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Elimination ideal and bivariate resultant over finite fields

) ) bit operations, where d an e respectively bound the input degrees in x and in y. It follows that the same complexity estimate is valid for computing: a generator of the elimination ideal a, b ∩ F q [x] (or F q [y]), as soon as the polynomial system a = b = 0 has not roots at infinity; the resultant of a and b when they are sufficiently generic, especially so that the Sylvester matrix has a unique non-trivial invariant factor. Our approach is to use the reduction of the problem to a problem of minimal polynomial in the quotient algebra F q [x, y]/ a, b . By proposing a new method based on structured polynomial matrix division for computing with the elements in the quotient, we manage to improve the best known complexity bounds.

Introduction

Given two polynomials a, b ∈ K[x, y], where K is a commutative field, their resultant Res y (a, b) with respect to y is the determinant of the associated Sylvester matrix S y over K[x] [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Ch. 6]. Computing this determinant in quasi-linear time with respect to the input/output size is still beyond our reach in the general case.

In this paper we consider the relaxed problem which is to compute the last (of largest degree) invariant factor of S y , in the case of a finite field K = F q with q elements. We consider a and b of x-degree at most d and y-degree at most e in F q [x, y], having no non-trivial common divisors. For any > 0, there exist a randomized Monte Carlo algorithm which solves the problem using a quasi-linear number of O((de) 1+ log(q) 1+o (1) ) bit operations.

The last invariant factor of S y is a specific divisor of the resultant. If the polynomial system a = b = 0 has no roots at infinity with respect to y (the y-leading coefficients of a and b are coprime), then it gives central informations on the affine solutions. It is indeed a generator of the elimination ideal a, b ∩ K[x] [START_REF] Cox | Using Algebraic Geometry[END_REF]Ch. 2]. We also have, in particular, the fact that this invariant factor gives the resultant when a and b are sufficiently generic (Section 7). (Genericity is considered in the Zariski sense: a property is generic if it holds except on a hypersurface of the parameter space.) Our approach over finite fields is inspired by and goes further than the major steps taken with: the change of order algorithm of Poteaux and Schost for triangular sets and radical ideals [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF]; the algorithm of van der Hoeven and Lecerf, which computes the resultant of generic polynomials with respect to the total degree [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF]. In the bivariate case, both these works provides solutions in quasi-linear expected time in the input/output size for the first time ( [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF] treats general multivariate cases). They are part of the same long line of research which reduces elimination problems to linear algebra [START_REF] Lazard | Résolution des systèmes d'équations algébriques[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF]Sec. 2.4 & 3.6], and especially to the computation of minimal polynomials in quotient algebras [START_REF] Lazard | Solving zero-dimensional algebraic systems[END_REF][START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF]. It is this path that we are pursuing.

The role of minimal polynomials. Let I = a, b be the (zero-dimensional) ideal generated by a and b in K[x, y], and A = K[x, y]/I be the associated quotient algebra. We remind in Section 2 that the last invariant invariant factor of the Sylvester matrix S y can be computed as the minimal polynomial µ of the multiplication by x in A, under the condition of absence of roots at infinity [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]. This is how we proceed. The condition on the behaviour at infinity is met for slightly modified polynomials not preventing us from computing the target invariant factor (Section 5).

For efficiency, the minimal polynomial problem is itself reduced to a power projection problem [START_REF] Kaltofen | Challenges of Symbolic Computation: My Favorite Open Problems[END_REF]Sec. 6] (a more complete list of references is given later in this introduction). Given a linear form in the dual of A over K, the minimal polynomial in A is computed as the one of the linearly generated sequence { (x i mod I)} i≥0 over K. The application of a random linear form preserves the recursion which is sought in A [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF] (Section 6). As observed by Shoup [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF], the power projection problem is dual to the modular composition problem [START_REF] Brent | Fast algorithms for manipulating formal power series[END_REF]. We finaly rely on Kedlaya and Umans' approach to address those two latter issues [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF] in quasi-linear time over finite fields. As we will now see, this is made possible by a new algorithm we propose for arithmetic operations modulo the ideal.

First result. One of the bottlenecks in above strategy is to perform arithmetic operations in A [START_REF] Van Der Hoeven | On the Complexity of Multivariate Polynomial Division[END_REF], even if only to compute the multiplication of two polynomials or the powers of x that need to be projected modulo the ideal I. This is where a main aspect of our contribution lies. In [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF], the special case of triangular sets is considered. That is, in our context, when either a or b is univariate. On the other hand, the generic resultant algorithm of [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF] relies on Gröbner bases techniques, and the normal form algorithm modulo I of [START_REF] Van Der Hoeven | Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals[END_REF].

We instead use polynomial matrix division [START_REF] Kailath | Linear Systems[END_REF]Sec. 6.3]. Viewing a polynomial f in K[x, y] as a vector with entries in K[x], we reduce its x-degree using division by the polynomial Sylvester matrix S y ; let us also specify that we may need to construct a Sylvester matrix from multiples of a and b if the dimensions do not match (Section 3). By definition of the Sylvester matrix, the remainder of this division gives a new polynomial in the coset f + I. By means of a similar division after the swich of the roles of x and y, this leads to a normal form algorithm modulo I, up to a regularity assumption related to roots at infinity (Lemma 2.3 and Proposition 3.1). This algorithm is algebraic and deterministic for arbitrary fields. If f has x-degree at most δ and y-degree at most η, then it uses Õ((d + δ)(e + η)) arithmetic operations (Proposition 3.1). A Sylvester matrix is a Toeplitz-like matrix [START_REF] Bini | Polynomial and Matrix Computations[END_REF]. Our cost bound is based on fast structured matrix arithmetic which is discussed in Section 3.1. In particular, the normal form algorithm allows multiplication in K[x, y]/ a, b using Õ(de) operations when the leading coefficients of a and b are sufficiently generic (Lemma 2.3). In the case of the total degree, for generic polynomials a, b with deg a ≥ deg b, the algorithm of [START_REF] Van Der Hoeven | Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals[END_REF] costs Õ((deg a)(deg b)), after the precomputation of a concise Gröbner basis representation of the ideal using Õ((deg a) 2 ) operations. So in terms of their assumptions the two algorithms are complementary (Section 3.3).

Extension of Kedlaya and Umans' techniques for the power projections. As soon as the normal form algorithm is available, hence the arithmetic operations in A, it is possible to develop the general strategy of Shoup [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF][START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF] for the computation of modular power projections, coupled by duality with the algorithm of Kedlaya and Umans for modular composition [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF] (in this latter reference, the case of a univariate ideal I in F q [x] is treated). This is what has been generalized in both [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF] and [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF], with respective shapes of the ideal I that we have seen above. We proceed in the same way, and integrate the new division algorithm into this overall process: (i) reduction of f ∈ F q [x] modulo I, which is considered as modular composition according to f (g(x)) mod I with g = x; modular composition relies on multivariate multipoint evaluation following [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 3.1]; (ii) using the transposition principle [START_REF] Bürgisser | Algebraic complexity theory[END_REF]Thm. 13.20], the power projections are obtained (Section 3.4). Since the degree of the resultant of a and b with respect to y is at most 2de, it is sufficient to be able to compute (i) f modulo I for deg f < 4de and (ii) { (x i mod I)} 0≤i<4de , in order to deduce the minimal polynomial of the sequence (which is a divisor of the resultant). We establish in Section 4 that (i) and (ii) can be perfomed within our target cost bound over a finite field using bit operations.

Last invariant factor and elimination ideal a, b ∩ F q [x]. In the presence of roots at infinity, we use a random transformation of a and b into two other polynomials which meet the condition of regularity for computing normal forms, and still make it possible to obtain the initial last invariant factor. This is presented in Section 5. The general complexity bound for the computation of the last invariant factor is given in Section 6 from that of modular power projection. As a consequence of Lazard's structure theorems for bivariate ideals [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF], the latter polynomial is a multiple of the minimal polynomial µ of the multiplication by x in A, and both polynomials coincide if the system a = b = 0 has no roots at infinity (Lemma 2.1). Under this condition, what we have done so far allows in Section 7 to compute µ, that is a generator of the elimination ideal

I ∩ F q [x].
Comparison to previous work. Given an arbitrary field, the bivariate resultant can be computed using O(de 2 ) arithmetic operations [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chap. 11].

Over a finite field, the approach of [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF] allows quasi-linear bit cost; for generic polynomials with respect to the total degree, and any > 0, this leads to the complexity bound O(((deg a)(deg b) log q) 1+ ) + Õ((deg a) 2 log q) when deg a ≥ deg b. (The soft-O notation Õ(c) captures an additional logarithmic factor O(c log k c) for a positive k.) Our algorithm covers this case, in particular. Genericity ensures that there are no roots at infinity and a unique invariant factor (see Section 7), and we obtain a comparable asymptotic bound. Considering degree conditions on the variables individually we treat a larger class of problems and with weaker assumptions. For polynomials of x-degree d and ydegree e, we compute the resultant in quasi-linear time when the Sylvester matrix S y has a unique non-trivial invariant factor. Now, in a general way, in all cases as soon as there are no roots at infinity, our approach allows to compute a generator of the elimination ideal I ∩ F q [x]. This is treated in Section 7. We are not aware of any previous method whose cost would be quasi-linear over finite fields under the same assumptions. The complexity of this problem is indeed related to that of the resultant and bivariate lexicographic Gröbner bases [START_REF] Dahan | Lexicographic Gröbner bases of bivariate polynomials modulo a univariate one[END_REF]. In particular, for a and b of total degree at most d, we arrive at the bound O(d 2+ log(q) 1+o(1) ), while previous estimates are Õ(d 3 log q) [START_REF] Lebreton | On the complexity of solving bivariate systems: the case of non-singular solutions[END_REF].

We use bit complexity. The bivariate resultant problem using an algebraic model of computation is a harder problem. To our knowledge, a quasi-linear complexity bound is not achievable at this time. We may refer to [46; 63, 52] and to the pointers found there. It it also important to note that quasi-linear time algorithms are given for bivariate polynomial systems with integer coefficients in [START_REF] Mehrabi | A softly optimal Monte Carlo algorithm for solving bivariate polynomial systems over the integers[END_REF].

Minimal polynomials and power projections. We give here some additional references from which the results we use largely inherit. The adaptation of numerical matrix methods to the finite field setting has started with the solution of sparse linear systems in mind [START_REF] Coppersmith | Discrete logarithms in GF(p)[END_REF][START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF]. These methods result in projections of the powers of the involved matrix for computing its minimal polynomial, as evidenced by Wiedemann's approach [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF]. The link is to be made with the use of power projections for computing minimal polynomials in quotient algebras, using the trace map in [START_REF] Thiong | Note for computing the minimun polynomial of elements in large finite fields[END_REF][START_REF] Rifà | Improving the time complexity of the computation of irreducible and primitive polynomials in finite fields[END_REF] and general projections in [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF][START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF][START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF]]. (We have indeed a multiplication endomorphism in the quotient.)

The duality between the power projection problem and the modular composition one is observed in [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF].

In the context of polynomial system solving, for which the literature is vast, we may refer to the use of the trace map in [START_REF] Alonso | Zeros, multiplicities, and idempotents for zero-dimensional systems[END_REF][START_REF] Rouillier | Solving Zero-Dimensional Systems Through the Rational Univariate Representation[END_REF][START_REF] Gonzalez-Vega | Symbolic Recipes for Polynomial System Solving[END_REF], or of arbitrary linear forms in [START_REF] Bostan | Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality[END_REF]. Structured matrices and duality are applied to multivariate polynomial problems in [START_REF] Mourrain | Multivariate Polynomials, Duality, and Structured matrices[END_REF]. Multivariate powers projections are considered in [START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF][START_REF] Kaltofen | Challenges of Symbolic Computation: My Favorite Open Problems[END_REF], especially for minimal polynomials, and are exploited for the computation of special resultants in [START_REF] Bostan | Fast computation of special resultants[END_REF], and to the change of order of variables for triangular sets in [START_REF] Pascal | Change of order for bivariate triangular sets[END_REF]. The link between the change of ordering and linear algebra is also beneficial using power projections of a multiplication matrix in [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sub-cubic change of ordering for Gröbner basis: a probabilistic approach[END_REF], and particularly in order to take advantage of sparsity [START_REF] Faugère | Sparse FGLM algorithms[END_REF], which brings us back to Wiedemann's algorithm.

Following [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF], the Sylvester matrix S y (or S x ) is a polynomial matrix that we manipulate as such. This may be seen as working in a K[y]-module rather than in a K-vector space in order to represent the quotient algebra A [31, Sec. 3.10], and implement the operations on its elements. A similar direction has been taken in [START_REF] Berthomieu | Faster Change of Order Algorithm for Gröbner Bases under Shape and Stability Assumptions[END_REF] for a change or ordering of Gröbner bases algorithm.

In linear algebra with implicitly represented matrices, an open problem is to compute the characteristic polynomial in essentially the same time as for the minimal polynomial [Sec. 3][35]. This applies in particular to sparse or structured matrices. The question of computing the bivariate resultant in essentially the same time as for the last invariant factor of the Sylvester matrix appears to be similar to Kaltofen's open problem.

Model of computation. The normal form algorithm for polynomials in K[x, y] modulo a, b and its transpose are presented using an algebraic model (Section 3), and work e.g. with computation trees [START_REF] Bürgisser | Algebraic complexity theory[END_REF]Sec. 4.4]. Complexity bounds correspond to numbers of arithmetic operations performed in K.

The application of Kedlaya and Uman's techniques in Section 4 and threfore the last invariant factor computation in Section 6 rely on a RAM bit complexity model. We consider that arithmetic operations in F q can be done in time Õ(log q), and that the RAM can produce a random element uniformly distributed in F q with the same cost. We use expressions such as "x-degree" or "y-leading coefficient" to indicate the variable which is concerned, and use deg x and deg y in formulas when bivariate polynomials are involved. Subscripts for example in K[x, y] <(d,n y ) indicate degree bounds in x and y, and K[x] n d is the set of polynomials of degree d. We are often led to manipulate reversals of polynomials. For k ≥ 0, we define the reversal of a polynomial f ∈ K[x] with respect to k as rev k ( f ) = x k f (1/x); by default, if k is not specified, the reversal is taken with respect to the degree of the polynomial. This is generalized to polynomial matrices viewed as matrix polynomials, we mean with matrix coefficients.

The polynomials in K[x, y] are identified with the (column) vectors of their coefficients, using dimensions which will be clear from the context. For example, given

f = f 0 (x) + f 1 (x)y + . . . f d (x)y d and n ≥ d + 1, v y ( f ) ∈ K[x] n denotes the vector [0 . . . 0 f d . . . f 0 ] T .

Polynomial matrices, resultant and bivariate ideals

We give the basic notions and results we need in the rest of the text concerning the relations between the resultant of two polynomials and the ideal they generate. As univariate polynomial matrix, the Sylvester matrix S y is unimodularly equivalent to a matrix diag(s 1 , . . . , s n ) ∈ K[x] n y ×n y in Smith normal form, where s n is the invariant factor of largest degree. We are not able to always compute the resultant within the cost target. We are, however, able to compute the last invariant factor (Corollary 6.1).

Using the structure theory of finitely generated modules, this last invariant factor can be seen as the minimal polynomial of a linear transformation in a finite dimensional K-vector space [START_REF] Jacobson | Basic Algebra I[END_REF]Sec. 3.10]. Such a formalism has been exploited occasionally for the efficient computation of general matrix normal forms [START_REF] Villard | Fast Parallel Algorithms for Matrix Reduction to Normal Forms[END_REF][START_REF] Storjohann | Algorithms for Matrix Canonical Forms[END_REF]. Concerning Sylvester matrices and in the broader context of polynomial system solution, this is related to the use of a multiplication map on a quotient algebra [START_REF] Lazard | Résolution des systèmes d'équations algébriques[END_REF].

Let I = a, b be the (zero-dimensional) ideal generated by a and b in K[x, y], and A = K[x, y]/I be the associated quotient algebra. We especially rely on the following results, which are immediate consequences of Lazard's theorem [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]. Proof. The last invariant factor is a multiple of the last diagonal entry h ∈ K[x] of the Hermite form, where the latter is lower triangular and obtained by unimodular column transformations. The polynomial h is in I ∩ K[x] (combinations of columns of S y are seen as combinations of a and b), which gives the first assertion. When the leading coefficients are coprime, the divisibility property (i) in [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]Thm. 4] shows that the Hermite form of S y can be brought to Smith form using unimodular (row) transformations, without modifying the diagonal. From (ii) in [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]Thm. 4], the last invariant factor is therefore an element of a reduced Gröbner basis of I, and as polynomial in K[x] it generates the elimination ideal

I ∩ K[x].
The condition on the leading coefficients of a and b in Lemma 2.1 is the fact that the system a = b = 0 has no roots at infinity with respect to y. In general, the resultant and the last invariant factor may have terms coming from both the affine variety and the behaviour at infinity [START_REF] Cox | Using Algebraic Geometry[END_REF]Chap. 3]. To still be able to reduce the invariant factor computation to a minimal polynomial problem the assumption of Lemma 2.1 will hold after a random modification of the input polynomials (see Section 5).

The resultant can be deduced from Lemma 2.1 in particular when the Smith form of S y has a unique non-trivial invariant factor and there are no roots at infinity. This corresponds to certain situations in which the ideal I has a shape basis [START_REF] Gianni | Gröbner bases and primary decomposition of polynomial ideals[END_REF][START_REF] Becker | The Shape of the Shape Lemma[END_REF]. Proof. From [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]Thm. 4], under the hypothesis I = µ(x), y -λ(x) and using the coprimeness, we know that the Hermite form of S y has a unique non-trivial diagonal entry, which is µ. Therefore, the latter is also the determinant of S y , up to the normalization to a monic polynomial in the Hermite form.

Conversely, the last element h ∈ K[x] of the diagonal of the Hermite form of S y is in I . Hence h must be a multiple of µ, and of the resultant by assumption. It follows that h = Res y (a, b) = µ, and all the other diagonal entries of the Hermite form are equal to 1. This proves that the y-leading coefficients of a and b are coprime since otherwise the first diagonal entry of the Hermite form would be a non-constant polynomial in K[x]. Item (ii) [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]Thm. 4] allows to conclude.

Concerning the links bewteen the resultant and the associated ideal, the reader may especially refer to [START_REF] Cox | Subresultants and the Shape Lemma[END_REF], where a general multivariate version of Lemma 2.2 is given.

Example 2.1. The Sylvester matrix may have a unique non-trivial invariant factor (that our algorithm will compute) even though there are roots at infinity. With K = F 2 , take a = (x + 1) y + x 2 and (x + 1) y 2 + y. We have I = x 2 , y , and the Hermite normal form of S y is

S y U =           x + 1 0 0 1 x + 1 0 0 x 2 x 2 (x + 1)          
, with U unimodular. None of the arguments used for Lemmas 2.1 and 2.2 apply: the Hermite form cannot be brought to Smith form using unimodular row operations without modifying the diagonal (as used in the proof of Lemma 2.1), and the form is not either trivial (proof of Lemma 2.2). The last invariant factor of S y is Res y (a, b) = x 2 (x + 1) 3 .

We now characterize the existence of roots at infinity using column reducedness of polynomial matrices [32, Sec. 6.3, p.384], which is used in next sections. Let S be a matrix in K[x] n×n whose column j has degree d j . We call (column) leading (matrix) coefficient of S the matrix in K n×n whose entry (i, j) is the coefficient of degree d j of the entry (i, j) of S . We manipulate non-singular univariate polynomial matrices, and say that such a matrix is column reduced if its leading coefficient is invertible. Lemma 2.3. S x is column reduced if and only if, the y-leading coefficients of a and b are relatively prime and at least one of latter polynomials in K[x] has maximal degree d a or d b , respectively. Proof. Let s, t ∈ K[x] be the y-leading coefficients of a, b, with respective degrees d s and d t . The columns of the leading coefficient of S x are given by the vectors in K d a +d b associated to

x d b -1 s, x d b -2 s, . . . , s, x d a -1 t, x d a -2 t, . . . , t.
If S x is column reduced then the first row of its leading matrix is non-zero and either d s = d a or d t = d b . Let's say that d s = d a (up to a column permutation). The leading coefficient of S x is therefore given by

x d b -1 s, x d b -2 s, . . . , x d t s, x d t -1 s, x d t -2 s, . . . , s, x d s -1 t, x d s -2 t, . . . , t, (1) 
and we see that its rank is that of the Sylvester matrix associated to s and t since the latter is given by

x d t -1 s, x d t -2 s, . . . , s, x d s -1 t, x d s -2 t, . . . , t.
Conversely, from the independence of the vectors in Eq. ( 1) we obtain the column reducedness of S x .

Bivariate polynomial division

In this section we propose a normal form algorithm for bivariate polynomials modulo the ideal I = a, b . The algorithm relies on matrix polynomial division. Bivariate polynomials in K[x, y] are viewed as univariate polynomial vectors alternately over K[x] and K[y], dividing such a vector by S y or S x , is indeed quivalent to reducing the associated polynomial modulo the ideal. Sylvester matrices are Toeplitz-like matrices, we first recall in Section 3.1 how operations on matrices in this class can be performed taking into account their structure [START_REF] Bini | Polynomial and Matrix Computations[END_REF][START_REF] Pan | Structured Matrices and Polynomials: Unified Superfast Algorithms[END_REF]. We then study the division with remainder of a polynomial vector by S y or S x in Section 3.2. In order to be able to define a normal form and perform the division efficiently, we rely on a regularity assumption on leading coefficient matrices: we suppose that S x and S y are column reduced. This assumption is ultimately harmless for computing the last invariant factor (Section 5). In Section 3.3 we present the normal form algorithm. We keep the same notations as before for the degrees of a and b, and the dimensions of the matrices; especially, d is the maximum degree in x and S y is n y × n y . Given a polynomial f ∈ K[x, y], we show how to compute a unique polynomial f ∈ K[x, y] <(d,n y ) , that we denote by f = f rem I, such that f -f ∈ I (Proposition 3.1). Uniqueness is ensured using a properness property provided by the polynomial matrix division. The construction is a K-linear map that sends f to f whose y-coefficients are given by the entries of a vector v y ( f ) ∈ K[x] n y <d such that S y -1 v y ( f ) is strictly proper (tends to zero when x tends to infinity), see Eq. ( 2). This allows us to represent the elements in A by normal forms. The transpose algorithm, which computes corresponding power projections, is derived in Section 3. 

Structured matrix arithmetic

The normal form algorithm exploits the fact that Sylvester matrices are structured. The class of structure that we are facing is the one of Toeplitz-like polynomial matrices which are commonly handled using the notion of displacement rank [START_REF] Kailath | Displacement ranks of matrices and linear equations[END_REF]. The notion allows to have a concise matrix representation through which matrix arithmetic can be implemented efficiently [START_REF] Bini | Polynomial and Matrix Computations[END_REF][START_REF] Pan | Structured Matrices and Polynomials: Unified Superfast Algorithms[END_REF].

Given by the polynomials a and b, S x and S y are represented using O(de) elements of K. The division algorithm requires to solve associated linear systems and uses matrix inversion with truncated power series entries. We consider that polynomial Sylvester matrices and their inverses are represented using their concise Toeplitz-like representations [START_REF] Bini | Polynomial and Matrix Computations[END_REF]. This is obtained for example by extension of the ΣLU form defined over fields [START_REF] Kaltofen | Asymptotically fast solution of Toeplitz-like singular linear systems[END_REF], to polynomials or truncated power series [START_REF] Pernet | High-order lifting for polynomial Sylvester matrices[END_REF]Sec. 3].

Multiplying an n × n polynomial Sylvester matrix of degree d by a polynomial vector of degree at most l over K[x], can be done using Õ(n(d+l)) arithmetic operations in K [START_REF] Bini | Polynomial and Matrix Computations[END_REF]. This cost bound is valid for the same type of multiplication using instead the inverse of the matrix modulo x l when it exists. If T ∈ K n×n is a non-singular Sylvester matrix and v ∈ K n , then the linear system T -1 v can be solved using Õ(n) arithmetic operations. This is obtained by combining an inversion formula for the Sylvester matrix [START_REF] Labahn | Inversion components of block Hankel-like matrices[END_REF], and matrix Padé approximation [START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF] (see also [6, Chap. 2, Sec. 9] and [START_REF] Villard | On Computing the Resultant of Generic Bivariate Polynomials[END_REF]Sec. 5]). The declination of this is applied in Section 3.2 over truncated power series modulo x l . Let S ∈ K[x] n×n d be a polynomial Sylvester matrix such that det S (0) 0, and consider a vector v ∈ K[x] n of degree at most l. The system S -1 v can be solved modulo x l using Õ(n(d + l)) arithmetic operations. From [63, Prop. 5.1], the matrix inverse modulo x l can itself be computed (with concise representation) within the same cost bound.

Matrix and bivariate polynomial division

Consider S in K[x] n×n , non-singular of degree d. For any vector v ∈ K[x] n , we know from [32, Thm. 6.3-15, p. 389] that there exist unique w

, v ∈ K[x] n such that v = S w + v, (2) 
and S -1 v is strictly proper. From [32, Thm. 6.3-10, p. 383] we further have that the polynomial remainder vector v has degree less d; note however that uniqueness is ensured by properness and not by the latter degree property (Example 3.1). The following will be applied to both S x and S y , hence we take a general notation S for the statement. We propose a structured matrix polynomial adaptation of the Cook-Sieveking-Kung algorithm for (scalar) polynomial division with remainder, about which the reader may refer to [22, Sec. 9.1]. Lemma 3.1. Let S ∈ K[x] n×n be a Sylvester matrix of degree d, and assume that S is column reduced. Consider a vector v ∈ K[x] n of degree at most l. The unique remainder v of the division of v par S as in Eq. (2) can be computed using Õ(n(d + l)) arithmetic operations in K.

Proof. Consider that S is associated to two polynomials a, b ∈ K[x, y] as previously, such that S = S y and we have e 1 columns of degree d 1 and e 2 columns of degree d 2 . Up to row and column permutations we assume that

d = max{d 1 , d 2 } = d 1 .
We first treat the case

d = d 1 = d 2 .
All the columns of S have the same degree, hence since S is column reduced it is also row reduced (use the definition given before Lemma 2.3, on the rows).

If l < d, then we take v = v. From [32, Thm. 6.3-11, p. 385], by row reducedness, we know that S -1 v is strictly proper. If l ≥ d, the polynomial division can be perfomed by reformulating [22, Sec. 9.1, Eq. ( 2)] on matrices. Since S has non-singular leading matrix, by the predictable degree property [32, Thm. 6.3-13, p. 387] we know that the quotient vector w has degree deg vd, hence at most ld. Using reversals of matrix polynomials, Eq. ( 2) can be rewritten as

rev l (v) = rev d (S ) • rev l-d (w) + x l-d+1 rev d-1 (v), hence we have rev l-d (w) ≡ rev d (S ) -1 rev l (v) mod x l-d+1 . (3) 
Remark that by reducedness assumption the coefficient matrix of degree 0 of rev d (S ) is non-singular, thus the latter matrix in invertible modulo x l-d+1 . As soon as w = rev l-d (w) hence w = rev l-d (w ) are known, then v can be deduced using v = v -S w. We know that S -1 v is strictly proper using reducedness, as done previously. Using fast structured matrix arithmetic (Section 3.1), rev l-d (w) is computed from Eq. ( 3) and v is obtained within the claim cost bound. When d = d 1 > d 2 , first we balance the columns degrees. With δ = d 1d 2 > 0, take D = diag(x δ , . . . , x δ , 1, . . . , 1), with e 1 entries x δ . The matrix T = S D -1 has all its column degrees equal to d 2 . Here and below the degree of a rational function is the difference between the degrees of the numerator and the denominator. Column and row reducedness are extended accordingly.

If l < d 2 we let v = v, otherwise we can compute a polynomial vector w of degree at most ld 2 and v = v -T w of degree less than d 2 such that T -1 v is strictly proper. This is done using Eq. ( 2) after having multiplied everything by x δ so as to be reduced to a division with polynomial matrices, in time Õ(n(d + l)). This is similar to the d 1 = d 2 case above since T is column reduced.

Then, taking the quotient of the first e 1 entries of w by x δ , we write w = Dw + z, where z is of degree less than δ and such that only its first e 1 entries may be non-zero. The vector w remains of degree at most ld 2 , and we obtain v in time Õ(n

(d + l)) as v = v -S w = v -S D -1 (w -z) = v + S D -1 z.
In order to complete the proof we check that S -1 v is strictly proper. This vector is

S -1 v = S -1 v + D -1 z = D -1 T -1 v + D -1 z.
By construction, T -1 v is strictly proper, it is thus the same for D -1 T -1 v ; z has degree at most δ -1 for its first e 1 entries (the other ones are zero), hence D -1 z is strictly proper.

Normal form modulo the bivariate ideal

Given a polynomial f ∈ K[x, y] whose y-degree is less than the dimension n y of S y , we can apply Lemma 3.1 to the vector v y ( f ) ∈ K[x] n y of the coefficients of f . Equation (2) becomes

v y ( f ) = S y w + v y ( f )
on vectors, and by definition of the Sylvester matrix we have

f = f -ua -vb ∈ f + I for some u, v ∈ K[x, y]
, with f of x-degree less than d. We show with Proposition 3.1 that, thanks to the uniqueness of the remainder, this allows us to define a normal form modulo a, b . The general y-degree case for f is treated using a preparatory division by S x (whose entries are in K[y]) in order to reduce the degree in y. The overall construction gives a K-linear map ϕ

: K[x, y] → K[x, y] <(d,n y ) f → f = f rem I (4) 
such that f -ϕ( f ) ∈ I, and ϕ(g) = 0 if g ∈ I. The map ϕ is thus appropriate in order to represent the elements in A by normal forms. 

v y ( f ) =           0 0 x           = S y w + v y ( f ) =           x 2 + 1 0 x 0 x 2 + 1 0 0 0 x                     0 0 1           +           -x 0 0          
, and f = fb since we can check that S -1 v y ( f ) is strictly proper, whereas S -1 v y ( f ) is not. It may be noted that the quotient algebra K[x, y]/ a, b has dimension 5, which is smaller than the dimension of K[x, y] <(2,3) .

If η = deg y f ≥ n y and δ = deg x f is less than the dimension n x of S x , then we can directly proceed to the division using S x . Otherwise, as we now see with Lemma 3.2, we first extend S x to a bigger appropriate Sylvester matrix T x of dimension δ + 1. By linearization, we associate to f a vector v x ( f ) ∈ K[y] δ+1 of y-degree η. Then using division by T x , whose y-degree is the degree e of S x , we can compute f of y-degree less than e < n y , such that ff ∈ I. Lemma 3.2. Assume that the Sylvester matrix S x associated to a and b with respect to x is column reduced. Consider f ∈ K[x, y] of x-degree at most δ and y-degree at most η ≥ n y . Using Õ((n x + δ)η) arithmetic operations in K we can compute a polynomial f ∈ K[x, y], of x-degree at most max{n x -1, δ} and y-degree less than e < n y , such that ff ∈ I.

Proof. If δ is less than n x , we simply take T x = S x . Otherwise, let m = δn x + 1, and denote the y-leading coefficients of a, b by s, t ∈ K[x]. Since S x is column reduced, from Lemma 2.3 we know that gcd(s, t) = 1. Either s or t is not divisible by x, let us assume that it is s, and take for T x over K[y], the Sylvester matrix associated to a and x m b with respect to x. The Sylvester matrix associated to s and x m t is non-singular, hence T x is column reduced by Lemma 2. This matrix T x has dimension max{n x , δ+1}, and degree e = max{e a , e b } in y. The remainder of the division of v x ( f ) by T x gives f such that ff ∈ I, its y-degree is less than the one of T x , and its x-degree is less than the dimension of T x . The cost bound is from Lemma 3.1, with a matrix of dimension n = max{n x , δ + 1} and degree e, and a vector of degree l = η ≥ e. Lemma 3.2 allows to first reduce the y-degree, the reduction of the degree in x now also ensures the normal form. Proposition 3.1. Assume that the Sylvester matrices S x and S y associated to a and b are column reduced, and consider f ∈ K[x, y]. The K-linear map in Eq. ( 4) is well defined by choosing for f the unique polynomial in K[x, y] <(d,n y ) such that f -f ∈ I, and S y -1 v y ( f ) is strictly proper. If f has x-degree at most δ and y-degree at most η, then this normal form for f + I in A can be computed using Õ((d + δ)(e + η)) arithmetic operations in K.

Proof. We show the existence of such an f for every f , then show that ĝ = 0 if g ∈ I. After division by S x using Lemma 3.2 we have f ∈ K[x, y] of y-degree less than e < n y = e a + e b such that ff ∈ I. Then by Lemma 3.1, that is by division by S y , we obtain f ∈ K[x, y] <(d,n y ) such that f -f ∈ I, hence f -f ∈ I. By construction, S y -1 v y ( f ) is strictly proper. For g ∈ I, this first leads to some g of y-degree less than e < n y . Since S y is column reduced, we know from Lemma 2.3 that the y-leading coefficients of a and b are relatively prime, hence using [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF]Lem. 7] there exist polynomials r, s ∈ K[x, y] such that grasb = 0, deg y r < e b , and deg y s < e a .

By uniqueness it follows that we must have ĝ = 0 because this value is appropriate using above identity.

The map ϕ( f ) = f is well defined and provides a normal form. For

f 1 , f 2 in the coset f + I we indeed have ϕ( f 1 -f 2 ) = 0 hence ϕ( f 1 ) = ϕ( f 2 ) by K-linearity of the divisions.
From Lemma 3.2, the first division by S x costs Õ((d + δ)(e + η)), where we use that S x has dimension n x ≤ 2d and degree e. This leads to the next division of a vector of degree at most max{n x -1, δ} by S y , whose dimension is n y < 2e and degree d. Using Lemma 3.1 this adds Õ(e(d + δ)) operations.

Example 3.2. We continue with a = x 2 y + y and b = xy 2 + x as in Example 3.1; S x and S y have dimension n x = n y = 3. For f = y 3 + x 3 y 2 + 1, we first reduce the y-degree using S x . Since δ = deg x f ≥ n x , we cannot directly use S x which is 3 × 3. Following the proof of Lemma 3.2 we increase the dimension and consider T x ∈ K[y] 4×4 , the Sylvester matrix with respect to x associated to a and xb. The first division is therefore:

v x ( f ) =               y 2 0 0 y 3 + 1               = T x w 1 + v x ( f ) =               y 0 y 2 + 1 0 0 y 0 y 2 + 1 y 0 0 0 0 y 0 0                             0 y 2 1 -y               +               -1 y 0 1              
.

The new polynomial is f = -x 3 + yx 2 + 1, its y-degree is 1 < n y , so the division by S y ∈ K[x] 3×3 in order to reduce the x-degree is now possible:

v y ( f ) =           0 x 2 -x 3 + 1           = S y w 2 + v y ( f ) =           x 2 + 1 0 x 0 x 2 + 1 0 0 0 x                     x 1 -x 2           +           -x -1 1          
and we obtain the normal form f = -xy

2 -y + 1 ∈ K[x, y] <(2,3) .
The assumptions of Proposition 3.1 are central to be able to reduce the degree in x and also ensure the normal form. The following example describes a situation with the existence of roots at infinity with respect to y. Example 3.3. With K = F 7 , take a = (x + 3)y + x 2 + 5x + 5 and b = (x + 3)(x + 4)y + x 2 + 4x + 2. Then, the minimal polynomial of x in the quotient algebra is x + 2 but cannot be obtained by combinations of a and b of y-degree less than e a = e b = 1, that is using combinations of the columns of S y . The vector [0 x + 2] T is its own remainder of the division by S y ∈ K[x] 2×2 , hence x + 2 is not reduced to zero while being in the ideal. In this case however, thanks to the random conditioning of Section 5, we correctly compute the resultant (see Section 7).

Since the multiplication in K[x, y] can be computed in quasi-linear time [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Sec. 8.4], Proposition 3.1 allows multiplication in K[x, y]/ a, b using Õ(de) arithmetic operations. This is valid as soon as both Sylvester matrices are column reduced. From Lemma 2.3 this means that the x-leading (resp. y-) coefficients of a and b are coprime and one of them has maximal degree d a or d b (resp. e a or e b ). In a complementary situation, that is with a sufficiently generic ideal a, b for the graded lexicographic order and using the total degree, a quasi-linear complexity was already achieved in [START_REF] Van Der Hoeven | Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals[END_REF] for the multiplication in such a quotient. Even though it retains specific assumptions on the ideal, let us also mention the multiplication bound Õ((de) 1.5 ) of [START_REF] Hyun | Change of basis for m-primary ideals in one and two variables[END_REF]Sec. 4.5].

Power projections via transposed normal form

Using Shoup's general approach for the computation of minimal polynomials in a quotient algebra, we especially rely on the fact that the power projection problem is the transpose of the modular composition problem [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF][START_REF] Kaltofen | Challenges of Symbolic Computation: My Favorite Open Problems[END_REF]Sec. 6]. The normal form algorithm of Proposition 3.1 treats a special case of modular composition since f mod I can be seen as f (g(x)) mod I for g = x. Certain power projections can therefore already be derived by transposition from what we have done so far, as we explain in this section. This is used at the core of the general algorithm in Section 4 for the computation of a larger number of O(de) projections efficiently for K = F q .

Consider the restriction ϕ δ,η of ϕ to the K-vector space U = K[x, y] ≤(δ,η) , and denote K[x, y] <(d,n y ) as a K-vector space by V. We also introduce the dual spaces U and V of the K-linear forms on U and V, respectively. The transpose of ϕ δ,η is the K-linear map

ϕ T δ,η : V → U → • ϕ δ,η . (5) 
We view the polynomials in U as vectors on the monomial basis B = {1, x, . . . , x δ , y, xy, . . . , x δ y η }. The linear forms in U on the dual basis of B are represented by vectors in K (δ+1)(η+1) . The elements in V and V are viewed in K dn y on problem of computing the normal form of f ∈ K[x] <δ modulo I can be reduced, for 2 ≤ d < δ, to normal forms of polynomials of x-and y-degrees less than d d log δ and d e log δ, respectively, and to multipoint evaluation. Here, remember the notations d = max{deg x a, deg x b} and e = max{deg y a, deg y b}. The Sylvester matrix S y is n y × n y overK. 1. We first appeal to the inverse Kronecker substitution [40, Dfn. 2.3], in order to map f to a polynomial with l variables and degree less than d in each variable. This K-linear map from

K[x] <δ to K[z 0 , . . . , z l-1 ] <(d ,...,d ) is defined as follow. For 0 ≤ k < δ, the monomial x k is sent to z k 0 0 z k 1 1 . . . z k l-1 l-1 ,
where k 0 , k 1 , . . . , k l-1 are the coefficients of the expansion of k in base d . This is extended linearly to K[x] <δ , and f is mapped in this way to a polynomial φ ∈ K[z 0 , . . . , z l-1 ] <(d ,...,d ) . The map is injective on K[x] <δ and is computed in linear time using monomial bases. 2. Then we compute the polynomials χ i = x d i rem I in K[x, y] <(d,n y ) , for i = 0, . . . , l -1. This corresponds to l exponentiations by d modulo I. By successive bivariate multiplications [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Sec. 8.4], each followed by a reduction modulo the ideal, this can be done in time Õ(de) from Proposition 3.1.

A key property is that f (x) rem I = φ(χ 0 , . . . , χ l-1 ) rem I. This leads to the idea of first computing φ(χ 0 , . . . , χ l-1 ) by evaluation-interpolation, and to perform only afterwards the reduction modulo the ideal. We have that the degree of φ(χ 0 , . . . , χ l-1 ) is at most δ = l(d -1)(d -1) in x, and η = l(d -1)(n y -1) in y. 3. We choose subsets K 1 and K 2 of K or cardinalities δ +1 and η +1, respectively. By multipoint bivariate evaluation, we compute all values µ i, j,k = χ i (λ j , λ k ) ∈ K for i = 0, . . . , l -1 and (λ j , λ k ) ∈ K 1 × K 2 . Using univariate evaluation [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Sec. 10.1], variable by variable, this can be done using Õ(lδ η ) hence Õ(d 2 de) operations (n y ≤ 2e). 4. This is followed by all the evaluations φ(µ 1, j,k , . . . , µ l, j,k ), which is multipoint evaluation of a polynomial with l variables, with individual degrees less than d , at (δ + 1)(η + 1) points in K l . 5. From there, φ(χ 0 , . . . , χ l-1 ) is recovered using bivariate interpolation from its values just obtained at K 1 × K 2 , this uses Õ(d 2 de) operations in a way similar to multipoint bivariate evaluation above. 6. Finally, f (x) rem I = φ(χ 0 , . . . , χ l-1 ) rem I. We know from Proposition 3.1 that this costs Õ(δ η ) operations, which is Õ(d 2 de).

In line with [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm 7.1] and [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF][START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF], thanks to fast multipoint evaluation [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Cor. 4.5], we now can bound the cost of the reduction of a univariate polynomial modulo the ideal. Corollary 4.1. Let K be a finite field F q . Assume that the Sylvester matrices S x and S y associated to a and b are column reduced, and consider f ∈ F q [x] of degree less than δ = 4de. For every constant > 0, if q ≥ δ 1+ , then f rem I can be computed using O((de) 1+ log(q) 1+o(1) ) bit operations.

Proof. Depending on , we choose a large enough constant integer c for d = δ 1/c to be sufficiently small compared to de. We have in particular, d < δ , and l = log d (δ) ≤ c. For δ large enough this leads to l(d -1) max{d -1, n y -1} ≤ q and therefore we can apply Theorem 4.1. We know that f rem I can be computed using Õ(d 2 de) operations in F q , which is O(de) 1+ , plus the cost of the associated multipoint evaluation. Then we use the fact that for every constant γ > 0, there is an algorithm for evaluating a polynomial in F q [z 0 , . . . , z l-1 ] <(d ,...,d ) at n points in F l q using (d l +n) 1+γ log(q) 1+o(1) bit operations, when the individual degrees d are sufficiently large, and the number of variables l is at most d o (1) [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Cor. 4.5]. Considering the evaluation parameters in Theorem 4.1 and l ≤ c, for everyγ > 0, the cost of the multipoint evaluation then is O((δ + d 2 de) 1+γ log(q) 1+o (1) ), which allows to obtain the claimed complexity bound.

As it has been said before, our presentation is simplified compared to the one of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]. The dependence in q, in complexity bounds analogous to the one in Corollary 4.1, is made explicit and written using polylogarithmic functions in [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF]. The study of [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF] uses an explicit function of slow increase for the number of variables of the multipoint evaluation problem. Sharper bounds and improved algorithms can be found in [START_REF] Van Der Hoeven | Fast multivariate multi-point evaluation revisited[END_REF][START_REF] Bhargava | Fast Multivariate Multipoint Evaluation Over All Finite Fields[END_REF] for multipoint evaluation, and [START_REF] Van Der Hoeven | On the Complexity Exponent of Polynomial System Solving[END_REF] for multivariate modular composition over finite fields. Since we rely also on a solution for the dual problem, and that it is not treated in the latter references, we remain essentially based on [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF].

In a similar way to what we did in Section 3.4 we now transpose the algorithm of Corollary 4.1. Our reasoning is that of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm 7.7], [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF]Thm. 3.3] and [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF]Prop. 1] for modular power projection. We use the notation ϕ of Eq. ( 4) for the normal form map. Corollary 4.2. Let K be a finite field F q . Assume that the Sylvester matrices S x and S y associated to a and b are column reduced. Let be a linear form in the dual of F q [x, y] <(d,n y ) . For every constant > 0, if q ≥ δ 1+ with δ = 4de, then the projections ( • ϕ)(x i ) for 0 ≤ i < δ can be computed using O((de) 1+ log(q) 1+o( 1) ) bit operations.

Proof. From Eq. ( 6), we have to compute ϕ T δ-1,0 ( ). The claim follows from the transposition principle (Section 3.4) applied to the successive algebraic steps of the normal form algorithm of Corollary 4.1, in reverse order. The nonalgebraic portions of the algorithm involved in multipoint evaluation are treated by means of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 7.6]. The steps of the algorithm are given in the proof of Theorem 4.1 [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 3.1]. The four of them that depend on the input f have to be considered, these are Steps 1, 4, 5, and 6, that we see as F q -linear maps. The last step 6 is reduction modulo I, the transpose is obtained from Proposition 3.2. Step 5 is bivariate interpolation, computed by interpolating in x then in y. This is transposed using two transposed univariate interpolation [START_REF] Kaltofen | Improved Sparse Multivariate Polynomial Interpolation Algorithms[END_REF][START_REF] Bostan | Tellegen's principle into practice[END_REF]. Step 4 is multivariate evaluation using [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Cor. 4.5]. The transpose is given by [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 7.6] when the ambient dimension is equal to the number of evaluation points, i.e. the linear map can be represented by a square matrix. The general case in which we are, with a larger number of evaluation points, is treated as in the proof of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 7.7] using several instances of the square case with a cost that fits the claimed bound. Finally, the transpose of the inverse Kronecker substitution at Step 1 is a projection that takes linear time. In view of the transposition principle and of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF]Thm. 7.6], the algorithm obtained from those transpositions computes the power projections using O((de) 1+ log(q) 1+o( 1) ) bit operations, as in Corollary 4.1.

Non-singular leading matrices using random shifts and reversals

In order to exploit the powers projections of Corollary 4.2 for a minimal polynomial computation, and derive the last invariant factor of the Smith normal form of S y , we need to address a column reducedness issue. This is what we do in this section. If the input polynomials a and b lead to S x and S y with singular leading coefficients, then we construct two new polynomials a and b which allow to get around the difficulty. Lemma 5.1 (Conditioning of S x ). Given α ∈ K not a root of Res x (a, b) (the ideal is zero-dimensional), in arithmetic time Õ(de) we can compute two polynomials a and b with degrees as those of a and b, such that the new Sylvester matrix S x is column reduced and the Smith normal form of S y is that of S y .

Proof. Consider a (1) (x, y) = a(x, y + α) and b (1) (x, y) = b(x, y + α). The new Sylvester matrix S (1) x with respect to x has a non-singular constant term since (Res x (a, b))(α) 0. The Smith normal form of S (1) y is equal to the Smith normal form of S y . Indeed, let Q α,k ∈ K k×k be the matrix of the endomorphism that shifts a polynomial of degree less than k by α; Q α,k is lower triangular with unit diagonal. We have

S (1) y = Q α,e a +e b S y diag(Q -1 α,e b , Q -1 α,e a ), (7) 
hence S (1) y and S y are unimodularly equivalent. Then we consider the reversed polynomials a and b of a (1) and b (1) with respect to y, using the respective degrees e a and e b . Note that a and b must keep the same y-degrees, otherwise S (1) x could not have a non-singular constant coefficient; for the same reason, the new matrix S x associated to a and b is column reduced. On the other hand, the Smith form with respect to y is unchanged since S y = J e a +e b S (1) y diag(J e b , J e a ),

where J k is the reversal matrix of dimension k. The cost is dominated by the one of at most 2(d+1) shifts of polynomials of degree at most e in K[y], see e.g. [START_REF] Bini | Polynomial and Matrix Computations[END_REF][Chap. 1, Pb. 3.5].

Invariant factor computation

For an appropriate random linear form , the minimal polynomial µ of the multiplication by x in K[x, y]/ a, b is also the one of the linearly generated sequence ( • ϕ)(x i ) i≥0 with high probability [START_REF] Shoup | A new polynomial factorization algorithm and its implementation[END_REF]Sec. 4;[START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF]Lem. 6]. In essence, this minimal polynomial approach is a transcription of that of Wiedemann [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF], with multiplication matrices rather than sparse ones [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF]. This allows, in this section, to first bound the complexity of the minimal polynomial problem from the power projection complexity bound we have obtained previously (Corollary 4.2). Since µ has degree at most 2de, it can ideed be computed from the first 4de terms of the power projection sequence. However, this is only valid when the involved Sylvester matrices are column reduced. Up to random shifts and reversals (Section 5), we then describe how the last invariant factor of S y can be derived from the minimal polynomial of the multiplication by x in a slightly modified quotient algebra.

Theorem 6.1. Consider two polynomials a, b ∈ F q [x, y] ≤(d,e) and assume that the associated Sylvester matrices S x and S y are column reduced. For every constant > 0, if q ≥ δ 1+ with δ = 4de, there exists a randomized Monte Carlo algorithm which computes the minimal polynomial of the multiplication by x in F q [x, y]/ a, b using O((de) 1+ log(q) 1+o( 1) ) bit operations. The algorithm returns a divisor of the minimal polynomial, to which it is equal with probability at least 1 -2de/q ≥ 1/2.

Proof. The modular power projections as in Corollary 4.2 are computed for a random linear map . The sequence {( • ϕ)(x i )} i≥0 is linearly generated; its minimal polynomial µ is a divisor of the minimal polynomial µ of the multiplication by x in A. Since deg µ ≤ 2de, µ can be computed using Õ(de) additional operations in K from the 4de first terms of the sequence [22, Algo 12.9]. We can conclude by proving that µ = µ with high probability. Following the construction of ϕ in Eq. ( 4), one can define the multiplication map

ψ : F q [x, y] <(d,n y ) → F q [x, y] <(d,n y ) f → x f rem I. (10) 
For an appropriate basis of F q [x, y] <(d,n y ) as a F q -vector space, we consider that ψ is represented by a matrix M ∈ F (dn y )×(dn y ) q

and that 1 is represented by the vector u ∈ F dn y q .

According to what we have seen in Section 3.4, we also represent linear forms in the dual of F q [x, y] <(d,n y ) by vectors in F dn y q . With this, µ is the minimal polynomial of u with respect to M. Hence for a random linear form represented by v ∈ F dn y q , the minimal polynomial of the linearly generated sequence {( • ϕ)(x i )} i≥0 = {v T M i u} k≥0 is µ with probability at least 1deg µ/q [37, Lem. 2; 38, Lem. 1]. Corollary 6.1. Consider two coprime polynomials a, b ∈ F q [x, y] ≤(d,e) . For every constant > 0, there exists a randomized Monte Carlo algorithm which computes the last invariant factor of the Sylvester matrix associated to a and b with respect to either x or y, using O((de) 1+ log(q) 1+o( 1) ) bit operations. The algorithm either returns the target invariant factor, and this with probability at least 1/2, one of its divisors, or "failure".

Proof. When q ≥ (12de) 1+ , we randomly choose random α and β in F q , then check whether S x and S y as in Lemma 5.3 are column reduced. The check is performed using Õ(d+e) operations, see Lemma 2.1 and e.g. [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Thm. 11.10]. Since Res y (a, b) ∈ F q [x] and Res x (a, b) ∈ F q [y] have degree at most 2de, the probability of success is at least 1 -4de/q. If the Sylvester matrices are column reduced, from Theorem 6.1, we then compute the minimal polynomial of the multiplication by x (or y) in the quotient algebra associated to S y (or S x ). Lemma 2.1 tells us that we have actually computed the last invariant factor of S y (or S x ) with probability at least 1 -2de/q. From Lemma 5.3 again, we finally derive the last invariant factor of S y (or S x ). If q is too small, we construct an extension field of F q with cardinality at least (12de) 1+ , that is of degree O(log(de)). This can be done using an expected number of Õ((log(de) 2 +log(de) log(q)) bit operations [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF] (see also [START_REF] Couveignes | Fast construction of irreducible polynomials over finite fields[END_REF] and [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Sec. 14.9] in this regard). We then work in this extension, the costs induced are logarithmic factors which do not change our target cost bound, and the probability of success can be adjusted.

Elimination ideal and resultant

When the system a = b = 0 has no roots at infinity with respect to y, from Lemma 2.1 and Corollary 6.1 we obtain a Monte Carlo algorithm for computing the minimal polynomial of the multiplication by x, it is a generator of the elimination ideal a, b ∩ F q [x].

Still with the absence of roots at infinity with respect to y, Lemma 2.2 indicates that if, moreover, the ideal has a shape basis I = µ(x), y -λ(x) [START_REF] Gianni | Gröbner bases and primary decomposition of polynomial ideals[END_REF][START_REF] Becker | The Shape of the Shape Lemma[END_REF], then the resultant of a and b is known. Note that the extra non-zero constant in Lemma 2.2 can be computed at the cost of Õ(de) operations in F q using evaluation in x.

For the resultant, we see that this leads to a weaker genericity assumption than in [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF], where the total degree is used. Assume that the ideal a, b is in generic position for the lexicographic order y > x so that res y (a, b) = cµ with c 0 ∈ F q . In this case, from Lemma 2.2 and Lemma 2.1 again, we can compute the resultant as the last invariant factor of S y without the use of an additional condition with respect to the graded reverse lexicographic order [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF]. This further allows us to deal with more general situations than that of the total degree since we obtain the resultant in all cases where Res y (a, b) = cµ. This condition is sufficient but not necessary (Examples 2.1 and 3.3), the resultant can be computed when S y has a unique non-trivial invariant factor. Note that the latter property can be formalized in the Zariski sense, for example by relying on ideals in general position with no roots at infinity [START_REF] Cox | Using Algebraic Geometry[END_REF]Sec. 3.5]. More precisely, there exists a non-zero polynomial Φ in 2(d + 1)(e + 1) variables over K, such that the Smith form of S y has a unique non-trivial invariant factor if Φ does not vanish at the coefficients of a and b.

The generic resultant algorithm becomes of the Las Vegas type when the degree of the resultant is known in advance, especially if the Sylvester matrix S y is column reduced. In the latter case the degree of the resultant is indeed the sum of the column degrees of S y [32, Eq. ( 24), p. 385].

Notations.

  Throughout the paper we consider two polynomials a, b ∈ K[x, y], of degrees d a and d b in x, and e a and e b in y, respectively. We will use the notations d = max{d a , d b } and e = max{e a , e b }. The associated Sylvester matrices with respect to x and y are S x ∈ K[y] n x ×n x and S y ∈ K[x] n y ×n y , with dimensions n x = d a + d b and n y = e a + e b . The resultants Res x (a, b) ∈ K[y] and Res y (a, b) ∈ K[x], of a and b with respect to x and y, are the respective determinants of S x and S y [22, Chap. 6]. We assume that a and b have no non-trivial common divisors, hence both S x and S y are non-singular. We focus on computations in relation to Res y (a, b) = det S y (the conclusions would be unchanged in relation to Res x (a, b)).

Lemma 2 . 1 (

 21 [START_REF] Lazard | Ideal Bases and Primary Decomposition: Case of Two Variables[END_REF] Thm. 4]). The last invariant factor of S y is a multiple of the minimal polynomial of the multiplication by x in A, both polynomials coincide if the y-leading coefficients of a and b are coprime in K[x].

Lemma 2 . 2 ([ 43 ,

 2243 Thm. 4]). The y-leading coefficients of a and b are coprime in K[x] and there exist two polynomials µ, λ ∈ K[x] such that I = µ(x), y -λ(x) if and only if, up to a non-zero element in K, the resultant res y (a, b) is the minimal polynomial µ of the multiplication by x in A.

4

 4 With deg x a = d a , deg x b = d b , deg y a = e a , and deg y b = e b , the quotient algebra A has dimension at most d a e b + d b e a . In order to represent its elements, the quotient is embedded in the space K[x] n y <d of dimension dn y = max{d a , d b }(e a + e b ) which can therefore be slightly larger (Example 3.1).

Example 3 . 1 .

 31 With K = Q, consider a = x 2 y + y and b = xy 2 + x; we have d = d a = 2 and n y = e a + e b = 1 + 2 = 3. If f = x then both f and fb = -xy 2 are in K[x, y] <(2,3) , hence the map ϕ might not be surjective. The division as in Eq. (2) leads to

  3 again: if either deg s = d a or deg t = d b , then either deg s = d a or deg t + m = d b + m.

Theorem 4 . 1 ([ 40 ,

 4140 Thm. 3.1], generalized in[START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF][START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF]). Consider f ∈ K[x] of degree less than δ, and an arbitrary integer 2 ≤ d < δ. Assume that the Sylvester matrices S x and S y associated to a and b are column reduced, and |K| > l(d -1) max{d -1, n y -1} where l = log d (δ) . If δ = O(de) then f (x) rem I can be computed using Õ(d 2 de) arithmetic operations in K, plus one multivariate multipoint evaluation of a polynomial with l variables over K and individual degrees less than d , at O(l 2 d 2 de) points in K l .Proof. The following six steps are those of the proof of[START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF] Thm. 3.1].

the basis {y n y -1 , y n y -1 x, . . . , y n y -1 x d-1 , y n y -2 , y n y -2 x, . . . , x d-1 } of V (in accordance with the definition of the Sylvester matrix S y ). From Eq. ( 5), the entries of ϕ T δ,η ( ) are the bivariate power projections ( • ϕ δ,η )(x i y j ) for 0 ≤ i ≤ δ and 0 ≤ j ≤ η.

We compute these projections by applying the transposition principle [7, 21; 57]. The principle asserts that if a K-linear map φ : E 1 → E 2 can be computed by a linear straight-line program of length l, then the transpose map can be computed by a program of length l + dim E 2 (l if φ is an isomorphism) [START_REF] Bürgisser | Algebraic complexity theory[END_REF]Thm. 13.20]. We use a commonly applied strategy to implement the principle [START_REF] Bostan | Tellegen's principle into practice[END_REF]. Proposition 3.2 follows directly from Proposition 3.1 e.g. by mimicking the results of [START_REF] Bostan | Fast computation of special resultants[END_REF]Sec. 4] in K[x, y]/ f (x), g(y) or [START_REF] Pascal | Change of order for bivariate triangular sets[END_REF][START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF] modulo triangular sets. The change concerns only the way in which the ideal is represented. Proposition 3.2. Assume that the Sylvester matrices S x and S y associated to a and b are column reduced. Given two integers δ, η ≥ 0 and ∈ V one can compute ϕ T δ,η ( ) using Õ((d + δ)(e + η)) arithmetic operations in K.

Proof. The claim on ϕ T δ,η is going to follow from the application of the transposition principle to the algorithm of Proposition 3.1 for ϕ δ,η , with portions written as a K-linear straight-line program.

The computation of ϕ δ,η reduces to two applications of Lemma 3.1, hence it suffices to study the transposition of the matrix division with remainder algorithm. Regarding this algorithm, observe that if the matrix inverses such as in Eq. ( 3) are pre-computed, then afterwards only K-linear forms in the entries of the input vector are involved. Furthermore, these linear forms can be computed by K-linear straight-line computations. The division algorithm of Lemma 3.1 can therefore be viewed as follows. The inverse of the reversed Sylvester matrix in Eq. ( 3) is pre-computed over truncated power series in time as stated in Lemma 3.1, using the complexity bounds in Section 3.1. Then the linear operations involving the input vector, including structured matrix times vector products [START_REF] Bini | Polynomial and Matrix Computations[END_REF], are performed within the same cost bound. The transposed division algorithm follows: it uses the pre-computed inverse as a parameter, and it is obtained from the transposition principle applied to the linear straight-line remaining portions. For the transposed division, this leads to the same complexity bound as stated in Lemma 3.1, and for the transpose ϕ T δ,η , to the bound as in Proposition 3.1.

We directly use the transposition principle. The transpose algorithm could nevertheless be stated more explicitly as done for the univariate case in [START_REF] Bostan | Tellegen's principle into practice[END_REF] -using duality with linear recurrence sequence extension [START_REF] Shoup | A Fast Deterministic Algorithm for Factoring Polynomials over Finite Fields of Small Characteristic[END_REF], and for multivariate triangular sets in [START_REF] Pascal | Change of order for bivariate triangular sets[END_REF][START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF].

Application of Kedlaya and Umans' techniques

The minimal polynomial of the multiplication by x in A requires the computation of projections of O(de) power of x (Section 6). Proposition 3.2 therefore is not sufficient in order to achieve quasi-linear complexity. This now leads us to apply Kedlaya and Umans' techniques [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF], and their extensions in [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF][START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF], for efficient modular composition over a finite field (Corollary 4.1) and power projection by transposition (Corollary 4.2).

Given three polynomials f, g, h ∈ K[x] with deg( f ) < n and deg(g) < n where n = deg(h), the problem of modular composition is to compute f (g) mod h [START_REF] Brent | Fast algorithms for manipulating formal power series[END_REF]. (The problem is more fundamentally stated over a ring.) At the very beginning in this case, we benefit from the fact that for such polynomials the division with remainder can be computed using Õ(n) arithmetic operations [22, Sec. 9.1]. One of the difficulties in the bivariate case is to be able to start from an analogous point, we mean from an efficient division with remainder modulo I. Once this is achieved, the approach of [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF] can be followed for both modular composition and power projection. This is what has been accomplished in [START_REF] Poteaux | Modular Composition Modulo Triangular Sets and Applications[END_REF] (multivariate case) and [START_REF] Van Der Hoeven | Fast computation of generic bivariate resultants[END_REF] (special case g = x), with respective shapes of the ideal I that we have already mentioned. We proceed in the same way, and integrate the new division (normal form) algorithm into the overall process. We therefore do not repeat all the details for the proof of Theorem 4.1 and its corollaries, and refer the reader to the stem papers. As for Proposition 3.2 our change is the way in which the ideal is represented, which leads to a new modular bivariate projection algorithm in Corollary 4.2.

The first main ingredient is to reduce the problem of division (of modular composition), to divisions with smaller input degrees and to a problem of multipoint evaluation [40, Pb. 2.1]. More precisely, Theorem 4.1 shows that the Note that Lemma 5.1 preserves the Smith normal form of S y but not necessarily its Hermite form. From Lemma 2.3, a = b = 0 has no roots at infinity with respect to y, so the last invariant factor of S y is the minimal polynomial of the multiplication by x in the new quotient algebra (Lemma 2.1). The latter may have changed, with an extra factor coming from possible roots at infinity for a = b = 0.

We now do the same type of manipulation for the column reducedness of S y and need a preliminary observation on reversed polynomial matrices. The reversal by columns of a matrix polynomial is the matrix whose entries are reversed with respect to the degree of their column. Lemma 5.2 (Reversed Smith normal form). The last invariant factor of the reversal of A ∈ K[x] n×n by columns is the reversal of the last invariant factor of A made monic and multiplied by some power of x.

Proof. Let X in K[x] n×n with a determinant which is a power of x be such that the reversal R of A by columns is A(1/x)X. Let S A be the Smith normal form of A, with unimodular matrices U and V such that AV = US A . We have

Let S * A be the diagonal matrix whose entries are the reversals of the diagonal entries of S , made monic by division by their leading coefficients. By multiplying Eq. ( 9) by an appropriate power of x, we obtain , respectively (the ideal is zero-dimensional), in arithmetic time Õ(de) we can compute two polynomials a and b with degrees as those of a and b such that: the new Sylvester matrices S x and S y are column reduced; the last invariant factor of S y can be deduced from that of S y using Õ(de) additional arithmetic operations.

Proof. By applying Lemma 5.1 we can assume that a and b are such that S x is column reduced, without modifying S y so Res y (a, b) either. We use arguments similar to those used in the proof of Lemma 5.1. We first take a (1) (x, y) = a(x + β, y) and b (1) (x, y) = b(x + β, y). The new Sylvester matrix S (1) y with respect to y has a non-singular constant term since (Res y (a, b))(β) 0. We denote the last invariant factor of S y by σ ∈ K[x]. The last invariant factor of S (1) y is σ β = σ(x + β) and satisfies σ β (0) 0. Then we consider the reversed polynomials a and b of a (1) and b (1) with respect to x, using the respective degrees d a and d b . Since S (1) y has a non-singular constant term, a and b keep the same x-degrees and the new matrix S y associated to a and b is column reduced.

We now prove the claims with a and b . We have just seen for the column reducedness of the y-Sylvester matrix. With respect to x, the Sylvester matrix is column reduced after the initial application of Lemma 5.1. Using Eqs. [START_REF] Bordewijk | Inter-reciprocity applied to electrical networks[END_REF] and ( 8) from the proof of the latter lemma, now with β, S (1) x , and S x , we deduce that S x remains column reduced. Finally, we compute the last invariant factor σ of S y from the one of S y . The Sylvester matrix S y is the reversal of S (1) y . Let σ β the reversal polynomial of σ β . From Lemma 5.2 we deduce that the last invariant factor of S y is cx l σ β for some integer l ≥ 0, and a non-zero c ∈ K. Since σ β (0) 0, the reversal of cx l σ β is cσ β . Using a shift by -β and making the polynomial monic provides us with σ.

In addition to the cost in Lemma 5.1, we essentially have to perform at most 2(e + 1) shifts of polynomials of degree at most d in K[x], plus a final shift of a polynomial of degree O(de), see e.g. [START_REF] Bini | Polynomial and Matrix Computations[END_REF][Chap. [START_REF] Alonso | Zeros, multiplicities, and idempotents for zero-dimensional systems[END_REF]Pb. 3.5].