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Elimination ideal and bivariate resultant over finite fields

Gilles Villard

CNRS, U. Lyon, Inria, ENS de Lyon, UCBL, Laboratoire LIP UMR5668, France

Abstract. A new algorithm is presented for computing the largest degree invariant factor of the Sylvester ma-
trix (with respect either to x or y) associated to two polynomials a and b in Fq[x, y] which have no non-trivial
common divisors. The algorithm is randomized of the Monte Carlo type and requires O((de)1+ε log(q)1+o(1)) bit
operations, where d an e respectively bound the input degrees in x and in y. It follows that the same complexity esti-
mate is valid for computing: a generator of the elimination ideal 〈a, b〉 ∩ Fq[x] (or Fq[y]), as soon as the polynomial
system a = b = 0 has not roots at infinity; the resultant of a and b when they are sufficiently generic, especially
so that the Sylvester matrix has a unique non-trivial invariant factor. Our approach is to use the reduction of the
problem to a problem of minimal polynomial in the quotient algebra Fq[x, y]/〈a, b〉. By proposing a new method
based on structured polynomial matrix division for computing with the elements in the quotient, we manage to
improve the best known complexity bounds.

1 Introduction

Given two polynomials a, b ∈ K[x, y], where K is a commutative field, their resultant Resy(a, b) with respect to y is the
determinant of the associated Sylvester matrix Sy over K[x] [22, Ch. 6]. Computing this determinant in quasi-linear
time with respect to the input/output size is still beyond our reach in the general case.

In this paper we consider the relaxed problem which is to compute the last (of largest degree) invariant factor of
Sy, in the case of a finite field K = Fq with q elements. We consider a and b of x-degree at most d and y-degree at most
e in Fq[x, y], having no non-trivial common divisors. For any ε > 0, there exist a randomized Monte Carlo algorithm
which solves the problem using a quasi-linear number of O((de)1+ε log(q)1+o(1)) bit operations.

The last invariant factor of Sy is a specific divisor of the resultant. If the polynomial system a = b = 0 has no roots
at infinity with respect to y (the y-leading coefficients of a and b are coprime), then it gives central informations on the
affine solutions. It is indeed a generator of the elimination ideal 〈a, b〉 ∩ K[x] [16, Ch. 2]. We also have, in particular,
the fact that this invariant factor gives the resultant when a and b are sufficiently generic (Section 7). (Genericity is
considered in the Zariski sense: a property is generic if it holds except on a hypersurface of the parameter space.)

Our approach over finite fields is inspired by and goes further than the major steps taken with: the change of
order algorithm of Poteaux and Schost for triangular sets and radical ideals [53]; the algorithm of van der Hoeven
and Lecerf, which computes the resultant of generic polynomials with respect to the total degree [28]. In the bivariate
case, both these works provides solutions in quasi-linear expected time in the input/output size for the first time ([53]
treats general multivariate cases). They are part of the same long line of research which reduces elimination problems
to linear algebra [42; 16, Sec. 2.4 & 3.6], and especially to the computation of minimal polynomials in quotient
algebras [44, 59]. It is this path that we are pursuing.

The role of minimal polynomials. Let I = 〈a, b〉 be the (zero-dimensional) ideal generated by a and b in K[x, y], and
A = K[x, y]/I be the associated quotient algebra. We remind in Section 2 that the last invariant invariant factor of the
Sylvester matrix Sy can be computed as the minimal polynomial µ of the multiplication by x in A, under the condition
of absence of roots at infinity [43]. This is how we proceed. The condition on the behaviour at infinity is met for
slightly modified polynomials not preventing us from computing the target invariant factor (Section 5).

For efficiency, the minimal polynomial problem is itself reduced to a power projection problem [35, Sec. 6] (a
more complete list of references is given later in this introduction). Given a linear form ` in the dual of A over K,
the minimal polynomial in A is computed as the one of the linearly generated sequence {`(xi mod I)}i≥0 over K. The
application of a random linear form preserves the recursion which is sought in A [64] (Section 6). As observed by
Shoup [57], the power projection problem is dual to the modular composition problem [11]. We finaly rely on Kedlaya



and Umans’ approach to address those two latter issues [40] in quasi-linear time over finite fields. As we will now see,
this is made possible by a new algorithm we propose for arithmetic operations modulo the ideal.

First result. One of the bottlenecks in above strategy is to perform arithmetic operations in A [25], even if only to
compute the multiplication of two polynomials or the powers of x that need to be projected modulo the ideal I. This
is where a main aspect of our contribution lies. In [53], the special case of triangular sets is considered. That is, in our
context, when either a or b is univariate. On the other hand, the generic resultant algorithm of [53] relies on Gröbner
bases techniques, and the normal form algorithm modulo I of [26].

We instead use polynomial matrix division [32, Sec. 6.3]. Viewing a polynomial f in K[x, y] as a vector with
entries in K[x], we reduce its x-degree using division by the polynomial Sylvester matrix Sy; let us also specify that
we may need to construct a Sylvester matrix from multiples of a and b if the dimensions do not match (Section 3).
By definition of the Sylvester matrix, the remainder of this division gives a new polynomial in the coset f + I. By
means of a similar division after the swich of the roles of x and y, this leads to a normal form algorithm modulo I,
up to a regularity assumption related to roots at infinity (Lemma 2.3 and Proposition 3.1). This algorithm is algebraic
and deterministic for arbitrary fields. If f has x-degree at most δ and y-degree at most η, then it uses Õ((d + δ)(e + η))
arithmetic operations (Proposition 3.1). A Sylvester matrix is a Toeplitz-like matrix [6]. Our cost bound is based on
fast structured matrix arithmetic which is discussed in Section 3.1. In particular, the normal form algorithm allows
multiplication in K[x, y]/〈a, b〉 using Õ(de) operations when the leading coefficients of a and b are sufficiently generic
(Lemma 2.3). In the case of the total degree, for generic polynomials a, b with deg a ≥ deg b, the algorithm of [26] costs
Õ((deg a)(deg b)), after the precomputation of a concise Gröbner basis representation of the ideal using Õ((deg a)2)
operations. So in terms of their assumptions the two algorithms are complementary (Section 3.3).

Extension of Kedlaya and Umans’ techniques for the power projections. As soon as the normal form algorithm is
available, hence the arithmetic operations in A, it is possible to develop the general strategy of Shoup [57, 59] for the
computation of modular power projections, coupled by duality with the algorithm of Kedlaya and Umans for modular
composition [40] (in this latter reference, the case of a univariate ideal I in Fq[x] is treated). This is what has been
generalized in both [53] and [28], with respective shapes of the ideal I that we have seen above. We proceed in the
same way, and integrate the new division algorithm into this overall process: (i) reduction of f ∈ Fq[x] modulo I,
which is considered as modular composition according to f (g(x)) mod I with g = x; modular composition relies on
multivariate multipoint evaluation following [40, Thm. 3.1]; (ii) using the transposition principle [12, Thm. 13.20],
the power projections are obtained (Section 3.4). Since the degree of the resultant of a and b with respect to y is at
most 2de, it is sufficient to be able to compute (i) f modulo I for deg f < 4de and (ii) {`(xi mod I)}0≤i<4de, in order to
deduce the minimal polynomial of the sequence (which is a divisor of the resultant). We establish in Section 4 that (i)
and (ii) can be perfomed within our target cost bound over a finite field using bit operations.

Last invariant factor and elimination ideal 〈a, b〉∩Fq[x]. In the presence of roots at infinity, we use a random transfor-
mation of a and b into two other polynomials which meet the condition of regularity for computing normal forms, and
still make it possible to obtain the initial last invariant factor. This is presented in Section 5. The general complexity
bound for the computation of the last invariant factor is given in Section 6 from that of modular power projection. As a
consequence of Lazard’s structure theorems for bivariate ideals [43], the latter polynomial is a multiple of the minimal
polynomial µ of the multiplication by x in A, and both polynomials coincide if the system a = b = 0 has no roots
at infinity (Lemma 2.1). Under this condition, what we have done so far allows in Section 7 to compute µ, that is a
generator of the elimination ideal I ∩ Fq[x].

Comparison to previous work. Given an arbitrary field, the bivariate resultant can be computed using O(de2) arithmetic
operations [22, Chap. 11].

Over a finite field, the approach of [28] allows quasi-linear bit cost; for generic polynomials with respect to the
total degree, and any ε > 0, this leads to the complexity bound O(((deg a)(deg b) log q)1+ε) + Õ((deg a)2 log q) when
deg a ≥ deg b. (The soft-O notation Õ(c) captures an additional logarithmic factor O(c logk c) for a positive k.) Our
algorithm covers this case, in particular. Genericity ensures that there are no roots at infinity and a unique invariant
factor (see Section 7), and we obtain a comparable asymptotic bound. Considering degree conditions on the variables
individually we treat a larger class of problems and with weaker assumptions. For polynomials of x-degree d and y-
degree e, we compute the resultant in quasi-linear time when the Sylvester matrix Sy has a unique non-trivial invariant
factor.
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Now, in a general way, in all cases as soon as there are no roots at infinity, our approach allows to compute a
generator of the elimination ideal I ∩ Fq[x]. This is treated in Section 7. We are not aware of any previous method
whose cost would be quasi-linear over finite fields under the same assumptions. The complexity of this problem is
indeed related to that of the resultant and bivariate lexicographic Gröbner bases [17]. In particular, for a and b of total
degree at most d, we arrive at the bound O(d2+ε log(q)1+o(1)), while previous estimates are Õ(d3 log q) [45].

We use bit complexity. The bivariate resultant problem using an algebraic model of computation is a harder prob-
lem. To our knowledge, a quasi-linear complexity bound is not achievable at this time. We may refer to [46; 63, 52]
and to the pointers found there. It it also important to note that quasi-linear time algorithms are given for bivariate
polynomial systems with integer coefficients in [47].

Minimal polynomials and power projections. We give here some additional references from which the results we use
largely inherit. The adaptation of numerical matrix methods to the finite field setting has started with the solution of
sparse linear systems in mind [13, 64]. These methods result in projections of the powers of the involved matrix for
computing its minimal polynomial, as evidenced by Wiedemann’s approach [64]. The link is to be made with the use
of power projections for computing minimal polynomials in quotient algebras, using the trace map in [61, 54] and
general projections in [57, 39, 59]. (We have indeed a multiplication endomorphism in the quotient.)

The duality between the power projection problem and the modular composition one is observed in [57].
In the context of polynomial system solving, for which the literature is vast, we may refer to the use of the trace map

in [1, 55, 24], or of arbitrary linear forms in [10]. Structured matrices and duality are applied to multivariate polynomial
problems in [48]. Multivariate powers projections are considered in [59, 35], especially for minimal polynomials, and
are exploited for the computation of special resultants in [8], and to the change of order of variables for triangular
sets in [51]. The link between the change of ordering and linear algebra is also beneficial using power projections of a
multiplication matrix in [19, 18], and particularly in order to take advantage of sparsity [20], which brings us back to
Wiedemann’s algorithm.

Following [43], the Sylvester matrix Sy (or Sx) is a polynomial matrix that we manipulate as such. This may be
seen as working in a K[y]-module rather than in a K-vector space in order to represent the quotient algebra A [31,
Sec. 3.10], and implement the operations on its elements. A similar direction has been taken in [4] for a change or
ordering of Gröbner bases algorithm.

In linear algebra with implicitly represented matrices, an open problem is to compute the characteristic polynomial
in essentially the same time as for the minimal polynomial [Sec. 3][35]. This applies in particular to sparse or structured
matrices. The question of computing the bivariate resultant in essentially the same time as for the last invariant factor
of the Sylvester matrix appears to be similar to Kaltofen’s open problem.

Model of computation. The normal form algorithm for polynomials in K[x, y] modulo 〈a, b〉 and its transpose are
presented using an algebraic model (Section 3), and work e.g. with computation trees [12, Sec. 4.4]. Complexity
bounds correspond to numbers of arithmetic operations performed in K.

The application of Kedlaya and Uman’s techniques in Section 4 and threfore the last invariant factor computation
in Section 6 rely on a RAM bit complexity model. We consider that arithmetic operations in Fq can be done in time
Õ(log q), and that the RAM can produce a random element uniformly distributed in Fq with the same cost.

Notations. Throughout the paper we consider two polynomials a, b ∈ K[x, y], of degrees da and db in x, and ea and eb

in y, respectively. We will use the notations d = max{da, db} and e = max{ea, eb}. The associated Sylvester matrices
with respect to x and y are Sx ∈ K[y]nx×nx and Sy ∈ K[x]ny×ny , with dimensions nx = da + db and ny = ea + eb. The
resultants Resx(a, b) ∈ K[y] and Resy(a, b) ∈ K[x], of a and b with respect to x and y, are the respective determinants
of Sx and Sy [22, Chap. 6]. We assume that a and b have no non-trivial common divisors, hence both Sx and Sy are
non-singular. We focus on computations in relation to Resy(a, b) = det Sy (the conclusions would be unchanged in
relation to Resx(a, b)).

We use expressions such as “x-degree” or “y-leading coefficient” to indicate the variable which is concerned, and
use degx and degy in formulas when bivariate polynomials are involved. Subscripts for example inK[x, y]<(d,ny) indicate
degree bounds in x and y, and K[x]n

d is the set of polynomials of degree d.
We are often led to manipulate reversals of polynomials. For k ≥ 0, we define the reversal of a polynomial f ∈ K[x]

with respect to k as revk( f ) = xk f (1/x); by default, if k is not specified, the reversal is taken with respect to the degree
of the polynomial. This is generalized to polynomial matrices viewed as matrix polynomials, we mean with matrix
coefficients.
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The polynomials in K[x, y] are identified with the (column) vectors of their coefficients, using dimensions which
will be clear from the context. For example, given f = f0(x) + f1(x)y + . . . fd(x)yd and n ≥ d + 1, vy( f ) ∈ K[x]n denotes
the vector [0 . . . 0 fd . . . f0]T.

2 Polynomial matrices, resultant and bivariate ideals

We give the basic notions and results we need in the rest of the text concerning the relations between the resultant of
two polynomials and the ideal they generate. As univariate polynomial matrix, the Sylvester matrix Sy is unimodularly
equivalent to a matrix diag(s1, . . . , sn) ∈ K[x]ny×ny in Smith normal form, where sn is the invariant factor of largest
degree. We are not able to always compute the resultant within the cost target. We are, however, able to compute the
last invariant factor (Corollary 6.1).

Using the structure theory of finitely generated modules, this last invariant factor can be seen as the minimal
polynomial of a linear transformation in a finite dimensionalK-vector space [31, Sec. 3.10]. Such a formalism has been
exploited occasionally for the efficient computation of general matrix normal forms [62, 60]. Concerning Sylvester
matrices and in the broader context of polynomial system solution, this is related to the use of a multiplication map on
a quotient algebra [42].

Let I = 〈a, b〉 be the (zero-dimensional) ideal generated by a and b in K[x, y], and A = K[x, y]/I be the asso-
ciated quotient algebra. We especially rely on the following results, which are immediate consequences of Lazard’s
theorem [43].

Lemma 2.1 ([43, Thm. 4]). The last invariant factor of Sy is a multiple of the minimal polynomial of the multiplication
by x in A, both polynomials coincide if the y-leading coefficients of a and b are coprime in K[x].

Proof. The last invariant factor is a multiple of the last diagonal entry h ∈ K[x] of the Hermite form, where the latter is
lower triangular and obtained by unimodular column transformations. The polynomial h is in I ∩ K[x] (combinations
of columns of Sy are seen as combinations of a and b), which gives the first assertion. When the leading coefficients are
coprime, the divisibility property (i) in [43, Thm. 4] shows that the Hermite form of Sy can be brought to Smith form
using unimodular (row) transformations, without modifying the diagonal. From (ii) in [43, Thm. 4], the last invariant
factor is therefore an element of a reduced Gröbner basis of I, and as polynomial in K[x] it generates the elimination
ideal I ∩ K[x]. ut

The condition on the leading coefficients of a and b in Lemma 2.1 is the fact that the system a = b = 0 has no roots
at infinity with respect to y. In general, the resultant and the last invariant factor may have terms coming from both
the affine variety and the behaviour at infinity [16, Chap. 3]. To still be able to reduce the invariant factor computation
to a minimal polynomial problem the assumption of Lemma 2.1 will hold after a random modification of the input
polynomials (see Section 5).

The resultant can be deduced from Lemma 2.1 in particular when the Smith form of Sy has a unique non-trivial
invariant factor and there are no roots at infinity. This corresponds to certain situations in which the ideal I has a shape
basis [23, 2].

Lemma 2.2 ([43, Thm. 4]). The y-leading coefficients of a and b are coprime in K[x] and there exist two polynomials
µ, λ ∈ K[x] such that I = 〈µ(x), y − λ(x)〉 if and only if, up to a non-zero element in K, the resultant resy(a, b) is the
minimal polynomial µ of the multiplication by x in A.

Proof. From [43, Thm. 4], under the hypothesis I = 〈µ(x), y − λ(x)〉 and using the coprimeness, we know that the
Hermite form of Sy has a unique non-trivial diagonal entry, which is µ. Therefore, the latter is also the determinant
of Sy, up to the normalization to a monic polynomial in the Hermite form.

Conversely, the last element h ∈ K[x] of the diagonal of the Hermite form of Sy is in I . Hence h must be a multiple
of µ, and of the resultant by assumption. It follows that h = Resy(a, b) = µ, and all the other diagonal entries of the
Hermite form are equal to 1. This proves that the y-leading coefficients of a and b are coprime since otherwise the
first diagonal entry of the Hermite form would be a non-constant polynomial in K[x]. Item (ii) [43, Thm. 4] allows to
conclude. ut
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Concerning the links bewteen the resultant and the associated ideal, the reader may especially refer to [15], where
a general multivariate version of Lemma 2.2 is given.

Example 2.1. The Sylvester matrix may have a unique non-trivial invariant factor (that our algorithm will compute)
even though there are roots at infinity. With K = F2, take a = (x + 1) y + x2 and (x + 1) y2 + y. We have I = 〈x2, y〉, and
the Hermite normal form of Sy is

SyU =

 x + 1 0 0
1 x + 1 0
0 x2 x2 (x + 1)

 ,
with U unimodular. None of the arguments used for Lemmas 2.1 and 2.2 apply: the Hermite form cannot be brought
to Smith form using unimodular row operations without modifying the diagonal (as used in the proof of Lemma 2.1),
and the form is not either trivial (proof of Lemma 2.2). The last invariant factor of Sy is Resy(a, b) = x2 (x + 1)3. ut

We now characterize the existence of roots at infinity using column reducedness of polynomial matrices [32,
Sec. 6.3, p.384], which is used in next sections. Let S be a matrix in K[x]n×n whose column j has degree d j. We call
(column) leading (matrix) coefficient of S the matrix in Kn×n whose entry (i, j) is the coefficient of degree d j of the
entry (i, j) of S . We manipulate non-singular univariate polynomial matrices, and say that such a matrix is column
reduced if its leading coefficient is invertible.

Lemma 2.3. Sx is column reduced if and only if, the y-leading coefficients of a and b are relatively prime and at least
one of latter polynomials in K[x] has maximal degree da or db, respectively.

Proof. Let s, t ∈ K[x] be the y-leading coefficients of a, b, with respective degrees ds and dt. The columns of the
leading coefficient of Sx are given by the vectors in Kda+db associated to

xdb−1s, xdb−2s, . . . , s, xda−1t, xda−2t, . . . , t.

If Sx is column reduced then the first row of its leading matrix is non-zero and either ds = da or dt = db. Let’s say
that ds = da (up to a column permutation). The leading coefficient of Sx is therefore given by

xdb−1s, xdb−2s, . . . , xdt s, xdt−1s, xdt−2s, . . . , s, xds−1t, xds−2t, . . . , t, (1)

and we see that its rank is that of the Sylvester matrix associated to s and t since the latter is given by

xdt−1s, xdt−2s, . . . , s, xds−1t, xds−2t, . . . , t.

Conversely, from the independence of the vectors in Eq. (1) we obtain the column reducedness of Sx. ut

3 Bivariate polynomial division

In this section we propose a normal form algorithm for bivariate polynomials modulo the ideal I = 〈a, b〉. The al-
gorithm relies on matrix polynomial division. Bivariate polynomials in K[x, y] are viewed as univariate polynomial
vectors alternately overK[x] andK[y], dividing such a vector by Sy or Sx, is indeed quivalent to reducing the associated
polynomial modulo the ideal. Sylvester matrices are Toeplitz-like matrices, we first recall in Section 3.1 how opera-
tions on matrices in this class can be performed taking into account their structure [6, 50]. We then study the division
with remainder of a polynomial vector by Sy or Sx in Section 3.2. In order to be able to define a normal form and
perform the division efficiently, we rely on a regularity assumption on leading coefficient matrices: we suppose that Sx

and Sy are column reduced. This assumption is ultimately harmless for computing the last invariant factor (Section 5).
In Section 3.3 we present the normal form algorithm. We keep the same notations as before for the degrees of

a and b, and the dimensions of the matrices; especially, d is the maximum degree in x and Sy is ny × ny. Given a
polynomial f ∈ K[x, y], we show how to compute a unique polynomial f̂ ∈ K[x, y]<(d,ny), that we denote by f̂ =

f rem I, such that f − f̂ ∈ I (Proposition 3.1). Uniqueness is ensured using a properness property provided by the
polynomial matrix division. The construction is a K-linear map that sends f to f̂ whose y-coefficients are given by
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the entries of a vector vy( f̂ ) ∈ K[x]ny

<d such that Sy
−1vy( f̂ ) is strictly proper (tends to zero when x tends to infinity),

see Eq. (2). This allows us to represent the elements in A by normal forms. The transpose algorithm, which computes
corresponding power projections, is derived in Section 3.4

With degx a = da, degx b = db, degy a = ea, and degy b = eb, the quotient algebra A has dimension at most daeb +

dbea. In order to represent its elements, the quotient is embedded in the space K[x]ny

<d of dimension

dny = max{da, db}(ea + eb)

which can therefore be slightly larger (Example 3.1).

3.1 Structured matrix arithmetic

The normal form algorithm exploits the fact that Sylvester matrices are structured. The class of structure that we are
facing is the one of Toeplitz-like polynomial matrices which are commonly handled using the notion of displace-
ment rank [33]. The notion allows to have a concise matrix representation through which matrix arithmetic can be
implemented efficiently [6, 50].

Given by the polynomials a and b, Sx and Sy are represented using O(de) elements of K. The division algorithm re-
quires to solve associated linear systems and uses matrix inversion with truncated power series entries. We consider that
polynomial Sylvester matrices and their inverses are represented using their concise Toeplitz-like representations [6].
This is obtained for example by extension of the ΣLU form defined over fields [34], to polynomials or truncated power
series [52, Sec. 3].

Multiplying an n×n polynomial Sylvester matrix of degree d by a polynomial vector of degree at most l over K[x],
can be done using Õ(n(d+l)) arithmetic operations inK [6]. This cost bound is valid for the same type of multiplication
using instead the inverse of the matrix modulo xl when it exists. If T ∈ Kn×n is a non-singular Sylvester matrix
and v ∈ Kn, then the linear system T−1v can be solved using Õ(n) arithmetic operations. This is obtained by combining
an inversion formula for the Sylvester matrix [41], and matrix Padé approximation [3] (see also [6, Chap. 2, Sec. 9] and
[63, Sec. 5]). The declination of this is applied in Section 3.2 over truncated power series modulo xl. Let S ∈ K[x]n×n

d
be a polynomial Sylvester matrix such that det S (0) , 0, and consider a vector v ∈ K[x]n of degree at most l. The
system S −1v can be solved modulo xl using Õ(n(d + l)) arithmetic operations. From [63, Prop. 5.1], the matrix inverse
modulo xl can itself be computed (with concise representation) within the same cost bound.

3.2 Matrix and bivariate polynomial division

Consider S in K[x]n×n, non-singular of degree d. For any vector v ∈ K[x]n, we know from [32, Thm. 6.3-15, p. 389]
that there exist unique w, v̂ ∈ K[x]n such that

v = S w + v̂, (2)

and S −1v̂ is strictly proper. From [32, Thm. 6.3-10, p. 383] we further have that the polynomial remainder vector v̂ has
degree less d; note however that uniqueness is ensured by properness and not by the latter degree property (Exam-
ple 3.1).

The following will be applied to both Sx and Sy, hence we take a general notation S for the statement. We propose a
structured matrix polynomial adaptation of the Cook-Sieveking-Kung algorithm for (scalar) polynomial division with
remainder, about which the reader may refer to [22, Sec. 9.1].

Lemma 3.1. Let S ∈ K[x]n×n be a Sylvester matrix of degree d, and assume that S is column reduced. Consider a
vector v ∈ K[x]n of degree at most l. The unique remainder v̂ of the division of v par S as in Eq. (2) can be computed
using Õ(n(d + l)) arithmetic operations in K.

Proof. Consider that S is associated to two polynomials a, b ∈ K[x, y] as previously, such that S = Sy and we
have e1 columns of degree d1 and e2 columns of degree d2. Up to row and column permutations we assume that
d = max{d1, d2} = d1.

We first treat the case d = d1 = d2. All the columns of S have the same degree, hence since S is column reduced it
is also row reduced (use the definition given before Lemma 2.3, on the rows).
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If l < d, then we take v̂ = v. From [32, Thm. 6.3-11, p. 385], by row reducedness, we know that S −1v̂ is strictly
proper. If l ≥ d, the polynomial division can be perfomed by reformulating [22, Sec. 9.1, Eq. (2)] on matrices. Since S
has non-singular leading matrix, by the predictable degree property [32, Thm. 6.3-13, p. 387] we know that the quotient
vector w has degree deg v − d, hence at most l − d. Using reversals of matrix polynomials, Eq. (2) can be rewritten as

revl(v) = revd(S ) · revl−d(w) + xl−d+1revd−1(v̂),

hence we have
revl−d(w) ≡ revd(S )−1revl(v) mod xl−d+1. (3)

Remark that by reducedness assumption the coefficient matrix of degree 0 of revd(S ) is non-singular, thus the latter
matrix in invertible modulo xl−d+1. As soon as w′ = revl−d(w) hence w = revl−d(w′) are known, then v̂ can be deduced
using v̂ = v − S w. We know that S −1v̂ is strictly proper using reducedness, as done previously. Using fast structured
matrix arithmetic (Section 3.1), revl−d(w) is computed from Eq. (3) and v̂ is obtained within the claim cost bound.

When d = d1 > d2, first we balance the columns degrees. With δ = d1 − d2 > 0, take D = diag(xδ, . . . , xδ, 1, . . . , 1),
with e1 entries xδ. The matrix T = S D−1 has all its column degrees equal to d2. Here and below the degree of a rational
function is the difference between the degrees of the numerator and the denominator. Column and row reducedness
are extended accordingly.

If l < d2 we let v′ = v, otherwise we can compute a polynomial vector w′ of degree at most l− d2 and v′ = v− Tw′

of degree less than d2 such that T−1v′ is strictly proper. This is done using Eq. (2) after having multiplied everything
by xδ so as to be reduced to a division with polynomial matrices, in time Õ(n(d + l)). This is similar to the d1 = d2 case
above since T is column reduced.

Then, taking the quotient of the first e1 entries of w′ by xδ, we write w′ = Dw + z, where z is of degree less than δ
and such that only its first e1 entries may be non-zero. The vector w remains of degree at most l − d2, and we obtain v̂
in time Õ(n(d + l)) as

v̂ = v − S w = v − S D−1(w′ − z) = v′ + S D−1z.

In order to complete the proof we check that S −1v̂ is strictly proper. This vector is S −1v̂ = S −1v′ + D−1z = D−1T−1v′ +
D−1z. By construction, T−1v′ is strictly proper, it is thus the same for D−1T−1v′; z has degree at most δ−1 for its first e1
entries (the other ones are zero), hence D−1z is strictly proper. ut

3.3 Normal form modulo the bivariate ideal

Given a polynomial f ∈ K[x, y] whose y-degree is less than the dimension ny of Sy, we can apply Lemma 3.1 to the
vector vy( f ) ∈ K[x]ny of the coefficients of f . Equation (2) becomes

vy( f ) = Syw + vy( f̂ )

on vectors, and by definition of the Sylvester matrix we have

f̂ = f − ua − vb ∈ f + I

for some u, v ∈ K[x, y], with f̂ of x-degree less than d. We show with Proposition 3.1 that, thanks to the uniqueness of
the remainder, this allows us to define a normal form modulo 〈a, b〉. The general y-degree case for f is treated using a
preparatory division by Sx (whose entries are in K[y]) in order to reduce the degree in y. The overall construction gives
a K-linear map

ϕ : K[x, y]→ K[x, y]<(d,ny)

f 7→ f̂ = f rem I
(4)

such that f − ϕ( f ) ∈ I, and ϕ(g) = 0 if g ∈ I. The map ϕ is thus appropriate in order to represent the elements in A by
normal forms.
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Example 3.1. With K = Q, consider a = x2y + y and b = xy2 + x; we have d = da = 2 and ny = ea + eb = 1 + 2 = 3.
If f = x then both f and f − b = −xy2 are in K[x, y]<(2,3), hence the map ϕ might not be surjective. The division as in
Eq. (2) leads to

vy( f ) =

00x
 = Syw + vy( f̂ ) =

 x
2 + 1 0 x
0 x2 + 1 0
0 0 x


001
 +
−x

0
0

 ,
and f̂ = f − b since we can check that S −1vy( f̂ ) is strictly proper, whereas S −1vy( f ) is not. It may be noted that the
quotient algebra K[x, y]/〈a, b〉 has dimension 5, which is smaller than the dimension of K[x, y]<(2,3). ut

If η = degy f ≥ ny and δ = degx f is less than the dimension nx of Sx, then we can directly proceed to the division
using Sx. Otherwise, as we now see with Lemma 3.2, we first extend Sx to a bigger appropriate Sylvester matrix Tx of
dimension δ + 1. By linearization, we associate to f a vector vx( f ) ∈ K[y]δ+1 of y-degree η. Then using division by Tx,
whose y-degree is the degree e of Sx, we can compute f ′ of y-degree less than e < ny, such that f − f ′ ∈ I.

Lemma 3.2. Assume that the Sylvester matrix Sx associated to a and b with respect to x is column reduced. Consider
f ∈ K[x, y] of x-degree at most δ and y-degree at most η ≥ ny. Using Õ((nx + δ)η) arithmetic operations in K we
can compute a polynomial f ′ ∈ K[x, y], of x-degree at most max{nx − 1, δ} and y-degree less than e < ny, such
that f − f ′ ∈ I.

Proof. If δ is less than nx, we simply take Tx = Sx. Otherwise, let m = δ− nx + 1, and denote the y-leading coefficients
of a, b by s, t ∈ K[x]. Since Sx is column reduced, from Lemma 2.3 we know that gcd(s, t) = 1. Either s or t is not
divisible by x, let us assume that it is s, and take for Tx over K[y], the Sylvester matrix associated to a and xmb with
respect to x. The Sylvester matrix associated to s and xmt is non-singular, hence Tx is column reduced by Lemma 2.3
again: if either deg s = da or deg t = db, then either deg s = da or deg t + m = db + m.

This matrix Tx has dimension max{nx, δ+1}, and degree e = max{ea, eb} in y. The remainder of the division of vx( f )
by Tx gives f ′ such that f − f ′ ∈ I, its y-degree is less than the one of Tx, and its x-degree is less than the dimension
of Tx. The cost bound is from Lemma 3.1, with a matrix of dimension n = max{nx, δ+ 1} and degree e, and a vector of
degree l = η ≥ e. ut

Lemma 3.2 allows to first reduce the y-degree, the reduction of the degree in x now also ensures the normal form.

Proposition 3.1. Assume that the Sylvester matrices Sx and Sy associated to a and b are column reduced, and con-
sider f ∈ K[x, y]. The K-linear map in Eq. (4) is well defined by choosing for f̂ the unique polynomial in K[x, y]<(d,ny)

such that f − f̂ ∈ I, and Sy
−1vy( f̂ ) is strictly proper. If f has x-degree at most δ and y-degree at most η, then this normal

form for f + I in A can be computed using Õ((d + δ)(e + η)) arithmetic operations in K.

Proof. We show the existence of such an f̂ for every f , then show that ĝ = 0 if g ∈ I. After division by Sx using
Lemma 3.2 we have f ′ ∈ K[x, y] of y-degree less than e < ny = ea + eb such that f − f ′ ∈ I. Then by Lemma 3.1, that
is by division by Sy, we obtain f̂ ∈ K[x, y]<(d,ny) such that f ′ − f̂ ∈ I, hence f − f̂ ∈ I. By construction, Sy

−1vy( f̂ ) is
strictly proper. For g ∈ I, this first leads to some g′ of y-degree less than e < ny. Since Sy is column reduced, we know
from Lemma 2.3 that the y-leading coefficients of a and b are relatively prime, hence using [43, Lem. 7] there exist
polynomials r, s ∈ K[x, y] such that

g′ − ra − sb = 0, degy r < eb, and degy s < ea.

By uniqueness it follows that we must have ĝ = 0 because this value is appropriate using above identity.
The map ϕ( f ) = f̂ is well defined and provides a normal form. For f1, f2 in the coset f + I we indeed have

ϕ( f1 − f2) = 0 hence ϕ( f1) = ϕ( f2) by K-linearity of the divisions.
From Lemma 3.2, the first division by Sx costs Õ((d + δ)(e + η)), where we use that Sx has dimension nx ≤ 2d and

degree e. This leads to the next division of a vector of degree at most max{nx − 1, δ} by Sy, whose dimension is ny < 2e
and degree d. Using Lemma 3.1 this adds Õ(e(d + δ)) operations. ut
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Example 3.2. We continue with a = x2y + y and b = xy2 + x as in Example 3.1; Sx and Sy have dimension nx = ny = 3.
For f = y3 + x3y2 + 1, we first reduce the y-degree using Sx. Since δ = degx f ≥ nx, we cannot directly use Sx which
is 3× 3. Following the proof of Lemma 3.2 we increase the dimension and consider Tx ∈ K[y]4×4, the Sylvester matrix
with respect to x associated to a and xb. The first division is therefore:

vx( f ) =


y2

0
0

y3 + 1

 = Txw1 + vx( f ′) =


y 0 y2 + 1 0
0 y 0 y2 + 1
y 0 0 0
0 y 0 0




0
y2

1
−y

 +

−1
y
0
1

 .
The new polynomial is f ′ = −x3 + yx2 + 1, its y-degree is 1 < ny, so the division by Sy ∈ K[x]3×3 in order to reduce
the x-degree is now possible:

vy( f ′) =

 0
x2

−x3 + 1

 = Syw2 + vy( f̂ ) =

 x
2 + 1 0 x
0 x2 + 1 0
0 0 x


 x

1
−x2

 +
−x
−1
1


and we obtain the normal form f̂ = −xy2 − y + 1 ∈ K[x, y]<(2,3). ut

The assumptions of Proposition 3.1 are central to be able to reduce the degree in x and also ensure the normal
form. The following example describes a situation with the existence of roots at infinity with respect to y.

Example 3.3. With K = F7, take a = (x + 3)y + x2 + 5x + 5 and b = (x + 3)(x + 4)y + x2 + 4x + 2. Then, the minimal
polynomial of x in the quotient algebra is x + 2 but cannot be obtained by combinations of a and b of y-degree less
than ea = eb = 1, that is using combinations of the columns of Sy. The vector [0 x + 2]T is its own remainder of the
division by Sy ∈ K[x]2×2, hence x + 2 is not reduced to zero while being in the ideal. In this case however, thanks to
the random conditioning of Section 5, we correctly compute the resultant (see Section 7).

Since the multiplication in K[x, y] can be computed in quasi-linear time [22, Sec. 8.4], Proposition 3.1 allows
multiplication in K[x, y]/〈a, b〉 using Õ(de) arithmetic operations. This is valid as soon as both Sylvester matrices
are column reduced. From Lemma 2.3 this means that the x-leading (resp. y-) coefficients of a and b are coprime
and one of them has maximal degree da or db (resp. ea or eb). In a complementary situation, that is with a sufficiently
generic ideal 〈a, b〉 for the graded lexicographic order and using the total degree, a quasi-linear complexity was already
achieved in [26] for the multiplication in such a quotient. Even though it retains specific assumptions on the ideal, let
us also mention the multiplication bound Õ((de)1.5) of [30, Sec. 4.5].

3.4 Power projections via transposed normal form

Using Shoup’s general approach for the computation of minimal polynomials in a quotient algebra, we especially rely
on the fact that the power projection problem is the transpose of the modular composition problem [57; 35, Sec. 6].
The normal form algorithm of Proposition 3.1 treats a special case of modular composition since f mod I can be seen
as f (g(x)) mod I for g = x. Certain power projections can therefore already be derived by transposition from what we
have done so far, as we explain in this section. This is used at the core of the general algorithm in Section 4 for the
computation of a larger number of O(de) projections efficiently for K = Fq.

Consider the restriction ϕδ,η of ϕ to the K-vector space U = K[x, y]≤(δ,η), and denote K[x, y]<(d,ny) as a K-vector
space byV. We also introduce the dual spaces Û and V̂ of theK-linear forms onU andV, respectively. The transpose
of ϕδ,η is the K-linear map

ϕT
δ,η : V̂ → Û

` 7→ ` ◦ ϕδ,η.
(5)

We view the polynomials in U as vectors on the monomial basis B = {1, x, . . . , xδ, y, xy, . . . , xδyη}. The linear forms
in Û on the dual basis of B are represented by vectors in K(δ+1)(η+1). The elements inV and V̂ are viewed in Kdny on

9



the basis {yny−1, yny−1x, . . . , yny−1xd−1, yny−2, yny−2x, . . . , xd−1} of V (in accordance with the definition of the Sylvester
matrix Sy). From Eq. (5), the entries of ϕT

δ,η(`) are the bivariate power projections

(` ◦ ϕδ,η)(xiy j) for 0 ≤ i ≤ δ and 0 ≤ j ≤ η. (6)

We compute these projections by applying the transposition principle [7, 21; 57]. The principle asserts that if a
K-linear map φ : E1 → E2 can be computed by a linear straight-line program of length l, then the transpose map can be
computed by a program of length l + dimE2 (l if φ is an isomorphism) [12, Thm. 13.20]. We use a commonly applied
strategy to implement the principle [9]. Proposition 3.2 follows directly from Proposition 3.1 e.g. by mimicking the
results of [8, Sec. 4] in K[x, y]/〈 f (x), g(y)〉 or [51, 53] modulo triangular sets. The change concerns only the way in
which the ideal is represented.

Proposition 3.2. Assume that the Sylvester matrices Sx and Sy associated to a and b are column reduced. Given two
integers δ, η ≥ 0 and ` ∈ V̂ one can compute ϕT

δ,η(`) using Õ((d + δ)(e + η)) arithmetic operations in K.

Proof. The claim on ϕT
δ,η is going to follow from the application of the transposition principle to the algorithm of

Proposition 3.1 for ϕδ,η, with portions written as a K-linear straight-line program.
The computation of ϕδ,η reduces to two applications of Lemma 3.1, hence it suffices to study the transposition

of the matrix division with remainder algorithm. Regarding this algorithm, observe that if the matrix inverses such
as in Eq. (3) are pre-computed, then afterwards only K-linear forms in the entries of the input vector are involved.
Furthermore, these linear forms can be computed by K-linear straight-line computations. The division algorithm of
Lemma 3.1 can therefore be viewed as follows. The inverse of the reversed Sylvester matrix in Eq. (3) is pre-computed
over truncated power series in time as stated in Lemma 3.1, using the complexity bounds in Section 3.1. Then the linear
operations involving the input vector, including structured matrix times vector products [6], are performed within the
same cost bound. The transposed division algorithm follows: it uses the pre-computed inverse as a parameter, and it
is obtained from the transposition principle applied to the linear straight-line remaining portions. For the transposed
division, this leads to the same complexity bound as stated in Lemma 3.1, and for the transpose ϕT

δ,η, to the bound as
in Proposition 3.1. ut

We directly use the transposition principle. The transpose algorithm could nevertheless be stated more explicitly as
done for the univariate case in [9] — using duality with linear recurrence sequence extension [56], and for multivariate
triangular sets in [51, 53].

4 Application of Kedlaya and Umans’ techniques

The minimal polynomial of the multiplication by x in A requires the computation of projections of O(de) power
of x (Section 6). Proposition 3.2 therefore is not sufficient in order to achieve quasi-linear complexity. This now leads
us to apply Kedlaya and Umans’ techniques [40], and their extensions in [53, 28], for efficient modular composition
over a finite field (Corollary 4.1) and power projection by transposition (Corollary 4.2).

Given three polynomials f , g, h ∈ K[x] with deg( f ) < n and deg(g) < n where n = deg(h), the problem of modular
composition is to compute f (g) mod h [11]. (The problem is more fundamentally stated over a ring.) At the very
beginning in this case, we benefit from the fact that for such polynomials the division with remainder can be computed
using Õ(n) arithmetic operations [22, Sec. 9.1]. One of the difficulties in the bivariate case is to be able to start from
an analogous point, we mean from an efficient division with remainder modulo I. Once this is achieved, the approach
of [40] can be followed for both modular composition and power projection. This is what has been accomplished
in [53] (multivariate case) and [28] (special case g = x), with respective shapes of the ideal I that we have already
mentioned. We proceed in the same way, and integrate the new division (normal form) algorithm into the overall
process. We therefore do not repeat all the details for the proof of Theorem 4.1 and its corollaries, and refer the reader
to the stem papers. As for Proposition 3.2 our change is the way in which the ideal is represented, which leads to a
new modular bivariate projection algorithm in Corollary 4.2.

The first main ingredient is to reduce the problem of division (of modular composition), to divisions with smaller
input degrees and to a problem of multipoint evaluation [40, Pb. 2.1]. More precisely, Theorem 4.1 shows that the
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problem of computing the normal form of f ∈ K[x]<δ modulo I can be reduced, for 2 ≤ dε < δ, to normal forms
of polynomials of x- and y-degrees less than dεd log δ and dεe log δ, respectively, and to multipoint evaluation. Here,
remember the notations d = max{degx a, degx b} and e = max{degy a, degy b}. The Sylvester matrix Sy is ny×ny overK.

Theorem 4.1 ([40, Thm. 3.1], generalized in [53, 28]). Consider f ∈ K[x] of degree less than δ, and an arbitrary
integer 2 ≤ dε < δ. Assume that the Sylvester matrices Sx and Sy associated to a and b are column reduced, and
|K| > l(dε − 1) max{d − 1, ny − 1} where l = dlogdε (δ)e. If δ = O(de) then f (x) rem I can be computed using Õ(d2

ε de)
arithmetic operations in K, plus one multivariate multipoint evaluation of a polynomial with l variables over K and
individual degrees less than dε , at O(l2d2

ε de) points in Kl.

Proof. The following six steps are those of the proof of [40, Thm. 3.1].

1. We first appeal to the inverse Kronecker substitution [40, Dfn. 2.3], in order to map f to a polynomial with l
variables and degree less than dε in each variable. This K-linear map from K[x]<δ to K[z0, . . . , zl−1]<(dε ,...,dε ) is
defined as follow. For 0 ≤ k < δ, the monomial xk is sent to zk0

0 zk1
1 . . . zkl−1

l−1 , where k0, k1, . . . , kl−1 are the coefficients
of the expansion of k in base dε . This is extended linearly to K[x]<δ, and f is mapped in this way to a polynomial
φ ∈ K[z0, . . . , zl−1]<(dε ,...,dε ). The map is injective on K[x]<δ and is computed in linear time using monomial bases.

2. Then we compute the polynomials χi = xdi
ε rem I in K[x, y]<(d,ny), for i = 0, . . . , l − 1. This corresponds to l ex-

ponentiations by dε modulo I. By successive bivariate multiplications [22, Sec. 8.4], each followed by a reduction
modulo the ideal, this can be done in time Õ(de) from Proposition 3.1.
A key property is that f (x) rem I = φ(χ0, . . . , χl−1) rem I. This leads to the idea of first computing φ(χ0, . . . , χl−1)
by evaluation-interpolation, and to perform only afterwards the reduction modulo the ideal. We have that the
degree of φ(χ0, . . . , χl−1) is at most δ′ = l(dε − 1)(d − 1) in x, and η′ = l(dε − 1)(ny − 1) in y.

3. We choose subsets K1 and K2 ofK or cardinalities δ′+1 and η′+1, respectively. By multipoint bivariate evaluation,
we compute all values µi, j,k = χi(λ j, λk) ∈ K for i = 0, . . . , l − 1 and (λ j, λk) ∈ K1 × K2. Using univariate
evaluation [22, Sec. 10.1], variable by variable, this can be done using Õ(lδ′η′) hence Õ(d2

ε de) operations (ny ≤ 2e).
4. This is followed by all the evaluations φ(µ1, j,k, . . . , µl, j,k), which is multipoint evaluation of a polynomial with l

variables, with individual degrees less than dε , at (δ′ + 1)(η′ + 1) points in Kl.
5. From there, φ(χ0, . . . , χl−1) is recovered using bivariate interpolation from its values just obtained at K1 × K2, this

uses Õ(d2
ε de) operations in a way similar to multipoint bivariate evaluation above.

6. Finally, f (x) rem I = φ(χ0, . . . , χl−1) rem I. We know from Proposition 3.1 that this costs Õ(δ′η′) operations,
which is Õ(d2

ε de). ut

In line with [40, Thm 7.1] and [53, 28], thanks to fast multipoint evaluation [40, Cor. 4.5], we now can bound the
cost of the reduction of a univariate polynomial modulo the ideal.

Corollary 4.1. LetK be a finite field Fq. Assume that the Sylvester matrices Sx and Sy associated to a and b are column
reduced, and consider f ∈ Fq[x] of degree less than δ = 4de. For every constant ε > 0, if q ≥ δ1+ε , then f rem I can
be computed using O((de)1+ε log(q)1+o(1)) bit operations.

Proof. Depending on ε, we choose a large enough constant integer c for dε = dδ1/ce to be sufficiently small compared
to de. We have in particular, dε < δε , and l = dlogdε (δ)e ≤ c. For δ large enough this leads to l(dε − 1) max{d −
1, ny − 1} ≤ q and therefore we can apply Theorem 4.1. We know that f rem I can be computed using Õ(d2

ε de)
operations in Fq, which is O(de)1+ε , plus the cost of the associated multipoint evaluation. Then we use the fact that for
every constant γ > 0, there is an algorithm for evaluating a polynomial in Fq[z0, . . . , zl−1]<(dε ,...,dε ) at n points in Fl

q using
(dl
ε+n)1+γ log(q)1+o(1) bit operations, when the individual degrees dε are sufficiently large, and the number of variables l

is at most do(1)
ε [40, Cor. 4.5]. Considering the evaluation parameters in Theorem 4.1 and l ≤ c, for everyγ > 0, the

cost of the multipoint evaluation then is O((δ + d2
ε de)1+γ log(q)1+o(1)), which allows to obtain the claimed complexity

bound. ut

As it has been said before, our presentation is simplified compared to the one of [40]. The dependence in q, in
complexity bounds analogous to the one in Corollary 4.1, is made explicit and written using polylogarithmic functions
in [53]. The study of [28] uses an explicit function of slow increase for the number of variables of the multipoint eval-
uation problem. Sharper bounds and improved algorithms can be found in [27, 5] for multipoint evaluation, and [29]

11



for multivariate modular composition over finite fields. Since we rely also on a solution for the dual problem, and that
it is not treated in the latter references, we remain essentially based on [40].

In a similar way to what we did in Section 3.4 we now transpose the algorithm of Corollary 4.1. Our reasoning is
that of [40, Thm 7.7], [53, Thm. 3.3] and [28, Prop. 1] for modular power projection. We use the notation ϕ of Eq. (4)
for the normal form map.

Corollary 4.2. Let K be a finite field Fq. Assume that the Sylvester matrices Sx and Sy associated to a and b are
column reduced. Let ` be a linear form in the dual of Fq[x, y]<(d,ny). For every constant ε > 0, if q ≥ δ1+ε with δ = 4de,
then the projections (` ◦ ϕ)(xi) for 0 ≤ i < δ can be computed using O((de)1+ε log(q)1+o(1)) bit operations.

Proof. From Eq. (6), we have to compute ϕT
δ−1,0(`). The claim follows from the transposition principle (Section 3.4)

applied to the successive algebraic steps of the normal form algorithm of Corollary 4.1, in reverse order. The non-
algebraic portions of the algorithm involved in multipoint evaluation are treated by means of [40, Thm. 7.6]. The steps
of the algorithm are given in the proof of Theorem 4.1 [40, Thm. 3.1]. The four of them that depend on the input f have
to be considered, these are Steps 1, 4, 5, and 6, that we see as Fq-linear maps. The last step 6 is reduction modulo I, the
transpose is obtained from Proposition 3.2. Step 5 is bivariate interpolation, computed by interpolating in x then in y.
This is transposed using two transposed univariate interpolation [36, 9]. Step 4 is multivariate evaluation using [40,
Cor. 4.5]. The transpose is given by [40, Thm. 7.6] when the ambient dimension is equal to the number of evaluation
points, i.e. the linear map can be represented by a square matrix. The general case in which we are, with a larger
number of evaluation points, is treated as in the proof of [40, Thm. 7.7] using several instances of the square case with
a cost that fits the claimed bound. Finally, the transpose of the inverse Kronecker substitution at Step 1 is a projection
that takes linear time. In view of the transposition principle and of [40, Thm. 7.6], the algorithm obtained from those
transpositions computes the power projections using O((de)1+ε log(q)1+o(1)) bit operations, as in Corollary 4.1. ut

5 Non-singular leading matrices using random shifts and reversals

In order to exploit the powers projections of Corollary 4.2 for a minimal polynomial computation, and derive the last
invariant factor of the Smith normal form of Sy, we need to address a column reducedness issue. This is what we do
in this section. If the input polynomials a and b lead to Sx and Sy with singular leading coefficients, then we construct
two new polynomials a′ and b′ which allow to get around the difficulty.

Lemma 5.1 (Conditioning of Sx). Given α ∈ K not a root of Resx(a, b) (the ideal is zero-dimensional), in arithmetic
time Õ(de) we can compute two polynomials a′ and b′ with degrees as those of a and b, such that the new Sylvester
matrix Sx

′ is column reduced and the Smith normal form of Sy
′ is that of Sy.

Proof. Consider a(1)(x, y) = a(x, y + α) and b(1)(x, y) = b(x, y + α). The new Sylvester matrix S(1)
x with respect to x has

a non-singular constant term since (Resx(a, b))(α) , 0. The Smith normal form of S(1)
y is equal to the Smith normal

form of Sy. Indeed, let Qα,k ∈ K
k×k be the matrix of the endomorphism that shifts a polynomial of degree less than k

by α; Qα,k is lower triangular with unit diagonal. We have

S(1)
y = Qα,ea+eb Sy diag(Q−1

α,eb
,Q−1

α,ea
), (7)

hence S(1)
y and Sy are unimodularly equivalent. Then we consider the reversed polynomials a′ and b′ of a(1) and b(1) with

respect to y, using the respective degrees ea and eb. Note that a′ and b′ must keep the same y-degrees, otherwise S(1)
x

could not have a non-singular constant coefficient; for the same reason, the new matrix Sx
′ associated to a′ and b′ is

column reduced. On the other hand, the Smith form with respect to y is unchanged since

Sy
′ = Jea+eb S(1)

y diag(Jeb , Jea ), (8)

where Jk is the reversal matrix of dimension k. The cost is dominated by the one of at most 2(d+1) shifts of polynomials
of degree at most e in K[y], see e.g. [6][Chap. 1, Pb. 3.5]. ut

12



Note that Lemma 5.1 preserves the Smith normal form of Sy but not necessarily its Hermite form. From Lemma 2.3,
a′ = b′ = 0 has no roots at infinity with respect to y, so the last invariant factor of Sy is the minimal polynomial of
the multiplication by x in the new quotient algebra (Lemma 2.1). The latter may have changed, with an extra factor
coming from possible roots at infinity for a = b = 0.

We now do the same type of manipulation for the column reducedness of Sy and need a preliminary observation on
reversed polynomial matrices. The reversal by columns of a matrix polynomial is the matrix whose entries are reversed
with respect to the degree of their column.

Lemma 5.2 (Reversed Smith normal form). The last invariant factor of the reversal of A ∈ K[x]n×n by columns is
the reversal of the last invariant factor of A made monic and multiplied by some power of x.

Proof. Let X in K[x]n×n with a determinant which is a power of x be such that the reversal R of A by columns
is A(1/x)X. Let SA be the Smith normal form of A, with unimodular matrices U and V such that AV = USA. We have

RX−1V(1/x) = U(1/x)SA(1/x). (9)

Let S ∗A be the diagonal matrix whose entries are the reversals of the diagonal entries of S , made monic by division by
their leading coefficients. By multiplying Eq. (9) by an appropriate power of x, we obtain

RW1 = W2S ∗A

for two matrices W1 and W2 in K[x]n×n whose determinants are powers of x. Now let S ∗R be the diagonal matrix
whose diagonal entries are the invariant factors of R divided by the largest power of x they contain. Using similar
manipulations as above we get

S ∗RW3 = W4S ∗A

for two matrices W3 and W4 in K[x]n×n whose determinants are also powers of x. By the multiplicativity of the
Smith normal form [49, Ch. II, Thm. 2.15], noting that S ∗A and S ∗R are themselves in Smith normal form, we arrive at
S ∗R = S ∗A. The claim follows since the last invariant factor of R is the one of S ∗R multiplied by some power of x, and the
last invariant factor of S ∗A is the reversal of the last invariant factor of A divided by its leading coefficient. ut

Lemma 5.3 (Conditioning of Sx and Sy). Given α, β ∈ K not roots of Resx(a, b) and Resy(a, b) ∈ K[x], respectively
(the ideal is zero-dimensional), in arithmetic time Õ(de) we can compute two polynomials a′ and b′ with degrees as
those of a and b such that: the new Sylvester matrices Sx

′ and Sy
′ are column reduced; the last invariant factor of Sy

can be deduced from that of Sy
′ using Õ(de) additional arithmetic operations.

Proof. By applying Lemma 5.1 we can assume that a and b are such that Sx is column reduced, without modifying Sy

so Resy(a, b) either. We use arguments similar to those used in the proof of Lemma 5.1. We first take a(1)(x, y) =

a(x + β, y) and b(1)(x, y) = b(x + β, y). The new Sylvester matrix S(1)
y with respect to y has a non-singular constant

term since (Resy(a, b))(β) , 0. We denote the last invariant factor of Sy by σ ∈ K[x]. The last invariant factor of S(1)
y

is σβ = σ(x + β) and satisfies σβ(0) , 0. Then we consider the reversed polynomials a′ and b′ of a(1) and b(1) with
respect to x, using the respective degrees da and db. Since S(1)

y has a non-singular constant term, a′ and b′ keep the
same x-degrees and the new matrix Sy

′ associated to a′ and b′ is column reduced.
We now prove the claims with a′ and b′. We have just seen for the column reducedness of the y-Sylvester matrix.

With respect to x, the Sylvester matrix is column reduced after the initial application of Lemma 5.1. Using Eqs. (7)
and (8) from the proof of the latter lemma, now with β, S(1)

x , and Sx
′, we deduce that Sx

′ remains column reduced.
Finally, we compute the last invariant factor σ of Sy from the one of Sy

′. The Sylvester matrix Sy
′ is the reversal of S(1)

y .
Let σ′β the reversal polynomial of σβ. From Lemma 5.2 we deduce that the last invariant factor of Sy

′ is cxlσ′β for some
integer l ≥ 0, and a non-zero c ∈ K. Since σβ(0) , 0, the reversal of cxlσ′β is cσβ. Using a shift by −β and making the
polynomial monic provides us with σ.

In addition to the cost in Lemma 5.1, we essentially have to perform at most 2(e + 1) shifts of polynomials of
degree at most d in K[x], plus a final shift of a polynomial of degree O(de), see e.g. [6][Chap. 1, Pb. 3.5]. ut
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6 Invariant factor computation

For an appropriate random linear form `, the minimal polynomial µ of the multiplication by x in K[x, y]/〈a, b〉 is also
the one of the linearly generated sequence (` ◦ ϕ)(xi)i≥0 with high probability [58, Sec. 4; 39, Lem. 6]. In essence, this
minimal polynomial approach is a transcription of that of Wiedemann [64], with multiplication matrices rather than
sparse ones [57]. This allows, in this section, to first bound the complexity of the minimal polynomial problem from
the power projection complexity bound we have obtained previously (Corollary 4.2). Since µ has degree at most 2de,
it can ideed be computed from the first 4de terms of the power projection sequence. However, this is only valid when
the involved Sylvester matrices are column reduced. Up to random shifts and reversals (Section 5), we then describe
how the last invariant factor of Sy can be derived from the minimal polynomial of the multiplication by x in a slightly
modified quotient algebra.

Theorem 6.1. Consider two polynomials a, b ∈ Fq[x, y]≤(d,e) and assume that the associated Sylvester matrices
Sx and Sy are column reduced. For every constant ε > 0, if q ≥ δ1+ε with δ = 4de, there exists a randomized
Monte Carlo algorithm which computes the minimal polynomial of the multiplication by x in Fq[x, y]/〈a, b〉 using
O((de)1+ε log(q)1+o(1)) bit operations. The algorithm returns a divisor of the minimal polynomial, to which it is equal
with probability at least 1 − 2de/q ≥ 1/2.

Proof. The modular power projections as in Corollary 4.2 are computed for a random linear map `. The sequence {(`◦
ϕ)(xi)}i≥0 is linearly generated; its minimal polynomial µ′ is a divisor of the minimal polynomial µ of the multiplication
by x inA. Since deg µ ≤ 2de, µ′ can be computed using Õ(de) additional operations inK from the 4de first terms of the
sequence [22, Algo 12.9]. We can conclude by proving that µ′ = µ with high probability. Following the construction
of ϕ in Eq. (4), one can define the multiplication map

ψ : Fq[x, y]<(d,ny) → Fq[x, y]<(d,ny)
f 7→ x f rem I. (10)

For an appropriate basis of Fq[x, y]<(d,ny) as a Fq-vector space, we consider that ψ is represented by a matrix M ∈

F
(dny)×(dny)
q and that 1 is represented by the vector u ∈ Fdny

q . According to what we have seen in Section 3.4, we also
represent linear forms in the dual of Fq[x, y]<(d,ny) by vectors in Fdny

q . With this, µ is the minimal polynomial of u
with respect to M. Hence for a random linear form ` represented by v ∈ Fdny

q , the minimal polynomial of the linearly
generated sequence {(`◦ϕ)(xi)}i≥0 = {vTMiu}k≥0 is µ with probability at least 1−deg µ/q [37, Lem. 2; 38, Lem. 1]. ut

Corollary 6.1. Consider two coprime polynomials a, b ∈ Fq[x, y]≤(d,e). For every constant ε > 0, there exists a ran-
domized Monte Carlo algorithm which computes the last invariant factor of the Sylvester matrix associated to a and b
with respect to either x or y, using O((de)1+ε log(q)1+o(1)) bit operations. The algorithm either returns the target in-
variant factor, and this with probability at least 1/2, one of its divisors, or “failure”.

Proof. When q ≥ (12de)1+ε , we randomly choose random α and β in Fq, then check whether Sx
′ and Sy

′ as in Lemma 5.3
are column reduced. The check is performed using Õ(d+e) operations, see Lemma 2.1 and e.g. [22, Thm. 11.10]. Since
Resy(a, b) ∈ Fq[x] and Resx(a, b) ∈ Fq[y] have degree at most 2de, the probability of success is at least 1 − 4de/q.
If the Sylvester matrices are column reduced, from Theorem 6.1, we then compute the minimal polynomial of the
multiplication by x (or y) in the quotient algebra associated to Sy

′ (or Sx
′). Lemma 2.1 tells us that we have actually

computed the last invariant factor of Sy
′ (or Sx

′) with probability at least 1 − 2de/q. From Lemma 5.3 again, we finally
derive the last invariant factor of Sy (or Sx). If q is too small, we construct an extension field of Fq with cardinality at
least (12de)1+ε , that is of degree O(log(de)). This can be done using an expected number of Õ((log(de)2+log(de) log(q))
bit operations [57] (see also [14] and [22, Sec. 14.9] in this regard). We then work in this extension, the costs induced
are logarithmic factors which do not change our target cost bound, and the probability of success can be adjusted. ut

7 Elimination ideal and resultant

When the system a = b = 0 has no roots at infinity with respect to y, from Lemma 2.1 and Corollary 6.1 we obtain
a Monte Carlo algorithm for computing the minimal polynomial of the multiplication by x, it is a generator of the
elimination ideal 〈a, b〉 ∩ Fq[x].
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Still with the absence of roots at infinity with respect to y, Lemma 2.2 indicates that if, moreover, the ideal has a
shape basis I = 〈µ(x), y − λ(x)〉 [23, 2], then the resultant of a and b is known. Note that the extra non-zero constant in
Lemma 2.2 can be computed at the cost of Õ(de) operations in Fq using evaluation in x.

For the resultant, we see that this leads to a weaker genericity assumption than in [28], where the total degree
is used. Assume that the ideal 〈a, b〉 is in generic position for the lexicographic order y > x so that resy(a, b) = cµ
with c , 0 ∈ Fq. In this case, from Lemma 2.2 and Lemma 2.1 again, we can compute the resultant as the last invariant
factor of Sy without the use of an additional condition with respect to the graded reverse lexicographic order [28].
This further allows us to deal with more general situations than that of the total degree since we obtain the resultant
in all cases where Resy(a, b) = cµ. This condition is sufficient but not necessary (Examples 2.1 and 3.3), the resultant
can be computed when Sy has a unique non-trivial invariant factor. Note that the latter property can be formalized in
the Zariski sense, for example by relying on ideals in general position with no roots at infinity [16, Sec. 3.5]. More
precisely, there exists a non-zero polynomial Φ in 2(d + 1)(e + 1) variables over K, such that the Smith form of Sy has
a unique non-trivial invariant factor if Φ does not vanish at the coefficients of a and b.

The generic resultant algorithm becomes of the Las Vegas type when the degree of the resultant is known in
advance, especially if the Sylvester matrix Sy is column reduced. In the latter case the degree of the resultant is indeed
the sum of the column degrees of Sy [32, Eq. (24), p. 385].
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