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Abstract

This paper presents a mathematical model to site and size the charging infrastructure for
electric vehicles (EVs) in a distribution grid to minimize the required capital investments
and maximize self-consumption of local PV generation jointly. The formulation accounts
for the operational constraints of the distribution grid (nodal voltages, line currents, and
transformers’ ratings) and the recharging times of the EVs. It explicitly models the EV
owners’ flexibility in plugging and unplugging their vehicles to and from a charger to enable
optimal utilization of the charging infrastructure and improve self-consumption (cooper-
ative EV owners). The problem is formulated as a mixed-integer linear program (MILP),
where nonlinear grid constraints are approximated with linearized grid models.
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1 INTRODUCTION

The increasing population of electric vehicles (EVs) motivated
the necessity of developing an extended charging infrastruc-
ture. According to [1, 2] in France, 2 billion euros will be
necessary to deploy 7 million public and private chargers by
2030. Also, it is estimated in [3] that, during 2019–2025, more
than 2 billion dollars will be necessary to improve the public
and residential charging infrastructure across major metropoli-
tan areas of the United States. A large number of charging
stations and the simultaneous charging of many EVs might
result in increased power flows, violating the operational con-
straints of distribution grids (voltage levels, line ampacities, and
substation transformers rating). Thus, besides the investment
associated with developing the charging infrastructures, addi-
tional investments might be required to upgrade and reinforce
the grid infrastructures, especially distribution grids. This moti-
vates planning the EV charging infrastructure (in terms of their
locations in numbers) while cognizant of the constraints of
distribution grids and driving demand of the EV owners.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Energy Conversion and Economics published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and the State Grid Economic &
Technological Research Institute Co., Ltd.

A solution to reduce grid congestions and, at the same time,
reduce grid losses and improve the carbon footprint of the
recharging process is to charge EVs by using electricity pro-
duced by local photovoltaic (PV) generation. This paradigm,
known as PV self-consumption, has been widely advocated
in the literature as a way to integrate more PV into existing
distribution grids [4, 5], delaying expensive grid reinforcement.

In this paper, we tackle planning the charging infrastruc-
ture for EVs, namely establishing the location and number
of chargers in a distribution grid to satisfy the recharging
demand of the EV owners. The objective of the study is to ver-
ify whether optimizing the EV charging infrastructure under
different criteria leads to significantly different infrastructure
requirements. These different criteria are: minimizing the total
investment costs (i.e. chargers are planned to minimize the capi-
tal investment), optimizing for PV self-consumption (i.e. joint
optimization of capital investments and facilitating PV self-
consumption), reduction of the cost of recharge for end users
(i.e. joint optimization of capital and operating costs under time-
of-use electricity tariffs), different levels of flexibility of the EV
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2 MUKHERJEE AND SOSSAN

owners in plugging and unplugging their EVs into and from
chargers, and duration of the parking intervals.

The problem is formulated as a mixed-integer linear program
(MILP) whose formulation is adapted to capture the different
conditions described above.

The problem of planning the charging infrastructure for EVs
has been investigated extensively. The works in [6] and [7] con-
sidered distribution grid and traffic flow models to identify
appropriate nodes where to allocate EV charging stations with
a genetic algorithm to tackle nonconvexities of AC load flow
models, however without considering PV self-consumption and
explicit models of the EV owners’ flexibility. The work in
[8] proposed a data-driven approach to identify the driving
demand and locations of the chargers without however con-
sidering grid constraints, PV self-consumption and EV owners’
flexibility. Works in [9, 10] proposed a two-stage optimization
framework to co-optimize the charging infrastructure of EVs
in combination with the operations of the power and gas net-
works; however, the work does not specifically address drivers’
flexibility and PV self-consumption. The works in [11, 12]
tackled planning of the charging infrastructure without; how-
ever, including grid constraints, PV self-consumption and EV
owners’ flexibility. The work in [13] proposes joint planning
of EV charging stations and distribution capacity expansion
without; however, modeling EV owners’ flexibility and PV self-
consumption. In [14] authors modeled the bounded rational
charging behavior of EV drivers and applied the behavior model
in solving the planning problem for EV chargers; this work did
not investigate the impact of PV self-consumption. A multi-
objective planning model for EV chargers is developed in [15]:
even if this work considers renewable generation with wind
power, it does not explore the impact of PV self-consumption
or drivers’ flexibility. A multi-objective planning model for the
layout of an electric vehicle charging station is proposed in
[16], without considering the distribution grid’s operational con-
straints and PV self-consumption. Recently, the work in [17]
presented a stochastic planning model for EV chargers, includ-
ing PV generation; however, this work does not investigate the
impact of PV self-consumption modeling on the planning.

In view of the existing literature, the main contribution of
this paper is a quantitative investigation of the sensitivity of
the EV charging infrastructure to different optimization objec-
tives, including PV self-consumption. The question we want to
answer is whether changing the planning objective leads to a
substantially different charging infrastructure or whether sim-
ilar configurations of charging infrastructures can be suitable
to accommodate different objectives. This question is of inter-
est for urban planners or policymakers to identify, for example,
charging infrastructure that could become quickly obsolete
if planning objectives change over time. From a method-
ological perspective, we introduce an extensible mathematical
optimization model that can be used to perform this analysis.

The rest of this paper is organized as follows. Sec-
tion 2 presents the problem statement and problem formu-
lation. Section 3 describes the case study, Section 4 presents
and discusses the results, and finally Section 5 concludes
the paper.

2 PLANNING THE EV CHARGING
INFRASTRUCTURE

The problem formulation aims to identify the location and
numbers of EV chargers in a distribution grid to satisfy the
EV owners’ driving needs while obeying the distribution grid’s
constraints. This formulation is then cast to achieve different
objectives:

∙ optimization of the total capital investments for the whole
charging infrastructure;

∙ optimization of the total capital investments in combina-
tion with fostering a charging infrastructure conducive to
promoting PV self-consumption;

∙ joint optimization of the capital and operational costs (i.e.
recharging costs for the EV owners considering time-of-use
electricity tariffs);

The adopted formulation explicitly models the flexibility of
the EV owners in plugging and unplugging their vehicles in
and from chargers. The reason for this is that more flexible
owners increase the utilization factor of the charging infras-
tructure, thus requiring planning fewer chargers for the same
charging demand.

The formulation of this paper modifies and extends the plan-
ning method originally described in [18]. The methods from [18]
are summarized in this section for the sake of clarity; the exten-
sion to PV self-consumption and joint optimization of capital
and operational costs, the main methodological contributions of
this work, is then discussed in Sections 2.7 and 2.8. The problem
is formulated as a constrained economic optimization program,
as explained in this section.

2.1 Indexes and notation

Let v = 1, … ,V denote the index of the EVs, t = 1, … , T the
index of the time interval, and n = 1, … ,N the index of the
node of the distribution grid, where V , T , and N are the
total number of vehicles, time intervals and grid nodes, respec-
tively. With abuse of notation and more compact expressions,
we denote with subscripts nvt quantities for node n, vehicle v,
and at time interval t , and not the product among these indexes;
similarly for other subscripts.

2.2 Meeting the driving demand

The need to satisfy the driving demand is modeled by requiring
all vehicles’ state of charge (SOC) to be within a given range at
all time. Say SOCv (t ) is the state-of-charge of vehicle v at time
interval t , this requirement reads as:

SOC ≤ SOCv (t ) ≤ SOC, for all t and v, (1a)

where parameters SOC and SOC denote feasible bounds of the
state-of-charge (e.g. 10% and 90%, respectively).
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MUKHERJEE AND SOSSAN 3

The SOC’s evolution in time is modeled as a function of
discharging power (dictated by the driving demand) and the
recharging power (a variable of the optimization problem).
Formally, this is as:

SOCv (t ) = SOCv (0) +
Ts

Ev

t−1∑
𝜏=0

(
𝜂 ⋅ pEV+

v𝜏 − pEV−
v𝜏

)
, (1b)

where SOCv (0) is the initial state-of-charge, Ts is the integration
time in hours, Ev is the energy capacity in kWh of the battery
of vehicle v, 𝜂 is the charger efficiency, pEV+

v𝜏 is the recharging
power, and pEV-

v𝜏 is the discharging power.
Both pEV+

v𝜏 and pEV-
v𝜏 are non-negative and mutually exclu-

sive by construction (because an EV cannot be driven and
recharged at the same time), as it will be explained later. The
charging power pEV+

v𝜏 is a variable of the optimization problem
and modeled as it will be described in Section 2.3.

The discharging power pEV-
v𝜏 is an input of the problem and

thus assumed given. In this paper, it is estimated from historical
measurements of the EV state of charge: for this reason, in (1b),
it is not weighted by the efficiency. Input data sets are discussed
in the case study section.

The model in (1b) assumes constant battery voltage and effi-
ciency: it is commonly adopted in the literature because it is
linear in the recharging power (e.g. [19]). These assumptions
trade-off accuracy for increased model tractability and are con-
sidered acceptable in a planning problem with sparse temporal
resolution (e.g. tens of minutes), as in this paper.

2.3 Modeling the charging power and
constraints

This section explains how the charging power of the EVs, that
is, pEV+

vt in (1b), is computed and vehicles’ recharging con-
straints.

We introduce the binary variable s
charge
vt , that denotes whether

a vehicle v is charging at time interval t (if 1) or not (if 0). It
is worth remarking that s

charge
vt for all v and t are variables of

the optimization problem, meaning that their values are an out-
put of the problem and computed by the optimization solver to
meet problem’s constraints and minimizing the cost function.

Say S̄ is a charger’s kVA rating and cos𝜙 its power factor.
Assuming the charger operates on-off, the EV recharging power
pEV+

vt is modeled as a function of s
charge
vt as:

pEV+
vt = s

charge
vt ⋅ S̄ ⋅ cos𝜙, ∀t and v. (2)

As a contribution of this paper compared to the former
formulation in [18], we model the capability of a charger to
modulate its output power. Assuming the charger works at
a constant power factor (regardless of its power output), the
previous model can be modified as:

0 ≤ pEV+
vt ≤ s

charge
vt ⋅ S̄ ⋅ cos𝜙. (3)

We introduce the binary variable s
plugged
vt to indicate whether a

vehicle v is plugged into a charger at time interval t (if 1), or it is

not (if 0). s
plugged
vt is also a variable of the optimization problem

and is used to identify which chargers are occupied at a given
time interval t .

Some constraints apply to variables s
charge
vt and s

plugged
vt to

ensure a logically meaningful model, as now discussed.
First, because an EV can charge only when it is plugged into

a charger, s
charge
vt can be 1 only if s

plugged
vt is 1 too. Formally, this

reads as:

s
charge
vt ≤ s

plugged
vt ∀t and v. (4)

Second, a vehicle can be plugged into a charger only if it
is parked (plugged-in-only-if-parked constraint). Assuming that the
information on whether a vehicle is parked is available in the
following input information:

pnvt =

{
1, if EV v is parked at node n at time t

0, otherwise,
(5)

The plugged-in-only-if-parked is formalized as:

s
plugged
vt ≤

N∑
n=1

pnvt ∀t and v. (6)

Input quantities pnvt in (5) are assumed known from vehicles
utilization data or statistics. It is worth highlighting that because
a vehicle can be parked at one node only at a given time, a
property of the input information pnvt in (5) is that

N∑
n=1

pnvt ≤ 1 for all t and v. (7)

2.4 Need for chargers and capital
investment for the charging infrastructure

This section explains how the number and locations of the
chargers in the distribution grid is determined based on the
problem variables.

In words, the number of required chargers at a given grid
node is identified by evaluating the maximum number of vehi-
cles at that node which are simultaneously plugged into a
charger. We denote the number of chargers required at node
n by S

chargers
n . Its formal definition is now introduced and then

explained:

S
chargers
n = max

t

{
V∑

v=1

(
pnvt ⋅ s

plugged
vt

)}
, n = 1, … ,N . (8)

Equation (8) first computes the product between pnvt and

s
plugged
vt for a fixed node, time interval, and vehicle. This product
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4 MUKHERJEE AND SOSSAN

enables to link the vehicle (and whether it is keeping a charger
busy because plugged-in) with its position in the grid. Summing
over all vehicles for a fixed node and time tells the total number
of vehicles plugged into a charger at the grid location n. Finally,
the maximum operator computes the largest number of vehicles
plugged-in at node n over time, which is the number of chargers
that is necessary to have to satisfy the demand for chargers at
that node.

Based on the required numbers of chargers computed in (8),
one can estimate the capital cost of the charging infrastructure
as

J chargers =

N∑
n=1

𝛾 ⋅ S
chargers
n , (9)

where 𝛾 is the unitary cost of a charger.
Naturally, Equation (9) is the function to minimize to

achieve minimum costs of the charging infrastructure. It
will be used later to formulate the cost function of the
optimization problem.

2.5 Modeling plugging and unplugging
behavior of EV owners

The plugged-in state of a vehicle does not depend only on its
parking state, as discussed above for (6), but also on whether its
owner is available to plug it into a charger (or unplug it from
a charger so as to make available the charger to another EV
owner). Because EV owners’ behavior ultimately affects the uti-
lization of the chargers, it also affects the number of chargers
to install, thus it is important to model this element. In order to
do so, additional (linear) constraints are added for the variables

s
plugged
vt .

We model two scenarios of EV owners’ flexibility: forgetful

EV owners and cooperative EV owners. To explain these scenarios,
we specifically refer to the case study considered in this paper,
which considers a trip-around home/work commute, where EV
owners drive their vehicles from an origin node to a destination
node in the morning, and then back to the origin node in the
evening. The scenarios are here explained here verbosely. The
notation and formulation are explained in Appendix A.

2.5.1 Forgetful EV owners

In both the morning and afternoon commutes, owners plug
their vehicles at the arrival time and unplug them at the depart-
ing time. In these intervals, the chargers are busy for the whole
duration of the parking stay, regardless of whether the vehicle
charges or not.

2.5.2 Cooperative EV owners

It is like the former case, except that EV owners allow up to 1
floating disconnection in the daytime parking interval to give the

possibility of using that charger to other vehicles as opposed to
the possibility of disconnecting only at the end of the morning
period. It is worth noting that, in the night-time parking stay, this
flexibility is not implemented as it is not considered practical for
the EV owners to unplug vehicles during night time.

2.6 Nodal injections and grid model

A nodal injection consists of the total charging demand of EVs
at that node, conventional demand connected at that node, and
local PV generation. It includes both active and reactive parts.
Nodal injections and their components are:

Pnode
nt = Pdemand

nt − PPV
nt + PEV

nt , (10a)

Qnode
nt = Qdemand

nt + QEV
nt , (10b)

where Pdemand
nt ,Qdemand

nt are the active and reactive power of the
total demand, PPV

nt is the PV generation (taken with the nega-
tive sign because it is generation), and PEV

nt ,QEV
nt are the active

and reactive power of the total EV charging demand at node n

and time interval t . PV plants are assumed operated at a unitary
power factor, so the reactive power contribution of PV plants
does not appear in (10b).

Quantities Pdemand
nt , Qdemand

nt , and PPV
nt are input information,

whereas PEV
nt and QEV

nt depend on the EV charging patterns and
are calculated as a function of the variables of the optimization
problem. In particular, PEV

nt is computed as:

PEV
nt =

V∑
v=1

pnvt ⋅ pEV+
vt for all t and n. (11)

The reactive power associated to the charging power (2) and (3)
is

qEV+
vt = pEV+

vt ⋅ tan𝜙, ∀t and v (12)

and the total reactive power at node n associated to the
recharging demand is

QEV
nt =

V∑
v=1

pnvt ⋅ qEV+
vt for all t and n. (13)

Because the grid voltage is constrained in a small range to
respect statutory voltage limits, we use the approximation that
all power injections are voltage independent.1

Once nodal injections are known, nodal voltage magnitudes
vtn, current magnitudes itl in the lines with index l = 1, … ,L,
and power flow at the slack bus St 0 (assumed in this case as the
grid connection point) can be calculated with load flow mod-
els as a function of the grid topology and cable characteristic.
Because load flows are nonlinear and result in nonconvexities
when included in an optimization problem, we use a linearized

1 Voltage-dependent power injections could be accounted for by upgrading the linear grid
model, as proposed in [20].
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MUKHERJEE AND SOSSAN 5

model based on sensitivity coefficients. Linearized grid models
are indicated with the following notation:

vtn = fn
(
Pnode

t 1 , … , Pnode
tN

,Qnode
t 1 , … ,Qnode

tN

)
, (14a)

itl = gl

(
Pnode

t 1 , … , Pnode
tN

,Qnode
t 1 , … ,Qnode

tN

)
, (14b)

St 0 = hl

(
Pnode

t 1 , … , Pnode
tN

,Qnode
t 1 , … ,Qnode

tN

)
, (14c)

where fn, gl , and hl are linear functions and highlight the
dependency between grid quantities and nodal injections. The
distribution grid’s operational constraints can be expressed as
(for all relevant indexes):

v ≤ vtn ≤ v, (14d)

|itl | ≤ i l , (14e)

St 0 ≤ S 0, (14f)

where (v, v) are statutory voltage levels, i l is cable l ’s ampacity,

and S 0 is the kVA rating of the substation transformer.
In addition to the constraints in (14), in order to capture

power limitations of the downstream electrical equipment (e.g.
LV/MV transformers), we require nodal injections (10) to be
smaller than kVA limit of node S̄n:

(Pnode
nt )

2
+ (Qnode

nt )
2
≤ (S̄n )2. (15)

Constraint (15) is nonlinear. By assuming a worst-case sce-
nario of reactive power injections, we approximate (15) with the
following linear expression:

− S̄n ⋅ cos𝜙n ≤ Pnode
nt ≤ S̄n ⋅ cos𝜙n, (16)

where cos𝜙 is the lowest power factor of the nodal injection at
node n.

2.7 Joint charging infrastructure planning
and PV self consumption maximization

In this paper, we are interested in jointly optimizing the EV
charging infrastructure in terms of required capital investments
and PV self-consumption by shifting the recharging process of
EVs when PV generation is available.

PV self-consumption of EVs at the power grid nodes can be
promoted by incentivizing EVs to consume more power during
time intervals when there is local PV production and vice-versa.
This is modeled by minimizing the following objective function:

J PV =

N∑
n=1

T∑
t=1

1

PPV
nt + 𝜖

PEV
nt , (17)

where PPV
nt is PV generation (an input of the problem), 𝜖 is a

small coefficient to avoid dividing by zero when there is no PV

generation, and PEV
nt are the EV nodal injections, as defined in

(11), which are the variables in this expression. In (17), when
PV generation is available, recharging EVs will not impact much
on the cost function value, whereas without PV generation, the
cost function value will increase, thus penalizing this action and
ultimately fostering PV self-consumption.

Cost functions (9) and (17) can be combined into a single one
as:

J total = J chargers + k ⋅ J PV, (18)

where k is an input non-negative coefficient. The two com-
ponents of the cost function above are different in nature, as
the first is an economical cost and the second an incentive
with no specific economic meaning. The weight k determines
the importance of the terms. We note that when k = 0, we
purely seek to minimize the cost of the infrastructure, whereas
when k is large, the infrastructure is planned considering PV
self-consumption mostly.

Ideally, we are interested in a problem solution that is stable
for different values of k as this would indicate that the same
charging infrastructure can accomplish both infrastructure cost
minimization and PV self-consumption. In the results, we will
specifically discuss under which conditions this happens.

2.8 Joint minimization of investment and
operational costs with time-of-use electricity
tariffs

Capital investment and operational costs can be jointly opti-
mized by minimizing the following cost function:

J total = J chargers + 𝛼 ⋅

N∑
n=1

T∑
t=1

PEV
nt ⋅ ct , (19)

where ct is a time-of-use electricity tariff at time t (assumed the
same across the all grid) and the coefficient 𝛼.2

𝛼 =
Service-life of chargers
Optimization horizon

, (20)

is a scale factor to make the two costs comparable.

2.9 Formulation of the optimization
problems

The variables of the problem are the plugged-in and charging
binary variables introduced in Section 2.3. They are collected in
the following vector x:

x = [s
charge
11 , … , s

charge
VT

s
plugged
11 , … , s

plugged
VT

] ∈ ℤV ×T
2 , (21)

2 Discount rate is here neglected because it is not of primary interest in the results compar-
ison.
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6 MUKHERJEE AND SOSSAN

where ℤ2 = {0, 1} is the set of binary number. As explained
in the former sections, these variables are used to model the
charging process of the vehicles, the number of required charg-
ers, the nodal injections, EV owners’ flexibility, and finally the
grid constraints.

In addition to these variables, the initial state-of-charge values
in (1b) are also problem decision variables. They are collected in
the vector:

z = [SOC1(0), … , SOCV (0)] ∈ ℝV . (22)

This is done with the objective of avoiding a problem solution
that is sensitive to input information. For this set of variables,
we also require the final SOC value to be larger than the initial
one to avoid benefiting from the initial energy stock:

SOCv (T ) ≥ SOCv (0), for all v. (23)

The problem formulation for the PV self-consumption con-
sists of minimizing the cost function in (18) over the decision
variables x and z:

min
x∈ℤV ×T

2 ,z∈ℝV

{
J chargers + k ⋅ J PV

}
(24a)

subject to the following constraints

Plugged-in only if parked (6) ∀t and v, (24b)

Charge only if plugged-in (4) ∀t and v, (24c)

SOC model (1) and charging power (2) ∀t and v, (24d)

Number of chargers model (8) ∀n, (24e)

Forgetful (A.3) or cooperative owners (A.4) ∀v, (24f)

Nodal injections (10)-(13) ∀t and n, (24g)

Grid constraints (14) and (16) ∀t , n and l . (24h)

For the joint optimization of the capital and operational costs,
the problem is the same as above except for the cost function
that is replaced with (19).

3 CASE STUDY

3.1 Power distribution grid

The grid is the CIGRE benchmark grid for MV systems [21]. It
is a three-phase 14-bus system (N = 14) with a nominal volt-
age of 20 kV and connected with the upper-grid level with
two transformers, each serving a radial feeder, for a total rat-
ing of 50 kVA. The system is modeled with a single-phase
equivalent model under the assumptions of balanced loads and
transposed cables.

The grid topology of the system is shown in Figure 1. The
colored areas represent the parking locations of the vehicles. In

Load

Switch/CB

Cluster -1 

Cluster -2

Transformer

Bus

FIGURE 1 Topology of the CIGRE European MV distribution network
benchmark for residential system [21].

1 3 5 7 9 11 13 15 17 19 21 23
0.3

0.35

0.4

0.45

Time (hour of the day)

C/
kW

h

FIGURE 2 Cost of the electricity in the month of July in France.

particular, the nodes in Cluster 1 (purple area) are where the
EVs are parked overnight, and those in Cluster 2 (green area)
are where EVs are parked during the daytime. The time-of-
use retail electricity tariff is approximated with the day-ahead
electricity prices obtained from [22] and shown in Figure 2 for
24 h. This 1-day-long profile is replicated 5 times to obtain the
profile of the 5-day-long optimization horizon adopted in the
optimization.

3.2 Nodal demand and PV generation

The nodal demand, Pdemand
nt and Qdemand

nt in (10a), is simulated
considering the 1-day long load coincidence factor described in
[21], rescaled for the kVA nominal power of the nodes and then
split into the active and reactive components with the nomi-
nal power factor of the nodes. Both nodal power factors and
nominal powers are reported in Table 1.

Table 1 shows the PV generation capacity installed at the
various nodes of the grid. A total of 400 kWp of PV genera-
tion is installed in the network and connected to nodes 6, 10,
and 11, corresponding to nodes where EVs are parked dur-
ing the daytime. PV generation is simulated with first-principles
models starting from irradiance time series as described in
[23], considering clear-sky conditions and PV panels with tilt

 26341581, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/enc2.12080 by C

ochrane France, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MUKHERJEE AND SOSSAN 7

TABLE 1 Nodal nominal demand and power factors.

Node

Apparent

power

[kVA]

Power

factor Cluster

PV

Gen

[kW]

1 15’300 0.98 - 0

3 285 0.97 1 0

4 445 0.97 1 0

5 750 0.97 1 0

6 565 0.97 2 150

8 605 0.97 1 0

10 490 0.97 2 200

11 340 0.97 2 50

12 15’300 0.98 - 0

14 215 0.97 2 0

and azimuth optimized to guarantee the largest yield over
the year.

3.3 Length of the optimization horizon

The length of the optimization horizon, T , is 5 days. The time
resolution of the time series is 1 h. The 5-day-long input time
series are obtained by replicating 5 times the 1-day-long nodal
demand and PV generation trajectories. Despite the short plan-
ning horizon and the single scenario of PV generation and
demand, this configuration already allows capturing the sensi-
tivity of the charging infrastructure requirements with respect to
PV self-consumption, as discussed later, which is the objective
of this paper. More robust charging infrastructure requirements
can be obtained with extended planning horizons and mul-
tiple scenarios of demand and PV generation, and it will be
considered in future works. It is worth highlighting that the
number of decision variables of the problem is proportional
to T ; because MILP problems are generally NP-hard, suitable
strategies to limit the number of samples, such as scenario
reduction techniques, should be identified to attain feasible
computational times.

3.4 Number of vehicles and charger
properties

A population of 800 EVs with 60 kWh batteries is considered
(V = 800). The daily recharging demand of the EVs population
is 17.1 ± 4.0 kWh (mean values and standard deviation), esti-
mated using data from [24]. The discharging power pEV-

vt , used to
model the state-of-charge evolution in (1b), is positive and con-
stant when the vehicle drives and zero when the EV is parked; in
addition, it is such that its corresponding total energy amounts
to the daily recharging demand described above (at the net of the
charger efficiency). Level-1 chargers with a rating of 2.4 kVA are

considered (S̄ = 2.1 kVA). The power factor of these chargers
is 0.95 (cos𝜙 = 0.95), their efficiency is 0.9 (𝜂 = 0.9), and uni-
tary cost is (𝛾 = 11). Faster (and more expensive) chargers with
20 kVA rating were also tested, but they were not conducive
to improving performance (i.e. reducing capital investments or
improving PV self-consumption). The service life of the charger
is assumed 15 years.

3.5 Duration of the daytime intervals

The duration of the daytime parking intervals of the EVs
could impact the results of the planning problem and PV self-
consumption. In particular, longer daytime parking hours would
allow charging more EVs in the central part of the day, coincid-
ing with PV generation. In order to evaluate the sensitivity of
the results to the duration of the daytime parking intervals, two
scenarios are considered:

∙ base case parking stay: EVs are parked between 9 AM and
4 PM (plus/minus 0.5 h).

∙ extended parking stay: EVs are parked between 5 AM and
8 PM (plus/minus 0.5 h).

4 RESULTS AND DISCUSSIONS

This section illustrates and compares the planning results
obtained by optimizing for PV self-consumption and for joint
capital and operational costs optimization. The optimization
problems were solved with a MIP gap of 5% to decrease
the computation time. Under this setting, both the problems
took nearly 1 h to solve in a computer with an Intel Xeon
processor.

4.1 Optimizing for PV self-consumption

We first illustrate the impact of different values of k in the
cost function; as a reminder from the previous sections, the
coefficient k in (18) trades charging infrastructure costs for
PV self-consumption.

Figure 3 shows the values of the two components of the
planning problem’s cost function in (18) for different values of
k, forgetful/cooperative EV owners, and base case/extended
parking intervals. The two cost components on the plot axis are
J chargers (capital investments required for the resulting charging
infrastructure) and J PV (achieved PV self-consumption, where
lower values denoted improved PV self-consumption, and vice
versa). Subfigures are now discussed in detail.

Figure 3a shows that higher values of k attains lower values
of J PV (thus improving self consumption) but higher infrastruc-
ture costs J chargers. This trend, found also in the remaining plots
of Figure 3, is to be expected because larger values of k in the
cost function (18) gives more weight to PV self-consumption,
and less to decreasing infrastructure costs.
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8 MUKHERJEE AND SOSSAN

FIGURE 3 Change in PV self-consumption J PV (lower values denote
better PV self-consumption) with the cost of the recharging infrastructure
J chargers, for increasing values of k in different scenarios: forgetful EV owners
(a), Cooperative EV owners (b), forgetful EV owners with extended daytime
parking intervals (c), and cooperative EV owners with extended daytime
parking intervals (d).

Figure 3b shows the evolution of the costs when introduc-
ing flexible drivers. Compared to Figure 3a, it can be seen that
capital investment are marginally decreased, especially for k ≥ 0.

Figure 3c shows the evolution of the costs with extended
duration of the daytime parking intervals for forgetful EV own-
ers. By comparing this figure against Figure 3a, it can be seen
that:

∙ extending the daytime parking intervals leads to better PV
self-consumption J PV, as visible for k = 0.

∙ the value of the costs components in Figure 3c is not as
sensitive to variations of k as in Figure 3a.

Finally, Figure 3d shows the evolution of the costs with
extended duration of the daytime parking intervals and flexi-

TABLE 2 Total number of chargers and distribution among clusters for
different values of k, base case daytime parking intervals, and forgetful EV
owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000

3 49 58 62 57 60

4 95 88 79 92 119

5 169 115 116 108 148

6 101 215 219 219 224

8 118 51 58 60 63

10 52 205 205 205 205

11 73 117 119 117 125

14 21 27 24 27 23

Total 678 876 882 885 967

Cluster 1 64% 36% 36% 36% 40%

Cluster 2 36% 64% 64% 64% 60%

TABLE 3 Total number of chargers and distribution among clusters for
different values of k, base case daytime parking intervals, and forgetful EV
owners for modulated charging power.

Node k = 0 k = 1 k = 10 k = 100 k = 1000

3 50 50 48 50 50

4 106 70 69 69 76

5 168 88 96 89 92

6 101 218 225 225 222

8 116 31 29 41 46

10 50 205 205 205 205

11 73 119 121 119 119

14 19 20 20 20 21

Total 683 801 813 818 831

Cluster 1 64% 30% 30% 30% 32%

Cluster 2 36% 70% 70% 70% 68%

ble EV owners. Compared to Figure 3b, it can be seen that
increased flexibility of the EV owners leads to a (marginal)
improvement of both the self-consumption and the infrastruc-
ture cost.

Tables 2 and 3 report the total number of installed charg-
ers with the base case daytime parking intervals, forgetful EV
owners, and increasing values of k when the recharging power
of the chargers is on-off and modulated (Equations 2 and 3),
respectively. It can be seen that the number of chargers gen-
erally increases with larger values of k, inline with the former
discussion.

More interestingly, the two tables denote that the distribu-
tion of the chargers among clusters 1 and 2 changes between
k = 0 and k ≥ 0. In particular, with k = 0, chargers are mostly
installed in Cluster 1 (where EVs are parked overnight), whereas
with k ≥ 0, chargers are mostly installed in Cluster 2 (where
EVs are parked during the daytime). This denotes that promot-
ing PV self-consumption from EVs requires developing a more
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MUKHERJEE AND SOSSAN 9

TABLE 4 Total number of chargers and distribution among clusters for
different values of k, extended parking intervals, and forgetful EV owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000

3 1 0 0 0 0

4 23 17 18 19 18

5 2 1 0 2 0

6 198 199 210 215 218

8 2 1 1 0 0

10 120 120 125 138 169

11 117 129 129 129 129

14 53 52 52 52 52

Total 516 519 535 555 586

Cluster 1 6% 4% 4% 4% 4%

Cluster 2 94% 96% 96% 96% 96%

TABLE 5 Total number of chargers and distribution among clusters for
different values of k, extended parking intervals, and cooperative EV owners.

Node k = 0 k = 1 k = 10 k = 100 k = 1000

3 1 0 0 1 0

4 28 17 17 18 17

5 2 1 1 2 0

6 200 197 210 215 218

8 1 1 2 1 8

10 120 122 127 138 178

11 111 129 130 130 131

14 54 52 52 52 53

Total 517 519 539 557 605

Cluster 1 5% 4% 4% 4% 3%

Cluster 2 95% 96% 96% 96% 97%

pervasive charging infrastructure in those nodes where EVs are
parked during the daytime.

Finally, it is also important to highlight that Tables 2 and 3
feature similar values and trends, denoting that on-off or con-
tinuous modulation does not make a significant difference. This
can be explained by the fact that at the aggregated level, modu-
lating on-off a large number of vehicles will still achieve efficient
congestion management and that continuous modulation might
not be required.

Tables 4 and 5 show the total number of chargers and dis-
tribution between clusters 1 and 2 under the condition when
the parking intervals are extended for both forgetful and coop-
erative EV owners, respectively, for increasing values of k. It
can be seen that, in both these cases, the charging infrastruc-
ture is nearly entirely developed in Cluster 2, where EVs are
parked for a longer duration during the daytime and where PV
is available. Compared to the cases in Tables 2 and 3, it can
also be seen that, for increasing values of k, first, it does not
significantly impact the distribution of the chargers among the

TABLE 6 Distribution of number of chargers for different parking
intervals (800 EVs, 60 kWh battery, 5 days horizon, with service life factor).

Normal interval Extended interval

Node

Forgetful

chargers

Cooperative

chargers

Forgetful

chargers

Cooperative

chargers

3 100 100 47 47

4 168 168 109 109

5 243 243 185 185

6 215 215 215 215

8 196 196 143 143

10 205 205 196 196

11 103 103 115 115

14 48 48 62 62

Total 1278 1278 1072 1072

Cluster 1 55% 55% 45% 45%

Cluster 2 45% 45% 55% 55%

clusters, and second, it does not significantly impact the total
number of required chargers to be installed. The fact that the
properties of the charging infrastructure are similar for differ-
ent values of k denotes that an EV charging infrastructure that is
optimized for minimizing the investment cost is also capable of
delivering good performance in terms of PV self-consumption.

4.2 Joint optimization of capital and
operational costs

Table 6 reports the number of chargers and their distributions
for both normal and extended parking intervals and cooperative
and forgetful EV owners. The following observations can be
deduced:

∙ For the normal parking interval, chargers are predominantly
present in Cluster 1, similarly to the case k = 0 in the former
tables. However, the number of chargers, in this case, is much
higher than in former tables (about twice as much). This can
be explained by the fact that the planning problem finds it
convenient to install more chargers in Cluster 1 (where EVs
are parked overnight) in order to access lower electricity costs.

∙ For extended daytime parking intervals, where cars are parked
longer in Cluster 2 and less in 1, chargers tend to be installed
more in Cluster 2 than in Cluster 1. This is to be expected
because installing chargers in Cluster 2 will enable access to
lower electricity prices.

4.3 Comparison among all cases

Figure 4 compares the percentage of chargers installed in Clus-
ter 1 versus the total number of chargers for all the considered
cases (for PV self-consumption, only the case for k = 100
is considered). It can be seen that the difference between
cooperative and forgetful drivers is negligible when the other
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10 MUKHERJEE AND SOSSAN

FIGURE 4 Distribution and number of chargers in Cluster 1 for two optimization problems. Data obtained for the optimization with PV self-consumption are
plotted for k = 100.

features are the same. Thus, this factor does not affect the
charging infrastructure requirements in this case study.

It can be observed that the case with extended parking inter-
vals and PV self-consumption requires the smallest charging
infrastructure, mostly developed away from Cluster 1 (i.e. in
Cluster 2). The remaining cases feature a charging infrastruc-
ture that is more similar with respect to each other, so we can
conclude that it is more robust against possible changes of the
planning objective as it features a more similar distribution and
a total number of chargers.

5 CONCLUSIONS

This paper presented a MILP problem to site and size the
EV charging infrastructure in a distribution grid to jointly
minimize the required capital investments and maximize
self-consumption of local PV generation. The formulation
accounted for the operational constraints of the distribution
grid (nodal voltages, line currents, and transformers’ ratings),
the EVs’ recharging demand, and the flexibility of the EV
owners in plugging and unplugging their vehicles.

A proof-of-concept by simulations was developed by con-
sidering the CIGRE benchmark system for MV grids, and
a sensitivity analysis was performed to verify the impact
of various factors on the planning results. Results showed
that with short daytime parking intervals, improving PV self-
consumption required installing more chargers (in addition
to those required for overnight charging), resulting in higher
infrastructure costs. However, when extending the daytime
parking hours, it was found that a charging infrastructure devel-
oped in the nodes where EVs are parked during the daytime is
sufficient to meet the total recharging demand, ultimately lead-
ing to reduced EV charging infrastructure costs and improved
PV self-consumption. The intermittent PV generation thus may
provide a different configuration of charger distribution but cer-
tainly it will impact the planning results. Also, it is observed
that when the objective is to minimize the nodal EV charg-
ing prices, it provides different results and incurs higher costs
for the installation of the chargers. As a future work direction,
one could embed all the sources of uncertainty in a single opti-
mization problem with the objective of producing a charging
infrastructure robust against uncertainty.
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APPENDIX A: MODELING EV OWNERS’

FLEXIBILITY

EV owners’ availability and flexibility in plugging and unplug-
ging their EVs into and from a charger, respectively, are

modeled by adding additional constraints on variables s
plugged
vt .

We start by modeling plugging and unplugging events into and

from a chargers, which are modeled by detecting rising and

falling edges of the variables s
plugged
vt as:

cs
vt = max

(
s
plugged
vt − s

plugged
v(t−1) , 0

)
∀t and v, (A.1)

d s
vt = max

(
s
plugged
v(t−1) − s

plugged
vt , 0

)
∀t and v. (A.2)

We model two scenarios of EV owners’ flexibility: forgetful

EV owners and cooperative EV owners. To explain these scenarios,
we specifically refer to the case study considered in this paper,
which refers to a home-to-work-to-home commute, where EV
owners drive their vehicles from an origin node to a destination
node in the morning, and then back to the origin node in the
evening. For vehicle v, let the time interval (𝜏

(2)
v , 𝜏

(3)
v ) encom-

pass the duration of the morning commute and (𝜏
(4)
v , 𝜏

(1)
v ) the

duration of the evening commute for vehicle v. The scenarios
are as follows.

A.1 Forgetful EV owners

In both the morning and afternoon commutes, owners plug
their vehicles at the arrival time and unplug them at the depart-
ing time. In these intervals, the chargers are busy for the whole
duration of the parking stay, regardless of whether the vehicle
charges or not. This scenario is enforced by allowing unplugging
events at the vehicles’ departing times only (i.e. 𝜏

(2)
v and 𝜏

(4)
v ),

and plugging events at the vehicles’ arrival time only (i.e. 𝜏
(3)
v

and 𝜏
(1)
v ). Formally, this reads as the following set of constraints:

d s
vt ≤ 0 for all t except t = 𝜏

(2)
v and t = 𝜏

(4)
v , (A.3a)

cs
vt ≤ 0 for all t except t = 𝜏

(3)
v and t = 𝜏

(1)
v . (A.3b)

In words, connection and disconnection variables can become
active only in the four indicated time intervals; outside these
time intervals, binary connection and disconnection variables
are forced to zero, allowing no EVs to plug or unplug.

A.2 Cooperative EV owners

It is like the former scenario, except that EV owners allow up
to 1 floating disconnection in the daytime parking interval (i.e.
between 𝜏

(3)
v and 𝜏

(4)
v ) to give the possibility of using that charger

to other vehicles as opposed to the possibility of disconnecting
only at 𝜏

(4)
v . It is worth noting that, in the night-time parking

stay, this flexibility is not implemented as it is not considered
practical for the EV owners to unplug vehicles in the middle of
the night. Connection and disconnection constraints read as:

cs
vt ≤ 0 for all t except t = 𝜏

(1)
v , (A.4a)

d s
vt ≤ 0 for all t except t = 𝜏

(2)
v , (A.4b)

𝜏4∑
t=𝜏3

d s
vt ≤ 1. (A.4c)
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