),∀x ∈ X} , (32)
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where (µ(x))x∈X is a short-hand notation for the probability
mass function (pmf) of µ.

Definition 5: Let H(X) ⊂ P(X) denote the set of all
probabilities (source) with finite entropy in X.

In addition, we need to introduce a notion of regularity
for the distortion function. We consider the Euclidean norm
between two points in X denoted by |i− j| for any i, j ∈ X.
With this, the ball of radius ε and centered at i is denoted by
Bε(i) ≡ {j ∈ X, |i− j| < ε} for any ε > 0 and i ∈ X.

Definition 6: An unbounded distortion function ρ : X ×
X −→ R+ is said to be consistent with respect to the Euclidean
norm if for any K > 0, there exists ε > 0 such that for any
i ∈ X if j /∈ Bε(i) then ρ(i, j) ≥ K.

The condition on ρ stated in Definition 6 implies that for
any arbitrarily large K > 0, there is a sufficiently large
ε > 0 (only function of K) where the condition ρ(i, j) < K
implies that |i− j| < ε. In other words, a fixed distortion
condition ρ(i, j) < d (for any d > 0) would be violated
eventually by making i and j progressively far apart in terms
of the Euclidean norm (restricted over X). An implication
of this condition is that any partition of X with cells that
meet a fixed-distortion requirement (i.e., elements of Q1(d)
for any d > 0) requires an infinite number of cells8. In other
words, a d-covering of X with cells that meet a fixed-distortion
requirement retains the infinite cardinality of the lossless
problem (the cardinality of X). In summary, the condition in
Definition 6 is relevant as we are interested in problems where
D-semifaithful source coding do not reduce to an equivalent
finite alphabet coding task.

A. Main Results

THEOREM 2: Let Λf ⊂ P(X) be induced by a non-
negative function f and ρ be an unbounded distortion con-
sistent with respect to the Euclidean norm (Def. 6). We have
the following results:

i) If f /∈ `1(X), then for any d > 0 and any D-semifaithful
coding scheme {ξn, n ≥ 1} operating at distortion d:

sup
µ∈Λf

[R(ξn, µ
n)−Rn(d, µn)] =∞, ∀n ≥ 1.

ii) If f ∈ `1(X), then for any distortion d > 0, there exists
a D-semifaithful coding scheme {ξn, n ≥ 1} operating
at distortion d — with respect to {ρn, n ≥ 1} — that is
weakly minimax universal, i.e.,

lim
n→∞

[R(ξn, µ
n)−Rn(d, µn)] = 0,

for any µ ∈ Λf ∩H(X).
iii) If Λf ⊂ H(X),9 then the same construction presented in

ii) is strongly minimax universal, i.e.,

lim
n→∞

sup
µ∈Λf

[R(ξn, µ
n)−Rn(d, µn)] = 0.

The proofs of these results are presented in Section VII.
Some remarks about Theorem 2:

8An extended version of this result is stated in Proposition 2. Its proof is
presented in Appendix VI-C.

9This condition implies that f ∈ `1(X).

1: The result in part i) implies that achieving strong-
minimax universality is not feasible for the entire collection
of stationary memoryless sources in ∞-alphabets. This is a
direct implication of this result using f(i) = 1 for all i ∈ X.

2: Interestingly, part i) matches the impossibility condition
known for the lossless case in [15]. Therefore, in the context
of infinite alphabet stationary and memoryless sources, a non-
zero distortion does not help making feasible the task of
universal source coding as we move from the lossless to the
lossy (fixed-distortion) setting of the variable length coding
problem.

3: The argument used for the impossibility part relies on the
proof of Lemma 1 and in particular on bounding from below
the worst-case redundancy by the I-radius of Λf projected
over the cells induced by a D-semifaithful code (operating
at distortion d). Then, the proof reduces to show that this
redefined I-radius (see (22)) is unbounded for any partition of
X that belongs to Qn(d) and for any d > 0.

4: On the other hand, assuming that f ∈ `1(X), the result
in part ii) shows that there is a D-semifaithful scheme that
achieves weak minimax universality for any d > 0. This
result is strengthened in part iii) showing that the same D-
semifaithful construction is strongly minimax universal pro-
vided that Λf ⊂ H(X).

5: The constructive (achievability) argument used for the
proof of Theorem 2 (part iii) is based on a two-stage (lossy-
lossless) scheme (see Figure 1 in Section VII). The basic idea
of this construction is to consider a specific two-stage lossy
coding scheme. In the first-stage of this scheme, the problem is
projected (loosely) to a finite alphabet task for which results
for finite alphabet universal source coding are adopted (see
Lemma 5 in Section VII). The second-stage, on the other
hand, is addressed as a lossless source coding problem over
a transformed infinite alphabet, where results from lossless
universal source coding for envelope families are used (see
Lemma 6 in Section VII).

6: An important result used in the proof of Theorem 2 (part
iii) is that the so called envelope distribution µ̃f derived from
f by

µ̃f (x) ≡


f(x) if x ≥ τf
1−∑x≥τf f(x) if x = τf − 1

0 if x < τf − 1,
,

with τf ≡ min
{
k ≥ 1,

∑
x≥k f(x) ≤ 1

}
, is the probability in

Λf that achieves maximum entropy under some mild consid-
erations. The statement of this result is presented in Lemma 7
(in Sect VII-B). Therefore, the condition Λf ⊂ H(X) reduces
to the verification of H(µ̃f ) <∞ and, consequently, that the
function (f(x) log 1/f(x))x∈X is summable10. Complement-
ing this observation, we obtain the following implication:11

COROLLARY 1: Λf ⊂ H(X) is equivalent to
supµ∈Λf

H(µ) <∞.
7: Finally, Theorem 2 can be extended to the scenario of a

bounded distortion if it is consistent with the Euclidean norm
in the following sense:

10(f(x) log 1/f(x))x∈X being summable implies that f ∈ `1(X).
11The proof is presented in Appendix VI-D.
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Definition 7: A bounded distortion function ρ : X×X −→
[0, ρmax], with ρmax > 0, is said to be consistent with respect
to the Euclidean norm if for any K ∈ (0, ρmax), there is ε > 0
such that for any i ∈ X if j /∈ Bε(i) then ρ(i, j) ≥ K.
The statement of that result would be the same as the statement
of Theorem 2 but restricting d to the range (0, ρmax). The
proof argument follows directly from the proof of Theorem
2, consequently, both the statement and the proof are omitted.
Finally, it is worth noting that the Hamming distance satisfies
Def. 7 as many other regular distortions, e.g., ρM (i, j) ≡
K min {|i− j| ,M} for any K ∈ R+ \ {0} and M > 1.

B. Rate of Convergence

The next result complements Theorem 2 by providing an
upper bound on the rate of convergence for the worst-case
overhead for the case of summable envelope families.

THEOREM 3: Under the setting of Theorem 2, if Λf ⊂
H(X), and we add the condition that

lim sup
k→∞

∑
i≥k f(i) log 1/f(i)

µ̃f (Tk) log 1/µ̃f (Tk)
<∞

with Tk ≡ {k, k + 1, . . .} ⊂ X, then for any distortion d > 0,
there is a D-semifaithful coding scheme {ξ∗n, n ≥ 1} operating
at distortion d — with respect to {ρn, n ≥ 1} — such that

sup
µ∈Λf

[R(ξ∗n, µ
n)−Rn(d, µn)] ≤ C0

uf (n) log n

n

+ C1
log n

n
+ C2

1

n
,

where C0, C1 and C2 are constants and

uf (n) ≡ min {k ≥ 1 such that µ̃f (Tk+1) < 1/n} . (33)
The proof is presented in Section VII.

This last result adds a regularity assumption on the way
the tail component of the entropy of µ̃f tends to zero, which
is sufficient to obtain a rate of convergence for the worst-
case overhead that is O(uf (n) log(n)/n). Importantly, it can
be verified that polynomial envelope families (with fp(x) =
K/xp for some p > 1 and K > 0) and exponential envelope
families (with fp(x) = Ke−αx with K > 0 and α > 0) satisfy
the tail conditions stated in this result, and, consequently, they
are both strongly minimax universal. In fact, we have the
following:

LEMMA 2: Let us consider a polynomial function given
by (fp(i))i≥1 = (K/ip)i≥1. For any K > 0 and p > 1 it
follows that

lim sup
k→∞

∑
i≥k fp(i) log 1/fp(i)

µ̃fp(Tk) log 1/µ̃fp(Tk)
<∞.

LEMMA 3: Let us consider an exponential function given
by (fα(i))i≥1 = (Ke−αi)i≥1. For any K > 0 and α > 0 it
follows that

lim sup
k→∞

∑
i≥k fα(i) log(1/fα(i))

µ̃fα(Tk) log(1/µ̃fα(Tk))
<∞.

The proofs of these Lemmas are presented in Appendices I
and II, respectively.

Finally, the sequence (uf (n))n≥1 in (33) was introduced by
Bontemps et al. in [16] for the lossless source coding problem,
where the same rate O(uf (n) log(n)/n) was obtained for the
redundancy of the best (lossless) universal scheme with f ∈
`1(X), see [15, Th. 4] and [16, Th.2 and Prop. 5]12. For the ex-
ponential envelope family of parameter α in Lemma 3, it was
shown in [16, Prop. 6] and [22, Sect. VI.B.4)] that 1

α ln(Kn)+
1 < ufα(n) ≤ 1

α ln(CKn) where C = 1/(1 − e−α). Conse-
quently, from Theorem 3, there is {ξ∗n, n ≥ 1} (operating at
distortion d) such that supµ∈Λfα

[R(ξ∗n, µ
n)−Rn(d, µn)] is

O( (logn)2

n ). For the power law envelope family of parameter
p in Lemma 2, the same method used to bound ufα(n) for the
exponential family in [16, Prop.6] can be adopted to show that
(KS)1/p ·n1/p−2 < ufp(n) ≤ (KS)1/p ·n1/p+1, where S =∑
k≥1 1/kp < ∞ (as (fp(i))i≥1 ∈ `1(X) for p < 1). Conse-

quently, from Theorem 3, there is {ξ∗n, n ≥ 1} (operating at
distortion d) such that supµ∈Λfp

[R(ξ∗n, µ
n)−Rn(d, µn)] is

O( (n1/p logn
n ).

V. CONCLUDING REMARKS AND FUTURE WORK

On the analysis of universal D-semifaithful source coding
on envelope families, Theorem 2 offers a necessary and suffi-
cient condition to achieve minimax universality (in the sense
introduced in Section III) for Λf in∞-alphabets. Interestingly,
the condition matches the summability condition over f known
for the lossless (variable length) coding setting [15].

On future work, it remains an open problem to evaluate if
the rate of convergence for the worst-case overhead obtained
in Theorem 3 can be improved. It is intriguing that this result
does not show a faster rate of convergence to zero with n
(because of the non-zero distortion) with respect to its lossless
counterpart that has the same rate [14]–[16], [20]. In fact,
the result is insensitive to the value of d, which is something
that requires a more careful analysis. In favor of the potential
tightness of this part, we note that the non-zero distortion
did not show an effect on the impossibility part (part i) of
Theorem 2) with respect to its counterpart in the lossless
problem [15]. On the other hand, it is clear that the distortion
reduces the information radius of the projected family, in
the sense that R+(Λnf , σ(πn)) ≤ R+(Λnf ) (see the definition
in Eq.(22)). Then, the non-zero distortion does reduce this
information radius complexity indicator. However, it is unclear
that this gain in information radius translates into a gain in the
overall minimax overhead expression in the lossy setting (with
respect to its counterpart in the lossless setting) because the
information radius captures only one of the two expressions of
redundancy in (18). The other non-negative term is captured by
the role of the universal quantization discrepancy mentioned
in (35). To conclude this discussion, we realize (from the
expression in (18) and the analysis in Section III-A.1) that a
concrete way to prove that the result in Theorem 3 is optimal
is to show that any sequence of partitions {πn, n ≥ 1} such
that πn ∈ Qn(d) satisfies that

lim inf
n→∞

R+(Λnf , σ(πn))

R+(Λnf )
> 0. (34)

12See also [22, Th.2] for a discussion of these results.
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At a first glance, this result does not appear intuitive, but we
could conjecture that it is true. Indeed, a related non-zero gain
(information radius) result has been obtained by the authors
of this work in [21], [22] but in a simpler context involving a
tail-based scalar quantization and a distortion that is not fixed
and tends to 0 with n. We believe that some of the tools used
in this analysis can be adopted to derive (34), but the extension
to analyze the object in (34) is not direct. This is a relevant
direction for future work on universal source coding on infinite
alphabets.

Finally, on the general analysis of universal D-semifaithful
coding presented in Section III of this work, Lemma 1 tells
us that meeting minimax universality for a given non-zero
distortion d > 0 and a family of distributions Λ implies the
existence of a universal sequence of D-semifaithful quantizers
for Λ. Consequently, if the minimax redundancy criterion in
(16) is met, for some d > 0, then there exists a sequence of
partitions {πn, n ≥ 1}, such that πn ∈ Qn(d) (introduced in
(12)), satisfying that

lim
n→∞

1

n
sup
µn∈Λnf

[
Hσ(πn)(µ

n)− min
π∈Qn(d)

Hσ(π)(µ
n)

]
= 0,

(35)
where Hσ(πn)(µ

n) is the entropy of µn restricted to
the sub-sigma field induced by πn (see Eq.(9)), and
minπ∈Qn(d)Hσ(π)(µ

n) is the quantizer in Qn(d) that mini-
mizes the entropy given the distribution µn and d. For obvious
reasons, this representation dimension of the problem in (35)
is not part of the lossless setting and requires a special
treatment in this lossy case. In principle, it is not obvious
that the criterion in (35) can be achieved for any family of
stationary memoryless distributions in ∞-alphabets. Then, a
direct implication of Theorem 2 for envelope families (the
achievability part in iii)) is that there is a universal quantization
scheme in the sense presented in (35) for Λf when f ∈ `1(X).
The proof of Theorem 2 in Section VII-B offers a concrete
construction for this universal quantization scheme based on
the two-stage quantization approach illustrated in Figure 1.

VI. ENTROPY AND DISTRIBUTION ESTIMATION FOR
INFINITE ALPHABETS: DISCUSSION ON RELATED

IMPOSSIBILITY AND ACHIEVABILITY RESULTS

It is worth mentioning that a minimax universal (variable
length) source code (Definition 3) can be used to determine
(estimate) the rate-distortion function R∗(d, µ1) and the en-
tropy of a distribution µ ∈ H(X) as a special case (d = 0).
Given this capability, it is interesting to mention some results
for entropy estimation and distribution estimation for infinite
alphabets. We focus on the lossless coding setting (d = 0)
as this regime offers a connection with the problems of
entropy estimation and distribution estimation in information
divergence [4], [22], [36], [37].

In the lossless setting (d = 0), the existence of a weak
minimax coding scheme

{
fn : Xn → {0, 1}∗

}
(Def. 3) im-

plies that supµ∈Λ limn→∞(r(fn, µn) − H(µ)) = 0 where
r(fn, µ

n) = E(L(fn(Xn)))/n is the average rate in bits
per sample of fn. Consequently, under this (weak) minimax
property, the average length of the code offers a consistent

estimator of the entropy for all members of Λ. Unfortunately,
for the family of finite entropy stationary and memoryless
sources, there is no variable-length code that achieves this
weak minimax criterion (point-wise convergence to the en-
tropy over the members of H(X)). This impossibility result
was presented in [4, Theorem 3]. The authors of this result
showed that for any block-length n and prefix-free code fn,
there exists a model µ ∈ H(X) where r(fn, µ

n) = ∞.13.
This negative result comes from the impossibility of estimat-
ing distributions in H(X) in the expected direct information
divergence and the fact that the redundancy r(fn, µn)−H(µ)
is lower bounded by the expected divergence between µ
and an estimator of µ constructed from the code fn [4,
Theorem 2]. Consequently, the impossibility of distribution
estimation for infinite alphabets implies the impossibility of
estimating the entropy using the average length of a variable-
length lossless (prefix-free) code. This impossibility result is
consistent with Theorem 2 i), where based on the average
length of a (D-semifaithful) code, we cannot estimate the
rate-distortion function for the entire class of stationary and
memoryless sources. Indeed, we show that for any d > 0, any
n ≥ 1, any (D-semifaithful) code ξn operating at distortion d
and any L > 0, there is a distribution µ ∈ P (X) such that
R(ξn, µ

n)−R∗(d, µ1) > L.
Breaking from the lossless coding structure, we presented

in [22] an almost lossless (variable length) coding strategy
for infinite alphabet memoryless sources with the capacity to
estimate the entropy over the family H(X) by tolerating a
non-zero but vanishing distortion. The proposed lossy scheme
(with a vanishing distortion) does not induce an estimate of the
distribution in expected information divergence. Consequently,
the impossibility result in [4] does not contradict the fact that
the average rate of this almost lossless source coding strategy
provides a consistent estimation of the entropy distribution-
free in H(X). More discussion on the use of this coding
strategy for entropy estimation is presented in [22, Section
IV.A].

Going beyond the use of source codes, there are other
strategies and results for entropy estimation for infinite al-
phabets worth mentioning. These results, however, do not
have an evident connection with the results presented in this
paper and are relevant in their own merit. Regarding this,
Antos and Kontoyiannis [36, Theorem 2 and Corollary 1]
showed the remarkable result that the classical plug-in estimate
of the entropy is strongly consistent14 and consistent in the
mean square error sense for any finite entropy distribution in
H(X). On the analysis of the point-wise convergence of the
estimation error, [36, Theorem 3] showed a finite length lower
bound for this estimation error valid for any estimation scheme
(impossibility result). This result implies (asymptotically) that
no universal rate of convergence (to zero) can be achieved
for the entropy estimation over the family of infinite alphabet
memoryless sources. On the constructive side, constraining the
problem to a family of distributions with specific power tail-

13 Indeed, they show the stronger result that L(fn(Xn)) = ∞ almost
surely, with Xn ∼ µn.

14Almost surely with respect to the empirical process distribution.
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bounded conditions, Antos et al. [36, Theorem 7] presented
a finite length expression for the rate of convergence of the
estimation error of the classical plug-in estimator. Similar
results – strong consistency distribution-free in H(X) and
(almost sure) rate of convergence for the estimation error under
some tail bounded conditions – have been obtained for a data-
driven partition scheme in [37].15.

VII. PROOFS OF THE MAIN RESULTS OF SECTION IV
A. Theorem 2 — Part i): f /∈ `1(X)

Proof: Let us consider d > 0 and arbitrary D-semifaithful
coding scheme {ρn = (φn, Cn,Dn), n ≥ 1}, such that

ρn(xn, φn(xn)) ≤ d, (36)

for all n ≥ 1 and xn ∈ Xn. We denote by Bn =
{φn(xn), xn ∈ Xn} the range of φn and by πφn the partition
of Xn induced by φn (see Eq.(4)). From the decomposition in
(18), for any µn ∈ Λnf

R(ξn, µ
n)−Rn(d, µn) ≥

[
R(ξn, µ

n)−
Hσ(πφn )(µ

n)

n

]
.

(37)

From (37) and the analysis presented in Sec.III-A.1, the worst-
case overhead over Λf is bounded by

sup
µn∈Λnf

R(ξn, µ
n)−Rn(d, µn) ≥ 1

n
sup
µ∈Λf

D(vµn‖vCn)

≥ 1

n
min

v∈P(Xn)
sup
µn∈Λnf

Dσ(πφ)(µ
n‖v)

=
1

n
R+(Λnf , σ(πφn)), (38)

where R+(Λnf , σ(πφn)) is the information radius of the family
Λnf restricted to the sub-sigma field induced by πφn .

The rest of the proof will show that R+(Λnf , σ(πφn)) =∞,
for any n ≥ 1. Using that f /∈ `1(X), i.e.,

∑
x∈X f(x) = ∞,

we can use the method presented in [15] to show that there is
a countable collection of distributions Λ̃ = {µ̃j , j ∈ J } ⊂ Λf
with |J | =∞, where if we denote by

Aj = support(µ̃j) ≡ {x ∈ X, µ̃j(x) > 0} ,
then |Aj | < ∞ for each j ∈ J and for any i, j ∈ J i 6= j
Ai∩Aj = ∅. For completness, a construction of Λ̃ is presented
in Appendix VI-B. Then, we can consider the n-fold family
Λ̃n =

{
µ̃nj , j ∈ J

}
where support(µ̃nj ) = Anj = Aj × ... ×

Aj ⊂ Xn. Using the consistency of ρ with respect to the
Euclidean norm (in Def.6), Proposition 2 (in Appendix VI-C)
shows that to achieve the fixed distortion criterion in (36), it
is necessary that the range of φn has an infinite number of
prototypes: i.e., we have that |Bn| =∞.

For any j ∈ J , let us consider a covering of the support of
µ̃nj by cells of πφn by

C(Anj ) ≡
⋃

B∈πn(Anj )

B, (39)

15As a side comment, the mentioned tail bounded conditions used in [36],
[37] to obtain rate of convergence for entropy estimation are stronger than
the condition used in our work to define the envelope families (Definition 4)
— used in our achievability results in Theorems 2 and 3

where πn(Anj ) ≡
{
B ∈ πφn ,Anj ∩ B 6= ∅

}
. At this point, we

can show that
∣∣C(Anj )

∣∣ < ∞, ∀j ∈ J . This follows from the
construction of

{
Anj , j ∈ J

}
and the observation that any cell

B in πφn is a finite set from the hypothesis that πφn ∈ Qn(d)
and the consistency assumption on ρn (Def. 6). Therefore, we
get that C(Anj ) in (39) is a finite set for any j.

Let us consider a countably infinite sub-collection of disjoint
sets in

{
C(Anj ), j ∈ J

}
by the following approach:

j1 ≡ 1,

j2 ≡ min
{
j > j1, such that C(Anj ) ∩ C(Anj1) = ∅

}
,

. . .

jk ≡ min

{
j > jk−1, such that C(Anj ) ∩

k−1⋃
l=1

C(Anjl) = ∅
}
. . . .

(40)

For any finite k, the solution in (40) is guaranteed to be
achieved with a finite integer; then, we have an infinite new
collection of probabilities Λ̂n ≡

{
µ̃njk , k ≥ 1

}
⊂ Λ̃n ⊂ Λnf .

Based on the construction of µ̃njk , the family Λ̂n is composed
of a collection of probabilities with disjoint support in Xn.
Then, we consider the following partition of Xn

ηn ≡
{
C(Anjk), k ≥ 1

}
∪
(

Xn \
∞⋃
k=1

C(Anjk)

)
, (41)

where it is clear that σ(ηn) ⊂ σ(πφn) and for any µ, v ∈
P(Xn), Dσ(ηn)(µ‖v) ≤ Dσ(πφn )(µ‖v). The important point
here is that Λ̂n contains an infinite set of distributions with
disjoint support when restricted to the cells of ηn in (41) and,
thus, from the known connection between information radius
and channel capacity [2], the following can be obtained:

LEMMA 4: R+(Λ̂n, σ(ηn)) =∞.
The proof of Lemma 4 is presented in Appendix V.

Therefore, we have that

R+(Λnf , σ(πφn)) ≥ R+(Λ̂n, σ(πφn)) ≥ R+(Λ̂n, σ(ηn)) =∞,
(42)

from the fact that by construction Λ̂n ⊂ Λnf and σ(ηn) ⊂
σ(πφn). Finally (42) and (38) prove the impossibility part
(Theorem 2 i)).16

B. Theorem 2 — Part iii): f ∈ `1(X) and Λf ⊂ H(X)

To organize the proof of this part, let us first introduce
preliminary results and definitions that will be used in the
main argument.

Definition 8: The distribution induced by the tail function
f is given by

µ̃f (x) ≡


f(x) if x ≥ τf
1−∑x≥τf f(x) if x = τf − 1

0 if x < τf − 1,
(43)

where τf ≡ min
{
k ≥ 1,

∑
x≥k f(x) ≤ 1

}
.

16Alternatively, this result can be derived from (42) (Lemma 4) and Lemma
1.
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Note that by construction, we have that µ̃f (x) ∈ Λf and τf <
∞ from the hypothesis that f ∈ `1(X).

Let us consider the finite set Γk = {1, .., k} for any k ≥ 1.
Then we have the following result for finite alphabet sources:

LEMMA 5: For any n ≥ 1, k ≥ 1, distortion d > 0 and
ε > 0, there is a D-semifaithful code ξ∗kn = (φ∗kn , C∗kn ,D∗kn )
on Γk+1, that operates at distortion d > 0 (w.r.t. ρ̃n) and
verifies that

sup
v∈P(Γk+1)

[
1

n
EY n∼vn

{
L(C∗kn (φ∗kn (Y n)))

}
−Rn(d, vn)

]
≤ k log(n+ 1)

n
+ ε,

where P(Γk+1) is the collection of probabilities on Γk+1 (i.e.,
the simplex of dimension k).
The proof of Lemma 5 is presented in Appendix III.

For envelope families on infinite alphabets, we have the
following remarkable result from Bontemps et al. [16]:

LEMMA 6: [16, Prop. 5] If f ∈ `1(X), then for any n ≥ 1

(1 + o(1))
uf (n)− 1

4
log n ≤ R+(Λnf ) ≤

2 + log e+
uf (n)− 1

2
log n, (44)

where

uf (n) = min {k ≥ 1 such that µ̃f (Tk+1) < 1/n} . (45)
Finally, let us consider a tail partition of X given by

π̃k ≡ {Γk, {k + 1} , {k + 2} , . . .} for any k ≥ 1. The next
result shows that the tail distribution µ̃f (in Def. 43) achieves
maximum entropy over the envelope family in the following
sense:

LEMMA 7: If H(µ̃f ) < ∞, it follows that eventually in
k (i.e., for a sufficiently large k),

sup
µ∈Λf

Hσ(π̃k)(µ) = Hσ(π̃k)(µ̃f ) <∞.

Otherwise, if H(µ̃f ) = ∞, then supµ∈Λf
Hσ(π̃k)(µ) =

Hσ(π̃k)(µ̃f ) =∞ for any k ≥ 1.
The proof of Lemma 7 is presented in Appendix IV. Conse-
quently, we have that Λf ⊂ H(X) is equivalent to the condition
supµ∈Λf

H(µ) <∞.
Proof: The basic idea of the proof is to decompose the

alphabet X into two segments and use a two-stage scheme.
More precisely, let us consider the following mapping Sk :
X −→ Γk+1 = {1, .., k + 1} where

Sk(x) ≡
{
x if x ∈ Γk = {1, .., k}
k + 1 if x > k

(46)

Applying this lossy mapping (letter by letter) to the source
Xn, we create a truncated version of it:

Y n1 (k) ≡ Sk(Xn) ≡ (Sk(X1), . . . , Sk(Xn)) ∈ Γnk+1. (47)

To retain the information lost from Xn in Y n1 (k), the following
complementary mapping is used:

Ok(x) ≡
{

1 if x ∈ Γk
x if x > k

∈ {1} ∪ Γck, (48)

which induces

Zn1 (k) ≡ Ok(Xn) ≡ (Ok(X1), . . . , Ok(Xn)) ∈ ({1} ∪ Γck)n.
(49)

It is clear that for any k ≥ 1, Y n1 (k) and Zn1 (k) recover Xn

with no loss. In this context, we propose a two-stage strategy
where Y n1 (k) (a finite alphabet stationary memoryless source)
is encoded with a D-semifaithful code (operating at distortion
d > 0) and Zn1 (k) (an infinite alphabet stationary memoryless
source) is encoded losslessly using a variable-length code. Let
us consider a distortion d > 0 and a D-semifaithful triplet
ξkn = (φkn, Ckn,Dkn) for the source Y n1 (k) on the alphabet Γk+1,
operating at distortion d > 0 with respect to a distortion ρ̃ on
Γk+1 × Γk+1, where we assume that ρ̃ coincides with ρ on
Γk×Γk (the non-truncated symbols, see Eq. (46)). This means
that for all yn ∈ Γnk+1

ρ̃n(yn, φkn(yn)) ≤ d. (50)

On the other hand, we can consider a lossless variable-length
encoder-decoder pair (C̃kn, D̃kn) for the source Zn1 (k), where
C̃kn : ({1} ∪ Γck)n −→ {0, 1}∗ and D̃kn : {0, 1}∗ −→ ({1} ∪
Γck)n. Then, given an input xn ∈ Xn the final output (after
decoding) of this two-stage approach is

(ŷn, zn) = (φkn(Sk(xn)), Ok(xn)) ∈ (Γk+1)n × ({1} ∪ Γck)n.
(51)

Finally, we recover x̂n from (ŷn, zn) by the following letter-
by-letter mapping

x̂n = (Ψk(ŷ1, z1), . . . ,Ψk(ŷn, zn)) ∈ Xn,

where

Ψk(ŷi, zi) ≡
{
zi if zi ∈ Γck
ŷi if zi = 1

∈ X. (52)

Then, using the condition imposed on ρ̃, it follows that

ρn(xn, x̂n) ≤ ρ̃n(yn, ŷn) ≤ d, (53)

where yn = Sk(xn) and ŷn is defined in (51). The first
inequality in (53) is verified in Appendix VI-A, and the second
follows from the fact that ξkn is a D-semifaithful code with
respect to ρ̃. Therefore, this two-stage strategy produces a
D-semifaithful code in Xn with respect to ρ. The encoding-
decoding process is illustrated in Figure 1.

On the other hand, the length of this two-stage mapping (in
bits per sample) that we denote by T kn is given by

1

n
L(T kn (xn)) =

1

n

[
L(Ckn(φkn(Sk(xn)))) + L(C̃kn(Ok(xn)))

]
.

(54)

Then if Xn ∼ µn, the average length is given by

1

n
EXn

{
L(T kn (Xn))

}
=

1

n
EY n

{
L(Ckn(φkn(Y n)))

}
︸ ︷︷ ︸

first-stage bit rate

+
1

n
EZn

{
L(C̃kn(Zn))

}
︸ ︷︷ ︸

second-stage bit rate

, (55)

where Y n = Sk(Xn) and Zn = Ok(Xn).
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Sk(xn1 )

Ok(xn1 )

Ckn ◦ φkn

C̃kn

Lossy Path

Lossless Path

Truncation

Truncation

xn1 ∈ Xn

00011000

11001111

00011000|11001111

yn1 = Sk(xn1 ) ∈ (Γk+1)n

zn1 = Ok(xn1 ) ∈ ({1} ∪ Γc
k)n

(Ckn(φkn(Sk(xn1 ))), C̃kn(Ok(xn1 )) ∈ {0, 1}∗
first-stage bits second-stage bits

00011000 11001111

00011000

11001111

Lossy Path

Lossless Path

Dn

D̃k
n

ŷn1 = φkn(Sk(xn1 )) ∈ (Γk+1)n

zn1 = Ok(xn1 ) ∈ ({1} ∪ Γc
k)n

Two-Stage Encoding Process

Two-Stage Decoding Process

Fig. 1: Illustration of the two-stage scheme used in the achievability argument of Theorem 2 (f ∈ `1(X)).

1) Analysis of the first-stage bits in (55): For the first term
on the RHS of (55), it will be useful to consider the following
truncated distortion ρk on X× X, (∀x, x̄ ∈ X)

ρk(x, x̄) ≡


ρ(x, x̄) if x, x̄ ∈ Γk
0 if x, x̄ /∈ Γk
minx̃>k ρ(x, x̃) if x ∈ Γk and x̄ /∈ Γk
minx̃>k ρ(x̃, x̄) if x /∈ Γk and x̄ ∈ Γk

,

(56)

to specify ρ̃ in Γk+1 × Γk+1, used in the first-stage of the
construction. It follows that ρk(x, x̄) ≤ ρ(x, x̄) and ρk(x, x̄) =
ρk(Sk(x), Sk(x̄)). Consequently, we have that ρkn(xn, x̄n) =
ρkn(Sk(xn), Sk(x̄n)) for any xn and x̄n in Xn. For the rest
of the argument, we fix ρ̃n(yn, ȳn) to be ρkn(yn, ȳn) for
any yn, ȳn ∈ Γnk+1 × Γnk+1. With this, let us introduce the
counterpart of Rn(d, µn) in (12) but using instead the induced
distortion ρkn, i.e.,

Rkn(d, µn) ≡ min
π∈Qkn(d)

Hσ(π)(µ
n)

n
, (57)

where Qkn(d) is the collection of partitions of Xn such that
any π ∈ Qkn(d) satisfies that ∀A ∈ π, ∃yn ∈ A such that
supxn∈A ρ

k
n(xn, yn) ≤ d. Then from the definition in (12),

we have that

Rkn(d, µn) ≤ Rn(d, µn), (58)

for any d > 0, any n ≥ 1, any k ≥ 1 and any µ ∈ P(X).
On the other hand, if we consider the distribution of Y n =

Sk(Xn) ∈ Γk+1 (assuming that Xn ∼ µn for some marginal

µ ∈ P(X)) and in particular its marginal distribution vµ
in P(Γk+1), we can use the operational finite-length rate-
distortion function Rn(d, vnµ) in (12) for vµ. Using the fact
that ρ̃(Sk(x), Sk(x)) = ρk(x, x̄), it is simple to show that

Rn(d, vnµ) = Rkn(d, µn), (59)

for any d > 0, any n ≥ 1, any k ≥ 1 and any µ ∈ P(X).
Finally, for any D-semifaithful code ξkn = (φkn, Ckn,Dkn) for

Y n operating at distortion d > 0 w.r.t. ρ̃n, we have from (59),
(10) and (12) that

1

n
EY n∼vnµ

{
L(Ckn(φkn(Y n)))

}
≥ Rn(d, vnµ) = Rkn(d, µn).

(60)

At this point, we can use the result in Lemma 5 for finite
alphabet sources. In particular, from Lemma 5 (choosing ε =
1/n) and the expressions in (60) and (59), we have that for any
n ≥ 1, k ≥ 1 and distortion d > 0, there is a D-semifaithful
code ξ∗kn for the first-stage such that

sup
µ∈Λf

[
1

n
EXn∼µn

{
L(C∗kn (φ∗kn (Sk(Xn))))

}
−Rkn(d, µn)

]
≤ k log(n+ 1)

n
+

1

n
. (61)

2) Analysis of the second-stage bits in (55): Considering
the second term on the RHS of (55), let mµ ∈ P({1} ∪ Γck)
be the distribution of Zi = Ok(Xi) induced by µ, then we
have that

1

n
EZn∼mnµ

{
L(C̃kn(Zn))

}
≥ H(mµ), (62)
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because C̃kn is a variable length (prefix-free) lossless encoder
of Zn [3]. Furthermore, it is well-known that the redundancy
of C̃kn is equal to (up to a discrepancy of O(1/n)) [3]

1

n

[
EZn∼mnµ

{
L(C̃kn(Zn))

}
−H(mn

µ)
]
≈ 1

n
D(mn

µ‖mC̃kn),

(63)

where mC̃kn ∈ P(({1} ∪ Γck)n) is the distribution associated
with the prefix-free code C̃kn [2], [3]. From this observation,
the criterion for designing the second-stage in the context
of universal source coding reduces to solving the following
problem17:

R+(Λ̃nf , k) ≡ min
m∈P(({1}∪Γck)n)

sup
µ∈Λf

D(mn
µ‖m), (64)

which is the information radius of the projected family Λ̃nf ≡{
mn
µ, µ ∈ Λf

}
. In particular, associated with the solution of

(64) [2], there is a lossless code C̃∗kn such that

R+(Λ̃nf , k)

n
≤ sup
µ∈Λf

[
1

n
EZn∼mnµ

{
L(C̃∗kn (Zn))

}
−H(mµ)

]
≤
R+(Λ̃nf , k) + 1

n
. (65)

Importantly, using the information radius object introduced in
(20), it is simple to check that

R+(Λ̃nf , k) = R+(Λnf , σ(π̃×nk ))

= min
m∈P(Xn)

sup
µ∈Λf

Dσ(π̃×n
k )(µ

n‖m), (66)

where
π̃×nk ≡ {Γk, {k + 1} , {k + 2} , . . .}n

denotes the partition of Xn induced by the lossy mapping
(Ok(), Ok(), .., Ok()) : Xn −→ ({1} ∪ Γck)n. Then from (23)
and (66)

R+(Λ̃nf , k) ≤ R+(Λnf ) ≡ min
m∈P(Xn)

sup
µ∈Λf

D(µn‖m). (67)

This last expression is the information radius of the uncon-
strained family Λnf [2]. The result by Bontemps et al. [16]
(stated in Lemma 6) for summable envelope families comes
in handy here. In fact, combining Lemma 6 with (65), for
any k ≥ 1 and n ≥ 1, there exists a variable-length code
C̃∗kn : ({1} ∪ Γck)n −→ {0, 1}∗ satisfying that

sup
µ∈Λf

[
1

n
EZn∼mnµ

{
L(C̃∗kn (Zn))

}
−H(mµ)

]
≤ uf (n)− 1

2
· log n

n
+

2 + log e

n︸ ︷︷ ︸
O(1/n)

. (68)

It is important to note that the bound in the RHS of (68) is
valid independent of (uniform over) k.

17Using the correspondence between prefix-free codes and perfect (dyadic)
distributions.

3) Maximum Entropy analysis over the Envelope Family:
For what follows, let us consider the assumption that18

sup
µ∈Λf

H(µ) <∞. (69)

Then from (68), we have that there is a coding scheme{
C̃∗kn , n ≥ 1

}
satisfying that ∀k ≥ 1:

sup
µ∈Λf

1

n
EXn∼µn

{
L(C̃∗kn (Ok(Xn)))

}
≤

uf (n)− 1

2

log n

n
+O(1/n) + sup

µ∈Λf

H(mµ,k),

=
uf (n)− 1

2

log n

n
+O(1/n) + sup

µ∈Λf

Hσ(π̃k)(µ), ∀n ≥ 1,

(70)

where in the first inequality mµ,k ∈ P({1} ∪ Γck) denotes
the distribution of Z = Ok(X) when X ∼ µ ∈ Λf , and
in the second inequality, we use the tail partition π̃k =
{Γk, {k + 1} , {k + 2} , . . .}. To continue with the argument,
we use Lemma 7 that shows that µ̃f in (43) achieves the
maximum entropy of the problem stated in the right term of
(70) (eventually in k). Then assuming (69), i.e., H(µ̃f ) <∞,
and a sufficiently large k,

1

n
sup
µ∈Λf

EXn∼µn
{
L(C̃∗kn (Ok(Xn)))

}
≤ uf (n)− 1

2

log n

n
+O(1/n)

+ µ̃f (Γk) log
1

µ̃f (Γk)
+
∑
i≥k+1

µ̃f (i) log
1

µ̃f (i)
, ∀n ≥ 1.

(71)

4) Concatenating the results in (55): From the expres-
sions in (55), (61) and (71), we have that for any dis-
tortion d > 0 and threshold k ≥ 1, there is a two-
stage scheme

{
T ∗kn = (ξ∗kn , (C̃∗kn , D̃∗kn )), n ≥ 1

}
where ξ∗kn =

(φ∗kn , C∗kn ,D∗kn ) is the D-semifaithful code of the first stage,
operating at distortion d with respect to

{
ρkn, n ≥ 1

}
, and

(C̃∗kn , D̃∗kn ) is the variable-length lossless encoder-decoder pair
of the second stage, such that for any n ≥ 1 and a sufficiently
large k:

sup
µ∈Λf

[
1

n
EXn∼µn

{
L(T ∗kn (Xn))

}
−Rn(d, µn)

]
≤ k log(n+ 1)

n
+
uf (n)− 1

2

log n

n
+O(1/n)

+ µ̃f (Γk) log
1

µ̃f (Γk)
+
∑
i≥k+1

µ̃f (i) log
1

µ̃f (i)
, (72)

assuming that H(µ̃f ) < ∞. Finally it is clear in the above
construction that we can take (kn) function of n to achieve
minimax universality using the fact that (uf (n)·log n/n) tends
to zero with n [15], [16]. In fact, if (kn) tends to ∞ with n

18This condition is equivalent to the condition Λf ⊂ H(X) used in
statement of Theorem 2 — part iii). See Corollary 1.
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and limn−→∞ kn log(n)/n = 0, from (72) this is sufficient to
have that

lim
n−→∞

sup
µ∈Λf

[
1

n
EXn∼µn

{
L(T ∗knn (Xn))

}
−Rn(d, µn)

]
= 0.

(73)

Consequently, we achieve strong minimax universality with
the construction

{
T ∗knn , n ≥ 1

}
in the sense stated in (16).

This concludes the proof of Part iii).

C. Theorem 2 — Part ii): f ∈ `1(X) and H(µ̃f ) =∞
Proof: If we relax the finite entropy condition on the

envelope distribution, i.e., we have that H(µ̃f ) = ∞ from
Corollary 1, the same arguments and in particular the two-
stage construction presented in Section VII-B can be used to
show that for any µ ∈ Λf , such that H(µ) < ∞, it follows
that19 [

1

n
EXn∼µn

{
L(T ∗knn (Xn))

}
−Rn(d, µn)

]
︸ ︷︷ ︸

point-wise analysis

≤

kn log(n+ 1)

n
+
uf (n)− 1

2

log n

n
+O(1/n)

+ µ(Γk) log
1

µ(Γk)
+
∑
i≥k+1

µ(i) log
1

µ(i)
. (74)

Then under the conditions that (kn) tends to infinity with n
and (kn) is o(log(n)/n), for any µ ∈ Λf ∩ H(X) it follows
that

lim
n−→∞

[
1

n
EXn∼µn

{
L(T ∗knn (Xn))

}
−Rn(d, µn)

]
= 0,

(75)

which concludes the proof of Part ii).

D. Theorem 3

Proof: Let us consider the assumption that

lim sup
k→∞

∑
i≥k µ̃f (i) log(1/µ̃f (i))

µ̃f (Tk) log 1/µ̃f (Tk)
<∞. (76)

Notice that the expression in the numerator of (76) is well
defined as H(µ̃f ) <∞ from the hypothesis that Λf ⊂ H(X).
Hence, the result in (72) for the worst-case overhead can be
adopted. Using a sequence (kn)n such that kn →∞ then the
term Hσ(π̃kn )(µ̃f ) in (72) can be expressed (in the limit) by

lim sup
n→∞

Hσ(π̃kn )(µ̃f ) =

lim sup
n→∞

µ̃f (Tkn) log 1/µ̃f (Tkn)×[
1 +

∑
i≥kn µ̃f (i) log(1/µ̃f (i))

µ̃f (Tkn) log 1/µ̃f (Tkn)

]
, (77)

19For the sake of space, the steps to derive (74) are not presented as it
follows directly from the argument presented in Section VII-B.

where from (76), there are two constants K0 > 0 and N > 0,
such that for any n ≥ N :

Hσ(π̃kn )(µ̃f ) = µ(Γkn) log
1

µ(Γkn)
+

∑
i≥kn+1

µ(i) log
1

µ(i)

≤ µ̃f (Tkn) log 1/µ̃f (Tkn) ·K0. (78)

In particular, choosing (kfn)n = (uf (n))n by the definition in
(45) it follows that µ̃f (Tkfn+1) < 1/n and µ̃f (Tkfn) ≥ 1/n.
Then for any n ≥ 1:

µ̃f (Tkfn) log 1/µ̃f (Tkfn) ≤ 1

n
log n. (79)

Therefore considering the two-stage scheme
{
T ∗k

f
n

n , n ≥ 1
}

driven by (kfn)n≥1, from (72), (78) and (79), we have that
eventually in n

sup
µ∈Λf

[
1

n
EXn∼µn

{
L(T ∗k

f
n

n (Xn))
}
−Rn(d, µn)

]
≤ uf (n) log(n+ 1)

n
+
uf (n)− 1

2

log n

n

+O(1/n) +K0 ·
log n

n
, (80)

which concludes the proof.
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APPENDIX I
PROOF OF LEMMA 2

Proof: First, it is simple to verify that if p > 1, then
(fp(i) log 1/fp(i))i≥1 ∈ `1(X), which implies that µ̃fp ∈
H(X) (see Eq.(43)). Let us introduce the tail series:20

Skp ≡
∑
i≥k

µ̃fp(i) =
∑
i≥k

fp(i),

where the last equality is valid eventually (for k sufficiently
large). Then it follows that

Skp = k−p
∑
i≥k

kp

ip

= k−p
(

1 +
1

((k + 1)/k)p
+ . . .+

1

((k +K)/k)p
+ . . .

)

= k−p

1 +
∑
i≥1

1

(1 + i/k)p

 . (81)

20For this analysis, we consider K = 1.
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The term of the series in the brackets on the RHS of (81)
is indexed by the fraction i/k, where k is fixed and i goes
over the integers. Hence, this series decomposes in k-additive
components as follows:1 +

∑
i≥1

1

(i+ 1)p


︸ ︷︷ ︸

term with 0 offset

+
∑
i≥1

1

(i+ 1/k)p︸ ︷︷ ︸
term with 1/k offset

+ . . .

+
∑
i≥1

1

(i+ (k − 1)/k)p︸ ︷︷ ︸
term with (k − 1)/k offset

. (82)

The 0-offset term in (82) equals
∑
i≥1

1
ip = S1

p . The l/k-offset
term is upper bounded by

∑
i≥1

1
ip = S1

p and lower bounded
by
∑
i≥1

1
(i+1)p =

∑
i≥2

1
ip = S2

p for any l ∈ {1, .., k − 1}.
Therefore from (81) and (82), we have that

1

kp−1
S1
p ≥ Skp ≥

1

kp
(
S1
p + (k − 1)S2

p

)
≥ 1

kp−1
S2
p , (83)

which means that Skp ∼ 1
kp−1 . When p > 1, this term tends to

zero with k.
To continue with the proof, let us analyze the following

information series:

Ikp ≡
∑
i≥k

µ̃fp(i) log(1/µ̃fp(i)) =
∑
i≥k

fp(i) log(1/fp(i)),

where the last equality is valid eventually (for k sufficiently
large). This last expression is equal to p

∑
i≥k

1
ip log i. There-

fore, we can concentrate on the series:

Ĩkp ≡
∑
i≥k

1

ip
log i =

log k

kp

1 +
∑
i≥1

log(k + i)/ log(k)

((k + i)/k)p


=

log k

kp

1 +
∑
i≥1

log(k + i)/ log(k)

(1 + i/k)p

 .
(84)

Similarly to (82), the series on the RHS of (84) can be
decomposed in1 +

∑
i≥1

log(k + ki)/ log(k)

(1 + i)p


︸ ︷︷ ︸

0-term

+
∑
i≥1

log(ik + 1)/ log(k)

(i+ 1/k)p︸ ︷︷ ︸
1/k-offset term

+

. . .+
∑
i≥1

log(ik + k − 1)/ log(k)

(i+ (k − 1)/k)p︸ ︷︷ ︸
(k − 1)/k-offset term

.

(85)

For the 0-offset term, we have that1 +
∑
i≥1

log(k + ki)/ log(k)

(1 + i)p

 ≤
1 +

∑
i≥1

(
1

1 + i

)p
+

1

log k

∑
i≥1

log(i+ 1)

(i+ 1)p

= S1
p +

1

log k
I2
p , (86)

while for the generic l/k-term in (85), we have that∑
i≥1

log(ik + l)/ log(k)

(i+ l/k)p
≤
∑
i≥1

log(ik + k)/ log(k)

ip

=
∑
i≥1

1

ip
+

1

log k

∑
i≥1

log(i+ 1)

ip︸ ︷︷ ︸
Īp≡

= S1
p +

1

log(k)
Īp. (87)

Returning to (84), it follows from (85) and the posterior
bounds that

Ikp ≤
p log k

kp−1

[
S1
p +

1

log k
Īp

]
. (88)

Then,

lim sup
k→∞

Ikp
Skp log(1/Skp )

≤ lim sup
k→∞

p log k
kp−1 S

1
p + p

kp−1 Īp
1

kp−1S2
p log kp−1

S1
p

(89)

=
pS1

p

(p− 1)S2
p

<∞, (90)

which concludes the proof as p > 1.

APPENDIX II
PROOF OF LEMMA 3

Proof: If we consider the information function (iα(i)) =
(−fα(i) log fα(i)), it is clearly summable then µ̃fα ∈
H(X) (see Eq.(43)). Let us analyze the tail of µ̃fα , i.e.,
Skα ≡

∑
i≥k µ̃fα(i) for any k ≥ 1. We have that Skα =

e−αk
∑
i≥1Ke

−αi = e−αk · S1
α. On the other hand, we

need to analyze the tail fraction of the entropy of µ̃fα , i.e.,
Ikα ≡ −

∑
i≥k µ̃fα(i) log µ̃fα(i) = −∑i≥k f(i) log f(i), the

last equality holding eventually (for k sufficiently large). It is
simple to show that

Ikα = log(1/K)Skα +Kα log e ·
∑
i≥k

ie−αi︸ ︷︷ ︸
Īkα≡

(91)

where Īkα = ke−αkS0
α (1/K + 1/k · e−α). Finally, we have

from (91) that Ikα = (log(1/K)S1
α + S1

α) · e−αk + (S0
α/K) ·

ke−αk. With this, it is simple to verify that

lim sup
k→∞

Ikα
Skα log(1/Skα)

=
S0
α

KS1
α

· lim sup
k→∞

k

kα log e+ log(1/S1
α)

=
1

Ke−αα log e
<∞, (92)

which proves the result.

APPENDIX III
PROOF OF LEMMA 5

Proof: Without loss of generality, let us consider the
finite alphabet A = {1, .., k}, a distortion d > 0, and the
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collection Λ = P(A). Using the non-asymptotic performance
bound in (12), we are interested in the following object:

min
(φn,Cn,Dn)

sup
µ∈Λ

[
1

n
EXn∼µn {L(Cn(φn(Xn)))} −Rn(d, µn)

]
,

(93)
where the minimum is carried over the collection of D-
semifaithful codes on A operating at distortion d.

Let us fix an arbitrary ε > 0. For any xn ∈ An, let pxn
denote the type of xn (the empirical distribution in P(A)
induced by xn), and P̃n ≡ {pxn , xn ∈ An} the collection of
types obtained with sequences of length n. For any p ∈ P̃n, the
type class of p is given by Tp ≡ {xn ∈ An : pxn = p}, where
it is clear that

{
Tp, p ∈ P̃n

}
offers a finite partition of An. It

is well known that
∣∣∣P̃n∣∣∣ ≤ (n+ 1)

k [3]. For any member

in the type class p ∈ P̃n, let us choose a D-semifaithful
code ξ∗kn,p = (φ∗kn,p, C∗kn,p,D∗kn,p) indexed by p satisfying the
condition:21

1

n
EY n∼µ̄p

{
L(C∗kn,p(φ∗kn,p(Y n)))

}
≤ Rn(d, µ̄p) + ε, (94)

where µ̄p ∈ P(An) in (94) is a short-hand for the uniform
distribution over Tp ⊂ An.

With this, we consider a simple two-stage universal strategy,
inspired by the two-stage scheme used in lossless universal
source coding [2]. For encoding xn there is fixed-rate function
fn : P̃n → {0, 1}kdlog(n+1)e for indexing (encoding) the
type of xn, and conditioning on this information, the second-
stage encodes xn lossily with ξ∗kn,pxn . Then the variable length
representation of xn operating at distortion d is given by
(fn(pxn), C∗kn,pxn (φ∗kn,pxn (xn))) ∈ {0, 1}∗. From this construc-
tion, it is simple to check that this scheme is a D–semifaithful
code of An with respect to ρn.

Let us analyze its worst-case overhead in Λ. Let us consider
µ ∈ Λ, then if we denote by T kn = (fn, (ξ

∗k
n,p; p ∈ P̃n)) the

two-stage scheme and (with small abuse of notation) we use
T kn as a short-hand for the encoding mapping (from source
symbols to binary sequences) then

L(T kn (xn)) = k log(n+ 1)︸ ︷︷ ︸
first-stage bits

+L(C∗kn,pxn (φ∗kn,pxn (xn))))︸ ︷︷ ︸
second-stage bits

, (95)

∀xn ∈ An. At this point, if we introduce Y ≡ pXn ∈ P̃n (the
type of Xn ∼ µn), it follows that for any p ∈ P̃n, P(Y =

21This selection can be accomplished from (12).

p) = µn(Tp) and

1

n
EXn∼µn

{
L(T kn (Xn))

}
−Rn(d, µn)

=
1

n
EY=pXn

{
EXn|Y

{
L(T kn (Xn))|Y

}}
−Rn(d, µn)

=
k log(n+ 1)

n
+∑

p∈P̃n

µn(Tp)EXn∼µ̄p
{
L(C∗kn,p(φ∗kn,p(Xn)))

}
−Rn(d, µn)

(96)

=
k log(n+ 1)

n
+∑

p∈P̃n

µn(Tp)

[
1

n
EXn∼µ̄p

{
L(C∗kn,p(φ∗kn,p(Xn)))

}
−Rn(d, µ̄p)

]
+
∑
p∈P̃n

µn(Tp)Rn(d, µ̄p)−Rn(d, µn)

︸ ︷︷ ︸
≤0

(97)

≤ k log(n+ 1)

n
+ ε. (98)

The expression in (96) follows from (95) and the observation
that conditioning to the event Y = p, for some p ∈ P̃n,
Xn ∼ µ̄p independent of µ [3]. To obtain (97), we include
the term

∑
p∈P̃n µ

n(Tp)Rn(d, µ̄p) in (96) to then use the
inequality in (94). Finally to obtain (98), we use the fact that
µn(B) =

∑
p∈P̃n µ

n(Tp)µ̄p(B) [3] and that Rn(d, µ) is a
concave function of the second argument from its construction
in (12).22 Finally, the inequality in (98) is valid distribution
free (independent of µ), which concludes the proof.

APPENDIX IV
PROOF OF LEMMA 7

Proof: Let us assume that H(µ̃f ) <∞, where µ̃f ∈ Λf
is the tail distribution introduced in (43). Let us consider an
arbitrary µ ∈ Λf . Then we have that (assuming the regime

22The concavity of Rn(d, µ) is stated and proved in Proposition 3 at
Appendix VI-E.
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where k > τf , see (43))

Hσ(π̃k)(µ̃f )−Hσ(π̃k)(µ) =

µ̃f (Γk) log
1

µ̃f (Γk)
+
∑

x≥k+1

µ(x) log
µ(x)

f(x)

+
∑

x≥k+1

(f(x)− µ(x)) log
1

f(x)
− µ(Γk) log

1

µ(Γk)

≥ µ̃f (Γk) log
1

µ̃f (Γk)
+ µ(Γk) log

µ̃f (Γk)

µ(Γk)

+ µ(Γk) logµ(Γk) +
∑

x≥k+1

(f(x)− µ(x)) log
1

f(x)
(99)

= (µ̃f (Γk)− µ(Γk)) · log
1

µ̃f (Γk)

+
∑

x≥k+1

(f(x)− µ(x)) log
1

f(x)
,

=

 ∑
x≥k+1

µ(x)−
∑

x≥k+1

µ̃f (x)

 · log
1

µ̃f (Γk)

+
∑

x≥k+1

(f(x)− µ(x)) log
1

f(x)

=
∑

x≥k+1

(f(x)− µ(x)) · log
1−∑y≥k+1 f(y)

f(x)
. (100)

To obtain (99) we use that
∑
x≥k+1 µ(x) log µ(x)

f(x) ≥
−µ(Γk) log µ(Γk)

µ̃f (Γk) from the observation that Dσ(π̃k)(µ‖µ̃f ) ≥
0. At this point, we use the fact that f ∈ `1(X), which means
that limk→∞

∑
x≥k+1 f(x) = 0. Therefore eventually (i.e.,

for a sufficiently large k) we have that 1 −∑x≥k+1 f(x) >∑
x≥k+1 f(x). Assuming this large k regime, it follows from

(100) that

Hσ(π̃k)(µ̃f )−Hσ(π̃k)(µ) ≥∑
x≥k+1

(f(x)− µ(x)) · log

∑
y≥k+1 f(y)

f(x)
≥ 0. (101)

The last inequality in (101) comes from the assumption that
µ ∈ Λf , which means that µ(x) ≤ f(x) for all x ∈ X.

On the second part of the result, we assume that H(µ̃f ) =
∞. Here, it is clear that Hσ(π̃k)(µ̃f ) = ∞ for any k ≥ 1,
which is sufficient to obtain the unbounded result.

APPENDIX V
PROOF OF LEMMA 4

Proof: First, it is important to note that by the construc-
tion of Λ̂n in (40) and the partition ηn in (41), Λ̂n degenerates
in the probability space (Xn, σ(ηn)), in the sense that for any
k ≥ 1

Hσ(ηn)(µ̃
n
jk

) = 0. (102)

Let us consider a distribution over the indices of the family
Λ̂n (i.e., over the integer set N) ρ ∈ P(N), and with this
we can construct a joint distribution ρ × Λ̂n in the product
space (N, 2N) × (Xn, σ(ηn)) in the standard way, i.e., ρ ×
Λ̂n(A × B) =

∑
a∈A ρ(a) · µ̃nja(B) for any A ⊂ N and B ∈

σ(ηn). Associated with this joint distribution, we can derive
an expression for the mutual information of ρ× Λ̂n [2], [3]:

I(ρ; Λ̂n) ≡
∑
a∈N

ρ(a) ·Dσ(ηn)(µ̃
n
ja‖µ̄) (103)

= Hσ(ηn)(µ̄)−
∑
a∈N

ρ(a) ·Hσ(ηn)(µ̃
n
ja), (104)

where µ̄(B) ≡∑a∈N ρ(a)µ̃nja(B) for any B ∈ σ(ηn). Using
(102), it is simple to show that I(ρ; Λ̂n) = Hσ(ηn)(µ̄) =
H(ρ) = −∑a∈N ρ(a) log ρ(a). Finally it is well known, from
the construction of the information radius of Λ̂n [2], that
R+(Λ̂n, σ(ηn)) ≥ I(ρ; Λ̂n) = H(ρ) for any ρ ∈ P(N). This
last inequality proves the result as supρ∈P(N)H(ρ) =∞.

APPENDIX VI
AUXILIARY RESULTS

A. Proposition 1

PROPOSITION 1: For all xn ∈ Xn, it follows that
ρn(xn, x̂n) ≤ ρ̃n(yn, ŷn).

Proof:

ρn(xn, x̂n) =
1

n

n∑
i=1

ρ(xi, x̂i)

=
1

n

n∑
i=1

[
ρ(xi, x̂i)1Γk(xi) + ρ(xi, x̂i)1Γck

(xi)
]

=
1

n

n∑
i=1

ρ(yi, ŷi)1Γk(xi) + ρ(xi, zi)︸ ︷︷ ︸
=0 as zi=xi

1Γck
(xi)


≤ 1

n

n∑
i=1

ρ̃(yi, ŷi)1Γk(xi) (105)

≤ 1

n

n∑
i=1

ρ̃(yi, ŷi) (106)

= ρ̃n(yn, ŷn). (107)

The first inequality in (105) follows from the construction of
ρ̃ assuming that ρ̃ coincides with ρ in Γk × Γk and the mild
assumption that ρ̃(i, k + 1) ≤ ρ(i, k + 1) for all i ∈ Γk.

B. The construction of Λ̃ = {µ̃j , j ∈ J }
We know that

∑
j≥1 f(j) = ∞. Let us introduce the

bounded envelope function f̃ : X → [0, 1] given by f̃(i) ≡
min {1, f(i)} for any i ∈ X. It is simple to verify that∑
j≥1 f̃(j) = ∞ and that Λf̃ ⊂ Λf . Using this bounded

function, we introduce an iterative method to construct a
countably infinite family Λ̃ = {µ̃j , j ∈ J } ⊂ Λf̃ as follows:

• Iteration 1: Select k̃1 =

min
{
k ≥ 1, st.

∑k
l=1 f̃(l) ≥ 1

}
23. Construct a

23This problem has a (finite) solution form the fact that
∑
j≥1 f̃(j) =∞.
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probability µ̃1 ∈ P(X) by24

µ̃1(1) = f̃(1)

....

µ̃1(k̃1 − 1) = f̃(k̃1 − 1)

µ̃1(k̃1) = 1− µ̃1(
{

1, .., k̃1 − 1
}

) ≤ f̃(k̃1), (108)

and µ̃1(
{

1, .., k̃1

}c
) = 0. By its construction in (108), we

have that µ̃1 ∈ Λf̃ and A1 = support(µ̃1) =
{

1, .., k̃1

}
.

• Iteration 2: Select k̃2 =

min
{
k ≥ 1, st.

∑k̃1+k

l=k̃1+1
f̃(l) ≥ 1

}
. Construct a

probability µ̃2 ∈ P(X) by25

µ̃2(k̃1 + 1) = f̃(k̃1 + 1)

....

µ̃2(k̃1 + k̃2 − 1) = f̃(k̃1 + k̃2 − 1)

µ̃2(k̃1 + k̃2) = 1− µ̃2(
{
k̃1 + 1, .., k̃1 + k̃2 − 1

}
)

≤ f̃(k̃1 + k̃2) (109)

and µ̃2(
{
k̃1 + 1, .., k̃1 + k̃2

}c
) = 0. Then, we have that

µ̃2 ∈ Λf̃ and A2 = support(µ̃2) =
{
k̃1 + 1, .., k̃1 + k̃2

}
.

• Iteration j: (for j > 2) The construction follows from
the same steps mentioned in iteration 2, where

k̃j = min

k ≥ 1, st.
k̃1+...+k̃j−1+k∑
l=k̃1+...+k̃j−1+1

f̃(l) ≥ 1


(110)

and µ̃j(l) = f̃(l) for all l ∈{
k̃1 + ...+ k̃j−1 + 1, ..., k̃1 + ...+ k̃j − 1

}
,

µ̃j(k̃1 + ... + k̃j) = 1 −
µ̃j(
{
k̃1 + ...+ k̃j−1 + 1, ..., k̃1 + ...+ k̃j − 1

}
) and

Aj = support(µ̃j)

=
{
k̃1 + ...+ k̃j−1 + 1, ..., k̃1 + ...+ k̃j

}
.

From the fact that
∑
i≥1 f̃(i) = ∞, the key step in (110) is

achieved in a finite value for any j ≥ 1. In conclusion, this
iterative (inductive) method shows the existence of an infinite
collection of models {µ̃j , j ∈ N} ⊂ Λf̃ ⊂ Λf with disjoint
support.

C. Proposition 2

PROPOSITION 2: Let ρ : X×X→ R+ be an unbounded
distortion function consistent with respect to the Euclidean
norm (Def. 6). For any n ≥ 1 and d > 0, if (φn, Cn,Dn) is a
D-semifaithful code of length n operating at distortion d (Def.
1), then |Bn = {φn(xn), xn ∈ Xn}| =∞.

24Here, we assume that k̃1 > 1, otherwise, we have the trivial case
µ̃1(1) = 1.

25Here, we assume that k̃2 > 1, otherwise, we have the trivial case µ̃2(k̃1+
1) = 1.

Proof: We prove this result by contradiction. Let us
assume that |Bn| <∞. We can consider the partition induced
by φn(·), i.e., Anyn ≡ φ−1

n ({yn}) for any yn ∈ Bn, where
πφn =

{
Anyn , y

n ∈ Bn
}

is a finite partition of Xn. At least one
of the cells of πφn should have an infinite number of elements.
Let us denote this infinite cell by Anỹn with ỹn ∈ Bn. If we
index the elements of this cell, i.e., Anỹn = {xnα, α ∈ I} where
I is a countably infinite set, we can create n (one dimensional)
projections of Anỹn by

An,1ỹn ≡ {xnα(1), α ∈ I}
An,2ỹn ≡ {xnα(2), α ∈ I}

...

An,nỹn ≡ {xnα(n), α ∈ I} ⊂ X (111)

where xnα(i) ∈ X denotes the i-component of the vector
xnα ∈ Anỹn . As we have that

∣∣Anỹn ∣∣ = ∞, this implies that
at least one of the 1D coordinate projections in (111) has
infinite cardinality. Let us assume that

∣∣∣An,l∗ỹn

∣∣∣ =∞ for some
l∗ ∈ {1, .., n} from this point on.

Let us consider K > nd and its respective ε(K) > 0 (from
Def, 6) such that for any pair i, j ∈ X, if |i− j| ≥ ε(K)
then ρ(i, j) ≥ K and ρ(j, i) ≥ K. We can select α ∈ I
(i.e., xnα ∈ Anỹn ) such that xnα(l∗) ∈ An,l

∗

ỹn ∩ Bε(K)(ỹ
n(l∗))c

(as this last set is non-empty)26. By definition of Bε(x),
we have that |xnα(l∗)− ỹn(l∗)| ≥ ε(K), which implies that
ρ(xnα(l∗), ỹn(l∗)) ≥ K. This implies that ρn(xnα, ỹ

n) ≥
ρ(xnα(l∗), ỹn(l∗))/n ≥ K/n > d (see Eq.(1)). On the other
hand, xnα ∈ Anỹn and, consequently, φn(xnα) = ỹn, which
implies that ρn(xnα, φn(xnα)) > d. This last result contradicts
the fact that (φn, Cn,Dn) is operating at distortion d. There-
fore, our initial assumption that |Bn| <∞ is incorrect, which
concludes the proof.

D. Proof of Corollary 1

Proof: It is sufficient to show that if Λf ⊂ H(X) then
supµ∈Λf

H(µ) < ∞. We know that µ̃f ∈ Λf (see Eq.(43))
and, consequently, H(µ̃f ) <∞. Let us consider µ ∈ Λf and
an arbitrary large K > 0:

H(µ) =

K∑
i=1

µ(i) log
1

logµ(i)
− µ(ΓK) log

1

µ(ΓK)

+Hσ(π̃K)(µ) (112)

= µ(ΓK) ·
K∑
i=1

µ(i)

µ(ΓK)
log

µ(ΓK)

µ(i)
+Hσ(π̃K)(µ)

(113)
≤ logK +Hσ(π̃K)(µ) ≤ logK +Hσ(π̃K)(µ̃f )

≤ logK +H(µ̃f ) <∞. (114)

The first equality in (112) uses π̃k ≡
{Γk, {k + 1} , {k + 2} , . . .} and the definition of Hσ(π̃K)(µ)
in (9). The inequalities in (114) follow from Lemma

26Considering that the ball Bε(x) ⊂ X (see Def.6) is a finite set (for any
x ∈ X and ε > 0), it follows that

∣∣∣An,l∗ỹn ∩ (Bε(ỹn(l∗))c
∣∣∣ = ∞ for any

ε > 0.
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7 (using a sufficiently large K) and the fact that
Hσ(π̃K)(µ̃f ) ≤ H(µ̃f ) < ∞. Finally the last expression in
(114) is independent of µ (i.e., valid for any element of Λf ),
which concludes the proof.

E. Proposition 3

PROPOSITION 3: Rn(d, µ), defined in (12), is a concave
function of its second argument in P(Xn).

Proof: We assume that d > 0 and n ≥ 1 are given.
Let us consider a finite collection of models {µi, i = 1, .., L}
in P(Xn) and some weights (wi)i=1,..,L ∈ [0, 1]L such that∑L
i=1 wi = 1. We need to verify that

∑L
i=1 wi · Rn(d, µi) ≤

Rn(d, µ) where µ =
∑L
i=1 wi·µi ∈ P(Xn) denotes the convex

combination of {µi, i = 1, .., L} using (wi)i=1,..,L . Let us
consider an arbitrary partition π ∈ Qn(d). Then we have that

Hσ(π)(µ)

n
≥

L∑
i=1

wi ·
Hσ(π)(µi)

n
(115)

≥
L∑
i=1

wi · Rn(d, µi) (116)

The first inequality in (115) is from the concavity of the
entropy [3]. The second inequality comes by definition (see
Eq.(12)) using the fact that π ∈ Qn(d). Finally, the lower
bound in (116) is valid for every π ∈ Qn(d), which concludes
the proof from the definition of Rn(d, µ) in (12).

F. Deriving the upper bound in (24)

We use the standard approach to construct a prefix-free
(variable length) code from a probability in P(Bn) [3]. For
any model v ∈ P(Bn), we can construct a code Cv such that
for any yn ∈ Bn it follows that L(Cv(yn)) = d− log(v(yn))e.
This code satisfies the Kraft-MacMillan inequality in (3) con-
sidering that − log(v(yn)) ≤ L(Cv(yn)) < − log(v(yn)) + 1.
Using these inequalities, we have that for any v ∈ P(Bn)
and µ ∈ Λ (considering that φn is given and fixed in this
analysis)27[

R(ξn = (φn, Cv,Dv), µn)−
Hσ(πφn )(µ

n)

n

]
≤ 1

n
(D(vµn ||v) + 1). (117)

As the class of prefix-free mapping from Bn to {0, 1}∗
contains the induced collection {Cv, v ∈ P(Bn)}, from (117)
it follows that

min
Cn

sup
µ∈Λ

[
R((φn, Cn,Dn), µn)−

Hσ(πφn )(µ
n)

n

]
≤ min
v∈P(Bn)

sup
µ∈Λ

[
R((φn, Cv,Dv), µn)−

Hσ(πφn )(µ
n)

n

]
≤ 1

n
· min
v∈P(Bn)

sup
µn∈Λn

D(vµn‖v) +
1

n
. (118)

Using the definition presented in Eq.(22), the last lower bound
in (118) is (R+(Λn, σ(πφn)) + 1)/n.

27Dv denotes the decoder of Cv .
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