Supporting Information

Cu/ZnAl_xO_y synthesized by sol-gel method with polyacrylic acid as catalysts for glycerol hydrogenolysis

Table of Contents

Page 2

Table S1. Compositions, Cu_{exp} and Cu mean particle size estimated by N_2O chemisorption, ZnO and Cu mean crystallite size estimated by XRD for the catalysts.

Page 3

Table S2. Catalysts stoichiometries estimated by ICP and EDX analyses.

Figure S1. Evolution of mass (%) in function of temperature (°C) during TGA (5 °C min⁻¹) under 3% v/v H₂/Ar for (a) 4Cu-11Al-S1, (b) 9Cu-11Al-S1, (c) 11Cu-11Al-S1, (d) 18Cu-24Al-S1, (e) 25Cu-16Al-S1, (f) 16Cu/22Al-S2 and (g) 26Cu/11Al-S2.

Page 4

Figure S2. N₂O experiment for 9Cu-11Al-S1 as representative example. Temporal evolution of MS intensity profiles associated with m/z = 40 (Ar), 44 (N₂O) and 28 (N₂).

Page 5

Figure S3. FTIR spectra of adsorbed pyridine following outgas treatment at (a) 200 °C, (b) 250 °C and (c) 300 °C for 18Cu-24Al-S1, 11Cu-11Al-S1 and 21Cu-S1 (Spectra normalized to 10 mg cm⁻²).

Page 6

Figure S4. Representative SEM images associated with (a) 26Cu/11Al-S2 and (b) 16Cu/22Al-S2.

Page 7

Figure S5. Temporal evolution of the conversion of glycerol (%) for the catalysts synthesized by (I) 11Cu-11Al-S1-P and (II) S2 method. Aqueous solution of glycerol (100 mL of 0.23 M glycerol in water; 500 mg of catalyst, 200°C and 30 bar of H₂).

Scheme S1. Reaction pathway observed for the hydrogenolysis of glycerol over Cu/ZnAl_xO_y.

Page 8

Table S3. Results for the hydrogenolysis of glycerol.

Page 9

Figure S6. XRD diffractograms associated with11Cu-11Al-S1, 25Cu-16Al-S1, 26Cu/11Al-S2 and 21Cu-S1 after reactions. Symbols refer to the main peaks associated with (\bullet) ZnO (P63mc, PDF 01-079-0205), (\bigstar) Cu (Fm-3m, PDF 04-13-9963) and (∇) Zn₅(CO₃)₂(OH)₆ (C21m, PDF 00-019-1458).

Table S4. Surface area and mean Cu crystallite size of representative catalysts, before and after reaction.

Entry	Catalysts	Stoichiometry	Cu ^a (wt%)	Al ^a (wt%)	Zn ^a (wt%)	Cu _{exp} (m ² Cu g ⁻¹ Cu) ^c	d _{Cu} (nm) ^c , N ₂ O	d _{Cu} (nm) ^d , XRD	d_{ZnO} (nm) ^d , XRD
1	4Cu-11Al-S1	$Cu_{0.1}Zn_{1.0}Al_{0.5}$	4.3	10.6	55.3	131.2	5	4	5
2	9Cu-11Al-S1	$Cu_{0.2}Zn_{1.0}Al_{0.5}$	9.1	10.6	52.2	88.5	7	7	5
3	11Cu-11Al-S1	$Cu_{0.2}Zn_{1.0}Al_{0.6}$	10.6	10.7	46.9	83.8	8	9	4
4	18Cu-24Al-S1	$Cu_{1.2}Zn_{1.0}Al_{3.7}$	17.8	23.5	15.5	76.1	9	13	2
5	25Cu-16Al-S1	$Cu_{0.9}Zn_{1.0}Al_{1.4}$	25.0	16.5	28.8	63.0	11	12	3
6	21Cu-S1	$Cu_{0.3}Zn$	20.6	0	63.4	14.6	46	16	20
7	11Cu-11Al-S1-P	$Cu_{0.2}Zn_{1.0}Al_{0.6}$	11.3	11.0	47.7	-	-	36	13
8a	11Al	$Zn_{1.0}Al_{0.5}$	-	11.7 ^e	55.7 ^e	-	-	-	8
8b	26Cu/11Al-S2	$Cu_{0.7}/Zn_{1.0}Al_{0.7}$	26.1	11.4 (11) ^f	37.1 (48) ^f	51.2	13	9	4
9a	22A1	$Zn_{1.0}Al_{2.5}$	-	25.9 ^e	25.5 ^e	-	-	-	-
9b	16Cu/22Al-S2	$Cu_{0.8}/Zn_{1.0}Al_{2.4}$	16.5	22.2 $(21)^{f}$	22.4 (20) ^f	52.5	13	5	-

Table S1. Compositions (Cu, Al, Zn contents), Cu_{exp} and Cu mean particle size estimated by N₂O chemisorption, ZnO and Cu mean crystallite size estimated by XRD for the catalysts.

^a Based on ICP analysis; ^b based on elemental analysis; ^c based on N₂O chemisorption; ^d based on XRD diffractogram, ^e after calcination at 400 °C; ^f theoretical value

Catalysts	ICP ^a	SEM ^b
11Cu-11Al-S1	$Cu_{0.2}Zn_{1.0}Al_{0.6}$	$Cu_{0.2}Zn_{1.0}Al_{0.4}$
18Cu-24Al-S1	$Cu_{1.2}Zn_{1.0}Al_{3.7}$	$Cu_{1.2}Zn_{1.0}Al_{3.3}$
26Cu/11Al-S2	$Cu_{0.7} / Zn_{1.0} Al_{0.7}$	$Cu_{0.6}/Zn_{1.0}Al_{1.0}$

Table S2. Catalysts stoichiometries estimated by ICP and EDX analyses.

 a based on ICP analyses; estimated error $n_{Cu}\!/n_{Zn}\pm0.1;\,n_{Al}\!/n_{Zn}\pm0.1$

 b based on EDX analyses; homogeneity $n_{Cu}\!/n_{Zn}\pm0.1;\,n_{Al}\!/n_{Zn}\pm0.2$

Figure S1. Evolution of mass (%) in function of temperature (°C) during TGA (5 °C min⁻¹) under 3% v/v H₂/Ar for (a) 4Cu-11Al-S1, (b) 9Cu-11Al-S1, (c) 11Cu-11Al-S1, (d) 18Cu-24Al-S1, (e) 25Cu-16Al-S1, (f) 16Cu/22Al-S2 and (g) 26Cu/11Al-S2.

Figure S2. N₂O experiment for 9Cu-11Al-S1 as representative example. Temporal evolution of MS intensity profiles associated with m/z = 40 (Ar), 44 (N₂O) and 28 (N₂).

Figure S3. FTIR spectra of adsorbed pyridine following outgas treatment at (a) 200 °C, (b) 250 °C and (c) 300 °C for 18Cu-24Al-S1, 11Cu-11Al-S1 and 21Cu-S1 (Spectra normalized to 10 mg cm⁻²).

Figure S4. Representative SEM images associated with (a) 26Cu/11Al-S2 and (b) 16Cu/22Al-S2.

Figure S5. Temporal evolution of the conversion of glycerol (%) for the catalysts synthesized by (I) 11Cu-11Al-S1-P and (II) S2 method. Aqueous solution of glycerol (100 mL of 0.23 M glycerol in water; 500 mg of catalyst, 200°C and 30 bar of H_2).

Scheme S1. Reaction pathway observed for the hydrogenolysis of glycerol over Cu/ZnAl_xO_y.

Entry	Catalysts	Y _{PDO} (%) ^a	Cu efficiency	Cu efficiency Initial rate		
			n_{gly}/n_{Cu} V ₀		$n_{gly}/m_{catalyst}$	
			$(\mathbf{mol}_{gly} \ \mathbf{mol}_{Cu}^{-1})^{\mathbf{a},\mathbf{b},\mathbf{c}}$	$(\mathbf{mmol}_{gly} \mathbf{g}_{Cu}^{-1} \mathbf{h}^{-1})^{b,d}$	$(\mathbf{mmol}_{gly} \mathbf{g}^{\text{-}1})^{\mathbf{a},\mathbf{e}}$	
1	4Cu-11Al-S1	20	14.3	28.0	9.8	
2	9Cu-11Al-S1	45	16.9	11.1	24.1	
3	11Cu-11Al-S1	61	20.6	20.4	34.4	
4	18Cu-24Al-S1	67	13.2	13.1	36.9	
5	25Cu-16Al-S1	80	11.3	15.1	44.5	
6	21Cu-S1	36	5.7	3.7	18.6	
7	11Cu-11Al-S1-P	41	11.8	7.7	20.9	
8	26Cu/11Al-S2	72	10.6	13.4	43.3	
9	16Cu/22Al-S2	40	7.9	5.1	29.7	

Table S3. Results for the hydrogenolysis of glycerol.

^a After 24 h reaction: Aqueous solution of glycerol (100 mL of 0.23 M glycerol in water; 500 mg of catalyst, 200°C and 30 bar of H₂).

^b Values based on the total amount of Cu in the sample (based on the ICP analysis and the mass of catalyst employed during the reaction)

^c The Values are given with an absolute accuracy of $\pm 0.4 \text{ mol}_{gly} \text{ mol}_{Cu}^{-1}$ ^d The Values are given with an absolute accuracy of $\pm 0.3 \text{ mmol}_{gly} \text{ g}_{Cu}^{-1} \text{ h}^{-1}$ ^e The Values are given with an absolute accuracy of $\pm 1 \text{ mmol}_{gly} \text{ g}^{-1}$

The TOF (h^{-1}) values are directly linked to Cu efficiency, with TOF (h^{-1}) = Cu efficiency / 24

Figure S6. XRD diffractograms associated with11Cu-11Al-S1, 25Cu-16Al-S1, 26Cu/11Al-S2 and 21Cu-S1 after reactions. Symbols refer to the main peaks associated with (\bigoplus) ZnO (P63mc, PDF 01-079-0205), (\bigstar) Cu (Fm-3m, PDF 04-13-9963) and (\blacktriangledown) Zn₅(CO₃)₂(OH)₆ (C21m, PDF 00-019-1458).

Before reaction		ction	After reac	Leaching (% wt.) ^c			
Catalysts	Surface area (m ² g ⁻¹) ^a	d _{Cu} (nm) ^b	Surface area (m ² g ⁻¹) ^a	d _{Cu} (nm) ^b	Cu	Al	Zn
11Cu-11Al-S1	76	9	146	21	< 0.1	< 0.1	10
25Cu-16Al-S1	97	12	142	18	< 0.1	< 0.1	10 (1) ^d
21Cu-S1	24	16	33	28	< 0.1	< 0.1	10
26Cu/11Al-S2	111	9	115	20	< 0.1	< 0.1	15

Table S4. Surface area and mean Cu crystallite size of representative catalysts, before and after reaction.

^abased on N₂ physisorption, ^bbased on XRD analysis, ^c % of the initial amount of metal lost during the reaction, based on ICP analyses of the solution after reaction, ^d value after Test 2.