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The purpose of this paper is to introduce Hom-alternative rings, Hom-Lie rings and Hom-Jordan rings. We study some of their properties and provide construction procedures using ordinary alternative rings or Lie rings or Jordan rings. Also, we show that a polarization of Hom-associative ring leads to Hom-Lie ring or Hom-Jordan ring.

Introduction

The notion of Hom-Lie algebra first appeared in q-deformations of algebras of vector fields, such as Witt and Virasoro algebras [START_REF] Aizawa | q-deformation of the Virasoro algebra with central extension[END_REF][START_REF] Chaichian | q-deformed Jacobi identity, q-oscillators and q-deformed infinitedimensional algebras[END_REF][START_REF] Curtright | Deforming maps for quantum algebras[END_REF]. The concept of Hom-Lie algebras generalizes the one for Lie algebras where the Jacobi identity is twisted by a homomorphism [START_REF] Hartwig | Deformations of Lie algebras using σ-derivations[END_REF][START_REF] Larsson | Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities[END_REF]. Hom-associative algebras were introduced and studied in [START_REF] Makhlouf | Hom-algebra structures[END_REF], moreover Hom-alternative algebra and Hom-Jordan algebras were studied in [START_REF] Makhlouf | Hom-alternative and Hom-Jordan algebras[END_REF][START_REF] Yau | Hom-alternative, and Hom-Jordan algebras[END_REF]. In the last years, many classical algebraic concepts have been extended to the framework of Hom-structures. For examples the concept of Hom-group [START_REF] Laurent-Gengoux | Universal algebra of a Hom-Lie algebra and group-like elements[END_REF], [START_REF] Hassanzadeh | Hom-groups, representations and homological algebra[END_REF], [START_REF] Hassanzadeh | Lagranges theorem For Hom-Groups[END_REF] and Hom-Lie group [START_REF] Jiang | Hom-Lie algebras and Hom-Lie groups, integration and differentiation[END_REF][START_REF] Peyghan | Almost contact Hom-Lie algebras and Sasakian Hom-Lie Algebras[END_REF] were studied.

The definition of Hom-ring first introduced in [START_REF] Fregier | On Hom-type algebras[END_REF]. In this work, Fregier-Gohr defined a Hom-ring as a set A with two binary operations + : A × A → A and • : A × A → A, a self-map β : A → A and a special element 0 ∈ A such that • (A, +, 0) is an abelian group.

• The multiplication is distributive on both sides.

• β is an abelian group homomorphism.

• β and • satisfy the Hom-associativity condition; β(x)

• (y • z) = (x • y) • β(z).
Motivated by the concept of Hom-group, the authors of [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF] modified the definition of Hom-ring. It is a more general definition of Hom-ring, such that the Hom-rings defined by Fregier-Gohr will be a subclass of these hom-rings.

The aim of this paper is to introduce Hom-alternative rings, Hom-Lie rings and Hom-Jordan rings which are twisted version of the ordinary alternative rings, Lie rings and Jordan rings. We discuss some of their properties and provide construction procedures using ordinary alternative rings or Lie rings or Jordan rings. Also, we show that a polarization of a Hom-associative ring leads to a Hom-Lie ring or a Hom-Jordan ring.

The paper is organized as follows. In Section 1, we recall some basic definitions concerning Hom-group. Also, we introduce the definition of Hom-multilinear maps. This notion will be used in some proofs of our work. The Section 2 is devoted to remind the definition of Hom-ring introduced in [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF]. A definition of Hom-algebra over a commutative Hom-ring is also given in this section. In section 3, we introduce Hom-alternative rings, study their properties and provide construction procedures using ordinary alternative rings. The last Section is dedicated to Hom-Lie rings and Hom-Jordan rings. We introduce the notion of Hom-Lie rings and Hom-Jordan rings and show that it fits with the Hom-associative structure, that is a Hom-associative ring leads to Hom-Lie ring or Hom-Jordan ring by polarization. Also, we provide a way to construct a Hom-Lie ring (resp. Hom-Jordan ring) starting from an ordinary Lie ring (resp. Jordan ring).

Hom-groups

Here we recall the definition of a Hom-group from [START_REF] Laurent-Gengoux | Universal algebra of a Hom-Lie algebra and group-like elements[END_REF], [START_REF] Hassanzadeh | Hom-groups, representations and homological algebra[END_REF] and [START_REF] Hassanzadeh | Lagranges theorem For Hom-Groups[END_REF], and we will expose some properties of it. Also, a notion of Hom-multilinear maps is introduced. 

µ(α(g), µ(h, k)) = µ(µ(g, h), α(z)). (1.1)
For simplicity when there is no confusion we omit the multiplication sign µ.

2. The map α is multiplicative, i.e., α(µ(g, h)) = µ(α(g), α(h)). 4. The map g -→ g -1 is an antimorphism; µ(g, h) -1 = µ(h -1 , g -1 ).

The element e is called unit and it satisfies the

5.

For any g ∈ G, there exists a natural number k satisfying the Hom-invertibility condition

α k (µ(g, g -1 )) = α k (µ(g -1 , g)) = e. (1.3)
The smallest such k is called the invertibility index of g.

If α is invertible the relation (1.3) will be simplified to the following condition ; For every element g ∈ G, there exists an element g -1 which µ(g, g -1 ) = µ(g -1 , g) = e. A Hom-group, such as α is invertible, is called a regular Hom-group [START_REF] Hassanzadeh | Lagranges theorem For Hom-Groups[END_REF][START_REF] Jiang | Hom-Lie algebras and Hom-Lie groups, integration and differentiation[END_REF]. If moreover the product µ is commutative, we say that G is an abelian (commutative) Hom-group. In this case, the product µ will be denoted by + and the element e by 0. Therefore the multiplicativity axiom will change to α(g+h

) = α(g)+α(h), ∀g, h ∈ G. Remarks 1.2.
1. From the Hom-unitarity and the Hom-associativity conditions, we can show that the multiplicativity of the map α is intuitive;

α(µ(g, h)) = µ(e, µ(g, h)) = µ(α(e), µ(g, h)) = µ(µ(e, g), α(h)) = µ(α(g), α(h).
2. Since we have the antimorphism g -→ g -1 , therefore by the definition, inverse of any element g ∈ G is unique although different elements may have different invertibility index.

3. The inverse of the element e of a Hom-group is itself, because α(µ(e, e)) = α(e) = e.

4.

For any Hom-group (G, µ, e, α) we have α(g -1 ) = α(g) -1 and if the invertibility index of g is k, then the index invertibility of α(g) is k -1.

Example 1.3. Let (G, µ, e) be a group and α : G → G be a group homomorphism. We define a new product

µ α : G × G → G by µ α (g, h) = α(µ(g, h)) = µ(α(g), α(h)).
Then (G, µ α , e, α) is a Hom-group and denote this by G α . It is said the twisted group of G.

Example 1.4. [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF] Let (Z, +) be the additive group of integers. We have End(Z) ≃ Z, i.e., any endomorphism α ∈ End(Z) is completely determined by the element a(1) ∈ Z and for every q ∈ Z there exists an endomorphism α ∈ End(Z) such that α(1) = q. In other words, the correspondence α → α( 1) is an isomorphism between End(Z) and Z. Then, for every q ∈ Z, we can define a Hom-group denoted by (Z, + q , 0, α) such as + q is defined by n + q m = q(n + m), ∀n, m ∈ Z and checks the following condition qn + q (m + q p) = (n + q m) + q qp = q 2 (n + m + p), ∀n, m, p ∈ Z.

(1.4)

The Hom-group (Z, + q , 0, α) is called the q-additive group of integers. 

f (µ G (g, h)) = µ H (f (g), f (h)), ∀g, h ∈ G f • α G = α H • f. It said to be a weak homomorphism if f (µ G (g, h)) = µ H (f (g), f (h)), ∀g, h ∈ G.
Remark 1.6. Let f : G → H be a weak homomorphism of Hom-groups such that f (e G ) = e H and g be an element in G. Then, we have In what follows, we recall a property of in a Hom-group introduced in [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF].

f (α G (g)) = f (µ G (e G , g)) = µ H (f (e G ), f (g)) = µ H (e H , f (g)) = α H (f (g)).

So any weak homomorphism of Hom-groups

f : (G, µ G , e G , α G ) → (H, µ H , e H , α H ) such that f (e G ) =
2. h ∈ H ⇒ h -1 ∈ H, 3. h 1 , h 2 ∈ H ⇒ h 1 • h 2 ∈ H. Remarks 1.
Proposition 1.13. Let (G, •, e, α) be a regular abelian Hom-group. For all g, h, k and l in G, we have

(g • h) • (k • l) = (g • k) • (h • l). (1.5)
Proof. For all g, h, k and l in G, we have

(g • h) • (k • l) = α(g) • (h • α -1 (k • l)) = α(g) • (α -1 (h • k) • l) = α(g) • (α -1 (k • h) • l) = α(g) • (k • α -1 (h • l)) = (g • k) • (h • l).
Corollary 1.14. Let (G, •, e, α) be a regular abelian Hom-group. For all g ∈ G, we have

((gg)α(g))((g -1 g -1 )α(g -1 )) = e.
Proof. From Proposition 1.13, we have

((gg)α(g))((g -1 g -1 )α(g -1 )) = ((gg)(g -1 g -1 ))(α(g)α(g -1 )) = eα(gg -1 ) = e.
This completes the proof So, one can show the following Corollary 1.15. Let (G, •, e, α) be a regular abelian Hom-group. For all g ∈ G, we have (((gg)α(g))α 2 (g))α((g -1 g -1 )α(g -1 )) = α 4 (g).

Hom-multilinear maps

Definition 1.16. Let (A, + A , 0, α A ) be an abelian Hom-group and let A n denote the n-fold Cartesian product

A × A × • • • × A. In other words, an element of A n is an n-tuple (a 1 , • • • , a n ), where each a i ∈ A, i = 1, 2, • • • , n. If (B, + B , 0, α B ) is another abelian Hom-group, then a mapping f : A n → B is said to be Hom-multilinear if 1. For each i = 1, 2, • • • , n, we have f (α A (a 1 ), • • • , α A (a i-1 ), a i + a ′ i , α A (a i+1 ), • • • , α A (a n )) = f (a 1 , • • • , a i-1 , a i , a i+1 , • • • , a n ) + B f (a 1 , • • • , a i-1 , a ′ i , a i+1 , • • • , a n ), for all a i , a ′ i ∈ A. 2. f (α A (a 1 ), • • • , α A (a n )) = α B (f (a 1 , • • • , a n )).
In the case n = 2( n = 3), one speaks of a Hom-bilinear mapping (respectively, a Hom-trilinear mapping).

Lemma 1.17. Let (A, + A , 0, α A ) and (B, + B , 0, α B ) be two abelian Hom-groups and f :

A n → B a Hom- multilinear mapping. Then for each i, j = 1, 2, • • • , n, j < i, we have f (α 2 A (a 1 ), • • • , α 2 A (a j-1 ), α A (a j + A a ′ j ), α 2 A (a j+1 ), • • • , α 2 A (a i-1 ), α(a i + a ′ i ), α 2 A (a i+1 ), • • • , α 2 A (a n )) = ( f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) + B f (a 1 , • • • , a j-1 , a ′ j , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) ) + B ( f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a ′ i , a i+1 , a n ) + B f (a 1 , • • • , a j-1 , a ′ j , a j+1 , • • • , a i-1 , a ′ i , a i+1 , a n ) ) , for all a i , a j , a ′ i , a ′ j ∈ A.
Proof. The proof is straightforward.

Definition 1.18. A Hom-multilinear mapping f is called skew-symmetric if it changes sign when two of its arguments are interchanged. That is,

f is skew-symmetric if for each i, j = 1, 2, • • • , n, we have f (a 1 , • • • , a j , • • • , a i , • • • , a n ) = -f (a 1 , • • • , a i , • • • , a j , • • • , a n ).
Lemma 1.19. Let (A, + A , 0, α A ) and (B, + B , 0, α B ) be two abelian Hom-groups and f : A n → B a Hommultilinear mapping. Then f is skew-symmetric if and only if f takes the value 0 whenever at least two of the x i 's are equal.

Proof. Suppose that for each

i = 1, 2, • • • , n we have f (a 1 , • • • , a i , • • • , a i , • • • , a n ) = 0,
and we will prove that

f (a 1 , • • • , a j , • • • , a i , • • • , a n ) = -f (a 1 , • • • , a i , • • • , a j , • • • , a n ).
From Lemma 1.17, we have

0 = f (α 2 A (a 1 ), • • • , α 2 A (a j-1 ), α A (a i + A a j ), α 2 A (a j+1 ), • • • , α 2 A (a i-1 ), α(a i + a j ), α 2 A (a i+1 ), • • • , α 2 A (a n )) = ( f (a 1 , • • • , a j-1 , a i , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) + B f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) ) + B ( f (a 1 , • • • , a j-1 , a i , a j+1 , • • • , a i-1 , a j , a i+1 , a n ) + B f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a j , a i+1 , a n ) ) . But f (a 1 , • • • , a j-1 , a i , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) = 0, and f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a j , a i+1 , a n ) = 0.
These give

0 = α B ( f (a 1 , • • • , a j-1 , a j , a j+1 , • • • , a i-1 , a i , a i+1 , a n ) ) + B α B ( f (a 1 , • • • , a j-1 , a i , a j+1 , • • • , a i-1 , a j , a i+1 , a n ) ) .
Since α B is bijective, the lemma holds. 4. The map β and the product • satisfy the Hom-associativity condition;

β(x) • (y • z) = (x • y) • β(z). (2.1)

The multiplication is Hom-distributive over the addition on both sides;

(a)

α(x) • (y + z) = x • y + x • z, (2.2) (b) (y + z) • α(x) = y • x + z • x, (2.3)
for all x, y, z ∈ A.

If (A, +, •, 0, α, β) admits an unit element 1 ∈ A satisfying the properties 1.

x

• 1 = 1 • x = β(x), ∀x ∈ A, (2.4) 2. α(1) = β(1) = 1, (2.5)
the Hom-ring A is said to be unitary.

Remark 2.2. Note that if α = id, we automatically have the definition of Hom-ring in [START_REF] Fregier | On Hom-type algebras[END_REF] and when α = β = id, we have the definition of ring.

Example 2.3. Let (A, +, •, 0) be an unitary ring. Suppose that r ̸ = 1 is a central idempotent element of A and u ∈ A is an invertible element. Then the maps α r : A → A and β u : A → A defined respectively by α r (x) = rx and β u (x) = uxu -1 are two commuting endomorphisms of the ring A. In this case, we have a new addition

+ : A × A → A and a new multiplication • : A × A → A given by • x +y = α r (x + y) = r(x + y), • x •y = β(x • y) = uxyu -1 , for all x, y ∈ A.
According to [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF] 

α • β = β • α.
3. α and β are multiplicative maps, i.e., α(xy) = α(x)α(y) and β(xy) = β(x)β(y), for all x, y ∈ A.

The maps α, β and the product

• satisfy β(α 2 (x)) • (β(α(y)) • β 2 (z)) = (α 2 (x) • β(α(y))) • β 2 (α(z)).

The multiplication is Hom-distributive over the addition on both sides;

(a)

α 2 (x) • β(y + z) = α(x) • β(y) + α(x) • β(z), (b) α(y + z) • α(β(x)) = α(y) • β(x) + α(z) • β(x),
for all x, y, z ∈ A.

If (A, +, •, 0, α, β) admits a unit element 1 ∈ A satisfying the following properties

1. x • 1 = β(x) and 1 • x = α(x), ∀x ∈ A, 2. α(1) = β(1) = 1,
the Hom-ring A is said to be unitary. 

• x •y = β f (x)
• α e (y) = ef xy, for all x, y ∈ A, then, from [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF], (A, +, •, 0, α e , β f ) is a Hom-ring of type [START_REF] Bruck | The structure of alternative division rings[END_REF]. We denote this by A αe,β f . Definition 2.6.

• We say that a Hom-ring (A, +, •, 0, α, β) is a Hom-nonassociative ring of type (1) (resp. of type (2)) if the 4th property in Definition 2.1 (resp. Definition 2.4) is not satisfied for it.

• A Hom-ring (A, +, •, 0, α, β) is called a commutative Hom-ring if for all x, y ∈ A we have x • y = y • x.
Also, a Hom-ring is said to be regular if the twisted maps α and β are bijective. The inverse of an element x in a Hom-ring (A, +, •, 0, α, β) with respect to the addition will be named the additive inverse and will be denoted by (-x).

In what follows we will provide some calculation properties, the definition of Hom-ring homomorphism and Hom-subring. Proposition 2.7. [START_REF] Basdouri | Free Hom-groups, Hom-rings and Semisimple modules[END_REF] Let (A, +, •, 0, α, β) be a unitary regular Hom-ring of type (1) or of type (2).

1. For all a ∈ A , we have a • 0 = 0 • a = 0.

Let a, b ∈

A. Then , the additive inverse of (a • b) is (-a) • b = a • (-b) = -(a • b). One can notes that α(-a) = -α(a).
Remark 2.8. In the proof of the above proposition, only the fact that α is bijective has been used. 

λ l (α(a) ⊗ (m 1 + M m 2 )) = λ l (a ⊗ m 1 ) + M λ l (a ⊗ m 1 ), (2.6 
)

λ l ((a + A b) ⊗ γ(m 1 )) = λ l (a ⊗ m 1 ) + M λ l (b ⊗ m 1 ), (2.7 
)

λ l ((a • b) ⊗ γ(m)) = λ l (β(a) ⊗ λ l (b ⊗ m), (2.8 
) Definition 2.12. Let (A, + A , • A , 0 A , α A , β A ) be a commutative Hom-ring of type [START_REF] Aizawa | q-deformation of the Virasoro algebra with central extension[END_REF]. An A-Hom-algebra is a Hom-ring (B, + B , • B , 0 B , α B , β B ) of type [START_REF] Aizawa | q-deformation of the Virasoro algebra with central extension[END_REF] such that the multiplication "• B " satisfies

λ l (1 A ⊗ m 1 ) = γ(m 1 ). ( 2 
β A (a) * (b 1 • B b 2 ) = (a * b 1 ) • B β B (b 2 ) = β B (b 1 ) • (a * b 2 ) ∀a ∈ A, b 1 , b 2 ∈ B.
Remark 2.13. An Hom-algebra can be defined as a Hom-ring (B, + B , • B , 0 B , id B , β B ) of type ( 1) and a K-Homalgebra.

Remark 2.14. In the rest of this paper, the word Hom-ring refers to a Hom-ring of type [START_REF] Aizawa | q-deformation of the Virasoro algebra with central extension[END_REF].

3 Alternative-Hom-rings

Definition 3.1. Let (A, +, •, 0, α,

β) be a Hom-ring ( not necessarily Hom-associative). The Hom-commutator [, ] : A × A → A and the β-associator as

β : A × A × A → A are defined by [x, y] = xy -yx as β (x, y, z) = (xy)β(z) -β(x)(yz),
for all x, y, z ∈ A.

Lemma 3.2. Let (A, +, •, 0, α, β) be a Hom-ring ( not necessarily Hom-associative) such that α is bijective. Then, the Hom-commutator is a skew-symmetric Hom-bilinear mapping, the β-associator is Hom-trilinear and they verify the following identities

( [xy, β(z)] -α • β(x)[y, z] ) -α ( [x, z]α • β(y) ) = ( as β (x, y, z) -as β (x, z, y) ) + α(as β (z, x, y)), ( 3.1) 
( as β (wx, β(y), β(z)) -as β (β(w), xy, β(z))

) + α(as β (β(w), β(x), yz)) = α 2 • β 2 (w)α(as β (x, y, z)) + α(as β (w, x, y))α 2 • β 2 (z). (3.2)
Proof. The skew-symmetry of the Hom-commutator is straightforward. Let x, y, z, t ∈ A. Then we have,

[x + y, α(z)] = (x + y)α(z) -α(z)(x + y).
But the multiplication is Hom-distributive over the addition on both sides, i.e., the multiplication and α satisfy the equations (2.2) and (2.3). This gives

[x + y, α(z)] = (xz + yz) -(zx + zy).
From the Proposition 1.13, we obtain

[x + y, α(z)] = (xz -zx) + (yz -zy) = [x, z] + [y, z].
According to the skew-symmetry of the Hom-commutator, we can also see that

[α(z), x + y] = [z, x] + [z, y].
This shows that the Hom-commutator is a skew-symmetric Hom-bilinear mapping. Now we're going show the Hom-trilinearity of the β-associator:

as β (x + y, α(z), α(t)) = ( (x + y)α(z) ) β(α(t) -β(x + y) ( (α(z)α(t)
) .

By the equations (2.2),(2.3), the multiplicativity of α and the fact that

α • β = β • α, we have as β (x + y, α(z), α(t)) = (xz + yz)α(β(t) -β(x + y)α(zt).

The fact β(x + y) = β(x) + β(y) gives as β (x + y, α(z), α(t)) = (xz + yz)α(β(t) -(β(x) + β(y))α(zt).

Using formerly the equations (2.2), (2.3), we find

as β (x + y, α(z), α(t)) = ( (xz)β(t) + (yz)β(t)
) -

( β(x)(zt) + β(y)(zt)

) .

The Proposition 1.13 implies

as β (x + y, α(z), α(t)) = ( (xz)β(t) -β(x)(zt) ) + ( (yz)β(t) -β(y)(zt) ) = as β (x, z, t) + as β (y, z, t).
Simlarly, we can show that as β (α(x), y + z, α(t)) = as β (x, y, t) + as β (x, z, t), and as β (α(x), α(y), z + t)) = as β (x, y, z) + as β (x, y, t).

This shows the Hom-trilinearity of the β-associator. Now, taking into account Proposition 1.13, the equations (2.2), (2.3), the multiplicativity of β and that (A, +, 0, α) is regular abelain Hom-group, we willp prove the identities (3.1) and (3.2).

For identity (3.1): z,y)

( [xy, β(z)] -α • β(x)[y, z] ) -α ( [x, z]α • β(y) ) = ( ((xy)β(z) -β(z)(xy)) -α(β(x))(yz -zy) ) -α ( (xz -zx)α(β(y)) ) = ( ((xy)β(z) -β(z)(xy)) -(β(x)(yz) -β(x)(zy)) ) -α((xz)β(y) -(zx)β(y)) = ( ((xy)β(z) -β(x)(yz)) -(β(z)(xy) -β(x)(zy)) ) -α((xz)β(y) -(zx)β(y)) = ( as β (x, y, z) -(β(z)(xy) -β(x)(zy)) ) -α ( (xz)β(y) -(zx)β(y) ) = α(as β (x, y, z)) - ( (β(z)(xy) -β(x)(zy)) + ((xz)β(y) -(zx)β(y)) ) = α(as β (x, y, z)) - ( (β(z)(xy) -(zx)β(y)) + ((xz)β(y) -β(x)(zy)) ) = α(as β (x, y, z)) - ( as β (x, z, y) -as β (z, x, y) ) = ( as β (x, y, z) -as β (x,
) + α(as β (z, x, y)).
For identity (3.2):

( as β (wx, β(y), β(z)) -as β (β(w), xy, β(z)) ) + α(as β (β(w), β(x), yz)) = (( ((wx)β(y))β 2 (z) -β(wx)(β(y)β(z))
) -

( (β(w)(xy))β 2 (z) -β 2 (w)((xy)β(z))
))

+ α

( (β(w)β(x))β(yz) + β 2 (w)(β(x)(yz)) ) = (( ((wx)β(y))β 2 (z) -(β(w)(xy))β 2 (z)
) -

( β(wx)β(yz) -β 2 (w)((xy)β(z))
))

+ α

( (β(w)β(x))β(yz) + β 2 (w)(β(x)(yz)) ) = ((( (wx)β(y) -β(w)(xy) ) α(β 2 (z))
) -

( β(wx)β(yz) -β 2 (w)((xy)β(z))
))

+ α

( (β(w)β(x))β(yz) + β 2 (w)(β(x)(yz)) ) = ( as β (w, x, y)α(β 2 (z)) - ( β(wx)β(yz) -β 2 (w)((xy)β(z))
))

+ α ( (β(w)β(x))β(yz) + β 2 (w)(β(x)(yz)) ) = α(as β (w, x, y)α(β 2 (z))) - (( β(wx)β(yz) -β 2 (w)((xy)β(z)) ) - ( (β(wx))β(yz) -β 2 (w)(β(x)(yz))
))

= α(as β (w, x, y)α(β 2 (z)) -

(( β(wx)β(yz) -β(wx)β(yz) ) - ( β 2 (w)((xy)β(z)) -β 2 (w)(β(x)(yz))
))

= α(as β (w, x, y)α(β 2 (z)) + α 

( β 2 (w)((xy)β(z)) -β 2 (w)(β(x)(yz)) ) = α(as β (w, x, y)α(β 2 (z)) + α ( α(β 2 (w)((xy)β(z) -β(x)(yz)) ) = α 2 • β 2 (w)α(as β (x, y, z)) + α(as β (w, x, y))α 2 • β 2 (z).
( [xy, β(x)] -α • β(x)[y, x] ) = 0. (3.6)
Since α is bijective, (3.4) holds. In the similar way, we can obtain (3.5).

Now, we consider the (multilinear) function f (w, x, y, z) defined by

f (w, x, y, z) = α(as β (wx, β(y), β(z)) - ( α(β 2 (x))as β (w, y, z) + as β (x, y, z)α(β 2 (w)) ) . (3.7) If we write 3f (w, x, y, z) = (f (w, x, y, z) + f (w, x, y, z)) + α(f (w, x, y, z)),
we have the following lemma.

Lemma 3.6. In a Hom-alternative ring (A, +, •, 0, α, β) such that α is bijective, the function f defined by (3.7) is skew-symmetric and satisfies the identities

3f (w, x, y, z) = α ( [α(β 2 (w)), as β (x, y, z)] -[α(β 2 (x)), as β (w, y, z)] ) (3.8) 
+ α

( [α(β 2 (y)), as β (z, w, x)] -[α(β 2 (z)), as β (w, x, y)]
) , (3.9)

f (w, x, y, z) = as β ([w, x], α(β(y)), α(β(z))) + as β ([y, z], α(β(w)), α(β(x))). ( 3.10) 
Proof. In all this proof we take into account the Proposition 1.13 and the fact that (A, +, 0, α) is a regular abelian Hom-group. By the skew-symmetry of the β-associator and from the equation (3.2), α(as β (wx, β(y), β(z))) can be written as follows

α(as β (wx, β(y), β(z)) = ( α • β 2 (w)α(as β (x, y, z)) + as β (w, x, y)α • β 2 (z) ) + ( as β (β(w), xy, β(z)) -as β (β(w), β(x), yz)
) .

Substitution from (3.7) gives

(f (w, x, y, z) -f (x, y, z, w)) + α(f (y, z, w, x)) = F (w, x, y, z), (3.11) 
where F (w, x, y, z) denotes the right-hand side of (3.8), and hence changes sign when w, x, y, z are permuted cyclically. Thus, from (3.11), we get

0 = F (w, x, y, z) + F (x, y, z, w) = α 2 ( f (w, x, y, z) + f (z, w, x, y)
) .

Since α is bijective, we find f (w, x, y, z) = -f (z, w, x, y).

(3.12)

Hence f changes sign when its arguments are permuted cyclically (by (3.12)) and when the last two are interchanged (by (3.7)), and therefore when any two are interchanged. So f is skew-symmetric. In particular, (3.11) reduces to (3.8). Since f is skew-symmetric, and if we write 2f (w, x, y, z) = f (w, x, y, z) + f (w, x, y, z), we have

2f (w, x, y, z) = f (w, x, y, z) -f (x, w, y, z) = α(as β ([w, x], α(β(y)), α(β(z)) + ( [α(b 2 (w)), as β (x, y, z)] -[α(b 2 (x)), as β (w, y, z)] ) . (3.13)
Therfore, one can find

α 2 (3f (w, x, y, z)) = ( 2f (w, x, y, z) -α 2 (as β ([w, x], α(β(y)), α(β(z)) ) + ( 2f (w, x, y, z) -α 2 ( as β ([y, z], α(β(w)), α(β(x)))
) .

According to the Hom-associativity of α and the addition "+", we obtain the identity (3.10). This completes the proof.

From Lemma 3.6 we deduce a certain number of identities which appear in Hom-alternate rings:

Proposition 3.7. For all x, y, z of a Hom-alternative ring (A, +, •, 0, α, β) such that α is bijective, we have 

α(as β (x 2 , β(y), β(z))) = as β (x, y, z)α(β 2 (x)) + α(β 2 (x))as β (x,
0 = f (x, x, y, z) = α(as β (x 2 , β(y), β(z)) - ( α(β 2 (x))as β (x, y, z) + as β (x, y, z)α(β 2 (x))
) .

As α is bijective, we deduce (3.14). Again by (3.7), we have

0 = f (x, y, z, x) = α(as β (xy, β(z), β(x)) - ( α(β 2 (y))as β (x, z, x) + as β (y, z, x)α(β 2 (x))
) .

Since f is skew-symmetric, we find 0 = α(as β (β(x), xy, β(z)) -α(as β (x, y, z)α(β 2 (x))).

Therefore, the bijectivity of α gives as β (β(x), xy, β(z)) = as β (x, y, z)α(β 2 (x)). Similarly, by (3.7), we have

0 = f (x, z, y, x) = α(as β (xz, β(y), β(x)) - ( α(β 2 (z))as β (x, y, x) + as β (z, y, x)α(β 2 (x))
) .

As α is bijective and f is skew-symmetric, we deduce as β (β(x), β(y), xz) = as β (x, y, z)α(β 2 (x)). So the identity (3.15) is well shown, similarly for (3.16). Using (3.16), we get (3.17) as follows:

α 2 (β(xy)β(zx)) = as β (β(x), β(y), zx) + α(β 2 (x)(β(y)(zx))) = α(β 2 (x))as β (x, y, z) + α(β 2 (x)(β(y)(zx))).
Writing the expression of as β (x, y, z) in the definition of β-associator and using (2.2) and the fact that (A, +, 0, α) is a regular abelian Hom-group, we find

α 2 (β(xy)β(zx)) = α 2 (β 2 (x)((yz)β(x))).
As α is bijective, we deduce (3.17). The first equation of (3.18) comes by

α 3 (((xy)β(x))β 2 (z)) = α(as β (xy, β(x), β(z))) + α 2 (β(xy)β(xz)) = α 2 (β 2 (x)(β(y)(xz))) + ( as β (β(x), β(y), xz) -as β (β(x), xy, β(z)) ) = α 3 (β 2 (x)(β(y)(xz))).
Similarly, we find the second equation of (3.18).

The following proposition gives new identities for a Hom-alternative ring.

Proposition 3.8. For all x, y, z of a Hom-alternative ring (A, +, •, 0, α, β) such that α is bijective, we have ) .

as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y))) = [α(β 2 (x)), α(β 2 (y))]α(β(as β (x, y, z))) = -α(β(as β (x, y, z)))[α(β 2 (x)), α(β 2 (y))], (3.19) 
By subtraction and using (1.13), we have

0 = as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y))) + ( α(β 3 (x)) ( α(β 2 (y))as β (x, y, z) ) -α(β 3 (y)) ( α(β 2 (c))as β (x, y, z)
)) .

But as β (α(β 2 (x)), α(β 2 (y)), as β (x, y, z)) = -as β (α(β 2 (y)), α(β 2 (x)), as β (x, y, z)). This gives

α(β 3 (x)) ( α(β 2 (y))as β (x, y, z) ) -α(β 3 (y)) ( α(β 2 (c))as β (x, y, z) ) = -[α(β 2 (x)), α(β 2 (y))]α(β(as β (x, y, z))).
So, we can see that

as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y))) = [α(β 2 (x)), α(β 2 (y))]α(β(as β (x, y, z))).
Similarly, by applying the Proposition 3.7 in two ways to α(as β (β(x 2 ), β 2 (y), β(yz))), we can show that

as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y))) = -α(β(as β (x, y, z)))[α(β 2 (x)), α(β 2 (y))].
This proves (3.19). (3.20) proves in the following way:

as β (as β (x, y, z) 2 , α(β 3 (x)), α(β 3 (y))) = as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y)))α(β 2 (as β (x, y, z))) + α(β 2 (as β (x, y, z)))as β (as β (x, y, z), α(β 2 (x)), α(β 2 (y))) = ( -α(β(as β (x, y, z)))[α(β 2 (x)), α(β 2 (y))] ) α(β 2 (as β (x, y, z))) + α(β 2 (as β (x, y, z))) ( [α(β 2 (x)), α(β 2 (y))]α(β(as β (x, y, z))) ) = -as β (α(β(as β (x, y, z))), [α(β 2 (x)), α(β 2 (y))], α(β(as β (x, y, z)))) = 0.
The following lemma helps to to get a result for Hom-alternative ring: Lemma 3.9. In a Hom-alternative ring (A, +, •, 0, α, β) such that α is bijective, the (multilinear) function g(u, v, w, x, y), defined for all u, v, w, x, y ∈ A by

α 2 (f (uv, β(w), β(x), β(y))) = (( α 2 (β 3 (u))f (v, w, x, y) + f (u, w, x, y)α 2 (β 3 (v)) ) + α 2 (β(as β (u, x, y)))α 2 (β 2 ([v, w])) ) + ( α 2 (β 2 ([u, w]))α 2 (β(as β (v, x, y))) + g(u, v, w, x, y) ) , ( 3.21) 
is skew-symmetric in u, v, w and in x, y. Equivalently,

f (uv, β(u), β(x), β(y)) = α 2 (β 3 (u))f (v, u, x, y) + α(β(as β (u, x, y)))α(β 2 ([v, u])), (3.22) f (uv, β(v), β(x), β(y)) = f (u, v, x, y)α 2 (β 3 (v)) + α(β 2 ([u, v]))α(β(as β (v, x, y))), (3.23)
for all u, v, x, y ∈ A.

Proof. Since f is multilinear, so is g. Also, g is zero for y = x, hence skew-symmetric in x, y. Considering G(u, v, w) = g(u, v, w, x, y) for fixed x, y, from (3.22) and (3.23), we deduce that G is skew-symmetric in u, v, w.

To prove (3.22), note that

f (vu, β(u), β(x), β(y)) = as β ([vu, β(u)], α(β 2 (x)), α(β 2 (y))) + as β ([β(x), β(y)], α(β(vu)), α(β 2 (u))),
by (3.10). From (3.16), we get

as β ([β(x), β(y)], α(β(vu)), α(β 2 (u))) = α 2 (β 3 (u))as β ([x, y], α(β(v)), α(β(u))).
Also (3.5) implies

as β ([vu, β(u)], α(β 2 (x)), α(β 2 (y))) = as β ([v, u]α(β(u)), α(β 2 (x)), α(β 2 (y))). Moreover, (3.7) implies f ([v, u], α(β(u)), α(β(x)), α(β(y))) = α(as β ([v, u]α(β(u)), α(β 2 (x)), α(β 2 (y))) - ( as β (α(β(u)), α(β(x)), α(β(y)))α(β 2 ([v, u])) + α 2 (β 3 (u))as β ([v, u], α(β(x)), α(β(y)))
) .

So, we get ) .

α 3 (as β ([vu, β(u)], α(β 2 (x)), α(β 2 (y)))) = f ([v, u], α(β(u)), α(β(x)), α(β(y)) + α ( as β (α(β(u)), α(β(x)), α(β(y)))α(β 2 ([v, u])) + α 2 (β 3 (u))as β ([v, u], α(β(x)), α(β(y))) ) . ( 3 
The Hom-multilinearity of f gives ) .

This completes the proof of (3.22). To prove (3.23), we operate similarly on f (vu, β(v), β(x), β(y)). + g(α(β 3 (x)), v, α(β 3 (y)), α(β 3 (x)), α(β 3 (z)))

) .

Since as β (v, α(β 3 (x)), α(β 3 (z))) = 0, we find Since α is bijective and β is injective, we deduce the proposition.

Definition 1 . 1 .

 11 A Hom-group is a quadruplet (G, µ, e, α) consisting of a set G with a distinguished member e of G, an operation µ : G × G → G and a set map α : G → G, such that the following axioms are satisfied: 1. The product map µ : G × G → G and the set map α : G → G satisfy the Hom-associativity property

  Hom-unitarity condition µ(g, e) = µ(e, g) = α(g), α(e) = e. (1.2)

2 Hom-rings Definition 2 . 1 .

 21 A Hom-ring of type (1) is a tuple (A, +, •, 0, α, β) with a set A together two binary operations + : A × A → A ( the addition) and • : A × A → A ( the multiplication) and two set maps α, β : A → A, such that: 1. (A, +, 0, α) is an abelain Hom-group. 2. β is an endomorphism of the abelian Hom-group (A, +, 0, α), i.e., β(x + y) = β(x) + β(y), ∀x, y ∈ A, and α • β = β • α. 3. α and β are multiplicative maps , i.e, α(xy) = α(x)α(y) and β(xy) = β(x)β(y), for all x, y ∈ A.

Example 2 . 5 .

 25 Let (A, +, •, 0) be a unitary ring and C the set of all central idempotents of A. For any two elements e and f in C, we define respectively the maps α e : A → A and β f : A → A by α e (x) = ex and β f (x) = f x. Then α e and β f are two commuting endomorphisms of the ring A. Defining a new addition + : A × A → A and a new multiplication • : A × A → A given by • x +y = α e (x + y) = e(x + y),

2. 1 1 ) 2 . 9 .

 1129 Hom-algebra over commutative Hom-ring of type (Definition Let (A, + A , •, 0, α, β) be a unitary Hom-ring of type (1) with unit 1 A . A left A-module M consists of an abelian Hom-group (M, + M , γ) and an operation λ l : A⊗M → M such that for all a, b in A and m, m 1 , m 2 in M , we have:

. 9 )Example 2 . 10 .Proposition 2 . 11 .

 9210211 The operation of the Hom-ring on M is called scalar multiplication, and is usually written by am for a in A and m in M . The notation A M indicates a left A-module M . If γ is invertible, a such left module A M is said regular. A right A-module M or M A is defined similarly, except that the ring acts on the right; i.e., the operation takes the form λ r : M ⊗ A → M , and the above axioms are written with an scalar multiplication on the right. If A is a unitary Hom-ring, then we may consider A as either a left or right A-module, where the action is given by the multiplication. Let (A, + A , •, 0, α, β) be a unitary Hom-ring. If A is commutative, then these left modules are the same as right modules.Proof. Let M be a right A-module, i.e., there exists λ r : M ⊗ A -→ M by λ r (m ⊗ a) = ma. Now, we define λ l : A ⊗ M -→ M by λ l (a ⊗ m) = ma. Using the commutativity of the Hom-ring A, we can verify that λ l defines a left module structure for M over A.

Definition 3 . 3 . 3 ) 3 . 4 .Lemma 3 . 5 .

 3333435 A Hom-alternative-ring is a Hom-nonassociative ring satisfying the condition as β (x, x, y) = as β (y, x, x) = 0.(3.Remark If α = β = id, we automatically have the definition of alternative ring. Let (A, +, •, 0, α, β) be a Hom-alternative-ring such that α is bijective. Then, the β-associator is skew-symmetric and we have[xy, β(x)] = -α • β(x)[x, y],(3.4)[xy,β(y)] = [x, y]α • β(y),(3.5)for all x, y ∈ A.Proof.Lemma 1.19 gives the skew-symmetry of the β-associator. Using Definition 3.3 in (3.1), it follows α

  y, z), where x 2 = xx,(3.14) as β (β(x), xy, β(z)) = as β (β(x), β(y), xz) = as β (x, y, z)α(β 2 (x)),(3.15) as β (β(x), yx, β(z)) = as β (β(x), β(y), zx) = α(β 2 (x))as β (x, y, z), (3.16) and the Hom-Moufang identities β(xy)β(zx) = β 2 (x)((yz)β(x), (3.17) ((xy)β(x))β 2 (z) = β 2 (x)(β(y)(xz)), ((zx)β(y))β 2 (x) = β 2 (z)(β(x)(yx)). (3.18) Proof. Considering w = x in (3.7), we obtain

  as β (as β (x, y, z)2 , α(β3 (x)), α(β 3 (y))) = 0. (3.20) Proof. Proposition 3.7 gives us α(as β (β(x 2 ), β 2 (y), β(zy))) = ( α(β 2 (y))as β (x, y, z) ) α(β 3 (x)) + α(β 3 (x)) ( α(β 2 (y))as β (x, y, z) ) , and α(as β (β(x 2 ), β 2 (y), β(zy))) = α(β 3 (y)) ( as β (x, y, z)α(β 2 (x)) ) + α(β 3 (y)) ( α(β 2 (c))as β (x, y, z)

  .24) Using (2.2) and the fact that (A, +, 0, α) is a regular abelian Hom-group and replacing(3.24) in the expression of α 3 (f (vu, β(u), β(x), β(y))), we obtainα 3 (f (vu, β(u), β(x), β(y))) = α(f ([v, u], α(β(u)), α(β(x)), α(β(y)))) + α ( α 3 (β 3 (u))f (v, u, x, y) + α 2 (β(as β (u, x, y)))α 2 (β 2 ([v, u]))

α 3

 3 (f (vu, β(u), β(x), β(y))) = α 2 (f (vu, β(u), β(x), β(y))) -( α(f (uv, β(u), β(x), β(y))) -( α 3 (β 3 (u))f (v, u, x, y) + α 2 (β(as β (u, x, y)))α 2 (β 2 ([v, u])))) .So, we can see that0 = f (uv, β(u), β(x), β(y)) -( α 2 (β 3 (u))f (v, u, x, y) + α(β(as β (u, x, y)))α(β 2 ([v, u]))

Definition 3 . 10 .Proposition 3 . 11 .

 310311 Let (A, +, •, 0, α, β) be a Hom-ring. A non-zero element a in A is called a left (resp., right) zero-divisor if there exists a non-zero element b such that ab = 0 (ba=0). Let x, y, z be any elements of a Hom-alternative ring (A, +, •, 0, α, β) such that α is bijective. If (as β (x, y, z)) is not a divisor of zero and β is injective, thenβ 2 ([as β (x, y, z) 2 , α(β 3 (x))]) = 0.(3.25)Proof. Consider u = as β (x, y, z), v = uu = u 2 and w = f (α(β 3 (x)), α(β 3 (y)), α(β 3 (z)), v). (3.21) gives us α 2 (f (α(β 3 (x))v, α(β 4 (y)), α(β 4 (x)), α(β 4 (z))) = (( α 3 (β 6 (x))f (v, α(β 3 (y)), α(β 3 (x)), α(β 3 (z))) + f (α(β 3 (x)), α(β 3 (y)), α(β 3 (x)), α(β 3 (z)))α 2 (β 3 (v)))+ α 2 (β(as β (α(β 3 (x)), α(β 3 (x)), α(β 3 (z)))))α 2 (β 2 ([v, α(β 3 (y))]))) + ( α 3 (β 5 ([x, y]))α 2 (β(as β (v, α(β 3 (x)), α(β 3 (z)))))

α 2 ( 2 ( α 3

 223 f (α(β 3 (x))v, α(β 4 (y)), α(β 4 (x)), α(β 4 (z))) = α (β 6 (x))w) + α(g(α(β 3 (x)), v, α(β 3 (y)), α(β 3 (x)), α(β 3 (z)))). But f (α(β 3 (x))v, α(β 4 (y)), α(β 4 (x)), α(β 4 (z)) = -f (α(β 3 (x))v, α(β 4 (x)), α(β 4 (y)), α(β 4 (z)).Now, from (3.22), we getf (α(β 3 (x))v, α(β 4 (x)), α(β 4 (y)), α(β 4 (z)) = α 3 (β 6 (x))f (v, α(β 3 (x)), α(β 3 (y)), α(β 3 (z))) + α 2 (β 4 (as β (x, y, z)))α(β 2 ([v, α(β 3 (x))])) = -α 3 (β 6 (x))w + α 2 (β 4 (u)α(β 2 ([v, α(β 3 (x))])). Therefore g(α(β 3 (x)), v, α(β 3 (y)), α(β 3 (x)), α(β 3 (z))) = -α 3 (β 4 (u))α 2 (β 2 ([v, α(β 3 (x))])). (3.26)If we operate similarly on f (vα(β 3 (x)), α(β 4 (y)), α(β 4 (x)), α(β 4 (z)), we can prove thatg(α(β 3 (x)), v, α(β 3 (y)), α(β 3 (x)), α(β 3 (z))) = α 2 (β 2 ([v, α(β 3 (x))]))α 3 (β 4 (u)). (3.27) So α(β 4 (u))β 2 ([v, α(β 3 (x))]) = -β 2 ([v, α(β 3 (x))])α(β 4 (u)). (3.28) (3.7) implies f (α(β 4 (x)), α(β 4 (y)), α(β 3 (x))v, α(β 4 (z))) = α(as β (α(β 4 (xy)), β(y), β(z)) -( α(β 2 (x))as β (w, y, z) + as β (x, y, z)α(β 2 (w)) ) . Using (3.7),(3.15) and (3.20), one can shows that α(β 4 (u))β 2 ([v, α(β 3 (x))]) = 0 = β 2 ([v, α(β 3 (x))])α(β 4 (u)). (3.29)

Definition 1.5. Let

  (G, µ G , e G , α G ) and (H, µ H , e H , α H ) be two Hom-groups. A homomorphism of Hom-groups is a map f : G → H such that

  Two Hom-groups (G, µ G , e G , α G ) and (H, µ H , e H , α H ) are called isomorphic if there exists a bijective homomorphism of Hom-groups f : (G, µ G , e G , α G ) → (H, µ H , e H , α H ).

	e H is a
	homomorphism.
	Definition 1.7. Definition 1.8. Let (G, µ, e, α) be a Hom-group. A nonempty subset H of the Hom-group G is a Hom-subgroup
	of G if (H, µ, e, α) is a Hom-group. We use the notation H ≤ G to indicate that H is a Hom-subgroup of G.
	If H is a Hom-subgroup, we see that e the identity for G is also the identity for H. Consequently the following
	theorem is obvious:
	Theorem 1.9. A subset H of the Hom-group (G, •, e, α) is a Hom-subgroup of G if and only if
	1. e ∈ H,

  , (A, +, •, 0, α r , β u ) is a Hom-ring of type[START_REF] Aizawa | q-deformation of the Virasoro algebra with central extension[END_REF]. We denote this by A αr,βu .

Definition 2.4. A Hom-ring of type (2) is a tuple (A, +, •, 0, α, β) with a set A together two binary operations + : A × A → A ( the addition) and • : A × A → A ( the multiplication) and two set maps α, β : A → A, such that: 1. (A, +, 0, α) is an abelain Hom-group.

2. β is an endomorphism of the abelian Hom-group (A, +, 0, α), i.e., β(x + y) = β(x) + β(y), ∀x, y ∈ A, and

Remark 3.12. Setting α = β = id, one recovers all identities in [START_REF] Bruck | The structure of alternative division rings[END_REF]. Now we have introduced the concept of Hom-aletrnative rings, it's natural to provide a way for constructing them. Proposition 3.13. Let (A, +, •, 0) be an alternative ring and α, β : A → A be two ring endomorphisms such that α • β = β • α. Then (A, + α , • β , 0, α, β) is a Hom-alternative ring, where

x + α y = α(x + y), x • β y = β(xy).

Proof. The β-associator is defined by

where as(x, y, z) = (xy)z -x(yz). As (A, +, •, 0) is an alternative ring, i.e., as(x, x, y) = 0 = as(y, x, x), we deduce the proposition. 

.1)

A Hom-Lie ring (A, +, [, ], 0, α, β) is called a regular Hom-Lie ring if β is an invertible map.

Remark 4.2. A Hom-Lie ring

Proof. Let x, y and z in A. One can shows that

The proof of skew symmetry and alternation conditions is obvious. Moreover, we have the Hom-Jacobi Identity as follows:

) - Proof. We are interested in showing the Hom-Additive in left coordinate condition and the Hom-Jacobi identity. Let x, y and z in A. Then we have

In the similar way we can prove the following: Proposition 4.5. Let (A, +, •) be a ring and α, β : A → A be two homomorphisms of ring such that α is invertible and α • β = β • α. Then (A, +, [, ], 0, α, β) is a Hom-Lie ring, where the addition + and the bracket [, ] are given by:

Definition 4.6. A Hom-Jordan ring is a commutative Hom-nonassociative ring (A, +, •, 0, α, β) that respects the Hom-Jordan identity: Proof. The commutativity of "•" is obvious. Let x, y ∈ A, we will prove

2), (2.3) and (1.13), we find

) .

The Hom-associativity condition (2.1) gives Using these identities and using again (2.2), (2.3) and (1.13), we deduce the proposition. Proof. The demonstration is left for the reader.

Remark 4.10. From the Remark 2.13, all results of this article will be true for Hom-algebras.