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Energy efficiency, real-time response, and data transmission reliability are important objectives during

networked systems design. This paper aims to develop an efficient task mapping scheme to balance these

important but conflicting objectives. To achieve this goal, tasks are triplicated to enhance reliability and

mapped on the wireless nodes of the networked systems with Dynamic Voltage and Frequency Scaling (DVFS)

capabilities to reduce energy consumption while still meeting real-time constraints. Our contributions include

the mathematical formulation of this task mapping problem as mixed-integer programming that balances node

energy consumption, enhancing data reliability, under real-time and energy constraints. Compared with the

State-of-the-Art (SoA), a joint-design problem is considered in this paper, where DVFS, task triplication, task

allocation, and task scheduling are optimized concurrently. To find the optimal solution, the original problem

is linearized, and a decomposition-based method is proposed. The optimality of the proposed method is proved

rigorously. Furthermore, a heuristic based on the greedy algorithm is designed to reduce the computation

time. The proposed methods are evaluated and compared through a series of simulations. The results show

that the proposed triplication-based task mapping method on average achieves 24.84% runtime reduction and

28.62% energy saving compared to the SoA methods.

Additional Key Words and Phrases: Networked Systems, Task Triplication and Mapping, DVFS, Problem

Linearization and Decomposition

1 INTRODUCTION
Networked systems, e.g., Wireless Sensor and Actuator Networks (WSAN) or Cyber-Physical

Systems (CPS), monitor and control the physical world using wireless nodes, equipped with sensors,

controllers, and actuators, supporting several functions of system applications [20, 30]. From the

hardware perspective, wireless nodes are usually energy-constrained, especially when they are

supplied by batteries. To reduce energy consumption, modern hardware platforms are enhanced

with Dynamic Voltage and Frequency Scaling (DVFS) [8, 21], able to adjust the supply voltage

and the clock frequency of the processors, where task execution takes place. From the software

perspective, system applications usually consist of several dependent tasks that exchange data.

In-network processing is typically used to reduce network traffic [35]. Following the “Fog/Edge-

computing” model [1, 16, 27], instead of collecting and sending all data to a remote Base Station

(BS), a part of the data processing is done on the wireless nodes, reducing the amount of data sent

to the BS. Hence, sensing, processing, and controlling tasks, and data transmissions should be

executed in a real-time and energy-efficient manner, meeting the time and the energy constraints

of the system application, in order to improve the overall system performance (e.g., enhancing

federated learning in mobile edge computing) [40, 43].

Meanwhile, wireless nodes have become susceptible to attacks [39], and data transmissions

should be reliable. During a False Data Injection (FDI) attack [28], an attacker compromises the

data to obtain manipulated data that can bypass the basic “faulty data” detection mechanisms. An

FDI attack can be implemented by compromising physical sensors and the sensor communication

network [33]. Such attacks may lead to significant costs due to unplanned failures or loss of human

lives in safety-critical applications, e.g., in predictive maintenance systems used in industry 4.0

the attack can propagate from the sensor to the machine learning part and fool the system by
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predicting a delayed asset failure or maintenance interval [33]. Common countermeasure methods

for FDI are based on contingency analysis [32]. To analyze the contingencies, state estimation (e.g.,

Kalman filter) [9] is usually used to model the system’s dynamics. Thus, the estimation errors are

influenced by the accuracy of the system model and the length of the historical data (i.e., time

window size). Considering a system is executed under real-time constraints, potentially only parts

of the data can be analyzed within the available time. An alternative to the aforementioned methods

is to apply task replication. By replicating tasks, data reliability is enhanced, while knowledge of

the system model is not required. Executing task replicas on different wireless nodes provides

redundant information on the receiver node, which can correct any information obtained by a

compromised sensor or communication network due to the FDI.

Overall, energy efficiency, real-time application execution and reliable transmission are crucial

goals in the networked systems [25], and they are significantly affected by way of deploying tasks

over the wireless nodes. The way allocating tasks affects the number of required data transmissions.

The fewer data is exchanged among the nodes, the lower the energy consumption and time for

transmissions, and the probability of the data being attacked during the transmission. However,

not all tasks can be assigned on the same node, due to task requirements for specific sensors or

actuators, and the application’s real-time constraint. Task replication can occur when tasks are not

assigned on the same nodes to protect the data from attacks. However, task replication also affects

energy consumption and real-time execution. Furthermore, an asymmetric task allocation will

deplete the energy budget of some nodes, leading to network connectivity issues. Therefore, task

replication and deployment should be jointly addressed to achieve energy balance, under real-time

and energy constraints.

Mapping tasks on a single platform, with one or several processors, are the well-known problems,

e.g., task mapping to minimize energy consumption considering DVFS [8, 21, 22] and to improve

system reliability using task replication [17, 42, 46]. However, works to address task deployment

over different platforms, e.g., wireless nodes, considering task mapping, DVFS, reliability, and

real-time constraints are rare. On the one hand, networked approaches focusing on task mapping [4,

12, 24, 35, 41] usually assume that the task results are reliable, as long as the task execution process

is finished and the task data is transmitted to the destination, before the task deadline. On the other

hand, networked approaches focusing on reliability use false data detection and correction, which

are based on state estimation [9, 28, 31, 44]. Compared with the State-of-the-Art (SoA), this work

addresses the problem of mapping dependent tasks on wireless nodes with DVFS to balance the

energy consumption, under real-time and energy constraints. The main contributions of this paper

are summarized as follows:

(1) Task triplication scheme and DVFS scheme are integrated into the task mapping process to

enhance data transmission reliability and to exploit the trade-off between task execution time

and energy consumption, respectively. We formulate the mapping of tasks on the wireless nodes

as a Mixed-Integer Non-Linear Programming (MINLP), taking into account the application

and the system constraints (e.g., task deadline, task dependencies, data routing, node type, and

node energy). Nonlinear items are caused by the product of optimization variables related to

frequency assignment, task allocation, and task triplication decisions. These items are replaced

by auxiliary variables and additional linear constraints, so as to transform the MINLP problem

into a Mixed-Integer Linear Programming (MILP), without degrading the quality of the solution.

(2) We propose an Optimal Reliability Task Mapping (ORTM) algorithm based on Benders de-

composition to efficiently and optimally solve the transformed problem. The ORTM algorithm

decomposes the original problem into two smaller easier-to-solve problems. It solves them

iteratively, by using the solution of one problem in the other. The first problem is an Integer
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Linear Programming (ILP) for task allocation, task triplication, and frequency assignment. The

second problem is a Linear Programming (LP) for task scheduling. By iterating the problems,

the optimality of the solution is guaranteed. We also design a novel Heuristic Reliability Task

Mapping (HRTM) algorithm based on the greedy approach. Compared with the ORTM algo-

rithm, the HRTM algorithm removes the iteration process and solves the problems sequentially.

Therefore, the computation time of the HRTM algorithm is significantly reduced.

(3) Finally, we perform extensive simulations to analyze the solution quality, the computation

time, and the scalability of the proposed task mapping scheme and the proposed ORTM and

HRTM algorithms. The results show that the proposed task mapping scheme outperforms other

task mapping schemes in terms of data transmission reliability and node energy efficiency.

In addition, the ORTM algorithm finds the optimal solution with reduced computation time

(24.84% on average), compared to SoA optimal methods, and the HRTM algorithm runs ∼100
times faster than the ORTM algorithm with an average cost of 26.35% in energy efficiency.

The remainder of this paper is organized as follows. Section 2 discusses the related work. Section 3

presents the system model, and Section 4 formulates the task mapping problem. Section 5 and

Section 6 design the optimal and the heuristic algorithms, respectively. Finally, Section 7 shows the

simulation results, and Section 8 concludes this work.

2 RELATEDWORK
Table 1 depicts some representative SoA task mapping approaches targeting a single platform, i.e.,

an Embedded System (ES), and several distributed platforms, i.e., a Networked System (NS). The

tasks can be Independent (I) or Dependent (D). The optimization variables include Task Allocation

(TA), Task Scheduling (TS), Task Replicas (TR), and Frequency Assignment (FA). During the task

mapping process, constraints regarding Energy Supply (E) and Real-Time (T) can exist. To enhance

data reliability, methods based on task Replication (R) and State estimation (S) are used. According

to different problem structures and system requirements, Optimal (O) and Heuristic (H) algorithms

are designed to solve the corresponding problems.

For embedded systems, approaches exist that focus on minimizing the energy consumption or

minimizing the task makespan under energy supply and real-time constraints [8, 13, 21, 22, 38].

Since the optimization variables of task allocation and frequency assignment are binary, the

corresponding task mapping problems are usually described as Mixed-Integer Programming (MIP).

For independent tasks, the task mapping problem is modeled as an MINLP in [22]. By relaxing

the binary variables to continuous variables, the problem is transformed into a convex problem

and is solved by the interior point method. A similar task mapping problem without DVFS but

with task migration is studied in [38], where the MILP-based task mapping problem is first relaxed

to two subproblems, and then the subproblems are solved by the polynomial-time methods. For

dependent tasks, additional variables and constraints are introduced into the problem to describe

the dependency between the tasks. The task mapping problem is described by an MINLP in [21].

The nonlinear items, which are caused by the quadratic function, can be approximated by a linear

function, and then the relaxed MILP problem is solved by the B&B method [5]. DVFS is combined

with Dynamic Power Management (DPM) in [8] to enhance energy efficiency. The task mapping

problem is formulated as an MILP and is solved according to the commercial solver, such as CPLEX.

In [13], each processor has a fixed frequency level, and, thus, the task mapping problem is an MILP,

which can be optimally solved by a hybrid algorithm based on Benders decomposition [3]. However,

reliability is not considered in these works.

Task replication techniques have been widely used in embedded systems to deal with task

reliability problems [17, 42, 46]. By replicating the tasks, the system’s reliability can be improved as
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Table 1. Classification of some task mapping approaches

Ref.
Task Platform Variables Constraints Reliability Solution
I D ES NS TA TS TR FA E T R S O H

[8]

√ √ √ √ √ √ √ √

[13]

√ √ √ √ √ √

[21]

√ √ √ √ √ √ √ √

[22]

√ √ √ √ √ √ √

[38]

√ √ √ √ √ √

[17]

√ √ √ √ √ √ √

[42]

√ √ √ √ √ √ √ √

[46]

√ √ √ √ √ √ √ √ √

[35]

√ √ √ √ √

[4]

√ √ √ √ √

[12]

√ √ √ √ √ √ √

[24]

√ √ √ √ √

[41]

√ √ √ √ √ √ √ √

[28]

√ √ √ √

[31]

√ √ √ √

[44]

√ √ √ √

[9]

√ √ √ √

Prop.

√ √ √ √ √ √ √ √ √ √ √

it is extremely unlikely to have errors on two or more copies at the same time. In [17], full replication

is used, i.e., each task is replicated once at least. With more tasks being replicated, higher reliability is

achieved. To enhance task reliability and reduce energy consumption, energy-efficient fault-tolerant

scheduling is designed in [42] considering parallel task execution on processors. A similar problem

is considered in [46] and a bi-objective genetic algorithm is proposed to balance two conflicting

objectives: low energy consumption and high task reliability. However, task mapping approaches,

focusing on a single platform (embedded systems), usually assume that the data communication cost

is very small compared to the task execution cost. Thus, no data communication cost is considered

during task replication and mapping. However, the approaches focusing on networked systems,

where the platforms are distributed, additional energy and time are required by the nodes for data

transmission and reception, which restricts DVFS and task replication options.

For the network systems, since the tasks are usually dependent [4, 12, 24, 35, 41], it is crucial to

reduce the communication and computation costs (energy and time) on the nodes. The energy-

aware task mapping problem is considered in [4, 35] to minimize the energy consumption of the

nodes, and the problem is described by an Integer Non-Linear Programming (INLP). The original

problem is first transformed into an ILP, and then solved by the greedy algorithm. The problem

of maximizing the overall network lifetime under energy supply or task deadline constraints is

considered in [12, 24]. Based on the problem structure, a game-theoretic approach is proposed

in [12] to perform distributed computing, and a heuristic is designed in [24] to enhance system

response time. However, DVFS is not taken into account in the above studies. Some works consider

nodes with DVFS capabilities. In [41], the node energy consumption is optimized by determining

the frequency-to-task assignment and the task-to-node allocation. This problem is formulated as

an MINLP and solved by heuristics. The above studies mainly focus on minimizing the energy

consumption of the nodes, without considering reliability. The task results are assumed to be

corrected if the execution and transmission of the tasks are finished before the deadlines.
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Approaches exist that focus on detecting FDI attacks on networked systems, based on state

estimation. In [28], a Kalman Filter (KF) is used to estimate system states and a 𝜒2-detector is

employed to evaluate the discrepancies between the estimated data and the measured data, so

as to detect the existence of FDI. In [31], based on the KF and 𝜒2-detector combination, a Linear-

Quadratic-Gaussian (LQG) controller is used to improve the resilience of the system to against FDI.

To improve the success rate of detecting the FDI attacks, a summation (SUM) detector is proposed

in [44]. Compared with the 𝜒2 detector, the SUM detector not only utilizes the current compromise

information but also collects all historical information to reveal the threat. The Probability Density

Functions (PDF) of measurements and control commands, and their confidence intervals, are esti-

mated using historical records in [9]. If the values exceed a certain level, the measurements/control

commands are re-generated by a Maximum Likelihood Estimation (MLE). However, these methods

are based on state estimation, requiring knowing the system model in advance (e.g., state transition

matrix 𝑨, input matrix 𝑩, and measurement matrix 𝑪), and thus, the accuracy of the used system

model affects the stability of the system. Furthermore, real-time and energy supply constraints are

not considered, and task allocation and scheduling decisions are fixed, since a remote Base Station

(BS) is employed for processing the data from the wireless nodes, with the aim to minimize the

estimation/control errors.

The aforementioned works address task mapping either on single platforms, focusing on minimiz-

ing energy consumption for computation, potentially including task replication, or on distributed

platforms, minimizing the computation and the communication costs of the nodes for the net-

worked systems. This work belongs to the second category and enhances the existing approaches

by proposing a task mapping method that considers task replication and DVFS, under real-time

and energy constraints, without requiring knowledge of the system model.

3 APPLICATIONS AND SYSTEMMODEL
3.1 Motivational Example
We will use the example of Fig. 1 to describe and motivate our approach. Fig. 1 depicts a part of a

networked control system with six wireless nodes {𝜃1, . . . , 𝜃6}, used for applications such as smart

grid [23], fire detection [34], home automation [45], and precision agriculture [2]. Nodes 𝜃1, 𝜃2 and

𝜃3 are equipped with sensors, while node 𝜃4 is equipped with an actuator to monitor and control the

physical variables, e.g., the voltage, current or phase in the grid [28], the temperature of POIs (points

of interest) of the forest region [34], the illumination intensity for the indoor environment [45],

and the soil moisture in the agriculture [2]. The application needs to monitor the physical variables

periodically, process the readings of the sensors to compute the required action, and adjust the

outputs of the actuators to control the physical variables. In Fig. 1, 𝜏1 corresponds to the sensing task,

𝜏4 corresponds to the data processing task, and 𝜏7 is the control task. 𝜏4 requires the sensing data

from 𝜏1 to compute the action of the actuator. 𝜏7 requires the output of 𝜏4 to adjust the actuator’s

output. Therefore, allocating tasks 𝜏1 and 𝜏7 is restricted to the nodes equipped with sensors and

actuators, respectively. However, the data processing task 𝜏4 can be placed on any node. Note that,

due to the network topology and the task dependencies, the task allocation decisions influence not

only the communication and computation energy of the nodes but also the communication time

between the tasks.

The FDI attack can be implemented by compromising the sensor communication network [33].

Therefore, when dependent tasks, e.g., 𝜏1 and 𝜏4, are executed on different nodes, e.g., 𝜃1 and 𝜃5,

there is a possibility to attack the node and alternate 𝜏1’s output, during its transmission to 𝜏4. This

work combines the benefits of task mapping with task triplication to improve the reliability of the

networked system against FDI attacks. Using task triplication, the data reliability is enhanced, and
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𝜏6

𝜏2

𝜏1

𝜏5

𝜏7
Task graph

𝜃2

𝜃3 𝜃4

𝜏4

𝜏3

𝜃1 𝜃5

Node graph

Sensor task

Original task dependency

Task allocation
Node communication

Processing task

Control task
Second copy
Third copy

Original tasks Task replicas

Task replica dependency
Sensor node
Actuator node

Basic node

FDI

Fig. 1. Motivational example.

the influence caused by fault data can be mitigated [19], while knowledge of the system model is not

required. The redundant information on the receiver node can be used to correct the information

obtained by a compromised communication link. For instance, in Fig. 1, 𝜏2 and 𝜏3 are the second

and the third replicas of 𝜏1, respectively. Under the task allocation {𝜏1 → 𝜃1, 𝜏2 → 𝜃2, 𝜏3 → 𝜃3,

𝜏4 → 𝜃5}, two routing paths exist {𝜃2 → 𝜃3 → 𝜃4 → 𝜃5 (blue), 𝜃1 → 𝜃5 (red)}. Therefore, 𝜃5 will
receive task data (𝜏1, 𝜏2 and 𝜏3) from 𝜃1 and 𝜃4. If 𝜃1 suffers from an FDI attack when it transmits the

data of 𝜏1 to 𝜏4, the data can be corrected by comparing with the results of 𝜏2 and 𝜏3, before used as

input to task 𝜏4. Executing task replicas on different nodes allows sending the information through

different routing paths, dealing with FDI attacks with long duration. For instance, compared with

the task allocation {𝜏2 → 𝜃3, 𝜏3 → 𝜃3}, the task allocation {𝜏2 → 𝜃2, 𝜏3 → 𝜃3} has a longer time

interval when 𝜃3 transmitting the data of 𝜏2 and 𝜏3, since a node will receive and transmit the task

data in sequence.

Similarly, task 𝜏4 should be triplicated to enhance the reliability of the data that have to be

transmitted to task 𝜏7. During the task mapping process, if dependent tasks 𝜏4 and 𝜏7 are executed

on the same node (e.g., 𝜃4), there is no need to triplicate task 𝜏4, since no wireless transmission

takes place between 𝜏4 and 𝜏7. However, not all dependent task can be assigned to the same node,

due to the task requirements in specific sensors and actuators, e.g., {𝜏1 → 𝜃1, 𝜏2 → 𝜃2, 𝜏3 → 𝜃3,

𝜏7 → 𝜃4}, the energy supply of the nodes and the real-time response of the application. Based on

the above discussion, the task allocation and the task triplication problems are coupled and affected

by real-time and energy constraints.

3.2 System Model
3.2.1 Task Model. We consider a real-time frame-based application that consists of a task set T
with 𝑁 periodic real-time tasks {𝜏1, . . . , 𝜏𝑁 }, which includes the original task, its second and third

replicas. The tasks are considered dependent and non-preemptive [8, 21]. Each task 𝜏𝑖 is described

by a tuple {𝑒𝑖 , 𝑡𝑎𝑖 , 𝑡𝑠𝑖 , 𝑑𝑖 , 𝑝𝑖 }. 𝑒𝑖 is the number of execution cycles of task 𝜏𝑖 , measured in Worst-Case

Execution Cycles (WCEC). 𝑡𝑎𝑖 , 𝑡
𝑠
𝑖 , 𝑑𝑖 and 𝑝𝑖 are the arrival time, the start time, the deadline, and

the period of task 𝜏𝑖 , respectively. Without loss of generality, task arrival times are equal to the

time instance 0. We assume that the deadline and the period of task 𝜏𝑖 are equal to 𝐻 , which is

given by the frame of the application. The proposed approach can be adapted for task sets with

different periods, usually consisting of independent tasks. This can be achieved by unrolling the

tasks in the hyper-period (i.e., the least common multiple of all task periods {𝑝1, . . . , 𝑝𝑁 } [8, 29]),
and setting the task arrival time and the task deadline, accordingly. The dependency between the

tasks is given by a binary matrix 𝒐 = [𝑜𝑖 𝑗 ]𝑁×𝑁 . If 𝑜𝑖 𝑗 = 1, 𝜏𝑖 precedes 𝜏 𝑗 and 𝜏 𝑗 is the closest task of
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𝜏𝑖 , else, 𝑜𝑖 𝑗 = 0. Let 𝑠𝑖 𝑗 denote the size of data that task 𝜏𝑖 generates for task 𝜏 𝑗 . If tasks 𝜏𝑖 and 𝜏 𝑗 are

independent, we have 𝑠𝑖 𝑗 = 0.

3.2.2 Node Model. We consider a networked system with 𝑀 wireless nodes {𝜃1, . . . , 𝜃𝑀 }. The
nodes have different capabilities, with {𝜃1, . . . , 𝜃𝑀𝑠

} describing the nodes equipped with sensors and
{𝜃𝑀𝑠+1, . . . , 𝜃𝑀𝑠+𝑀𝑎

} describing the nodes equippedwith actuators, and𝑀𝑠+𝑀𝑎 ≤ 𝑀 . The processors

of the nodes, where the computation takes place, use the same Instruction Set Architecture (ISA),

and they support DVFS. Each processor has 𝐿 different discrete Voltage/Frequency (V/F) levels

{(𝑣1, 𝑓1), . . . , (𝑣𝐿, 𝑓𝐿)}. As the relationship between voltage and frequency is almost linear [8, 10],

when the supply voltage is changed, the clock frequency is changed accordingly. The execution

time of task 𝜏𝑖 , when it is executed at frequency 𝑓𝑙 on a processor, is given by 𝑒𝑖/𝑓𝑙 . The power
consumption of a processor is modeled as the sum of static power 𝑃𝑠 and dynamic power 𝑃𝑑 , that

is 𝑃𝑐 = 𝑃𝑠 + 𝑃𝑑 [8, 11]. The static power and dynamic power, under a given voltage/frequency

level (𝑣𝑙 , 𝑓𝑙 ), are calculated as 𝑃𝑠
𝑙
= 𝐶𝑠𝑣

𝜌

𝑙
and 𝑃𝑑

𝑙
= 𝐶𝑑 𝑓𝑙𝑣

2

𝑙
, respectively, where 𝐶𝑠

, 𝜌 and 𝐶𝑑
are the

constants depending on the type of processor. We assume that a processor switches to the idle

mode immediately when it has no task to execute, and the idle power is 𝑃0
. The time and energy

required for the transition are incorporated into the task execution time and energy [22] since they

are very small compared to the time and energy required for task execution.

4 PROBLEM FORMULATION
The aim of this work is to balance the energy consumption of the nodes, under real-time and energy

constraints, exploiting task mapping, task triplication and DVFS. Therefore, we need to determine

1) which node the task should execute on (task allocation); 2) what voltage/frequency level should

be used for the task (voltage/frequency assignment); 3) whether a task needs to be triplicated

or not (task triplication); 4) when a task starts its execution (task scheduling). To formulate the

task mapping problem, we introduce the following variables: 1) binary variable 𝑞𝑖𝑘 = 1 if task

𝜏𝑖 is allocated to node 𝜃𝑘 , else, 𝑞𝑖𝑘 = 0; 2) binary variable 𝑐𝑖𝑙 = 1 if task 𝜏𝑖 is executed with the

voltage/frequency (𝑣𝑙 , 𝑓𝑙 ), else, 𝑐𝑖𝑙 = 0; 3) binary variable ℎ𝑖 = 1 if task 𝜏𝑖 is triplicated, else, ℎ𝑖 = 0;

and 4) continuous variable 𝑡𝑠𝑖 represents the start time of task 𝜏𝑖 .

We assume that the system runs with a given routing protocol. Therefore, the routing energy cost

matrix 𝒓 = [𝑟𝑚𝑛𝑘 ]𝑀×𝑀×𝑀 and the routing time matrix 𝒕 = [𝑡𝑚𝑛]𝑀×𝑀 are known in advance [35],

where 𝑟𝑚𝑛𝑘 is the energy consumed of node 𝜃𝑘 , when routing a unit of data from 𝜃𝑚 to 𝜃𝑛 , while

𝑡𝑚𝑛 is the time required to transmit unit of data from 𝜃𝑚 to 𝜃𝑛 . For presentation reasons, let

L ≜ {1, . . . , 𝐿},N ≜ {1, . . . , 𝑁 },M ≜ {1, . . . , 𝑀},M𝑠 = {1, . . . , 𝑀𝑠 },M𝑎 = {𝑀𝑠 + 1, . . . , 𝑀𝑠 +𝑀𝑎},
and G ≜ {1, . . . ,𝐺}, where 𝐺 is the number of original tasks. The main parameters and variables

used in the problem formulation are summarized in Table 2.

4.1 Preliminary
4.1.1 Task Triplication Scheme. Since we consider task triplication and task triplication acts on

original tasks, we initially analyze the relationship between the allocation and the triplication of

original tasks. Let 𝛼𝑖 = 3𝑖 − 2 (1 ≤ 𝑖 ≤ 𝐺) denote the subscript of the original task. Therefore,

tasks 𝜏𝛼𝑖+1 and 𝜏𝛼𝑖+2 are the second and third replicas (duplication and triplication) of task 𝜏𝛼𝑖 ,

respectively. If ℎ𝛼𝑖 = 0, task 𝜏𝛼𝑖 is not triplicated, and thus, we have 𝑒𝛼𝑖+1 = 𝑒𝛼𝑖+2 = 0. As a result,

tasks 𝜏𝛼𝑖+1 and 𝜏𝛼𝑖+2 do not exist. They can be removed from the task graph and will not generate

any data for the successors or receive any data from the predecessors.

To determine the value of ℎ𝛼𝑖 , let’s consider the simple example shown in Fig. 1, where 𝜏1, 𝜏4 and

𝜏7 are the original tasks. Let S1 = {𝜏1, 𝜏4} and S2 = {𝜏4, 𝜏7}. Based on the elements in the task sets

S1 and S2, we get the following four cases: 1) Tasks in S1 are allocated to different nodes, while
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Table 2. Symbols used in the problem formulation

Parameters

𝑀𝑎 number of actuator nodes

𝑀𝑠 number of sensor nodes

𝑀 number of wireless nodes

𝐺 number of original tasks

𝑁 number of original tasks and replicas

𝐿 number of voltage/frequency levels

𝜃𝑘 the 𝑘𝑡ℎ node

𝜏𝑖 the 𝑖𝑡ℎ task

(𝑣𝑙 , 𝑓𝑙 ) the 𝑙𝑡ℎ voltage/frequency level

𝐻 scheduling horizon

𝑃𝑠
𝑙

static power of processor running on (𝑣𝑙 , 𝑓𝑙 )
𝑃𝑑
𝑙

dynamic power of processor running on (𝑣𝑙 , 𝑓𝑙 )
𝑃0 idle power of processor

𝐸𝑟
𝑘

energy supply of node 𝜃𝑘
𝑒𝑖 execution cycles of task 𝜏𝑖

𝑜𝑖 𝑗 =

{
1 if task 𝜏𝑖 proceeds 𝜏 𝑗 and 𝜏 𝑗 is the nearest task of 𝜏𝑖

0 else

𝑁𝛼𝑖 number of tasks that dependent on task 𝜏𝛼𝑖
𝑠𝑖 𝑗 size of data that task 𝜏𝑖 produces for task 𝜏 𝑗
𝑟𝛽𝛾𝑘 energy consumed of node 𝜃𝑘 when routing unit of data from 𝜃𝛽 to 𝜃𝛾

𝑡𝛽𝛾 time required to transmit unit of data from 𝜃𝛽 to 𝜃𝛾

Integer Variables

𝑞𝑖𝑘 =

{
1 if task 𝜏𝑖 is allocated to node 𝜃𝑘

0 else

𝑐𝑖𝑙 =

{
1 if task 𝜏𝑖 is executed with frequency 𝑓𝑙

0 else

𝑢𝑖 𝑗 =

{
1 if task 𝜏𝑖 proceeds task 𝜏 𝑗

0 else

ℎ′
𝑖

=

{
1 if task 𝜏𝑖 exists

0 else

Continuous Variables

𝑡𝑠
𝑖

start time of task 𝜏𝑖

tasks in S2 are allocated to the same node; 2) Tasks in S1 are allocated to different nodes and tasks

in S2 are allocated to different nodes; 3) Tasks in S1 are allocated to the same node and tasks in S2

are allocated to the same node; 4) Tasks in S1 are allocated to the same node, while tasks in S2 are

allocated to different nodes.

For 𝐶𝑎𝑠𝑒1, 𝜏1 is triplicated, while 𝜏4 is not triplicated (ℎ1 = 1 and ℎ4 = 0). For 𝐶𝑎𝑠𝑒2, 𝜏1 and 𝜏4 are

triplicated (ℎ1 = ℎ4 = 1). For𝐶𝑎𝑠𝑒3, 𝜏1 and 𝜏4 are not triplicated (ℎ1 = ℎ4 = 0). For𝐶𝑎𝑠𝑒4, 𝜏4 requires

triplication, since 𝜏4 and 𝜏7 are allocated to different nodes. In addition, 𝜏1 is triplicated, as 𝜏4, 𝜏5 and

𝜏6 are allocated to different nodes. The decision regarding the tasks in S2 propagates to 𝜏1, which

needs to be also triplicated, even if the tasks in S1 are allocated to the same node. From the above
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example, we observe that the triplication decision is not only related to the allocation of original

tasks, but also to the allocation of the replicas.

To formulate the relation between task triplication and task allocation decisions, we introduce

a parameter 𝑁𝛼𝑖 and an auxiliary variable𝑀𝛼𝑖 for the original task 𝜏𝛼𝑖 , where 𝑁𝛼𝑖 represents the

number of tasks that dependent on task 𝜏𝛼𝑖 , while𝑀𝛼𝑖 represents the number of dependent tasks

that are assigned to the same node as task 𝜏𝛼𝑖 . Based on the dependency between the tasks, the

values of 𝑁𝛼𝑖 and𝑀𝛼𝑖 are given by:

𝑁𝛼𝑖 =
∑

𝑗 ∈N
𝑜𝛼𝑖 𝑗 , ∀𝑖 ∈ G, (1)

𝑀𝛼𝑖 =
∑

𝑗 ∈N

∑
𝑘∈M

𝑜𝛼𝑖 𝑗𝑞𝛼𝑖𝑘𝑞 𝑗𝑘 , ∀𝑖 ∈ G, (2)

In Fig. 1, as 𝜏1 and 𝜏4 are original tasks, we have 𝑁1 = 3 and 𝑁4 = 1 for both cases due to

𝒐 =



0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0


.

For 𝐶𝑎𝑠𝑒1, we have 𝑀1 ≤ 2 as 𝜏1 and 𝜏4 are assigned to different nodes, and 𝑀4 = 1 as 𝜏4 and

𝜏7 are assigned to the same node. Similarly, we get 𝑀1 ≤ 2 and 𝑀4 = 0 for 𝐶𝑎𝑠𝑒2; 𝑀1 = 3 and

𝑀4 = 1 for𝐶𝑎𝑠𝑒3;𝑀1 ≤ 2 and𝑀4 = 0 for𝐶𝑎𝑠𝑒4. Since𝑀𝛼𝑖 ≤ 𝑁𝛼𝑖 , based on the triplication decisions

regarding the tasks 𝜏1 and 𝜏4, we can get the following conclusion: if𝑀𝛼𝑖 = 𝑁𝛼𝑖 , ℎ𝛼𝑖 = 0, else (i.e.,

𝑀𝛼𝑖 ≤ 𝑁𝛼𝑖 − 1), ℎ𝛼𝑖 = 1. Note that this 𝑖 𝑓 − 𝑒𝑙𝑠𝑒 description is not a standard constraint and 𝑀𝛼𝑖

is changed with task allocation variable 𝑞𝑖𝑘 . We introduce the following lemma to determine the

value of ℎ𝛼𝑖 .

Lemma 4.1. Let 𝑥 and 𝑦 denote an integer variable and a binary variable, respectively, where 𝑥 is
bounded by 0 ≤ 𝑥 ≤ 𝑚.𝑚 ≥ 0 and 𝑛 ≥ 0 are the positive integer constants. The case: if 𝑥 = 𝑛 → 𝑦 = 0,
else (i.e., 𝑥 ≤ 𝑛 − 1), 𝑦 = 1 can be given by the linear constraint 𝑥−𝑛+1

𝑚+1 ≤ 1 − 𝑦 ≤ 𝑥+1
𝑛+1 .

Proof. If 𝑥 = 𝑛, we have 𝑥−𝑛+1
𝑚+1 > 0 and

𝑥+1
𝑛+1 = 1. Therefore, we get 𝑦 = 0. On the other hand, if

𝑥 ≤ 𝑛 − 1, since
𝑥−𝑛+1
𝑚+1 ≤ 0 and

𝑥+1
𝑛+1 < 1, we obtain 𝑦 = 1. □

According to Lemma 4.1, the task triplication decision ℎ𝛼𝑖 is determined by the following con-

straint:

𝑀𝛼𝑖 − 𝑁𝛼𝑖 + 1

𝑁 + 1

≤ 1 − ℎ𝛼𝑖 ≤
𝑀𝛼𝑖 + 1

𝑁𝛼𝑖 + 1

, ∀𝑖 ∈ G, (3)

where 𝑁𝛼𝑖 and𝑀𝛼𝑖 are given by Eq. (1) and Eq. (2), respectively.

4.1.2 Node Communication Cost. Let 𝒉′ = [ℎ′
1
, . . . , ℎ′

3𝐺
]𝑇 = [1, ℎ1, ℎ1, . . . , 1, ℎ𝛼𝑖 , ℎ𝛼𝑖 , . . . , 1, ℎ𝐺 , ℎ𝐺 ]𝑇 .

With the variable ℎ′
𝑖 , the number of execution cycles of task 𝜏𝑖 is ℎ

′
𝑖𝑒𝑖 and the size of data, that task

𝜏𝑖 generate for task 𝜏 𝑗 , is ℎ
′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗 . If task 𝜏𝑖 is assigned to node 𝜃𝑚 , while task 𝜏 𝑗 (𝑖 ≠ 𝑗 ) is assigned

to node 𝜃𝑛 (𝑚 ≠ 𝑛), the communication energy consumed by node 𝜃𝑘 (𝑘 ≠𝑚 ≠ 𝑛) to send the data

from 𝜏𝑖 to 𝜏 𝑗 is ℎ
′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗𝑞𝑖𝑚𝑞 𝑗𝑛𝑟𝑚𝑛𝑘 . Therefore, the communication energy of node 𝜃𝑘 is

𝐸𝑡
𝑘
=
∑

𝑖∈N

∑
𝑗 ∈N

∑
𝑚∈M

∑
𝑛∈M

ℎ′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗𝑞𝑖𝑚𝑞 𝑗𝑛𝑟𝑚𝑛𝑘 , ∀𝑘 ∈ M . (4)

To execute a task 𝜏 𝑗 , we must collect all the data generated from its previous dependent tasks. If

task 𝜏𝑖 is assigned to node 𝜃𝑚 , while task 𝜏 𝑗 is assigned to node 𝜃𝑛 , the time required to transmit the
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data with size ℎ′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗 , from 𝜃𝑚 to 𝜃𝑛 , is ℎ

′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗𝑞𝑖𝑚𝑞 𝑗𝑛𝑡𝑚𝑛 . We assume that the used communication

protocol prevents concurrent reception of messages from multiple nodes, avoiding data conflicts.

Hence, the time required to collect the data for the execution of task 𝜏 𝑗 is

𝑡𝑟𝑗 =
∑

𝑖∈N

∑
𝑚∈M

∑
𝑛∈M

ℎ′
𝑖ℎ

′
𝑗𝑠𝑖 𝑗𝑞𝑖𝑚𝑞 𝑗𝑛𝑡𝑚𝑛, ∀𝑗 ∈ N . (5)

4.1.3 Task Execution Cost. Since the voltage/frequency level is adjusted in a discretemanner, similar

to the previously published work [22], the time and the energy required to execute task 𝜏𝑖 with

ℎ′
𝑖𝑒𝑖 cycles are 𝑡

𝑐
𝑖 =

∑
𝑙 ∈L 𝑐𝑖𝑙

ℎ′𝑖𝑒𝑖
𝑓𝑙

and 𝐸𝑐𝑖 =
∑

𝑙 ∈L 𝑐𝑖𝑙
ℎ′𝑖𝑒𝑖
𝑓𝑙
𝑃𝑐
𝑙
, respectively. On this basis, considering

the task allocation decision 𝑞𝑖𝑘 , the time and the energy required to execute the tasks assigned to

node 𝜃𝑘 are

𝑡𝑛
𝑘
=
∑

𝑖∈N
𝑞𝑖𝑘𝑡

𝑐
𝑖 =

∑
𝑖∈N

∑
𝑙 ∈L

𝑞𝑖𝑘𝑐𝑖𝑙
ℎ′
𝑖𝑒𝑖

𝑓𝑙
, ∀𝑘 ∈ M, (6)

𝐸𝑛
𝑘
=
∑

𝑖∈N
𝑞𝑖𝑘𝐸

𝑐
𝑖 =

∑
𝑖∈N

∑
𝑙 ∈L

𝑞𝑖𝑘𝑐𝑖𝑙
ℎ′
𝑖𝑒𝑖

𝑓𝑙
𝑃𝑐
𝑙
, ∀𝑘 ∈ M . (7)

Therefore, the computation energy of node 𝜃𝑘 is

𝐸𝑑
𝑘
= 𝐸𝑛

𝑘
+ (𝐻 − 𝑡𝑛

𝑘
)𝑃0, ∀𝑘 ∈ M, (8)

where 𝐻 − 𝑡𝑛
𝑘
is the idle time of the processor during the scheduling horizon 𝐻 .

4.2 Primal Problem
To balance the energy consumption of the nodes and increase the system lifetime and connectivity,

we can minimize the maximum energy consumption on a single node. Thus, the objective function

is set to 𝐹 = max∀𝑘∈M{(𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
)/𝐸𝑖𝑛𝑖

𝑘
}. With this aim, the task mapping problem (Primal Problem,

PP) has the form

PP : min

𝒒,𝒄,𝒖,𝒉′,𝒕𝑠
𝐹 (9)

s.t. (3), (10) − (19).

The constraints of the problem are described as follows:

(1) Task Allocation Constraints: Note that each task 𝜏𝑖 is assigned to one node (no task migration),

and the tasks requiring nodes equipped with the sensor or actuator are restricted. The original

task 𝜏𝛼𝑖 and its replicas 𝜏𝛼𝑖+1 and 𝜏𝛼𝑖+2 should not be assigned to the same node. Therefore, we

have ∑
𝑘∈M

𝑞𝑖𝑘 = 1, ∀𝑖 ∈ N , (10)

𝑞𝑖𝑘 = 1, ∀(𝑖, 𝑘) ∈ D, (11)

0 ≤ 𝑞𝛼𝑖𝑘 + 𝑞𝛼𝑖+1𝑘 + 𝑞𝛼𝑖+2𝑘 ≤ 1, ∀𝑖 ∈ G, ∀𝑘 ∈ M, (12)

where D is the set of task and node indexes that have restricted task allocation.

(2) Frequency Assignment Constraint: Since each task 𝜏𝑖 is executed with one voltage/frequency

level, we get ∑
𝑙 ∈L

𝑐𝑖𝑙 = 1, ∀𝑖 ∈ N . (13)

(3) Task Sequence Constraint: For the dependent tasks (e.g., tasks 𝜏1, 𝜏4 and 𝜏7 in Fig. 1), no matter if

they are assigned to the same node or different nodes, the start time and the end time of tasks

is bounded. Therefore, we have

𝑡𝑠𝑗 + (1 − 𝑜𝑖 𝑗 )𝐻 ≥ 𝑡𝑠𝑖 + 𝑜𝑖 𝑗 (𝑡𝑒𝑖 − 𝑡𝑠𝑖 ) + 𝑡𝑟𝑗 , ∀𝑖 ≠ 𝑗 ∈ N , (14)
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where 𝑡𝑠𝑖 and 𝑡
𝑒
𝑖 are the start time and the end time of task 𝜏𝑖 , respectively (0 ≤ 𝑡𝑠𝑖 ≤ 𝑡𝑒𝑖 ≤ 𝐻 ).

Therefore, the task execution time is given by 𝑡𝑐𝑖 = 𝑡𝑒𝑖 − 𝑡𝑠𝑖 . If 𝑜𝑖 𝑗 = 1 (i.e., 𝜏𝑖 precedes 𝜏 𝑗 and 𝜏 𝑗 is

the closest task of 𝜏𝑖 ), we have 𝑡
𝑠
𝑗 ≥ 𝑡𝑒𝑖 + 𝑡𝑟𝑗 , else (i.e., 𝑜𝑖 𝑗 = 0), Eq. (14) is always satisfied.

(4) Task Non-Preemption Constraint: Note that some tasks can be independent in the task set (e.g.,

tasks 𝜏1, 𝜏2 and 𝜏3 in Fig. 1). When independent tasks are assigned to the same node, we need to

determine their execution sequence. To this end, we introduce a binary variable 𝑢𝑖 𝑗 . Since each

node executes no more than one task at the same time, we get

𝑡𝑒𝑖 ≤ 𝑡𝑠𝑗 + (2 − 𝑞𝑖𝑘 − 𝑞 𝑗𝑘 )𝐻 + (1 − 𝑢𝑖 𝑗 )𝐻, ∀𝑖 ≠ 𝑗 ∈ N , ∀𝑘 ∈ M . (15)

If tasks 𝜏𝑖 and 𝜏 𝑗 are assigned to the same node (e.g., 𝑞𝑖𝑘 = 𝑞 𝑗𝑘 = 1), Eq. (15) is meaningful, else,

Eq. (15) is always true. With 𝑞𝑖𝑘 = 𝑞 𝑗𝑘 = 1, if 𝑢𝑖 𝑗 = 1 (i.e., 𝜏𝑖 precedes 𝜏 𝑗 ), we have 𝑡
𝑒
𝑖 ≤ 𝑡𝑠𝑗 , else

(i.e., 𝑢𝑖 𝑗 = 0), Eq. (15) is always satisfied.

(5) Task Deadline Constraint: The system is periodic, i.e., it operates in rounds [35] (scheduling

horizon 𝐻 ), where in each round, all the tasks are executed once. Therefore, the constraint

related to the task deadline is

𝑡𝑒𝑖 ≤ 𝐻, ∀𝑖 ∈ N . (16)

(6) Energy Constraints: Let 𝐸𝑠
𝑘
, 𝐸𝑎

𝑘
and 𝐸𝑟

𝑘
denote the sensing energy of the sensor, the acting energy

of the actuator, and the energy supply of the node at the 𝑟 𝑡ℎ round, respectively. Since the total

energy consumed by node 𝜃𝑘 , during the scheduling horizon 𝐻 , should not exceed its energy

supply, we get

𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
+ 𝐸𝑠

𝑘
≤ 𝐸𝑟

𝑘
, ∀𝑘 ∈ M𝑠 , (17)

𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
+ 𝐸𝑎

𝑘
≤ 𝐸𝑟

𝑘
, ∀𝑘 ∈ M𝑎, (18)

𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
≤ 𝐸𝑟

𝑘
, ∀𝑘 ∈ M, ∀𝑘 ∉ M𝑠 ,M𝑎 . (19)

4.3 Problem Linearization
Due to the products of binary variables (e.g., 𝑞𝑖𝑚𝑞 𝑗𝑛 in Eq. (3), ℎ′

𝑖ℎ
′
𝑗𝑞𝑖𝑚𝑞 𝑗𝑛 and 𝑞𝑖𝑘𝑐𝑖𝑙ℎ

′
𝑖 in Eq. (14),

Eq. (16)–Eq. (19)), the PP is an MINLP problem, which makes it challenging to solve.

Theorem 4.1. The task mapping problem of the networked system (i.e., PP) is NP-hard.

Proof. Please refer to [7] for the details. □

Linearization is an efficient way to simplify the structure of the problem. To linearize the nonlinear

items, we introduce the following lemma.

Lemma 4.2. Let 𝑥 , 𝑦, and 𝑧 denote the binary variables. The nonlinear item 𝑧 = 𝑥𝑦 can be linearized
as follows: 𝑧 ≤ 𝑥 , 𝑧 ≤ 𝑦 and 𝑧 ≥ 𝑥 + 𝑦 − 1.

Proof. The inequalities 𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦 ensure that 𝑧 = 0 if either 𝑥 = 0 or 𝑦 = 0. The inequality

𝑧 ≥ 𝑥 + 𝑦 − 1 makes sure that 𝑧 = 1 if both 𝑥 and 𝑦 are set to 1. □

According to Lemma 4.2, we first introduce an auxiliary (binary) variable 𝛽𝑖𝑚𝑗𝑛 to replace the

nonlinear term 𝑞𝑖𝑚𝑞 𝑗𝑛 , and then add the following constraints into the PP:

{𝛽𝑖𝑚𝑗𝑛 ≤ 𝑞𝑖𝑚, 𝛽𝑖𝑚𝑗𝑛 ≤ 𝑞 𝑗𝑛, 𝛽𝑖𝑚𝑗𝑛 ≥ 𝑞𝑖𝑚 + 𝑞 𝑗𝑛 − 1}, ∀𝑖 ≠ 𝑗 ∈ N , ∀𝑚,𝑛 ∈ M . (20)

Therefore, we have

𝑀𝛼𝑖 =
∑

𝑗 ∈N

∑
𝑘∈M

𝑜𝛼𝑖 𝑗𝛽𝛼𝑖𝑘 𝑗 . (21)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Lei Mo, Qi Zhou, Angeliki Kritikakou, and Xianghui Cao

On this basis, to deal with the nonlinear item ℎ′
𝑖ℎ

′
𝑗𝑞𝑖𝑚𝑞 𝑗𝑛 , we reuse the auxiliary variable 𝛽𝑖𝑚𝑗𝑛 .

Let 𝛾𝑖 𝑗 = ℎ′
𝑖ℎ

′
𝑗 and 𝛿𝑖𝑚𝑗𝑛 = 𝛾𝑖 𝑗𝛽𝑖𝑚𝑗𝑛 . Therefore, if the following constraints are added to the PP:

{𝛾𝑖 𝑗 ≤ ℎ′
𝑖 , 𝛾𝑖 𝑗 ≤ ℎ′

𝑗 , 𝛾𝑖 𝑗 ≥ ℎ′
𝑖 + ℎ′

𝑗 − 1}, ∀𝑖 ≠ 𝑗 ∈ N , (22)

{𝛿𝑖𝑚𝑗𝑛 ≤ 𝛾𝑖 𝑗 , 𝛿𝑖𝑚𝑗𝑛 ≤ 𝛽𝑖𝑚𝑗𝑛, 𝛿𝑖𝑚𝑗𝑛 ≥ 𝛾𝑖 𝑗 + 𝛽𝑖𝑚𝑗𝑛 − 1}, ∀𝑖 ≠ 𝑗 ∈ N , ∀𝑚,𝑛 ∈ M, (23)

Eq. (4) and Eq. (5) can be rewritten as follows:

𝐸𝑡
𝑘
=
∑

𝑖∈N

∑
𝑗 ∈N

∑
𝑚∈M

∑
𝑛∈M

𝑠𝑖 𝑗𝑟𝑚𝑛𝑘𝛿𝑖𝑚𝑗𝑛, ∀𝑘 ∈ M, (24)

𝑡𝑟𝑗 =
∑

𝑖∈N

∑
𝑚∈M

∑
𝑛∈M

𝑠𝑖 𝑗𝑡𝑚𝑛𝛿𝑖𝑚𝑗𝑛, ∀𝑗 ∈ N . (25)

Similarly, let 𝜀𝑖𝑙 = ℎ′
𝑖𝑐𝑖𝑙 and 𝜂𝑖𝑙𝑘 = 𝜀𝑖𝑙𝑞𝑖𝑘 . The nonlinear items ℎ′

𝑖𝑐𝑖𝑙 and ℎ
′
𝑖𝑐𝑖𝑙𝑞𝑖𝑘 can be replaced

by the auxiliary (binary) variables 𝜀𝑖𝑙 and 𝜂𝑖𝑙𝑘 and the following constraints:

{𝜀𝑖𝑙 ≤ ℎ′
𝑖 , 𝜀𝑖𝑙 ≤ 𝑐𝑖𝑙 , 𝜀𝑖𝑙 ≥ ℎ′

𝑖 + 𝑐𝑖𝑙 − 1}, ∀𝑖 ∈ N , ∀𝑙 ∈ L, (26)

{𝜂𝑖𝑙𝑘 ≤ 𝜀𝑖𝑙 , 𝜂𝑖𝑙𝑘 ≤ 𝑞𝑖𝑘 , 𝜂𝑖𝑙𝑘 ≥ 𝜀𝑖𝑙 + 𝑞𝑖𝑘 − 1}, ∀𝑖 ∈ N , ∀𝑙 ∈ L, ∀𝑘 ∈ M . (27)

Therefore, Eq. (6) and Eq. (7) can be rewritten as follows:

𝑡𝑛
𝑘
=
∑

𝑖∈N

∑
𝑙 ∈L

𝜂𝑖𝑙𝑘
𝑒𝑖

𝑓𝑙
, ∀𝑘 ∈ M, (28)

𝐸𝑛
𝑘
=
∑

𝑖∈N

∑
𝑙 ∈L

𝜂𝑖𝑙𝑘
𝑒𝑖

𝑓𝑙
𝑃𝑐
𝑙
, ∀𝑘 ∈ M . (29)

Based on the above analysis, the PP is linearized as follows:

PP1 : min

𝒒,𝒄,𝒖,𝒉′,𝒕𝑠 ,
𝜷,𝜸 ,𝜹,𝜺,𝜼,𝜉

𝜉 (30)

s.t.


𝐸𝑡
𝑘
+𝐸𝑑

𝑘

𝐸𝑖𝑛𝑖
𝑘

≤ 𝜉, ∀𝑘 ∈ M,

(3), (10) − (19), (20), (22), (23), (26), (27),

where 𝜉 is an auxiliary variable, and 𝑀𝛼𝑖 , 𝐸
𝑡
𝑘
, 𝑡𝑟𝑗 , 𝑡

𝑛
𝑘
, and 𝐸𝑛

𝑘
in constraints are given by Eqs. (21),

(24), (25), (28) and (29), respectively.

5 OPTIMAL TASK DEPLOYMENT ALGORITHM
In this section, we propose an Optimal Reliability Task Mapping algorithm, referred to as ORTM, to

find the optimal solution for PP1. The basic idea of the ORTM algorithm comes from the Benders

decomposition [3]. Instead of considering all the variables and constraints simultaneously, the

ORTM algorithm separates the PP1 into smaller, easier-to-solve problems, the Master Problem (MP)

and the Slave Problem (SP). Then, the PP1 is solved by iteratively solving the MP and the SP. Note

that the PP1 has the following abstract form

PP2 : min

𝒙,𝒚
Φ = 𝒇𝑇𝒙 (31)

s.t.

{
𝑨𝒙 ⪯ 𝒃1,

𝑪𝒙 + 𝑫𝒚 ⪯ 𝒃2,

where 𝒙 ≜ (𝒒, 𝒄, 𝒖,𝒉′, 𝜷,𝜸 , 𝜹, 𝜺,𝜼) and 𝒚 ≜ (𝒕𝑠 , 𝜉) denote the vectors of binary and continuous

variables, respectively. The vector 𝒇 represents the coefficients in the objective function. The

matrices 𝑨, 𝑪 and 𝑫 are the coefficients in the constraints. 𝒃1 (𝒃2) is a 𝑢 (𝑣)-dimensional vector.
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Based on the structure of PP2, at the 𝑘𝑡ℎ iteration, the MP and the SP are formulated as follows:

MP : Φ𝑙 (𝑘) =min

𝒙,Φ̂
Φ̂ (32)

s.t.


𝑨𝒙 ⪯ 𝒃1,

𝑪1 : Φ̂ ≥ (𝒇𝑇 + 𝝀𝑇 (𝑖)𝑪)𝒙 − 𝝀𝑇 (𝑖)𝒃2, 1 ≤ 𝑖 ≤ 𝑚,

𝑪2 : 0 ≥ 𝝀̂
𝑇 ( 𝑗) (𝑪𝒙 − 𝒃2), 1 ≤ 𝑗 ≤ 𝑛,

SP : Φ𝑢 (𝑘) =min

𝒚⪰0
𝒇𝑇𝒙 (𝑘) (33)

s.t. 𝑪𝒙 (𝑘) + 𝑫𝒚 ⪯ 𝒃2,

where Φ̂ is an auxiliary variable to facilitate the iterations between MP and SP, and 𝒙 (𝑘) is the MP

solution at the 𝑘𝑡ℎ iteration. 𝑪1 and 𝑪2 are the sets of constraints called Benders cuts (𝑚 + 𝑛 = 𝑘).

By solving the MP and the SP, we obtain a lower bound, Φ𝑙 (𝑘), and an upper bound, Φ𝑢 (𝑘), of
Φ∗

[36], where Φ∗
is the optimal value of Φ. The iteration stops when Φ𝑢 (𝑘) − Φ𝑙 (𝑘) ≤ 𝜀.

The MP accounts for all the binary variables 𝒙 and the associated portion of the objective function

and the constraints of the PP2. The SP includes all the continuous variables 𝒚 and the associated

constraints in the PP2. By solving the Dual Slave Problem (DSP)

DSP : max

𝝀⪰0
(𝒇𝑇 + 𝝀𝑇 𝑪)𝒙 (𝑘) − 𝝀𝑇𝒃2 (34)

s.t. 𝑫 ′𝝀 ⪰ 0,

we obtain the information about the SP portion of the PP2, and this information is communicated

to the MP via Benders cuts, where 𝝀 ≜ [𝜆𝑖 ] are the Lagrange multipliers.

Based on the solution of the DSP, we have the following three cases.

(1) If DSP is infeasible, PP2 has no feasible solution.

(2) If DSP has a bounded solution 𝝀(𝑘), since 1) Φ̂(𝑘) < (𝒇𝑇 + 𝝀𝑇 (𝑘)𝑪)𝒙 (𝑘) − 𝝀𝑇 (𝑘)𝒃2, where
Φ̂(𝑘) is the optimal solution of MP at the 𝑘𝑡ℎ iteration, and 2) 𝒙 (𝑘) is not the optimal solution

of PP2 due to Φ𝑢 (𝑘) − Φ𝑙 (𝑘) > 𝜀, the non-optimal solution 𝒙 (𝑘) is excluded by the constraint

Φ̂ ≥ (𝒇𝑇 + 𝝀𝑇 (𝑘)𝑪)𝒙 − 𝝀𝑇 (𝑘)𝒃2.
(3) If DSP has an unbounded solution, the SP has no feasible solution under the given solution 𝒙 (𝑘).

However, the SP is feasible if positive variables 𝝃 ≜ [𝜉𝑖 ] are introduced to relax the constraints.

Based on this idea, we construct a Feasibility Check Problem (FCP) and solve its dual problem

(DFCP).

FCP : min

𝒚,𝝃 ⪰0
1𝑇 𝝃 (35)

s.t. 𝑪𝒙 (𝑘) + 𝑫𝒚 ⪯ 𝒃2 + 𝝃 .

DFCP : max

𝝀̂⪰0
𝝀̂
𝑇 (𝑪𝒙 (𝑘) − 𝒃2) (36)

s.t.

{
1 − 𝝀̂ ⪰ 0,

𝑫𝑇 𝝀̂ ⪰ 0,

where 𝝀̂ ≜ [ ˆ𝜆𝑖 ] are the Lagrange multipliers. Let 𝝃 (𝑘) and 𝝀̂(𝑘) be the optimal solutions of

FCP and DFCP at the 𝑘𝑡ℎ iteration, respectively. If the SP is infeasible, this implies that some

constraints cannot be satisfied, and thus, their related relaxation variables are non-zero. We

have 1𝑇 𝝃 (𝑘) > 0, and further, 1𝑇 𝝃 (𝑘) = 𝝀̂
𝑇 (𝑘) (𝑪𝒙 (𝑘) − 𝒃2) > 0 due to the strong duality [6].

Therefore, the infeasible solution 𝒙 (𝑘) can be excluded by the constraint 0 ≥ 𝝀̂
𝑇 (𝑘) (𝑪𝒙 − 𝒃2).
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With the constraint Φ̂ ≥ (𝒇𝑇 + 𝝀𝑇 (𝑘)𝑪)𝒙 − 𝝀𝑇 (𝑘)𝒃2 added into 𝑪1, or the constraint 0 ≥
𝝀̂
𝑇 (𝑘) (𝑪𝒙 − 𝒃2) added into 𝑪2, at the (𝑘 + 1)𝑡ℎ iteration, the MP is solved again to obtain a new

solution 𝒙 (𝑘 + 1) for the next iteration.
Theorem 5.1. With a new constraint added to the MP at each iteration, the solution obtained by

ORTM converges to the global optimal value Φ∗ within a finite number of iterations.

Proof. Since the non-optimal and the infeasible solutions of the binary variables 𝒙 are excluded

by the constraints 𝑪1 and 𝑪2, and the dimension of 𝒙 is finite, the solution converges to the global

optimal value within a finite number of iterations. □

6 HEURISTIC APPROACH
Note that the ORTM algorithm generates a new constraint at each iteration and adds it to the

ILP-based MP. With the number of iterations increasing, the computational complexity and the size

of MP also increase. Therefore, the computational complexity of the ORTM algorithm is determined

by the cost of solving the MP. Although the solution provided by the ORTM algorithm is optimal,

this method cannot solve problems with large network sizes efficiently. To enhance the scalability

of the proposed method, we propose a novel Heuristic Reliability Task Mapping algorithm, referred

to as HRTM, to efficiently solve the PP. The reasons why we design the heuristic approach for PP,

rather than PP1, are the following: 1) PP and PP1 are equivalent, 2) PP contains fewer variables,

which makes the problem easier to solve, and 3) the heuristic approach determines the values of

the variables sequentially, and thus, some nonlinear items, which are caused by the products of

variables, can be omitted.

Similar to the ORTM algorithm, the HRTM algorithm is also based on problem decomposition.

However, the main difference is that the subproblems in the ORTM algorithm are solved iteratively,

while the subproblems in the HRTM algorithm are solved sequentially without iteration. Therefore,

the computation time of the HRTM algorithm can be largely reduced. Based on the structure of PP,

the HRTM algorithm contains two steps. We first consider the frequency assignment problem, in

order to balance the task execution energy. Based on the solution of the first step, we solve the task

mapping problem to balance the nodes’ computation and communication energy.

6.1 Frequency Assignment Problem
The processors of the nodes have the same voltage/frequency levels {(𝑣1, 𝑓1), . . . , (𝑣𝐹 , 𝑓𝐿)}. Therefore,
the frequency-to-task assignment is independent of the task-to-node allocation, and thus, it can

be considered as the first step; the solutions in the next heuristic step will not violate the solution

of this step. Regarding task triplication, the task allocation decision 𝑞𝑖𝑘 is unknown at this step,

and according to Eq. (3), the task triplication decision ℎ′
𝑖 is determined by the value of 𝑞𝑖𝑘 . Hence,

we consider the worst case, where each original task 𝜏𝛼𝑖 is triplicated (ℎ𝛼𝑖 = 1), i.e., the number of

tasks is 𝑁 .

Under the given frequency assignment decision 𝑐𝑖𝑙 , the time and the energy required to ex-

ecute task 𝜏𝑖 with 𝑒𝑖 cycles are 𝑡
𝑐
𝑖 =

∑
𝑙 ∈L 𝑐𝑖𝑙

𝑒𝑖
𝑓𝑙
and 𝐸𝑐𝑖 =

∑
𝑙 ∈L 𝑐𝑖𝑙

𝑒𝑖
𝑓𝑙
𝑃𝑐
𝑙
, respectively. If a lower

voltage/frequency level is used to execute the tasks, the task execution energy will be reduced.

However, it will have an impact on the real-time execution, since the task execution time increases.

Therefore, at the current step, we aim to balance the task execution energy, while guaranteeing

that the real-time task constraint is satisfied. On the one hand, minimizing the maximum energy

consumption on a single task’s execution (i.e., min(max∀𝑖∈N 𝐸𝑐𝑖 )) facilitates the balance of node
energy consumption through task allocation, which is the main purpose of next step. On the other

hand, taking the task real-time constraint into account, we can choose the proper voltage/frequency

to execute the tasks to avoid missing the task deadlines.
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Algorithm 1: Frequency-to-task assignment

1: Initialize: 𝑆 [𝑖] = −1,∀𝑖 ∈ N ;

2: Sort tasks {𝜏1, . . . , 𝜏𝑁 } according to 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ;
3: for ∀𝑖 ∈ N do
4: 𝑀𝑖𝑛𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = ∞;

5: 𝑓 𝑙𝑎𝑔 = −1;
6: for ∀𝑙 ∈ L do
7: 𝑆 [𝑖] = 𝑙 ;

8: Calculate 𝑡𝑒
𝑖
based on 𝑐𝑖𝑙 and 𝑜𝑖 𝑗 ;

9: 𝑀𝑎𝑥𝐶𝑜𝑚𝑝 = 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸;

10: if 𝑡𝑒
𝑖
> 𝐻 then

11: 𝑐𝑖𝑙 = 0;

12: Continue;

13: else
14: if 𝑀𝑎𝑥𝐶𝑜𝑚𝑝 < 𝑀𝑖𝑛𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 then
15: 𝑀𝑖𝑛𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = 𝑀𝑎𝑥𝐶𝑜𝑚𝑝;

16: 𝑓 𝑙𝑎𝑔 = 𝑙 ;

17: else
18: 𝑀𝑖𝑛𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = 𝑀𝑖𝑛𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸;

19: 𝑓 𝑙𝑎𝑔 = 𝑓 𝑙𝑎𝑔;

20: end if
21: end if
22: end for
23: if 𝑓 𝑙𝑎𝑔 == −1 then
24: Fail to assign frequency for task 𝜏𝑖 ;

25: else
26: 𝑆 [𝑖] = 𝑓 𝑙𝑎𝑔;

27: end if
28: end for
29: Calculate 𝑐𝑖𝑙 according to 𝑆 [𝑖];

Based on the objective function and the constraints mentioned above, the Frequency Assignment

Problem (FAP) is formulated as

FAP : min

𝒄

(
max

∀𝑖∈N
𝐸𝑐𝑖

)
(37)

s.t. (13), (16).

By using the idea of Greedy Algorithm (GA) [26, 35], we propose Algorithms 1 and 2 to solve

this problem. For presentation reasons, a frequency assignment symbol 𝑆 [𝑖] is introduced for each

task 𝜏𝑖 , where 𝑆 [𝑖] = 𝑙 represents frequency 𝑓𝑙 is used to execute task 𝜏𝑖 .

Before executing Algorithm 1, we need to determine the frequency assignment sequence of

the tasks, 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , required for sorting the tasks (Line 2). Note that the task start time and

the node communication costs (energy and time) are unknown. To take real-time constraint (16)

into account, we divide the tasks into several layers; tasks in different layers are dependent, while

the tasks in the same layer are independent. Each task can identify its parent tasks based on the

dependency between the tasks. On this basis, we can determine the layer to which a task should

belong. The sequence is obtained following the layer order, and when independent tasks exist

within a layer, they are sorted in descending order of execution cycles.
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Algorithm 2: Calculate𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸

1: 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = 0;

2: for ∀𝑖 ∈ N (𝑆 [𝑖] ≠ −1) do
3: 𝐶𝑜𝑚𝑝𝐸 =

𝑒𝑖
𝑓𝑆 [𝑖 ]

𝑃𝑐
𝑆 [𝑖 ] ;

4: if 𝐶𝑜𝑚𝑝𝐸 > 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 then
5: 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = 𝐶𝑜𝑚𝑝𝐸;

6: else
7: 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸 = 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸;

8: end if
9: end for

To illustrate the above procedure, Fig. 2 shows a simple case with five dependent tasks. The

task dependency is described by a binary matrix 𝒐 = [𝑜𝑖 𝑗 ]5×5, where 𝑜12 = 𝑜13 = 𝑜14 = 𝑜23 = 𝑜24 =

𝑜35 = 𝑜45 = 1. According to the matrix 𝒐, we can describe each task 𝜏𝑖 with the sets 𝑃𝑇 𝐼𝑛𝑑𝑒𝑥𝑖 and

𝑃𝑇𝐿𝑎𝑦𝑒𝑟𝑖 , where 𝑃𝑇 𝐼𝑛𝑑𝑒𝑥𝑖 is the set of parent tasks and 𝑃𝑇𝐿𝑎𝑦𝑒𝑟𝑖 is the set of the layers assigned

to parent tasks. For example, task 𝜏3 has two parent tasks 𝜏1 and 𝜏2, and the layers of tasks 𝜏1 and

𝜏2 are 𝐿1 and 𝐿2, respectively. Hence, we have 𝑃𝑇 𝐼𝑛𝑑𝑒𝑥3 = {1, 2} and 𝑃𝑇𝐿𝑎𝑦𝑒𝑟3 = {1, 2}, and thus,

task 𝜏3 is assigned to layer 𝐿3. On the other hand, the independent tasks 𝜏3 and 𝜏4 can be assigned

to the same layer 𝐿3. For tasks 𝜏3 and 𝜏4, assuming that the execution cycles of 𝜏3 are higher than

those of 𝜏4 (i.e., 𝑒3 > 𝑒4), the 𝜏3 is considered first. Therefore, we obtain a frequency assignment

sequence: 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = {𝜏1 → 𝜏2 → 𝜏3 → 𝜏4 → 𝜏5}. Since the original task 𝜏𝛼𝑖 and its replicas

𝜏𝛼𝑖+1 and 𝜏𝛼𝑖+2 are independent, they are assigned to the same layer. Note that 𝜏𝛼𝑖 , 𝜏𝛼𝑖+1 and 𝜏𝛼𝑖+2
have the same execution cycles (i.e., 𝑒𝛼𝑖 = 𝑒𝛼𝑖+1 = 𝑒𝛼𝑖+2). We assume that the frequency assignment

sequence between them is 𝜏𝛼𝑖 → 𝜏𝛼𝑖+1 → 𝜏𝛼𝑖+2. On the other hand, for the original tasks 𝜏𝛼𝑖 and

𝜏𝛼 𝑗
(𝑖 ≠ 𝑗 ), if they are in the same layer and they have the same execution cycles (i.e., 𝑒𝛼𝑖 = 𝑒𝛼 𝑗

), we

consider that their frequency assignment priorities can be randomly chosen.

Based on the frequency assignment sequence 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , Algorithm 1 finds the proper fre-

quency for task 𝜏𝑖 under the real-time constraint, i.e., the selected frequency should cause the

minimum increase in task execution energy, among the tasks that have already been assigned their

frequency. During this process, Algorithm 2 is used to calculate the maximum energy required

to execute a task, i.e.,𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸. If the real-time constraint cannot be satisfied under the given

assignment decision 𝑆 [𝑖] = 𝑙 , this decision will be excluded (Lines 10–12). As the task allocation

decision is unknown, we omit the communication time of the nodes and assume that there is no

gap between two adjacent tasks when calculating the end time of each task (Line 8). As the example

shown in Fig. 2, we have 𝑡𝑠
1
= 0, 𝑡𝑒

1
= 𝑡𝑐

1
, 𝑡𝑒

2
= 𝑡𝑒

1
+ 𝑡𝑐

2
, 𝑡𝑒

3
= max{𝑡𝑒

1
, 𝑡𝑒
2
} + 𝑡𝑐

3
, 𝑡𝑒

4
= max{𝑡𝑒

1
, 𝑡𝑒
2
} + 𝑡𝑐

4
, and

𝑡𝑒
5
= max{𝑡𝑒

3
, 𝑡𝑒
4
} + 𝑡𝑐

5
, where 𝑡𝑠𝑖 , 𝑡

𝑐
𝑖 =

∑
𝑙 ∈L 𝑐𝑖𝑙

𝑒𝑖
𝑓𝑙
and 𝑡𝑒𝑖 = 𝑡𝑠𝑖 + 𝑡𝑐𝑖 are the start time, execution time

and end time of task 𝜏𝑖 , respectively. By applying the above frequency selection process for each

task 𝜏𝑖 (Lines 3–28), the solution to the FAP is found.

6.2 Task Mapping Problem
From Eq. (4) and Eq. (7), we observe that when the frequency assignment decision 𝑐𝑖𝑙 is fixed, the

communication cost 𝐸𝑡
𝑘
and the computation cost 𝐸𝑛

𝑘
of each node 𝜃𝑘 are determined by the task

allocation decision 𝑞𝑖𝑘 and the task triplication decision ℎ′
𝑖 . In addition, the task triplication decision

ℎ′
𝑖 is influenced by the task allocation decision 𝑞𝑖𝑘 . Therefore, the communication and computation

energy of the nodes can be optimized by adjusting 𝑞𝑖𝑘 . The task sequence constraint (14) and the

task non-preemption constraint (15) show that the value of 𝑞𝑖𝑘 is also restricted by the task start
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Fig. 2. Determine frequency assignment sequence based on task layer.

time 𝑡𝑠𝑖 and the task sequence 𝑢𝑖 𝑗 . Therefore, when making the task allocation decision 𝑞𝑖𝑘 , the

constraints (14) and (15) should be taken into account.

At this step, under the given frequency assignment decision 𝑐𝑖𝑙 , we aim to determine task

allocation 𝑞𝑖𝑘 , task sequence 𝑢𝑖 𝑗 , task triplication ℎ′
𝑖 , and task start time 𝑡𝑠𝑖 . Therefore, the Task

Mapping Problem (TMP) is formulated as

TMP : min

𝒒,𝒖,𝒉′,𝒕𝑠

(
max

∀𝑘∈M

{(
𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘

)
/𝐸𝑖𝑛𝑖

𝑘

})
(38)

s.t. (3), (10) − (12), (14) − (19).

Since the binary variables 𝑞𝑖𝑘 , ℎ
′
and 𝑢𝑖 𝑗 and the continuous variable 𝑡𝑠𝑖 are coupled with each

other linearly, and the nonlinear items 𝑞𝑖𝑚𝑞 𝑗𝑛 and ℎ′
𝑖ℎ

′
𝑗𝑞𝑖𝑚𝑞 𝑗𝑛 are included in constraints (3), (17)–

(19), TMP is a MINLP problem. Based on the structure of TMP, we propose Algorithms 3–4 to solve

it.

Algorithm 3 first initializes the allocation index 𝑂 [𝑖] for each task 𝜏𝑖 , where 𝑂 [𝑖] = 𝑘 represents

that task 𝜏𝑖 is allocated to node 𝜃𝑘 . Then, it allocates tasks, one by one, to their proper nodes,

causing the minimum increase in energy consumption among the nodes, under real-time and

energy constraints (Lines 1–2). Different from the FAP, the allocations of dependent tasks on the

wireless nodes are considered in TMP. Therefore, the real-time constraint in TMP includes the

communication time of the nodes. The task allocation sequence is given by 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , as it can

handle the problems of task start time and task sequence simultaneously (i.e., 𝑡𝑠𝑖 and 𝑢𝑖 𝑗 ). To find

the maximum energy consumption at a node (i.e., 𝑀𝑎𝑥𝐶𝑜𝑠𝑡𝑁 ), under the given task allocation

decision 𝑂 [𝑖] = 𝑘 , we design Algorithm 4. During the allocation process, if tasks 𝜏𝑖 and 𝜏 𝑗 (𝑖 ≠ 𝑗 )

are dependent and these tasks are allocated to the same node, there is no need to triplicate task 𝜏𝑖 ,

since the data of 𝜏𝑖 is directly transmitted to 𝜏 𝑗 within one node.

As shown in Fig. 1, 𝜏1, 𝜏4 and 𝜏7 are the original tasks, while 𝜏2, 𝜏3, 𝜏5 and 𝜏6 are the corresponding

replicas. Based on task dependency 𝑜𝑖 𝑗 and task execution cycles 𝑒𝑖 , we follow the sequence:

𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = {𝜏1 → 𝜏2 → 𝜏3 → 𝜏4 → 𝜏5 → 𝜏6 → 𝜏7} to perform task allocation. Since the

original task and the corresponding replicas are independent (e.g., 𝜏1, 𝜏2 and 𝜏3), they can be placed

in the same layer. If the tasks 𝜏1, 𝜏4, 𝜏5 and 𝜏6 are allocated to the same node, there is no need to

triplicate 𝜏1. Hence, tasks 𝜏2 and 𝜏3 can be removed from the task graph, and the execution time of

tasks 𝜏2 and 𝜏3 can be set to 𝑡𝑐
2
= 𝑡𝑐

3
= 0, since 𝑒2 = 𝑒3 = 0. Based on the allocation of the original

tasks 𝜏4 and 𝜏7, we can use a similar method to decide the existence of tasks 𝜏5 and 𝜏6.
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Algorithm 3: Task-to-node allocation
1: Initialize: 𝑂 [𝑖] = −1, ∀𝑖 ∈ N ;

2: Sort tasks {𝜏1, . . . , 𝜏𝑁 } according to 𝐴𝑠𝑠𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ;
3: for ∀𝑖 ∈ N do
4: 𝑀𝑖𝑛𝑀𝑎𝑥𝐸 = ∞;

5: for ∀𝑘 ∈ M do
6: if 𝜏𝑖 can be allocated 𝜃𝑘 then
7: 𝑂 [𝑖] = 𝑘 ;

8: if 𝜏𝑖 is allocated to the same node as its previous dependent tasks then
9: Update {𝑡𝑒

1
, . . . , 𝑡𝑒

𝑖−1};
10: else
11: Continue;

12: end if
13: Calculate 𝑡𝑒

𝑖
, 𝐸𝑡

𝑘
and 𝐸𝑑

𝑘
based on 𝑞𝑖𝑘 , 𝑜𝑖 𝑗 and {𝑡𝑒

1
, . . . , 𝑡𝑒

𝑖−1};
14: Calculate 𝐸𝑎𝑙𝑙

𝑘
based on 𝐸𝑡

𝑘
, 𝐸𝑑

𝑘
, 𝐸𝑠

𝑘
and 𝐸𝑎

𝑘
;

15: 𝑀𝑎𝑥𝐸 = 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸;

16: if 𝐸𝑎𝑙𝑙
𝑘

> 𝐸𝑙
𝑘
| |𝑡𝑒
𝑖
> 𝐻 then

17: 𝑞𝑖𝑘 = 0;

18: Continue;

19: else
20: if 𝑀𝑎𝑥𝐸 < 𝑀𝑖𝑛𝑀𝑎𝑥𝐸 then
21: 𝑀𝑖𝑛𝑀𝑎𝑥𝐸 = 𝑀𝑎𝑥𝐸;

22: 𝑓 𝑙𝑎𝑔 = 𝑘 ;

23: else
24: 𝑀𝑖𝑛𝑀𝑎𝑥𝐸 = 𝑀𝑖𝑛𝑀𝑎𝑥𝐸;

25: 𝑓 𝑙𝑎𝑔 = 𝑓 𝑙𝑎𝑔;

26: end if
27: end if
28: else
29: 𝑞𝑖𝑘 = 0;

30: Continue;

31: end if
32: end for
33: if 𝑓 𝑙𝑎𝑔 == −1 then
34: Fail to allocate task 𝜏𝑖 ;

35: else
36: 𝑂 [𝑖] = 𝑓 𝑙𝑎𝑔;

37: end if
38: end for
39: Calculate 𝑞𝑖𝑘 according to 𝑂 [𝑖];

6.3 Time Complexity
Finally, the time complexities of our frequency assignment and task mapping algorithms are

discussed in terms of the number of variables [18]. The complexities of FAP and TMP are dominated

by Algorithm 1 and Algorithm 3, respectively. Algorithm 2 is used to calculate the maximum

energy required to execute a task, i.e.,𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝐸, under the given frequency assignment decision

𝑆 [𝑖] = 𝑙 ; and Algorithm 2 is used to calculate the maximum energy consumption at a node, i.e.,

𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸, under the given task allocation decision𝑂 [𝑖] = 𝑘 . In Algorithm 1 and Algorithm 3, the
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Algorithm 4: Calculate𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸

1: 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸 = 0;

2: for ∀𝑘 ∈ M do
3: for ∀𝑖 ∈ N (𝑂 [𝑖] ≠ −1) do
4: Calculate 𝐸𝑡

𝑘
and 𝐸𝑑

𝑘
based on 𝑂 [𝑖] = 𝑘 ;

5: end for
6: if (𝐸𝑡

𝑘
+ 𝐸𝑑

𝑘
)/𝐸𝑖𝑛𝑖𝑡

𝑘
> 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸 then

7: 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸 = (𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
)/𝐸𝑖𝑛𝑖𝑡

𝑘
;

8: else
9: 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸 = 𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝐸;

10: end if
11: end for

variables regarding the assignment of frequency and the allocation of the task are 𝒄 = [𝑐𝑖𝑙 ]𝑁×𝐿 and

𝒒 = [𝑞𝑖𝑘 ]𝑁×𝑀 . Therefore, the complexities of FAP and TMP are O(𝑁𝐿) and O(𝑁𝑀), respectively.

7 SIMULATION RESULTS
To evaluate the performance of the proposed approaches, we consider a networked system with 20

nodes, where 10 nodes equipped with sensors and 5 nodes connected to actuators (i.e.,𝑀 = 20,𝑀𝑠 =

10, and𝑀𝑎 = 5). The modeling of the energy consumed by processors and wireless communication

is based on [8, 41], and the characteristic of tasks is given by [42, 43], which is based on the scenario

of enhancing federated learning in Fog-aided IoT.

The energy supply of node 𝜃𝑘 is set to 𝐸
𝑟
𝑘
= 𝜂𝐸ℎ

𝑘
, where𝜂 ∈ [0, 1] is an energy efficiency factor and

𝐸ℎ
𝑘
is the minimum energy required to execute tasks {𝜏1, . . . , 𝜏𝑁 }. In particular, 𝐸ℎ

𝑘
= 𝐸𝑡

𝑘,min
+ 𝐸𝑑

𝑘,min
,

where 𝐸𝑡
𝑘,min

= 𝑁 min∀𝑚,𝑛,𝑘 {𝑟𝑚𝑛𝑘 } is the minimum energy required to transmit all the task data,

while 𝐸𝑑
𝑘,min

=
∑

𝑖∈N (min∀𝑙
𝑒𝑖
𝑓𝑙
𝑃𝑐
𝑙
) is the minimum energy required to execute all the tasks. Since

the nodes equipped with the sensors and the actuators consume more energy for executing sensing

and control tasks, we set 𝐸𝑟
𝑘
= 2𝜂𝐸ℎ

𝑘
for the sensor nodes while 𝐸𝑟

𝑘
= 3𝜂𝐸ℎ

𝑘
for the actuator nodes.

The scheduling horizon (i.e., task deadline) is set to𝐻 = max∀𝑗 {𝑑 𝑗 }, where 𝑑 𝑗 = max∀𝑖,𝑜𝑖 𝑗=1{𝑑𝑖 } +
𝑡𝑟𝑗 + ˆ𝑑 𝑗 . 𝑡

𝑟
𝑗 and

ˆ𝑑 𝑗 are the temporary data receiving time and the relative deadline of task 𝜏 𝑗 (the

bound of task execution time), respectively. 𝑡𝑟𝑗 is assumed within the range [𝑁 min∀𝑚,𝑛{𝑡𝑚𝑛},
𝑁 max∀𝑚,𝑛{𝑡𝑚𝑛}], where 𝑁 min∀𝑚,𝑛{𝑡𝑚𝑛} and 𝑁 max∀𝑚,𝑛{𝑡𝑚𝑛} are the minimum and the maxi-

mum time required to transmit the data of 𝑁 tasks between two nodes, respectively. Similarly,

ˆ𝑑 𝑗 is assumed within the range [min∀𝑙 { 𝑒𝑖𝑓𝑙 },max∀𝑙 { 𝑒𝑖𝑓𝑙 }], where min∀𝑙 { 𝑒𝑖𝑓𝑙 } and max∀𝑙 { 𝑒𝑖𝑓𝑙 } are the
minimum and the maximum time required to execute a task with 𝑒𝑖 cycles, respectively.

First, we show the influence of system parameters on the problem solution (e.g., task allocation

and the value of the objective function). Then, we compare the system performance (i.e., the energy

consumption of the nodes, the reliability of the system, and the schedulability of the problem) of

the proposed task mapping scheme (Reliability-Energy-Realtime – RER) (i.e., PP) and other state-

of-the-art mapping schemes (i.e., Energy-Efficiency (EE) [35], Task Duplication (TD) [15], and Task

Triplication (TT) [19]). Finally, we evaluate the algorithm performance (i.e., the solution quality,

the computation time, and the problem feasibility) of the proposed ORTM and HRTM algorithms

with the Branch and Bound (B&B) [5], which can find the optimal solution for MILP problems,

and the heuristics based on As-Soon-As-Possible (ASAP) [21]. The ASAP method estimates the

as-soon-as-possible start time and uses it to limit the range of the task start time.
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Fig. 3. System performance comparison under different parameters.

The simulations are performed on a laptop with a quad-core 2.5 GHz Intel I7 processor and 16 GB

RAM, and the algorithms are implemented in Matlab 2020b. Note that different processor platforms

and task graphs will lead to different parameters for the PP. However, the problem structures under

different parameters are the same; thus, the proposed methods are still applicable. In addition,

different algorithms can be compared under the given system parameters.

Fig. 3(a) explores the influence of energy ratio between communication and computation on task

allocation decision 𝑞𝑖𝑘 . We set𝐺 = 12, 𝜂 = 0.8, and change the value of 𝜇 from 1 to 10 with a step of

1. Let 𝜇 = 𝑒𝑐𝑜𝑚𝑚
max

/𝑒𝑐𝑜𝑚𝑝
max

and 𝑁max = max∀𝑘 {𝑁𝑘 }, where 𝑒𝑐𝑜𝑚𝑚
max

= max∀𝛽,𝛾,𝑘 {𝑒𝛽𝛾𝑘 } is the maximum

energy required for a node to relay task data, and 𝑒
𝑐𝑜𝑚𝑝
max

= max∀𝑖,𝑙 { 𝑒𝑖𝑓𝑙 𝑃𝑙 } is the maximum energy

required for a node to execute a task. Therefore, the larger the value of 𝜇 is, the more energy is

required to transmit task data, compared with the energy consumed for task execution. Since 𝑁𝑘 is

the number of tasks allocated to node 𝜃𝑘 , 𝑁max = max∀𝑘 {𝑁𝑘 } represents the maximum number of

tasks assigned to a node. Fig. 3(a) shows that 𝑁max increases with 𝜇. This is because, with larger

communication energy compared to the computation energy, the trend is allocating dependent

tasks to the same node to reduce the communication energy.

Fig. 3(b) and Fig. 3(c) compare the energy consumption of the nodes with two task mapping

aims: 1) the PP with an objective function to Balance node Energy consumption (RER-BE), i.e.,

min[max∀𝑘 {(𝐸𝑡𝑘+𝐸
𝑑
𝑘
)/𝐸𝑖𝑛𝑖

𝑘
}], and 2) the PPwith an objective function toMinimize total node Energy

consumption (RER-ME), i.e., min[∑𝑘∈M (𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
)]. To evaluate the performances of RER-BE and

RER-ME, we introduce an index 𝜙 = (max∀𝑘 {𝐸𝑡𝑘 +𝐸
𝑑
𝑘
})/(min∀𝑘 {𝐸𝑡𝑘 +𝐸

𝑑
𝑘
}), where 𝐸𝑡

𝑘
+𝐸𝑑

𝑘
≠ 0. Since

𝐸𝑡
𝑘
+ 𝐸𝑑

𝑘
is the computation and the communication energy of node 𝜃𝑘 , 𝜙 is the energy consumption

gap between the nodes. The smaller the value of 𝜙 is, the better balance of node energy consumption

can be achieved. We set 𝜂 = 0.8 and change the value of 𝐺 (the number of original tasks) from 8 to

18 with a step of 2. From Fig. 3(b), we observe that the total node energy consumption of RER-ME

is lower than RER-BE. This is because by using RER-ME, the dependent tasks tend to be allocated

to the same nodes, so as to reduce the communication energy of the nodes. On the other hand,

Fig. 3(c) shows that the value of 𝜙 with RER-BE is lower than RER-ME. Hence, by using RER-BE, we

can avoid some nodes depleting energy early, i.e., enhancing the lifetime of the networked system.

Fig. 4(a) compares the energy consumption of the nodes with EE, TD, TT, and the proposed RER

scheme. The aim of the EE scheme is to minimize the energy consumption of the nodes under

real-time and energy constraints. With the TD scheme, each task is duplicated, while with the TT

scheme each task is triplicated. We set 𝜂 = 0.8 and change the value of 𝐺 from 8 to 18 with a step

of 2. From Fig. 4(a), we observe that for all mapping schemes, with the task number 𝐺 increasing,

the energy consumption of the nodes increases as well, since more energy is required to execute
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Fig. 4. System performance comparison with different task mapping schemes.

the tasks and exchange the task data between the nodes. In addition, the simulation results show

that under the given task number 𝐺 , the EE scheme consumes the least energy, while the TT

scheme consumes more energy than the other schemes. This is because EE aims to minimize the

energy consumption of the nodes, and the tasks are not duplicated/triplicated. However, each task

is triplicated in TT, which leads to more tasks being required to execute. Fig. 4(a) also shows that

although the approaches achieve a similar reliability level, RER consumes less energy consumption

than TT (28.62% on average), since only parts of tasks are triplicated in RER.

Fig. 4(b) compares the probability of original tasks against the False Data Injection (FDI) under

EE, TD, TT, and RER schemes. We introduce a reliability index

∑𝐺
𝑖=1𝑤𝛼𝑖 /𝐺 for each task mapping

scheme. With the EE scheme, since the tasks are not replicated, we have 𝑁 = 𝐺 (𝐺 and 𝑁 are the

numbers of original tasks and total tasks, respectively), while with TD, TT, and RER schemes, we

get 𝑁 = 2𝐺 , 𝑁 = 3𝐺 and 𝑁 = 3𝐺 , respectively. On the other hand, the value of parameter𝑤𝛼𝑖 is

determined as follows: 1) If the original task 𝜏𝛼𝑖 is an entry task since 𝜏𝛼𝑖 will not receive data from

other tasks, we set 𝑤𝛼𝑖 = 1; 2) If the original task 𝜏𝛼𝑖 is a non-entry task, and this task receives

three copies (i.e., the original, duplicated and triplicated tasks) from each previous dependent task

or just one copy (i.e., the original task) from each previous dependent task, which is assigned to

the same node as task 𝜏𝛼𝑖 , we set 𝑤𝛼𝑖 = 1, else, we set 𝑤𝛼𝑖 = 0. From Fig. 4(b), we observe that

under the same value of 𝐺 , the reliability indexes of TT and RER are higher than EE and TD, since

compared with EE and TD, the tasks are triplicated in TT and RER. In addition, because the tasks

are not triplicated in EE and TD, the reliability index of TD is not always higher than EE. Although

the reliability indexes of TT and RER are the same, with TT the nodes consume more energy, as

more tasks are triplicated.

Fig. 4(c) evaluates the schedulability of TT and RER schemes since both of them perform task

triplication. To compare their schedulabilities, the problem feasible ratio is introduced as a metric.

For TT and RER schemes, we construct and solve the corresponding task mapping problem 30 times

(𝑛𝑎 = 30), each time with fixed parameters 𝐺 and 𝜂, and tuned parameters 𝑜𝑖 𝑗 and 𝑒𝑖 . Let 𝑛𝑡 and 𝑛𝑟
denote the times that the task mapping problems in TT and RER are feasible, respectively. Hence,

the problem feasible ratios for TT and RER schemes can be defined as 𝑛𝑟/𝑛𝑎 and 𝑛𝑟/𝑛𝑎 , respectively.
We set 𝐺 = 14 and change the value of 𝜂 from 0.4 to 0.9 with a step of 0.1. From Fig. 4(c), we

observe that with 𝜂 increasing, the problem feasible ratios of TT and RER both increase. In addition,

the scheme with DVFS has a higher problem feasible ratio than the scheme without DVFS. This

is because by introducing the frequency-to-task assignment variable 𝑐𝑖𝑙 into the task mapping

problem, the time and the energy regarding task execution can be further optimized. Hence, the

real-time and energy constraints can be easier satisfied, especially when the energy factor 𝜂 is

small. Fig. 4(c) also shows that under the given 𝐺 and 𝜂, RER has a higher problem feasible ratio
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Fig. 5. Algorithm performance comparison of ORTM, HRTM and B&B.

than TT. This is because not all original tasks are triplicated in RER, and thus, the nodes in RER

consume less energy for task execution and data exchange than the nodes in TT. From Fig. 4, we

can observe that compared with EE, TD, and TT schemes, the proposed RER scheme makes better

use of system resources to enhance system reliability.

The solution quality and the computation time of using B&B and the proposed ORTM and HRTM

algorithms to solve the PP under different task numbers 𝐺 are compared in Fig. 5(a) and Fig. 5(b).

The results show that the solutions found by ORTM and B&B are the same, i.e., the ORTM algorithm

is also optimal. In addition, the ORTM algorithm achieves a lower objective function value than

that of the HRTM algorithm (26.35% on average). With task number 𝐺 increasing, more variables

and constraints are added to the PP. Therefore, the computation time required by B&B and ORTM

both increases. However, the computation time of ORTM is lower than that of B&B (24.84% on

average). This is because the computational complexity of an optimization problem is highly related

to the number of variables and constraints. Solving the smaller problems with fewer variables

and constraints iteratively is more efficient than solving a single large problem [37]. In addition,

compared with the ORTM, the HRTM has a negligible computation time, since this method only

needs to solve two polynomial-time problems FAP and TMP in sequence. The schedulabilities of

ORTM and HRTM algorithms to solve task mapping problem with the RER scheme are compared

in Fig. 5(c). We use problem feasible ratio as a metric, and we set 𝑛𝑎 = 30,𝐺 = 14, and 𝜂 ∈ [0.3, 0.8].
Fig. 5(c) shows that the problem feasible ratios of ORTM and HRTM increase with 𝜂. Since the

bounds of the constraints can be relaxed by 𝜂, the feasible region of the task mapping problem

is enlarged. However, the problem feasibility ratio of ORTM is always higher than HRTM. This

is because ORTM optimizes multiple variables at the same time, while HRTM optimizes these

variables step by step.

Fig. 6(a) and Fig. 6(b) compare the solution quality and the computation time of HRTM and

ASAP-based heuristic used to solve the PP. To solve this problem, the difficulty lies in the way of

dealing with the continuous variable 𝑡𝑠𝑖 (task start time). This is because when the value of 𝑡𝑠𝑖 is fixed,

the PP will reduce to an integer programming problem that contains only the binary variables 𝑞𝑖𝑘 ,

𝑐𝑖𝑙 , 𝑢𝑖 𝑗 and ℎ
′
𝑖 . This problem is easier to solve than the MILP problem with continuous and binary

variables. To perform the ASAP-based heuristic, in the first step, we assume that the start time of the

entry task is 0. Then, for the adjacent dependent tasks, e.g., 𝜏𝑖 and 𝜏 𝑗 (𝑜𝑖 𝑗 = 1), we add a temporary

communication time 𝜃𝑖 𝑗 among them. The value of 𝜃𝑖 𝑗 is set to (max∀𝑚,𝑛{𝑡𝑚𝑛} +min∀𝑚,𝑛{𝑡𝑚𝑛})/2,
so as to model the communication time when tasks 𝜏𝑖 and 𝜏 𝑗 are assigned to the different nodes.

Therefore, the start time of task 𝜏 𝑗 can be replaced by 𝑡𝑠𝑗 = 𝑡𝑒𝑖 + 𝜃𝑖 𝑗 . For example, as the task graph

illustrated in Fig. 2, we have 𝑡𝑠
1
= 0, 𝑡𝑠

2
= 𝑡𝑒

1
+ 𝜃12 =

∑
𝑙 ∈L 𝑐1𝑙

ℎ′
1
𝑒1

𝑓𝑙
+ 𝜃12, 𝑡𝑠3 = 𝑡𝑒

1
+ 𝜃13, 𝑡𝑠4 = 𝑡𝑒

1
+ 𝜃14 and
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Fig. 6. Algorithm performance comparison of HRTM and ASAP.

𝑡𝑠
5
= 𝑡𝑒

3
+ 𝜃35 = 𝑡𝑠

3
+∑

𝑙 ∈L 𝑐3𝑙
ℎ′
3
𝑒3

𝑓𝑙
+ 𝜃35. By replacing continuous variable 𝑡𝑠𝑖 with binary variables 𝑐𝑖𝑙

and ℎ′
𝑖 , we next solve an integer programming problem with binary variables 𝑞𝑖𝑘 , 𝑐𝑖𝑙 , 𝑢𝑖 𝑗 and ℎ

′
𝑖 .

Finally, when the solution is found, the temporary communication time 𝜃𝑖 𝑗 is updated by 𝑞𝑖𝑘 , and

the task start time 𝑡𝑠𝑖 is updated by ℎ′
𝑖 and 𝜃𝑖 𝑗 .

From the above statement, we can see that the computation time of the ASAP-based heuristic

is mainly dominated by solving the integer programming problem. To solve this problem, we

can use either the optimal method (e.g., B&B) or the heuristic method (e.g., Feasibility Pump

(FP) [14]). Fig. 6(a) and Fig. 6(b) show that when using the optimal method to solve the integer

programming problem in ASAP, the computation time of HRTM is lower than ASAP. However,

ASAP achieve a higher solution quality than HRTM. This is because the binary variables 𝑞𝑖𝑘 ,

𝑐𝑖𝑙 , 𝑢𝑖 𝑗 , and ℎ
′
𝑖 are solved simultaneously in ASAP, while they are solved sequentially in HRTM,

according to two subproblems FAP and TMP. The variable 𝑐𝑖𝑙 is first determined in FAP, and then,

the variables 𝑞𝑖𝑘 , 𝑢𝑖 𝑗 and ℎ
′
𝑖 are determined in TMP. In addition, the binary variables 𝑞𝑖𝑘 , 𝑐𝑖𝑙 and ℎ

′
𝑖

are coupled with each other nonlinearly in ASAP. To deal with the nonlinear items, more auxiliary

variables and additional constraints are involved in ASAP. Hence, compared with HRTM, ASAP

has a longer computation time. On the other hand, when using the heuristic approach (e.g., FP) to

solve the integer programming problem in ASAP, the solution quality and the computation time

both decrease, since the FP only provides a feasible solution. In that case, the gap between the

computation time (the solution quality) of HRTM and ASAP is small, compared with using the

optimal method to solve the integer programming problem in ASAP.

8 CONCLUSION
In this paper, we study the task mapping problem on the wireless nodes of networked systems. To

enhance the reliability of data transmission among the nodes, as well as to satisfy the real-time

and energy constraints, we introduce the task triplication and the DVFS scheme into the task

mapping problem. The aim is to decide task-to-node allocation, frequency-to-task assignment,

task triplication, and task scheduling so that the energy consumption of the nodes is balanced.

The problem is first formulated as MINLP, then transformed into an MILP by adding auxiliary

variables and additional constraints. Based on the structure of the problem, we propose an ORTM

algorithm to find the optimal solution. In addition, to deal with large network sizes, we also

design an HRTM algorithm with reduced computation time. The simulation results show that

the proposed reliability-energy-time aware task mapping scheme outperforms other schemes

regarding transmission reliability and energy efficiency. In addition, the solution found by ORTM

is guaranteed to converge to the optimal solution, while the HRTM is able to find a proper solution

within a negligible computation time compared with ORTM.
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